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Exercise 1

• Fix La = {(x1, pa1) , . . . , (xS , paS)}, Lb =
{(

x1, p
b
1

)
, . . . ,

(
xS , p

b
S

)}
and Lc = {(x1, pc1) , . . . , (xS , pcS)}.

Let Li ≽ Lj := E
[
u
(
Li
)]

≥ E
[
u
(
Lj

)]
.

Note that all lotteries have the same payoff, so taking combinations of lotteries

only affects probabilities:

E[u(La)] =
∑
s

u(xs)p
a
s (1)

and for a convex combination

L∗ = αLa + (1− α)Lb =
{(

x1, αp
a
1 + (1− α)pb1

)
, . . . ,

(
xS , αp

a
S + (1− α)pbS

)}
and therefore

E[u(L∗)] =
∑
s

u(xs)(αp
a
s + (1− α)pbs) = αE[u(La)] + (1− α)E[u(Lb)]

1. Completeness

Since u(·) ∈ R, then E[u(·)] ∈ R. We know that the ≥ relation is complete in R. Therefore,
≽ is complete in the space of lotteries.

2. Reflexivity

E
[
u
(
Li
)]

= E
[
u
(
Li
)]

∴ E
[
u
(
Li
)]

≥ E
[
u
(
Li
)]

=⇒ Li ≽ Li.

3. Transitivity

Assume La ≽ Lb and Lb ≽ Lc. Thus E [u (La)] ≥ E
[
u
(
Lb

)]
≥ E [u (Lc)] ∴ E [u (La)] ≥

E [u (Lc)] =⇒ La ≽ Lc.

4. Continuity

Assume La ≽ Lb and Lb ≽ Lc. Remember E
[
u
(
Li
)]

∈ R. The real line is continuous

in the sense that E [u (La)] ≥ E
[
u
(
Lb

)]
≥ E [u (Lc)] =⇒ ∃ α ∈ [0, 1] : E

[
u
(
Lb

)]
=

αE [u (La)] + (1− α)E [u (Lc)] =⇒ Lb ∼ αLa + (1− α)Lc.

5. Independence

Assume La ≽ Lb. Fix α ∈ [0, 1]. We shall prove that
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αLa + (1− α)Lc ≽ αLb + (1− α)Lc

Indeed,

E [u (La)] ≥ E
[
u
(
Lb

)]
αE [u (La)] ≥ αE

[
u
(
Lb

)]
αE [u (La)] + (1− α)E [u (Lc)] ≥ αE

[
u
(
Lb

)]
+ (1− α)E [u (Lc)]

αLa + (1− α)Lc ≽ αLb + (1− α)Lc

• (⇐)

Let a, b ∈ R, a > 0 and v(·) = au(·) + b. Fix La, Lb and Lc and assume La ≻ Lb ≻ Lc. Then

E [u (La)] > E
[
u
(
Lb

)]
E [u (La)] + b > E

[
u
(
Lb

)]
+ b

aE [u (La)] + b > aE
[
u
(
Lb

)]
+ b

E [au (La) + b] > E
[
au

(
Lb

)
+ b

]
E [v (La)] > E

[
v
(
Lb

)]

And thus v represents the same ordering as u.

(⇒)

Now assume v represents the same ordering as u. We have that

E [u (La)] > E
[
u
(
Lb

)]
> E [u (Lc)]

For simplicity of notation, let us denote E [u (La)] as u(La) and E [v (La)] as v(La). We know

there must exist α ∈ [0, 1] such that

u(Lb) = αu(La) + (1− α)u(Lc)

In fact,

α =
u(Lb)− u(Lc)

u(La)− u(Lc)



Now, since Lb ∼ αLa + (1− α)Lc we must have

v(Lb) = αv(La) + (1− α)v(Lc)

v(Lb) =
u(Lb)− u(Lc)

u(La)− u(Lc)
v(La) +

u(La)− u(Lb)

u(La)− u(Lc)
v(Lc)

v(Lb) = u(Lb)
v(La)

u(La)− u(Lc)
− v(La)u(Lc)

u(La)− u(Lc)
+

u(La)v(Lc)

u(La)− u(Lc)
− u(Lb)

v(Lc)

u(La)− u(Lc)

Now let a = v(La)−v(Lc)
u(La)−u(Lc) and b = u(La)v(Lc)

u(La)−u(Lc) −
v(La)u(Lc)
u(La)−u(Lc) and it is clear that v(x) = au(x) + b.

