Asset pricing Homework 3 Solution

Exercise 1

1. Let w be the agent's wealth. The agent invests a fraction x of her wealth in the risky asset R and the rest in the risk-free asset, which makes the dollar amount invested in the risky asset equal xw. Let the risky asset return be R and the risk-free asset return be R_f . The terminal wealth is

$$W_1 = wR_f + x(w)w(R - R_f)$$

$$\tag{1}$$

2. Let $u(\cdots)$ be the utility function. From the lecture notes, we use payoff X, pricing kernel M and asset price to demonstrate that $E[M(R-R_f)]=0$, based on which we get the first order condition

$$E\left[u'\left(wR_f + xw\left(R - R_f\right)\right)\left(R - R_f\right)\right] = 0,\tag{2}$$

while the second order condition is satisfied because u is strictly concave and hence u'' < 0.1

3. Using the same lemma as in the previous problem set, we get: If x < 0, then $f(R - R_f) = u'(wR_f + xw(R - R_f))$ is monotone increasing in $R - R_f$ and therefore

$$0 = E \left[u' \left(w R_f + x w \left(R - R_f \right) \right) \left(R - R_f \right) \right] \ge E \left[u' \left(w R_f + x w \left(R - R_f \right) \right) \right] E [R - R_f] > 0,$$

which is a contradiction. Thus $x \geq 0$.

4. Differentiating the first-order condition in equation (2) with respect to w, we get

$$E\left[u''(wR_f + x(w)w(R - R_f))(R - R_f)(R_f + (R - R_f)\partial_w(x(w)w))\right] = 0,$$
 (3)

and therefore

$$wx'(w) = -\frac{E\left[u''(wR_f + x(w)w(R - R_f))w^{-1}(R - R_f)(R_fw + (R - R_f)xw)\right]}{E\left[u''(wR_f + xw(R - R_f))(R - R_f)^2\right]}$$
(4)

and our goal is to show that, under the technical conditions stated in the homework, x'(w) > 0. Since $u'' \le 0$, we just need to show that

$$E\left[u''\left(wR_f + x(w)w\left(R - R_f\right)\right)w^{-1}(R - R_f)\left(R_fw + (R - R_f)xw\right)\right] > 0$$
 (5)

¹Second order conditions guarantee that the extremum is not a saddle point but a genuine local maximum. Proving global maximality requires some global properties, such as concavity.

Now, let

$$\mathcal{R}\mathcal{A}(R - R_f) = -\frac{u''(wR_f + x(w)w(R - R_f))(wR_f + x(w)w(R - R_f))}{u'(wR_f + x(w)w(R - R_f))}$$
(6)

be the relative risk aversion evaluated at the optimal wealth. By assumption, relative risk aversion is monotone decreasing, meaning that $\mathcal{RA}(R-R_f)$ is a monotone decreasing function in $R-R_f$. Furthermore, by assumption

$$-u''(x)x/u'(x) \le 1, \tag{7}$$

which implies

$$-u''(wR_f + x(w)w(R - R_f))xw(R - R_f)$$

$$\leq -u''(wR_f + x(w)w(R - R_f))(wR_f + xw(R - R_f))$$

$$\leq u'(wR_f + x(w)w(R - R_f))$$
(8)

By direct calculation, this implies that

$$g(R - R_f) = u'(wR_f + x(w)w(R - R_f))(R - R_f)$$
(9)

is monotone increasing in $R - R_f$, By the same Lemma as in the previous problem set,

$$E\left[u''\left(wR_{f} + x(w)w\left(R - R_{f}\right)\right)\left(R - R_{f}\right)\left(R_{f}w + (R - R_{f})xw\right)\right] = -E\left[\mathcal{R}\mathcal{A}(R - R_{f})u'\left(wR_{f} + x(w)w\left(R - R_{f}\right)\right)\left(R - R_{f}\right)\right] = E\left[-\mathcal{R}\mathcal{A}(R - R_{f})g(R - R_{f})\right] > E\left[-\mathcal{R}\mathcal{A}(R - R_{f})\right]E\left[g(R - R_{f})\right] = 0$$
(10)

where we have used that, by the first order condition (2), we have $E[g(R-R_f)] = 0$.

