Asset pricing Homework 2 Solutions

October 23, 2023

Exercise 1

• Fix $L^a = \{(x_1, p_1^a), \dots, (x_S, p_S^a)\}, L^b = \{(x_1, p_1^b), \dots, (x_S, p_S^b)\}$ and $L^c = \{(x_1, p_1^c), \dots, (x_S, p_S^c)\}.$ Let $L^i \succcurlyeq L^j := \mathbb{E}\left[u\left(L^i\right)\right] \ge \mathbb{E}\left[u\left(L^j\right)\right].$

Note that all lotteries have the same payoff, so taking combinations of lotteries only affects probabilities:

$$\mathbb{E}[u(L^a)] = \sum_s u(x_s) p_s^a \tag{1}$$

and for a convex combination

$$L^* = \alpha L^a + (1 - \alpha) L^b = \left\{ \left(x_1, \alpha p_1^a + (1 - \alpha) p_1^b \right), \dots, \left(x_S, \alpha p_S^a + (1 - \alpha) p_S^b \right) \right\}$$

and therefore

$$\mathbb{E}[u(L^*)] = \sum_{s} u(x_s)(\alpha p_s^a + (1 - \alpha)p_s^b) = \alpha \mathbb{E}[u(L^a)] + (1 - \alpha)\mathbb{E}[u(L^b)]$$

1. Completeness

Since $u(\cdot) \in \mathbb{R}$, then $\mathbb{E}[u(\cdot)] \in \mathbb{R}$. We know that the \geq relation is complete in \mathbb{R} . Therefore, \geq is complete in the space of lotteries.

2. Reflexivity

$$\mathbb{E}\left[u\left(L^{i}\right)\right] = \mathbb{E}\left[u\left(L^{i}\right)\right] \therefore \mathbb{E}\left[u\left(L^{i}\right)\right] \geq \mathbb{E}\left[u\left(L^{i}\right)\right] \implies L^{i} \succcurlyeq L^{i}.$$

3. Transitivity

Assume $L^{a} \succcurlyeq L^{b}$ and $L^{b} \succcurlyeq L^{c}$. Thus $\mathbb{E}\left[u\left(L^{a}\right)\right] \ge \mathbb{E}\left[u\left(L^{b}\right)\right] \ge \mathbb{E}\left[u\left(L^{c}\right)\right] :: \mathbb{E}\left[u\left(L^{a}\right)\right] \ge \mathbb{E}\left[u\left(L^{c}\right)\right] \implies L^{a} \succcurlyeq L^{c}$.

4. Continuity

Assume $L^a \succeq L^b$ and $L^b \succeq L^c$. Remember $\mathbb{E}\left[u\left(L^i\right)\right] \in \mathbb{R}$. The real line is continuous in the sense that $\mathbb{E}\left[u\left(L^a\right)\right] \geq \mathbb{E}\left[u\left(L^b\right)\right] \geq \mathbb{E}\left[u\left(L^c\right)\right] \implies \exists \ \alpha \in [0,1] : \mathbb{E}\left[u\left(L^b\right)\right] = \alpha \mathbb{E}\left[u\left(L^a\right)\right] + (1-\alpha)\mathbb{E}\left[u\left(L^c\right)\right] \implies L^b \sim \alpha L^a + (1-\alpha)L^c$.

5. Independence

Assume $L^a \geq L^b$. Fix $\alpha \in [0,1]$. We shall prove that

$$\alpha L^a + (1 - \alpha)L^c \geq \alpha L^b + (1 - \alpha)L^c$$

Indeed,

$$\mathbb{E}\left[u\left(L^{a}\right)\right] \geq \mathbb{E}\left[u\left(L^{b}\right)\right]$$

$$\alpha \mathbb{E}\left[u\left(L^{a}\right)\right] \geq \alpha \mathbb{E}\left[u\left(L^{b}\right)\right]$$

$$\alpha \mathbb{E}\left[u\left(L^{a}\right)\right] + (1 - \alpha)\mathbb{E}\left[u\left(L^{c}\right)\right] \geq \alpha \mathbb{E}\left[u\left(L^{b}\right)\right] + (1 - \alpha)\mathbb{E}\left[u\left(L^{c}\right)\right]$$

$$\alpha L^{a} + (1 - \alpha)L^{c} \succcurlyeq \alpha L^{b} + (1 - \alpha)L^{c}$$