Also, since La ≻ Lc, it is clear that a > 0.

Exercise 2

• Let A ≻ B. Then

0.9u(6) + 0.1u(0)︸ ︷︷ ︸
A

> 0.45u(12) + 0.55u(0)︸ ︷︷ ︸
B

0.9u(6) > 0.45u(12) + 0.45u(0)

2u(6) > u(12) + u(0)

0.002u(6) > 0.001u(12) + 0.001u(0)

0.002u(6) > 0.001u(12) + 0.999u(0)− 0.998u(0)

0.002u(6) + 0.998u(0)︸ ︷︷ ︸
D

> 0.001u(12) + 0.999u(0)︸ ︷︷ ︸
C

And therefore D ≻ C.

• Assume A ≻ B and C ≻ D. By the axiom of independence, we must have

αC + (1− α)B ≿ αD + (1− α)B ∀α ∈ [0, 1]

In the previous problem, we proved that A ≻ B ⇐⇒ D ≻ C. Fix α = 1. Then C ≻ D, but

we assumed A ≻ B. Thus, we have a contradiction.



Exercise 3

3.1

We are given the utility function and the gamble of the form

u(x) = −e−γx, W1 = W0 + ε, ε ∼ N (µ, σ2), W0 = const (2)

The expectation of the future utility is

E[u(W1)] = −e−γW0E[e−γε] (3)

Making use of the moment-generating function of normal distribution, we get

E[u(W1)] = −e−γW0e−γµ+ 1
2
γ2σ2

(4)

The utility identity takes on the following form

−e−γW0e−γµ+ 1
2
γ2σ2

= e−γ(W0−π) (5)

Applying logarithm to both sides of the identity, one simplifies (5) to

−γW0 − γµ+
1

2
γ2σ2 = −γW0 + γπ (6)

Therefore, the certainty equivalent is

π = −µ+
1

2
γσ2 (7)

3.2

Here are the main observations:

1. π does not depend on W0

2. π is proportional to −µ, i.e., the more we expect to win in the gamble, the less we need to

insure against it

3. π is proportional to γσ2, i.e. proportional to variance of ε with factor γ
2

3.3

Now, let W0 ∼ N (µ0, σ
2
0) and Corr(W0, ε) = ρ. The expected present utility takes on the form

E[u(W0 − π)] = −eγπE[e−γW0 ] = −eγπe−γµ0+
1
2
γ2σ2

0 (8)

By properties of Gaussian distribution, W0 + ε is again normal with µ̂ = µ0 + µ and σ̂2 =

σ2 + σ2
0 + 2ρσσ0, therefore

E[u(W1)] = E[−e−γ(W0+ε)] = −e−γ(µ0+µ)+ 1
2
γ2(σ2+σ2

0+2ρσσ0) (9)



Equating present and future utilities and applying logarithm to both sides of the equation, one

obtains

γπ − γµ0 +
1

2
γ2σ2

0 = −γ(µ0 + µ) +
1

2
γ2(σ2 + σ2

0 + 2ρσσ0) (10)

Thus, the certainty equivalent is as following

π = −µ+
1

2
γ(σ2 + 2ρσσ0) (11)

Note that the certainty equivalent (11) is the one obtained in (7) plus the positive term γρσσ0. It

converges to (7) as σ0 → 0 or ρ → 0. This means that present risk (σ2
0), if uncorrelated with gamble

risk (σ2), does not add up to the certainty equivalent. Further,

• π does not depend on µ0

• π linearly depends on σ0, i.e. proportional to volatility of W0

• ρ controls exposure of π to volatility of W0 and ε.

