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Exercise 1

e Fix La = {(xlap(f) g ,4(@'5,]9%)}, Lb': {(xlvpl{) PR (IESapg)} and L = {(:L‘lapi) Y (3357]965’)}
Let L' = LV :=E [u (L")] > E [u (L7)].
Note that all lotteries have the same payoff, so taking combinations of lotteries

only affects probabilities:

E[u(L)] = ) uls)pt (1)

s

and for a convex combination

L* = al®+(1-a)Ll’ = {(xl,ap%ﬂl—a)pli),-..,(ms,ap“er(l—a)p%)}

and therefore

Elu(L*)] = ) u(@s)(aps+ (1 —a)pl) = aB[u(L))] + (1 - @)E[u(L")]
1. Completeness
Since u(-) € R, then E[u(-)] € R. We know that the > relation is complete in R. Therefore,
»= is complete in the space of lotteries.

2. Reflexivity
Efu(L)] =E[u(L)] Efu(L")] >E[u(L)] = L'»= L.

3. Transitivity
Assume L® 3= L® and L = L°. Thus E [u(L%)] > E [u (L*)] > E[u(L°)] .. E[u(L)] >
Efu(L¢)] = L% = L°.

4. Continuity
Assume L% 3= LY and L® = L°. Remember E [u (Ll)] € R. The real line is continuous
in the sense that E[u(L%)] > E[u (L%)] > E[u(L¢)] = Fa € [0,1] : E[u(L’)] =
aF [u (L] + (1 — )Eu (L] = L~ al®+ (1 —a)L.

5. Independence
Assume L = L’. Fix a € [0,1]. We shall prove that



al®+ (1 —a)L¢ = al’+ (1 —a)L*

Indeed,
E[u(L%)] > E [u (Lbﬂ
aEth%]zaE[u@%ﬂ
O [u (L)) + (1 — )E [u (L)) > oF [u (L*)] + (1 - @) [u (L9)
al®+ (1 —a)L° = alb + (1—-a)L”
O
e (<)

Let a,b € R, a >0 and v(-) = au(-) + b. Fix L%, Lb and L¢ and assume L% = L’ = L¢. Then

And thus v represents the same ordering as u.

=)

Now assume v represents the same ordering as u. We have that

Em@m>EP(ﬁﬂ>Em@w

For simplicity of notation, let us denote E [u (L%)] as u(L®) and E[v (L%)] as v(L*). We know
there must exist a € [0, 1] such that

u(L’) = au(L®) + (1 — a)u(L°)

In fact,



Now, since L® ~ aL® + (1 — o)L we must have

v(LY) = av(L*) + (1 — a)v(L°)

v(LP) =

e I () ()
(L) = ulL) ey — @)~ wlL) —u@®) @) —uze )

v(L°)
u(L*) — u(L°)

Now let a = % and b = qé(Lﬁc;)v((LIjZ) — u?(L%zl;)_uQE(L;Z) and it is clear that v(x) = au(z) + b.
Also, since L* = L€, it is clear that a > 0.

O]

Exercise 2
e Let A= B. Then

0.9u(6) + 0.1u(0) > 0.45u(12) + 0.55u(0)

N~

A B
0.9u(6) > 0.45u(12) + 0.45u(0)

(6)
2u(6) > u(12) + u(0)
0.002u(6) > 0.001u(12) + 0.001u(0)
0.002u(6) > 0.001u(12) + 0.999u(0) — 0.998u(0)
0.002u(6) + 0.998u(0) > 0.001u(12) + 0.999u(0)
D C

And therefore D > C.

e Assume A >~ B and C = D. By the axiom of independence, we must have

aC+(1-—a)BzaD+(1—a)B Yae|0,1]

In the previous problem, we proved that A = B <= D > C. Fix a=1. Then C > D, but
we assumed A > B. Thus, we have a contradiction.



Exercise 3

3.1

We are given the utility function and the gamble of the form
u(z) =—e 1, Wi =Wo+e, e~N(uo?), Wy=const
The expectation of the future utility is
E[u(Wy)] = —e "WoE[e™7]
Making use of the moment-generating function of normal distribution, we get
— o Wo—yutiRo?
E[u(Wy)] = —e e 2

The utility identity takes on the following form

_ e Wo 370 _ —y(Wo—n)

Applying logarithm to both sides of the identity, one simplifies (5) to
AW — Lo _
YWo—qut 57ie” = —yWo +om
Therefore, the certainty equivalent is
+ 2o
T=— —~o
K 27

3.2

Here are the main observations:

1. m does not depend on Wy

2. 7 is proportional to —u, i.e., the more we expect to win in the gamble, the less we need to

insure against it

. . 2 . . . . fy
3. 7 is proportional to yo<, i.e. proportional to variance of ¢ with factor 3

3.3

Now, let Wy ~ N (110, 08) and Corr(Wp,e) = p. The expected present utility takes on the form

Elu(Wo —m)] = —GWWE[C_VWO} — ety o]