(⇐)

Let $a, b \in \mathbb{R}$, a > 0 and $v(\cdot) = au(\cdot) + b$. Fix L^a , L^b and L^c and assume $L^a \succ L^b \succ L^c$. Then

$$\mathbb{E}\left[u\left(L^{a}\right)\right] > \mathbb{E}\left[u\left(L^{b}\right)\right]$$

$$\mathbb{E}\left[u\left(L^{a}\right)\right] + b > \mathbb{E}\left[u\left(L^{b}\right)\right] + b$$

$$a\mathbb{E}\left[u\left(L^{a}\right)\right] + b > a\mathbb{E}\left[u\left(L^{b}\right)\right] + b$$

$$\mathbb{E}\left[au\left(L^{a}\right) + b\right] > \mathbb{E}\left[au\left(L^{b}\right) + b\right]$$

$$\mathbb{E}\left[v\left(L^{a}\right)\right] > \mathbb{E}\left[v\left(L^{b}\right)\right]$$

And thus v represents the same ordering as u.

 (\Rightarrow)

Now assume v represents the same ordering as u. We have that

$$\mathbb{E}\left[u\left(L^{a}\right)\right] > \mathbb{E}\left[u\left(L^{b}\right)\right] > \mathbb{E}\left[u\left(L^{c}\right)\right]$$

For simplicity of notation, let us denote $\mathbb{E}\left[u\left(L^{a}\right)\right]$ as $u(L^{a})$ and $\mathbb{E}\left[v\left(L^{a}\right)\right]$ as $v(L^{a})$. We know there must exist $\alpha \in [0,1]$ such that

$$u(L^b) = \alpha u(L^a) + (1 - \alpha)u(L^c)$$

In fact,

$$\alpha = \frac{u(L^b) - u(L^c)}{u(L^a) - u(L^c)}$$

Now, since $L^b \sim \alpha L^a + (1 - \alpha)L^c$ we must have

$$v(L^b) = \alpha v(L^a) + (1 - \alpha)v(L^c)$$

$$v(L^b) = \frac{u(L^b) - u(L^c)}{u(L^a) - u(L^c)}v(L^a) + \frac{u(L^a) - u(L^b)}{u(L^a) - u(L^c)}v(L^c)$$

$$v(L^b) = u(L^b) \frac{v(L^a)}{u(L^a) - u(L^c)} - \frac{v(L^a)u(L^c)}{u(L^a) - u(L^c)} + \frac{u(L^a)v(L^c)}{u(L^a) - u(L^c)} - u(L^b) \frac{v(L^c)}{u(L^a) - u(L^c)}$$

Now let $a = \frac{v(L^a) - v(L^c)}{u(L^a) - u(L^c)}$ and $b = \frac{u(L^a)v(L^c)}{u(L^a) - u(L^c)} - \frac{v(L^a)u(L^c)}{u(L^a) - u(L^c)}$ and it is clear that v(x) = au(x) + b. Also, since $L^a \succ L^c$, it is clear that a > 0.

Exercise 2

• Let $A \succ B$. Then

$$\underbrace{0.9u(6) + 0.1u(0)}_{A} > \underbrace{0.45u(12) + 0.55u(0)}_{B}$$

$$0.9u(6) > 0.45u(12) + 0.45u(0)$$

$$2u(6) > u(12) + u(0)$$

$$0.002u(6) > 0.001u(12) + 0.001u(0)$$

$$0.002u(6) > 0.001u(12) + 0.999u(0) - 0.998u(0)$$

$$\underbrace{0.002u(6) + 0.998u(0)}_{D} > \underbrace{0.001u(12) + 0.999u(0)}_{C}$$

And therefore $D \succ C$.