5. if preferences are constant relative risk aversion, we know from the calculation in the class that x(w) is constant even in the multi-asset case.

Exercise 2

1.

$$\lim_{\gamma \to 1} \frac{\left(\alpha + \gamma w\right)^{\left(1 - \frac{1}{\gamma}\right)} - 1}{\gamma - 1}$$

Applying l'Hôpital's rule:

$$\lim_{\gamma \to 1} \frac{(\alpha + w\gamma)^{-\frac{1}{\gamma}} ((\alpha + w\gamma) \log(\alpha + w\gamma) + w(\gamma - 1)\gamma)}{\gamma^2} = \log(\alpha + w)$$

$$\lim_{\gamma \to 0} \frac{\left(1 + \frac{\gamma}{\alpha}w\right)^{\left(1 - \frac{1}{\gamma}\right)}}{\gamma - 1}$$

$$\lim_{\gamma \to 0} \left(1 + \frac{\gamma}{\alpha}w\right)^{\left(1 - \frac{1}{\gamma}\right)}$$

$$\lim_{\gamma \to 0} \gamma - 1$$

•

$$-\lim_{\gamma\to 0}(1+\frac{\gamma}{\alpha}w)^{\left(1-\frac{1}{\gamma}\right)}$$

Let $u = \frac{\gamma w}{\alpha}$. Then

$$-\lim_{\gamma \to 0} (1 + \frac{\gamma}{\alpha} w)^{\left(1 - \frac{1}{\gamma}\right)} = -\lim_{u \to 0} (1 + u)^{\left(1 - \frac{w}{u\alpha}\right)}$$

$$= -\frac{\lim_{u \to 0} (1 + u)}{\lim_{u \to 0} (1 + u)^{\left(\frac{1}{u}\right)^{\frac{w}{\alpha}}}}$$

$$= -\frac{1}{e^{\frac{w}{\alpha}}}$$

$$= -e^{-\frac{w}{\alpha}}$$

2.

$$A(w) = -\frac{u''(w)}{u'(w)}$$

$$T(w) = -\frac{u'(w)}{u''(w)}$$

$$= -\frac{(\alpha + \gamma w)^{-\frac{1}{\gamma}}}{-(\alpha + \gamma w)^{-\frac{1}{\gamma} - 1}}$$

$$= \alpha + \gamma w$$

3. Take the ansatz that $a_i = (\alpha + \gamma w R_f)b_i$ where b_i is independent of α and w. We know that the solution for the optimal portfolio choice problem should obey:

$$\mathbb{E}\left(u'\left(wR_f + \sum_{i=1}^n a_i(R_i - R_f)\right)(R_i - R_f)\right) = 0$$

$$\mathbb{E}\left(\left(\alpha + \gamma\left(wR_f + \sum_{i=1}^n a_i(R_i - R_f)\right)\right)^{-\frac{1}{\gamma}}(R_i - R_f)\right) = 0$$

Substituting a_i we have that

$$\mathbb{E}\left(\left(\alpha + \gamma \left(wR_f + \sum_{i=1}^n ((\alpha + \gamma wR_f)b_i)(R_i - R_f)\right)\right)^{-\frac{1}{\gamma}} (R_i - R_f)\right) = 0$$

$$\mathbb{E}\left((\alpha + \gamma wR_f)^{-\frac{1}{\gamma}} \left(1 + \sum_{i=1}^n \gamma b_i(R_i - R_f)\right)^{-\frac{1}{\gamma}} (R_i - R_f)\right) = 0$$

$$\mathbb{E}\left(\left(1+\sum_{i=1}^{n}\gamma b_{i}(R_{i}-R_{f})\right)^{-\frac{1}{\gamma}}(R_{i}-R_{f})\right)=0$$

Now notice that the system of equations above for every $i \in \{1, 2, ..., n\}$ does not involve w or α , and therefore neither does the solution vector b.