Exercise 4

• If agent b dislikes a gamble given by the random variable ϵ̃ with E[ϵ̃] = 0 at all levels of wealth,

we can express it in the following way

E [Ub(w + ϵ̃)] < Ub(w).

Using the strictly increasing property of Φ(x), we can transform both sides by Φ(x) to obtain

Φ (E [Ub(w + ϵ̃)]) < Φ (Ub(w)) .

Jensen’s inequality tells us that for a strictly concave function, we have

E [Φ (Ub(w + ϵ̃))] < Φ (E[Ub(w + ϵ̃)]) .

Combining the last two equations and Ua(w) = Φ (Ub(w)) gives

E [Φ (Ub(w + ϵ̃))] < Φ (Ub(w))

E [Ua(w + ϵ̃)] < Ua(w).

Therefore agent a also dislikes the same gamble. This is true for all gambles that agent b

dislikes.

If Φ(x) wasn’t strictly increasing and concave, we can find a gamble ϵ̃ and a level of wealth w∗

where

E [Ub(w
∗ + ϵ̃)] < Ub(w

∗)



but

Φ (E [Ub(w
∗ + ϵ̃)]) ≥ Φ (Ub(w

∗))

and

E [Φ (Ub(w
∗ + ϵ̃))] ≥ Φ (E[Ub(w

∗ + ϵ̃)])

and therefore

E [Ua(w
∗ + ϵ̃)] ≥ Ua(w

∗).

•

∂

∂x
Ua(x) =

∂

∂x
Φ (Ub(x))

= Φ′ (Ub(x))
∂

∂x
Ub(x)

∂2

∂x2
Ua(x) =

∂2

∂x2
Φ (Ub(x))

= Φ′ (Ub(x))
∂2

∂x2
Ub(x) + Φ′′ (Ub(x))

(
∂

∂x
Ub(x)

)2

Aa(x) = −U ′′
a (x)

U ′
a(x)

= −
∂2

∂x2Φ (Ub(x))
∂
∂xΦ (Ub(x))

= −
Φ′ (Ub(x))

∂2

∂x2Ub(x) + Φ′′ (Ub(x))
(

∂
∂xUb(x)

)2
Φ′ (Ub(x))

∂
∂xUb(x)

= −
U ′′
b (x)

U ′
b(x)

− U ′
b(x)

Φ′′ (Ub(x))

Φ′ (Ub(x))

= Ab(x)− U ′
b(x)

Φ′′ (Ub(w))

Φ′ (Ub(w))

We know that U ′
b(x) > 0 and Φ′(x) > 0 and Φ′′(x) < 0 because Φ(x) is strictly increasing and

concave.

Therefore

U ′
b(x)

Φ′′ (Ub(w))

Φ′ (Ub(w))
< 0

and Aa > Ab.



Exercise 5

• Let Y ∈ [0, 1] and X ∈ [−y, y]. In such way, E (X) = E (X | Y = y) = 0, so the two random

variables are mean-independent. However, P
(
X < −1

2 | Y > 1
4

)
= 0 but P

(
X < −1

2

)
= 1

8 .

Therefore, the two random variables are not independent.

• Let X ∼ N (0, 1) and Y = X2. However, P (X < 0) = 1
2 while P (X < 0 | Y < 0) = 0. Thus,

the two random variables are not independent.

• The first observation is: if E[Ca] = E[Cb], then with u(x) = −x2 we get that Ca dominating Cb

implies E[C2
a ] < E[C2

b ] and, hence Var[Ca] ≤ Var[Cb]. Suppose now that Ca, Cb are Gaussian,

Ca ∼ N(µ, σ2
a), Cb ∼ N(µ, σ2

b ) with σ2
a < σ2

b . Let ϵ ∼ N(0, σ2
b − σ2

a) be independent of Ca.