• Assume $A \succ B$ and $C \succ D$. By the axiom of independence, we must have

$$\alpha C + (1 - \alpha)B \succsim \alpha D + (1 - \alpha)B \ \forall \alpha \in [0, 1]$$

In the previous problem, we proved that $A \succ B \iff D \succ C$. Fix $\alpha = 1$. Then $C \succ D$, but we assumed $A \succ B$. Thus, we have a contradiction.

Exercise 3

3.1

We are given the utility function and the gamble of the form

$$u(x) = -e^{-\gamma x}, \quad W_1 = W_0 + \varepsilon, \quad \varepsilon \sim \mathcal{N}(\mu, \sigma^2), \quad W_0 = const$$
 (2)

The expectation of the future utility is

$$\mathbb{E}[u(W_1)] = -e^{-\gamma W_0} \mathbb{E}[e^{-\gamma \varepsilon}] \tag{3}$$

Making use of the moment-generating function of normal distribution, we get

$$\mathbb{E}[u(W_1)] = -e^{-\gamma W_0} e^{-\gamma \mu + \frac{1}{2}\gamma^2 \sigma^2}$$
(4)

The utility identity takes on the following form

$$-e^{-\gamma W_0}e^{-\gamma \mu + \frac{1}{2}\gamma^2 \sigma^2} = e^{-\gamma (W_0 - \pi)}$$
 (5)

Applying logarithm to both sides of the identity, one simplifies (5) to

$$-\gamma W_0 - \gamma \mu + \frac{1}{2} \gamma^2 \sigma^2 = -\gamma W_0 + \gamma \pi \tag{6}$$

Therefore, the **certainty equivalent** is

$$\pi = -\mu + \frac{1}{2}\gamma\sigma^2 \tag{7}$$

3.2

Here are the main observations:

- 1. π does not depend on W_0
- 2. π is proportional to $-\mu$, i.e., the more we expect to win in the gamble, the less we need to insure against it
- 3. π is proportional to $\gamma \sigma^2$, i.e. proportional to variance of ε with factor $\frac{\gamma}{2}$

3.3

Now, let $W_0 \sim \mathcal{N}(\mu_0, \sigma_0^2)$ and $Corr(W_0, \varepsilon) = \rho$. The expected present utility takes on the form

$$\mathbb{E}[u(W_0 - \pi)] = -e^{\gamma \pi} \mathbb{E}[e^{-\gamma W_0}] = -e^{\gamma \pi} e^{-\gamma \mu_0 + \frac{1}{2}\gamma^2 \sigma_0^2}$$
 (8)

By properties of Gaussian distribution, $W_0 + \varepsilon$ is again normal with $\hat{\mu} = \mu_0 + \mu$ and $\hat{\sigma}^2 = \sigma^2 + \sigma_0^2 + 2\rho\sigma\sigma_0$, therefore

$$\mathbb{E}[u(W_1)] = \mathbb{E}[-e^{-\gamma(W_0 + \varepsilon)}] = -e^{-\gamma(\mu_0 + \mu) + \frac{1}{2}\gamma^2(\sigma^2 + \sigma_0^2 + 2\rho\sigma\sigma_0)}$$
(9)

Equating present and future utilities and applying logarithm to both sides of the equation, one obtains

$$\gamma \pi - \gamma \mu_0 + \frac{1}{2} \gamma^2 \sigma_0^2 = -\gamma (\mu_0 + \mu) + \frac{1}{2} \gamma^2 (\sigma^2 + \sigma_0^2 + 2\rho \sigma \sigma_0)$$
 (10)

Thus, the certainty equivalent is as following

$$\pi = -\mu + \frac{1}{2}\gamma(\sigma^2 + 2\rho\sigma\sigma_0) \tag{11}$$

Note that the certainty equivalent (11) is the one obtained in (7) plus the positive term $\gamma\rho\sigma\sigma_0$. It converges to (7) as $\sigma_0 \to 0$ or $\rho \to 0$. This means that present risk (σ_0^2) , if uncorrelated with gamble risk (σ^2) , does not add up to the certainty equivalent. Further,

- π does not depend on μ_0
- π linearly depends on σ_0 , i.e. proportional to volatility of W_0
- ρ controls exposure of π to volatility of W_0 and ε .