4. The system of equations that lead to the optimal allocation vector of risky assets b does not involve w or α and is therefore independent of both. It does, however, involve γ and is therefore not independent of the coefficient of relative risk aversion.

Exercise 3

Let R be elliptically distributed with probability density function $f(x) = kg((x - \mu)^T \Sigma^{-1}(x - \mu))$. To show that $\mathbb{E}[e^{\alpha^T R}] = e^{\alpha^T \mu} \psi(\alpha^T \Sigma \alpha)$, we will proceed as following: From known properties of elliptical distributions,

$$R = \mu + \Sigma^{1/2} Y \tag{11}$$

where Y is a spherically symmetric random vector, so that $\alpha^{\top}Y$ has the same distribution as $\|\alpha\|Y_1$. Thus,

$$E[e^{\beta Y}] = E[e^{\|\beta\|Y_1}] = \psi(\|\beta\|^2)$$

and

$$E[-e^{-\alpha^{\top}R}] = E[-e^{-\alpha^{\top}\mu} - \alpha^{\top}\Sigma^{1/2}Y] = -e^{-\alpha^{\top}\mu}\psi(\|\Sigma^{1/2}\alpha\|^2) = -e^{-\alpha^{\top}\mu}\psi(\alpha^{\top}\Sigma\alpha)$$
 (12)

The portfolio choice problem is the maximization task for the expected future utility. Assume there is an economy with n risky and no risk-free assets. We are given an exponential utility function; then the task is as follows:

$$\max_{\alpha} \mathbb{E}[-e^{-\alpha^T R}] = \min_{\alpha} e^{-\alpha^T \mu} \psi(\alpha^T \Sigma \alpha)$$

Denote $\alpha^T \Sigma \alpha = \xi$. Differentiating the function with respect to α , one gets

$$\frac{\partial}{\partial \alpha^T} e^{-\alpha^T \mu} \psi(\alpha^T \Sigma \alpha) = 0$$

or, equivalently,

$$2\Sigma\alpha\psi'(\xi) = \mu\psi(\xi)$$

Isolating α ,

$$\alpha = \frac{\psi(\xi)}{2\psi'(\xi)} \Sigma^{-1} \mu$$

Exercise 4

We are maximizing

$$E[-e^{-\gamma(wR_f + D(X - R_f p))}|\theta] = -e^{-\gamma wR_f + \gamma DR_f p} E[e^{-\gamma DX}|\theta]$$
(13)

Now,

$$E[e^{-\gamma DX}|\theta] = \int e^{a(\theta)+\theta X+b(X)} e^{-\gamma DX} dX = \int e^{a(\theta)+(\theta-\gamma D)X+b(X)} dX$$
 (14)

Instead of maximizing this objective, we can equivalently assume that the agent is minimizing

$$\log E[e^{-\gamma(wR_f + D(X - R_f p))}|\theta] = -\gamma wR_f + \gamma DR_f p + \psi(\theta - \gamma D)$$

where we have defined the cumulant generating function (CGF)

$$\psi(y) = \log \int e^{a(\theta) + yX + b(X)} dX \tag{15}$$

The first-order condition takes the form

$$R_f p = \psi'(\theta - \gamma D) \tag{16}$$

By the well-know properties of CGFs, they are convex and thus ψ' is monotone increasing and has a well-defined inverse $(\psi')^{-1}(x)$ that we denote by g(x). In this case, we get

$$g(p) = \theta - \gamma D \Leftrightarrow D(p) = \frac{\theta - g(p)}{\gamma}.$$
 (17)

In the case of a Gaussian distribution, we have $g(p) = p/\sigma^2$ and $\theta = \mu/\sigma^2$, and we get the standard mean-variance efficient portfolio. The general formula for D(p) shows the key properties are preserved:

- Demand is downward-sloping: D is decreasing in p
- Demand sensitivity to prices depends inversely on γ : The higher γ , the more inelastic the demand.

However, in general, demand is non-linear in p