Then, Ca+ ϵ has the same distribution as Cb, and is obviously a mean-preserving spread. Thus,

E[u(Ca)] > E[u(Ca + ϵ)] = E[u(Cb)]

where the latter follows because E[u(Z)] only depends on the distribution of a random variable

Z.

• The example goes in the following way:

Ca =

{
0, 2, 4, 6;

1

4
,
1

4
,
1

4
,
1

4

}
(12)

Cb =

{
0.1, 3, 5.9;

1

3
,
1

3
,
1

3

}
(13)

The means and variances are:

Ca: Mean = 3, Variance = 5

Cb: Mean = 3, Variance = 5.607

The utility function could be set as follows:

u (W ) =

{
2W ifW ⩽ 3

3 +W ifW > 3
(14)

The expected utilities will be:

E [U (Ca)] = 5 (15)

E [U (Cb)] = 5.033 (16)

Therefore, although Ca has a lower variance, the lower variance does not guarantee that the

expected utility of Ca is larger than that of Cb, and Ca does not second order stochastically

dominate Cb.



• If u1 is more willing to pay the full insurance, we can say that u1 is more risk averse than u2.

We define the insurance premium as the risk premium π, and the above judgement is equivalent

to π1 > π2; to be more specific, π1 (W0, ϵ) > π2 (W0, ϵ).According to the Arrow-Pratt measure

of Absolute Risk-aversion,

πi (W0) =
1

2
σ2
ϵA (W0) , i = 1, 2. (17)

So that π1 > π2 indicates a A1 (W0) > A2 (W0).

Because u1 (x) = ϕ [u2 (x)], and Ai (x) = −u′′
i (x)

u′
i(x)

, we can have

−u′′1 (x)

u′1 (x)
= −u2 (x)

′′ϕ′ [u2 (x)] + ϕ′′ [u2
′]2 [u2 (x)]

ϕ′ [u2 (x)]u2 (x)
′ = −u2

′′ (x)

u2 (x)
′ −

ϕ′′ [u2 (x)]u2
′ (x)

ϕ′ [u2 (x)]
(18)

Only when ϕ′′ (x) < 0, the inequality −u′′
1 (x)

u′
1(x)

> −u2
′′(x)

u2(x)
′ could be correctly established.

• First, consider an investor who simply dislikes variance. We now show that γ > λ

implies V ar (Cγ) > V ar (Cλ). Because E (ϵ | µ) = 0,the Ci will not be affected by µ, that is to

say E (Cγ | µ) = E (Cλ | µ) = E (µ). And V ar (Ci | µ) (wherei = γ, λ) could be calculated as:

V ar (Ci) = E
(
C2
i | µ

)
− E2 (Ci | µ) (19)

Substitute Ci = µ+ i · ϵ, the function become

V ar (Ci) = E
(
µ2

)
+ E

(
i2ϵ2 | µ

)
− E (µ)2 = V ar (µ) + i2 · V ar (ϵ | µ)) (20)

Because V ar (ϵ | µ)) > 0, we will have V ar (Cγ) > (Cλ).

Now, consider generic preferences We will need

Lemma For any increasing f1(ϵ) and decreasing f2(ϵ), we have

E[f1(ϵ)f2(ϵ)] ≤ E[f1(ϵ)]E[f2(ϵ)] . (21)

If both f1, f2 are increasing, then the inequality sign is reversed.