Exercise 4

• If agent **b** dislikes a gamble given by the random variable $\tilde{\epsilon}$ with $\mathbb{E}[\tilde{\epsilon}] = 0$ at all levels of wealth, we can express it in the following way

$$\mathbb{E}\left[U_b(w+\tilde{\epsilon})\right] < U_b(w).$$

Using the strictly increasing property of $\Phi(x)$, we can transform both sides by $\Phi(x)$ to obtain

$$\Phi\left(\mathbb{E}\left[U_b(w+\tilde{\epsilon})\right]\right) < \Phi\left(U_b(w)\right)$$
.

Jensen's inequality tells us that for a strictly concave function, we have

$$\mathbb{E}\left[\Phi\left(U_b(w+\tilde{\epsilon})\right)\right] < \Phi\left(\mathbb{E}\left[U_b(w+\tilde{\epsilon})\right]\right).$$

Combining the last two equations and $U_a(w) = \Phi(U_b(w))$ gives

$$\mathbb{E}\left[\Phi\left(U_b(w+\tilde{\epsilon})\right)\right] < \Phi\left(U_b(w)\right)$$
$$\mathbb{E}\left[U_a(w+\tilde{\epsilon})\right] < U_a(w).$$

Therefore agent \mathbf{a} also dislikes the same gamble. This is true for all gambles that agent \mathbf{b} dislikes.

If $\Phi(x)$ wasn't strictly increasing and concave, we can find a gamble $\tilde{\epsilon}$ and a level of wealth w^* where

$$\mathbb{E}\left[U_b(w^* + \tilde{\epsilon})\right] < U_b(w^*)$$

but

$$\Phi\left(\mathbb{E}\left[U_b(w^* + \tilde{\epsilon})\right]\right) \ge \Phi\left(U_b(w^*)\right)$$

and

$$\mathbb{E}\left[\Phi\left(U_b(w^* + \tilde{\epsilon})\right)\right] \ge \Phi\left(\mathbb{E}\left[U_b(w^* + \tilde{\epsilon})\right]\right)$$

and therefore

$$\mathbb{E}\left[U_a(w^* + \tilde{\epsilon})\right] \ge U_a(w^*).$$

 $\frac{\partial}{\partial x} U_a(x) = \frac{\partial}{\partial x} \Phi (U_b(x))$ $= \Phi' (U_b(x)) \frac{\partial}{\partial x} U_b(x)$

$$\frac{\partial^{2}}{\partial x^{2}}U_{a}(x) = \frac{\partial^{2}}{\partial x^{2}}\Phi\left(U_{b}(x)\right)$$
$$= \Phi'\left(U_{b}(x)\right)\frac{\partial^{2}}{\partial x^{2}}U_{b}(x) + \Phi''\left(U_{b}(x)\right)\left(\frac{\partial}{\partial x}U_{b}(x)\right)^{2}$$

$$A_{a}(x) = -\frac{U_{a}''(x)}{U_{a}'(x)}$$

$$= -\frac{\frac{\partial^{2}}{\partial x^{2}}\Phi\left(U_{b}(x)\right)}{\frac{\partial}{\partial x}\Phi\left(U_{b}(x)\right)}$$

$$= -\frac{\Phi'\left(U_{b}(x)\right)\frac{\partial^{2}}{\partial x^{2}}U_{b}(x) + \Phi''\left(U_{b}(x)\right)\left(\frac{\partial}{\partial x}U_{b}(x)\right)^{2}}{\Phi'\left(U_{b}(x)\right)\frac{\partial}{\partial x}U_{b}(x)}$$

$$= -\frac{U_{b}''(x)}{U_{b}'(x)} - U_{b}'(x)\frac{\Phi''\left(U_{b}(x)\right)}{\Phi'\left(U_{b}(x)\right)}$$

$$= A_{b}(x) - U_{b}'(x)\frac{\Phi''\left(U_{b}(w)\right)}{\Phi'\left(U_{b}(w)\right)}$$

We know that $U_b'(x) > 0$ and $\Phi'(x) > 0$ and $\Phi''(x) < 0$ because $\Phi(x)$ is strictly increasing and concave.