(8)

By properties of Gaussian distribution, Wy + ¢ is again normal with i = py + p and 02 =

02 + o} + 2poay, therefore

E[u(W1)] = E[—eYWote)] = e (Hotm)+357%(e*+05+20000)

9)



Equating present and future utilities and applying logarithm to both sides of the equation, one

obtains
_ 1549 15 9 2
VT =t + 57705 = —Y(ko + k) + 577 (07 + 05 + 2p000) (10)
Thus, the certainty equivalent is as following
L o
T =—p+ -v(c* + 2pooy) (11)

2

Note that the certainty equivalent (11) is the one obtained in (7) plus the positive term ypoog. It
converges to (7) as o9 — 0 or p — 0. This means that present risk (03), if uncorrelated with gamble
risk (02), does not add up to the certainty equivalent. Further,

e 7 does not depend on g
e 7 linearly depends on oy, i.e. proportional to volatility of W

e p controls exposure of 7w to volatility of Wy and e.

Exercise 4

e If agent b dislikes a gamble given by the random variable € with E[¢] = 0 at all levels of wealth,
we can express it in the following way

E [Uy(w +8)] < Up(w).
Using the strictly increasing property of ®(z), we can transform both sides by ®(x) to obtain
@ (B Uy +8)) < (Ui(w)).
Jensen’s inequality tells us that for a strictly concave function, we have
E[® (Uy(w+€))] < @ (E[Up(w + &)]) .
Combining the last two equations and U,(w) = ® (Up(w)) gives
E[® (Up(w + €))] < @ (Up(w))
E[Us(w + €)] < Ug(w).

Therefore agent a also dislikes the same gamble. This is true for all gambles that agent b
dislikes.

If ®(x) wasn’t strictly increasing and concave, we can find a gamble € and a level of wealth w*
where

E [Up(w* + €)] < Up(w")



but

® (E [Up(w” + €)]) = @ (Up(w"))

and

E[® (Up(w” +€))] > @ (E[Up(w” + €)])

and therefore
E [Uy(w* + €)] > Uy(w™).

0 0

2 a(w) = 20 (Uy(a)
= & (Uy(2) o Up(a)
32 82

@Ua(@ = @‘b (Ub(w))
2 2
:¢%m@»£gmw+¢Wmm»thmQ

Ul (x)

U ()

2,0 (Up(x))

2. (Uy())

P (Up(x) 2 Un() + 0" (Up()) (£ Ub(x))
O (Up(x)) £ Us(x)

Aq(z) =

2

L B@) (@)
" M Gw)
= Aylz) - Uﬁ(m)z/ ((I[J]j((z))))

We know that Uj(z) > 0 and ®'(z) > 0 and ®”(x) < 0 because ®(x) is strictly increasing and
concave.

Therefore

and A, > Ap.



Exercise 5

e Let Y €[0,1] and X € [—y,y]. In such way, F(X)=FE (X |Y =y) =0, so the two random

variables are mean-independent. However, P (X < —% Y > %) =0 but P (X < —%) = %.

Therefore, the two random variables are not independent.

e Let X ~ N (0,1) and Y = X2. However, P (X < 0) = 3 while P(X <0|Y < 0)=0. Thus,
the two random variables are not independent.

e The first observation is: if E[C,] = E[C}), then with u(x) = —2? we get that C,, dominating C},
implies E[C?] < E[C?] and, hence Var[C,] < Var[C}]. Suppose now that C,, C}, are Gaussian,
Co ~ N(u,02), Cy ~ N(u,02) with 02 < 0. Let ¢ ~ N(0,0% — 02) be independent of C,.
Then, C, + € has the same distribution as C%, and is obviously a mean-preserving spread. Thus,

E[u(C,)] > E[u(Cy+e€)] = E[u(Cyp)]

where the latter follows because Flu(Z)] only depends on the distribution of a random variable
Z.

e The example goes in the following way:
1111
C’a_ {0727476747474)4} (12)

(13)

The means and variances are:
C,: Mean = 3, Variance = 5
Cy: Mean = 3, Variance = 5.607

The utility function could be set as follows:

Cfaw w3
“(W)_{3+W ifW >3 (14)

The expected utilities will be:

E[U(Ca)] =5 (15)

E U (Cy)] =5.033 (16)

Therefore, although C, has a lower variance, the lower variance does not guarantee that the
expected utility of C, is larger than that of Cp, and C,; does not second order stochastically
dominate (Y.



e If uq is more willing to pay the full insurance, we can say that w; is more risk averse than ws.
We define the insurance premium as the risk premium 7, and the above judgement is equivalent
to m > me; to be more specific, 1 (W, €) > mo (Wp, €).According to the Arrow-Pratt measure
of Absolute Risk-aversion,