Let

f(γ) = E[u(Cγ)] = E[u(µ+ γϵ)] . (22)

Then, since γ > 0, we have

f ′(γ) = E[E[u′(µ+ γϵ)ϵ|µ]] ≤ E[u′(µ+ γϵ)|µ]E[ϵµ]] = 0 (23)

and hence f is decreasing in γ

• First, consider an investor who simply dislikes variance. We have

V ar (Cγ) = γ2σ2
ϵ1 + (1− γ)2 σ2

ϵ2 + 2γ (1− γ)Cov (ϵ1, ϵ2)︸ ︷︷ ︸
=0

(24)

To minimize the equation above, we take the first derivative of the equation over γ, and will

get:

σ2
ϵ1γ + σ2

ϵ2γ − σ2
ϵ2 = 0 (25)



Thus,

γ =
σ2
ϵ2

σ2
ϵ1 + σ2

ϵ2

(26)

As mentioned above, both ϵ1 and ϵ2 are i.i.d, so they have the same variance and thus should

be canceled out. The final result for equation (22) will be 1
2 .

Now, consider generic preferences Let

f(γ) = E[u(Cγ)] = E[u(γϵ1 + (1− γ)ϵ2)] . (27)

Since ϵ1 and ϵ2 have the same distribution and are independent, f(γ) = f(1− γ) (because we

can interchange ϵ1 and ϵ2.

f ′(γ) = E[u′(γϵ1 + (1− γ)ϵ2)(ϵ1 − ϵ2)], f ′′(γ) = E[u′′(γϵ1 + (1− γ)ϵ2)(ϵ1 − ϵ2)
2] < 0 . (28)

Thus, f is concave in γ and from f(γ) = f(1 − γ) we get f ′(γ) = −f ′(1 − γ). For γ = 0.5,

we get f ′(0.5) = −f ′(0.5), implying f ′(0.5) = 0. Thus, γ = 0.5 is the global maximum of the

concave function f.

Exercise 6

We are asked to maximize the consumption function for three different cases, specifically.

6.1

The utility function is given by c1−γ

1−γ − 1. Consumption at t = 0 and t = 1 is as following

c0 = w0 − x, c1 = w1 + rx, γ ̸= 1 (29)

The task is to maximise the function

u(c0) + e−ρE[u(c1)] =
(w0 − x)1−γ

1− γ
− 1 + e−ρ

((w1 + rx)1−γ

1− γ
− 1

)
(30)

with respect to investment x, in other words

∂

∂x

((w0 − x)1−γ

1− γ
+

e−ρ

1− γ
(w1 + rx)1−γ

)
= 0 (31)

Taking derivative, one gets

(w0 − x)−γ = e−ρ(w1 + rx)−γ (32)

which yields

x =
w0 − w1(re

−ρ)
− 1

γ

1 + r(re−ρ)
− 1

γ

(33)



6.2

Now, w1 can take on two values: wH with probability p and wL with probability 1− p. The utility

function for the special case γ = 0 degenerates to u(c) = ln c. We have

E[u(c1)] = E[ln(w1 + rx)] = p ln(wH + rx) + (1− p) ln(wL + rx) (34)

and

u(c0) = ln(w0 − x) (35)

The task is to maximize the following function

max
x

[
ln(w0 − x) + e−ρp ln(wH + rx) + e−ρ(1− p) ln(wL + rx)

]
(36)

This is equivalent to maximizing the third-order polynomial under the logarithm. The first order

condition is

− 1

w0 − x
+ rpe−ρ 1

wH + rx
+ r(1− p)e−ρ 1

wL + rx
= 0 (37)

which is equivalent to

−(wH + rx)(wL + rx) + rpe−ρ(w0 − x)(wL + rx) + r(1− p)e−ρ(w0 − x)(wH + rx) = 0 . (38)

Solving this quadratic equation gives the required solution.

6.3

In the case of the exponential utility function, the expectation of the utility of future consumption is

E[u(w1 + rx)] = pe−a(wH+rx) − (1− p)e−a(wL + rx) (39)

The first order condition gives

e−aw0eax = re−ρpe−awHe−arx + r(1− p)e−ρe−awLe−arx (40)

Denote

A = re−ρpe−awH

B = r(1− p)e−ρe−awL

C = e−aw0

(41)

The identity takes on the following form

Ceax = (A+B)e−arx (42)

Isolating x, one concludes that

x =
ln(A+B)− lnC

a(r + 1)
(43)