Therefore

$$U_b'(x)\frac{\Phi''\left(U_b(w)\right)}{\Phi'\left(U_b(w)\right)} < 0$$

and $A_a > A_b$.

•

Exercise 5

- Let $Y \in [0,1]$ and $X \in [-y,y]$. In such way, $E(X) = E(X \mid Y = y) = 0$, so the two random variables are mean-independent. However, $P(X < -\frac{1}{2} \mid Y > \frac{1}{4}) = 0$ but $P(X < -\frac{1}{2}) = \frac{1}{8}$. Therefore, the two random variables are not independent.
- Let $X \sim N(0,1)$ and $Y = X^2$. However, $P(X < 0) = \frac{1}{2}$ while $P(X < 0 \mid Y < 0) = 0$. Thus, the two random variables are not independent.
- The first observation is: if $E[C_a] = E[C_b]$, then with $u(x) = -x^2$ we get that C_a dominating C_b implies $E[C_a^2] < E[C_b^2]$ and, hence $Var[C_a] \le Var[C_b]$. Suppose now that C_a , C_b are Gaussian, $C_a \sim N(\mu, \sigma_a^2)$, $C_b \sim N(\mu, \sigma_b^2)$ with $\sigma_a^2 < \sigma_b^2$. Let $\epsilon \sim N(0, \sigma_b^2 \sigma_a^2)$ be independent of C_a . Then, $C_a + \epsilon$ has the same distribution as C_b , and is obviously a mean-preserving spread. Thus,

$$E[u(C_a)] > E[u(C_a + \epsilon)] = E[u(C_b)]$$

where the latter follows because E[u(Z)] only depends on the distribution of a random variable Z.

• The example goes in the following way:

$$C_a = \left\{0, 2, 4, 6; \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right\} \tag{12}$$

$$C_b = \left\{0.1, 3, 5.9; \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\} \tag{13}$$

The means and variances are:

 C_a : Mean = 3, Variance = 5

 C_b : Mean = 3, Variance = 5.607

The utility function could be set as follows:

$$u(W) = \begin{cases} 2W & if W \leq 3\\ 3 + W & if W > 3 \end{cases}$$
 (14)

The expected utilities will be:

$$E\left[U\left(C_{a}\right)\right] = 5\tag{15}$$

$$E\left[U\left(C_{b}\right)\right] = 5.033\tag{16}$$

Therefore, although C_a has a lower variance, the lower variance does not guarantee that the expected utility of C_a is larger than that of C_b , and C_a does not second order stochastically dominate C_b .

• If u_1 is more willing to pay the full insurance, we can say that u_1 is more risk averse than u_2 . We define the insurance premium as the risk premium π , and the above judgement is equivalent to $\pi_1 > \pi_2$; to be more specific, $\pi_1(W_0, \epsilon) > \pi_2(W_0, \epsilon)$. According to the Arrow-Pratt measure of Absolute Risk-aversion,

$$\pi_i(W_0) = \frac{1}{2}\sigma_{\epsilon}^2 A(W_0), i = 1, 2.$$
(17)

So that $\pi_{1} > \pi_{2}$ indicates a $A_{1}\left(W_{0}\right) > A_{2}\left(W_{0}\right)$. Because $u_{1}\left(x\right) = \phi\left[u_{2}\left(x\right)\right]$, and $Ai\left(x\right) = -\frac{u_{i}''\left(x\right)}{u_{i}'\left(x\right)}$, we can have

$$-\frac{u_1''(x)}{u_1'(x)} = -\frac{u_2(x)''\phi'[u_2(x)] + \phi''[u_2']^2[u_2(x)]}{\phi'[u_2(x)]u_2(x)'} = -\frac{u_2''(x)}{u_2(x)'} - \frac{\phi''[u_2(x)]u_2'(x)}{\phi'[u_2(x)]}$$
(18)

Only when $\phi''(x) < 0$, the inequality $-\frac{u_1''(x)}{u_1'(x)} > -\frac{u_2''(x)}{u_2(x)'}$ could be correctly established.

