Asset pricing
Homework 3 Solution

Exercise 1

1. Let w be the agent’s wealth. The agent invests a fraction x of her wealth in the risky asset R
and the rest in the risk-free asset, which makes the dollar amount invested in the risky asset
equal zw. Let the risky asset return be R and the risk-free asset return be R;. The terminal
wealth is

Wi =wRs + z(w)w (R — Ry) (1)

2. Let w(---) be the utility function. From the lecture notes, we use payoff X, pricing kernel M
and asset price to demonstrate that £ [M (R — Ry)] = 0, based on which we get the first order
condition

E [ul (wRf¢ + zw (R — Ry)) (R—Rf)} =0, (2)
while the second order condition is satisfied because w is strictly concave and hence u” < 0.1

3. Using the same lemma as in the previous problem set, we get: If < 0, then f(R — Ry) =
o (wRy 4+ zw (R — Ry)) is monotone increasing in R — Ry and therefore

0 = E W (wRf+aw(R— Ry))(R—Ry)] > E[u (wRy+zw(R— Ry))] E[R—Ry] > 0,
which is a contradiction. Thus x > 0.
4. Differentiating the first-order condition in equation (2) with respect to w, we get
E [u" (wRy + z(w)w (R — Ry)) (R — Ry) (Rf + (R — Ry) Oy (z(w)w))] =0, (3)

and therefore
wil (w) = B [u" (wRy +a(w)w (R~ Ry)) w ' (R = Ry) (Ryw + (R — Ry)zw)] W
B [u" (wRy + 2w (R~ Ry)) (R~ Ry)’]

and our goal is to show that, under the technical conditions stated in the homework, z/(w) > 0.
Since u” < 0, we just need to show that

E [ (wRy + z(w)w (R — Ry))w (R — Ry) (Rjw + (R — Ry)zw)| > 0 (5)

!Second order conditions guarantee that the extremum is not a saddle point but a genuine local maximum. Proving
global maximality requires some global properties, such as concavity.



Now, let

u" (wRy + z(w)w (R — Ry)) (wRy + z(w)w (R — Ry))
v (wRy + z(w)w (R — Ry))

RA(R—Ry) = — (6)

be the relative risk aversion evaluated at the optimal wealth. By assumption, relative risk
aversion is monotone decreasing, meaning that RA(R — Ry) is a monotone decreasing function
in R — Ry. Furthermore, by assumption

—u" () /u () < 1, (7)

which implies

—u" (wRy + z(w)w (R — Ry)) zw(R — Ry)

< —u" (wRy + z(w)w (R — Ryf)) (wRf 4+ zw(R — Ry)) (8)
< W (wRy 4 z(w)w (R — Ry))

By direct calculation, this implies that
9(R—Ry) = u' (wRy +z(w)w (R — Ry)) (R — Ry) 9)
is monotone increasing in 2 — Ry, By the same Lemma as in the previous problem set,

E [u" (wRf + z(w)w (R — Ryf)) (R— Ry) (Ryw+ (R Rf)xw)]
= —FE [RA(R — Ry) v (wRy + z(w)w (R — Ry)) (R — Ry)] (10)
= E[-RA(R - Ry)g(R— Ry)] > E[-RA(R— Ry)|E[g(R— Ry)] = 0

where we have used that, by the first order condition (2), we have E[g(R — Ry)] = 0.

5. if preferences are constant relative risk aversion, we know from the calculation in the class
that z(w) is constant even in the multi-asset case.
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3. Take the ansatz that a; = (o + ’waf)bi where b; is independent of o and w. We know that
the solution for the optimal portfolio choice problem should obey:

E (ul (wa + zn:ai(Ri - Rf)) (R; — Rf)) =0

=1
_1
n ¥
E (a + <wa + ) ai(Ri — Rf)>> (Ri—Ry) | =0
i=1
Substituting a; we have that

1

E (Oz +7 (wa + > ((a+ywRy)bi)(R; — Rf))) (Ri—Ry) | =0

=1

1 n ]
E (a + V’wa)_; (1 + Z”}’bi(Ri — Rf)) (Ri — Rf) =0
=1



1

E (l + i'Ybi(Ri — Rf)) ’ (Ri—Rf) | =0

i=1

Now notice that the system of equations above for every i € {1,2,...,n} does not involve w or
«, and therefore neither does the solution vector b.

4. The system of equations that lead to the optimal allocation vector of risky assets b does not
involve w or « and is therefore independent of both. It does, however, involve + and is therefore
not independent of the coefficient of relative risk aversion.

Exercise 3

Let R be elliptically distributed with probability density function f(z) = kg((z — u)T2 "z — p)).
To show that ]E[eaTR] = eO‘T“w(aTEa), we will proceed as following: From known properties of
elliptical distributions,

R = pu + 22y (11)

where Y is a spherically symmetric random vector, so that o' Y has the same distribution as ||a/|Y3.
Thus,
Be™] = Bl = u(|8)?)

and
El—e @ B = Bl—em@'n —oT¥Y) o _emaTuy(|2120)?) = —e @ Hp(aTSa)  (12)

The portfolio choice problem is the maximization task for the expected future utility. Assume
there is an economy with n risky and no risk-free assets. We are given an exponential utility function;
then the task is as follows:

max ]E[—efaTR] = min efaT“@b(ozTEa)
[e% (03

Denote o Yo = £. Differentiating the function with respect to «, one gets

aiTe_aT“z/J(aTEoz) =0

or, equivalently,

250’ (€) = pp(€)

Isolating «,

() 1
= 2/(e)”



Exercise 4
We are maximizing

E[_e—y(wa-l-D(X—pr)) |0] — _e—vaf—&-’yDprE[e—yDX |9] (13)

Now,
ElePX|g] = /ea(9)+9X+b(X)e’yDXdX _ /ea(0)+(97D)X+b(X)dX (14)

Instead of maximizing this objective, we can equivalently assume that the agent is minimizing
log Ele~ V(Wi +D(X=Rrp) 9] — —ywR¢ +~yDRsp + (0 — D)
where we have defined the cumulant generating function (CGF)
P(y) = log / O FuXHb(X) g x (15)
The first-order condition takes the form

Ryp = ¢/(0 —D) (16)

By the well-know properties of CGFs, they are convex and thus ¢’ is monotone increasing and has a
well-defined inverse (¢/')~!(z) that we denote by g(z). In this case, we get

0—g(p
o) = 0-D = Dlp) = =2, (7)
In the case of a Gaussian distribution, we have g(p) = p/o? and § = u/o?, and we get the

standard mean-variance efficient portfolio. The general formula for D(p) shows the key properties

are preserved:
e Demand is downward-sloping: D is decreasing in p

e Demand sensitivity to prices depends inversely on 7: The higher ~, the more inelastic the
demand.

However, in general, demand is non-linear in p