7 (W) = %UEA(W(]) =12 (17)
So that m > o indicates a Ay (Wp) > A, (VI,{O).
Because u; (z) = ¢ [uz (x)], and Ai (x) = —ZZ((;:)), we can have
(@) ua ()" [uz (2)] + ¢ [ue )P [uz (2)] _ we”(x) ¢ [ua ()] ' (x) (18)
uj (z) ¢' [uz (2)] uz (z) uz (x) ¢' [ug (z)]

() o u(x)
() > uz(z)’

Only when ¢” (z) < 0, the inequality —Z,}/ could be correctly established.
1

e First, consider an investor who simply dislikes variance. We now show that v > A
implies Var (Cy) > Var (Cy). Because E (e | u) = 0,the C; will not be affected by p, that is to
say E(Cy | p) =E(Cx | p) =E (). And Var (C; | p) (wherei =y, A) could be calculated as:

Var (C) = B (C? | 1) - E*(C; | p) (19)
Substitute C; = u + i - €, the function become
Var (C;) = F (,u2) +E (% |p) - E (1) = Var () +i% - Var (e | ) (20)

Because Var (e | 1)) > 0, we will have Var (Cy) > (C)).
Now, consider generic preferences We will need

Lemma For any increasing fi(e) and decreasing fa(€), we have

E[fi(e)f2(e)] < Elfi(e)] Elfa(e)]. (21)
If both f1, fo are increasing, then the inequality sign is reversed.
Let
f(v) = Eu(Cy)] = Elu(p+7e)]. (22)
Then, since v > 0, we have
f'(v) = EE[ (n+ye)elpl] < Elu(n+ ye)lulElep]] = 0 (23)

and hence f is decreasing in -y

e First, consider an investor who simply dislikes variance. We have
Var (Cy) = %02 + (1 — )2 02 + 27 (1 — ) Cov (€1, €2) (24)
=0

To minimize the equation above, we take the first derivative of the equation over ~, and will
get:
2 2 2
O-Elfy + 0-627 - 0-62 = 0 (25)



Thus,

0_2

=2 (26)
od + 02,
As mentioned above, both €; and ey are 7.i.d, so they have the same variance and thus should
be canceled out. The final result for equation (22) will be 1.

Now, consider generic preferences Let
fO) = Eu(Cy)] = Elu(yer + (1 —7)e)]. (27)

Since €1 and €3 have the same distribution and are independent, f(v) = f(1 —~) (because we
can interchange €; and eo.

() = El(ver + (1 —7)e2)(e1 — €2)], f"(7) = Eu"(ver + (1 —7)e2)(e1 —€2)] < 0. (28)

Thus, f is concave in v and from f(y) = f(1 —~) we get f'(y) = —f'(1 — ). For v = 0.5,
we get f/(0.5) = —f’(0.5), implying f/(0.5) = 0. Thus, v = 0.5 is the global maximum of the

concave function f.

Exercise 6

We are asked to maximize the consumption function for three different cases, specifically.

6.1

The utility function is given by

611:;/ — 1. Consumption at t =0 and t =1 is as following

co=wy—x, c=w+rxr, vFI1 (29)

The task is to maximise the function

_ wo —x)1 77 ¢ (wy +rz)ty
u(co) + e PEu(cy)] = (01_) —1+e P(—( = )77 1) (30)
v v
with respect to investment x, in other words
0 ((wg—z)=7 eP 177>
il =0 31
81:( = +1_7(w1+m:) (31)
Taking derivative, one gets
(wog—x) " =eP(wy +rz) (32)

which yields

-

oo Wo— wy(re=?) (33)

1+ r(re‘ﬂ)fi




6.2

Now, w; can take on two values: wy with probability p and wjy with probability 1 — p. The utility
function for the special case v = 0 degenerates to u(c) = Inc. We have

Elu(c1)] = E[ln(wy + rz)] = pln(wy + rz) + (1 — p) In(wg, + rz) (34)
and

u(cp) = In(wp — x) (35)

The task is to maximize the following function
max [ In(wy — ) + ¢ Ppln(wy + rz) + e (1 — p) In(wy, + ra)] (36)

This is equivalent to maximizing the third-order polynomial under the logarithm. The first order

condition is 1 1
B 1-— P =0 37
wo_x+rpe wH+r:1:+T( p)e wr, + rx (37)

which is equivalent to
—(wg + rx)(wp + rx) + rpe P (wy — x)(wp + rx) +r(1 — p)e P(wo — z)(wy +rxz) =0.  (38)
Solving this quadratic equation gives the required solution.
6.3
In the case of the exponential utility function, the expectation of the utility of future consumption is
Elu(wy + rx)] = pe"*WHT) _ (1 — p)e™(wy, + rz) (39)

The first order condition gives

e—awoeam — ,re—ppe—(l'll)He—aTZE + ,,,_(1 . p)e—pe—awLe—aT:E (40)
Denote
A =re Ppe”""H
B =r(1—-p)e Pe (41)
C=e "0

The identity takes on the following form

Ce™ = (A+ B)e™ v (42)

Isolating x, one concludes that
_ In(A+B)-InC

v a(r+1)