• First, consider an investor who simply dislikes variance. We now show that $\gamma > \lambda$ implies $Var\left(C_{\gamma}\right) > Var\left(C_{\lambda}\right)$. Because $E\left(\epsilon \mid \mu\right) = 0$, the C_i will not be affected by μ , that is to say $E(C_{\gamma} \mid \mu) = E(C_{\lambda} \mid \mu) = E(\mu)$. And $Var(C_i \mid \mu)$ (where $i = \gamma, \lambda$) could be calculated as:

$$Var\left(C_{i}\right) = E\left(C_{i}^{2} \mid \mu\right) - E^{2}\left(C_{i} \mid \mu\right) \tag{19}$$

Substitute $C_i = \mu + i \cdot \epsilon$, the function become

$$Var(C_i) = E(\mu^2) + E(i^2\epsilon^2 \mid \mu) - E(\mu)^2 = Var(\mu) + i^2 \cdot Var(\epsilon \mid \mu))$$
(20)

Because $Var\left(\epsilon \mid \mu\right) > 0$, we will have $Var\left(C_{\gamma}\right) > (C_{\lambda})$.

Now, consider generic preferences We will need

Lemma For any increasing $f_1(\epsilon)$ and decreasing $f_2(\epsilon)$, we have

$$E[f_1(\epsilon)f_2(\epsilon)] \leq E[f_1(\epsilon)]E[f_2(\epsilon)]. \tag{21}$$

If both f_1, f_2 are increasing, then the inequality sign is reversed.

Let

$$f(\gamma) = E[u(C_{\gamma})] = E[u(\mu + \gamma \epsilon)]. \tag{22}$$

Then, since $\gamma > 0$, we have

$$f'(\gamma) = E[E[u'(\mu + \gamma \epsilon)\epsilon | \mu]] \le E[u'(\mu + \gamma \epsilon) | \mu] E[\epsilon \mu]] = 0$$
 (23)

and hence f is decreasing in γ

• First, consider an investor who simply dislikes variance. We have

$$Var\left(C_{\gamma}\right) = \gamma^{2} \sigma_{\epsilon_{1}}^{2} + (1 - \gamma)^{2} \sigma_{\epsilon_{2}}^{2} + 2\gamma \left(1 - \gamma\right) \underbrace{Cov\left(\epsilon_{1}, \epsilon_{2}\right)}_{=0}$$

$$\tag{24}$$

To minimize the equation above, we take the first derivative of the equation over γ , and will get:

$$\sigma_{\epsilon_1}^2 \gamma + \sigma_{\epsilon_2}^2 \gamma - \sigma_{\epsilon_2}^2 = 0 \tag{25}$$

Thus,

$$\gamma = \frac{\sigma_{\epsilon_2}^2}{\sigma_{\epsilon_1}^2 + \sigma_{\epsilon_2}^2} \tag{26}$$

As mentioned above, both ϵ_1 and ϵ_2 are *i.i.d*, so they have the same variance and thus should be canceled out. The final result for equation (22) will be $\frac{1}{2}$.

Now, consider generic preferences Let

$$f(\gamma) = E[u(C_{\gamma})] = E[u(\gamma \epsilon_1 + (1 - \gamma)\epsilon_2)]. \tag{27}$$

Since ϵ_1 and ϵ_2 have the same distribution and are independent, $f(\gamma) = f(1 - \gamma)$ (because we can interchange ϵ_1 and ϵ_2 .

$$f'(\gamma) = E[u'(\gamma \epsilon_1 + (1 - \gamma)\epsilon_2)(\epsilon_1 - \epsilon_2)], f''(\gamma) = E[u''(\gamma \epsilon_1 + (1 - \gamma)\epsilon_2)(\epsilon_1 - \epsilon_2)^2] < 0.$$
 (28)

Thus, f is concave in γ and from $f(\gamma) = f(1 - \gamma)$ we get $f'(\gamma) = -f'(1 - \gamma)$. For $\gamma = 0.5$, we get f'(0.5) = -f'(0.5), implying f'(0.5) = 0. Thus, $\gamma = 0.5$ is the global maximum of the concave function f.

Exercise 6

We are asked to maximize the consumption function for three different cases, specifically.

6.1

The utility function is given by $\frac{c^{1-\gamma}}{1-\gamma}-1$. Consumption at t=0 and t=1 is as following

$$c_0 = w_0 - x, \quad c_1 = w_1 + rx, \quad \gamma \neq 1$$
 (29)

The task is to maximise the function

$$u(c_0) + e^{-\rho} \mathbb{E}[u(c_1)] = \frac{(w_0 - x)^{1-\gamma}}{1-\gamma} - 1 + e^{-\rho} \left(\frac{(w_1 + rx)^{1-\gamma}}{1-\gamma} - 1\right)$$
(30)

with respect to investment x, in other words

$$\frac{\partial}{\partial x} \left(\frac{(w_0 - x)^{1 - \gamma}}{1 - \gamma} + \frac{e^{-\rho}}{1 - \gamma} (w_1 + rx)^{1 - \gamma} \right) = 0 \tag{31}$$

Taking derivative, one gets

$$(w_0 - x)^{-\gamma} = e^{-\rho}(w_1 + rx)^{-\gamma}$$
(32)

which yields

$$x = \frac{w_0 - w_1(re^{-\rho})^{-\frac{1}{\gamma}}}{1 + r(re^{-\rho})^{-\frac{1}{\gamma}}}$$
(33)

Now, w_1 can take on two values: w_H with probability p and w_L with probability 1-p. The utility function for the special case $\gamma = 0$ degenerates to $u(c) = \ln c$. We have

$$\mathbb{E}[u(c_1)] = \mathbb{E}[\ln(w_1 + rx)] = p\ln(w_H + rx) + (1 - p)\ln(w_L + rx)$$
(34)

and

$$u(c_0) = \ln(w_0 - x) \tag{35}$$

The task is to maximize the following function

$$\max_{x} \left[\ln(w_0 - x) + e^{-\rho} p \ln(w_H + rx) + e^{-\rho} (1 - p) \ln(w_L + rx) \right]$$
 (36)

This is equivalent to maximizing the third-order polynomial under the logarithm. The first order condition is

$$-\frac{1}{w_0 - x} + rpe^{-\rho} \frac{1}{w_H + rx} + r(1 - p)e^{-\rho} \frac{1}{w_L + rx} = 0$$
(37)

which is equivalent to

$$-(w_H + rx)(w_L + rx) + rpe^{-\rho}(w_0 - x)(w_L + rx) + r(1 - p)e^{-\rho}(w_0 - x)(w_H + rx) = 0.$$
 (38)

Solving this quadratic equation gives the required solution.

6.3

In the case of the exponential utility function, the expectation of the utility of future consumption is

$$\mathbb{E}[u(w_1 + rx)] = pe^{-a(w_H + rx)} - (1 - p)e^{-a}(w_L + rx)$$
(39)

The first order condition gives

$$e^{-aw_0}e^{ax} = re^{-\rho}pe^{-aw_H}e^{-arx} + r(1-p)e^{-\rho}e^{-aw_L}e^{-arx}$$
(40)

Denote

$$A = re^{-\rho}pe^{-aw_H}$$

$$B = r(1-p)e^{-\rho}e^{-aw_L}$$

$$C = e^{-aw_0}$$
(41)

The identity takes on the following form

$$Ce^{ax} = (A+B)e^{-arx} (42)$$

Isolating x, one concludes that

$$x = \frac{\ln(A+B) - \ln C}{a(r+1)} \tag{43}$$