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1. Overview



Intoduction to Asset Pricing |

® assets i =1,---, N have prices P;; and excess returns
Pity1+ Deya
Rity1 = ———— 2 - Re ¢ (1)
it ~~

risk free rate

e if you invest fraction 7; ; of your wealth W; into security /, the
rest stays on your bank account and grows at the rate Ry, :

W = Z it We + (Wt—zﬂi,tWt) (2)
' —— i

investment in stock i

bank account
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and then you sell your investments at time t and collect
dividends so that

P; +D
Wi = ZWt :t% + (Wt—zﬂi,tWt)Rf,t
It i

= W:iRf: + Wtzﬂ'i,tRht-i—l

i

3)
® Thus, the excess return on your wealth is
Wi i1
V;r A ZW: tRitt1 = 7Tth+1 (4)
t

® Thus, we want m; that gives good returns. But what is the
criterion?
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® Recall that, given the information set S; at time t (S; is the
vector of signals encompassing all useful information available
to investors at that time, e.g., all prices of all securities; all
macroeconomic variables; etc.), we can define the conditional
expectation of any random variable Z;;; at time t + 1:

Et[Zea] = £(St) (5)

where f(S;) is the best prediction in the sense that
f(Se) = argmin E[(Ze1 - F(5:))%] (6)

That is, we minimize over all possible linear and non-linear
functions!
® Standard models assume that agents are somehow able to

solve this (tremendously complex) minimization problem and
find Et[Zt+1]-
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® mean-variance optimization:

T = argmax (Et[W;RtH] — 05 2 Vart[w;RHl])

risk aversion

(7)
® \We have
Et[ﬂ';.RtJr]_] = 77;- Et[Rt+l]7 (8)
~ ——
ERN €RN
and
Vart[W;Rt+1] = COVt(Tr;Rt+]_,7TéRt+1)
= Zﬂ'i,tﬂ'j,tcovt(Ri,HrlaRj,t+1) (9)

iJ
= 7r/tVart[RH_1]7Tt y
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and the first-order conditions are

0
= —(E[miRes1] — 0.59V ‘R
0 87rt( e[ Reqa] — 0.59Vare[m, Req1]) (10)

= Et[Rt+1] - 7vart[Rt+1]7Tta

and hence the Mean-Variance Efficient (MVE) portfolio is

“1 1
Ty =7 (Vare[Re+1]) Et[Re41]
tangency portfolio NxN covariance matrix Nx1 expected returns

(11)
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e Similarly,

e = ’Y_l(Et[Rt+1R£+1])_1 Et[Rt+1]
1
s
1+ Et[Rt+1]’Vart[Rt+1]_1Et[Rt+1] t

(12)

Sherman— Morrison formula
where
Ee[Re+1Riy1] = Var[Rey1] + Ee[Res1]Ee[Res1]’  (13)

® The magic behind is the

Lemma (Sherman-Morrison formula)
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_ _ A lxx'A71
(A + XX/) 1 = A L m (14)
and .
_ A" x
(A4 xx)Ix = 1T A Ix (15)

Proof of the Sherman-Morrison formula Recall that

x' = (Xin),I'\,Ijzl
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is a symmetric, positive, semi-definite, rank — 1 matrix (all
columns are proportional to x). Then,

A 1xx' AL
A / A—l _
(A + ) 1—|—X’A—1X)
xx'A~1 A 1xx' A1
— / o IAfl _ M
Tt xAx X XA Ix
xx'A-1 x' A~ 1x
=/ - — ) VN Sl A AN |
14+ x'A-1x o x> 14 x'A-1x
(16)
and
A lxx'A-L A 1lx
Aty Ix = (At - —F - )x = ——— - (1
(Adod)™ x ( l—i—x’A—lx)X 1+ x'A-1x (17)

e OK, this is the optimal portfolio, but what does this have to
do with asset pricing?
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® |ntuitively, we expect that

Pi: = (Rf,t)_l E[Pi t+1 + Di 1] (18)

Definitely wrong in the data

because the discount factor (Ry)~! is too naive

® \We need a smart discount factor (SDF):

Pi: = E M +41 (Pity1+ Dier1)]  (19)
~——

stochastic discount factor

® with a bit of algebra, this is equivalent to

Et[Ri,t+1 Mt,t+1] =0 (20)
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® By direct calculation,
Mit1 = 1 — @iRep (21)
does the job:

Et[Res1 Meeia] = ERera (1 — #Req)]

22
— EfRey1] — Ee[RetiRiq )% = 0 (22)

implies
e = Ee[Rep1Ri] " Ee[Reqa] (23)

® Now comes the big question: How do we measure the
conditional expectations, E¢[R¢+1] and E¢[Rey1R;4]?

® Once can start with a simple prediction problem: measure
E¢[Rt+1] by running a regression on observables (economic
variables) S; using past data (time series prediction)



Overview

Readings:
® Leroy & Werner Chap. 1,2,3,5,6
® Back Chap. 4
® Cochrane Chap. 1 & 4
Topics:
® Arbitrage
® Stochastic Discount Factor
® State Prices
® Fundamental Theorems of Asset Pricing
® Complete Markets
® Pricing Kernel
® State Price density

® Risk-Neutral Measure
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2. Arbitrage and State Prices



Market Structure |

Risky Asset prices p = [p1, ..., pn]’ with payoff matrix
X={Xjs} fori=1,...,Nands=1,...,S.

A portfolio is a (N, 1) vector 0 of stock holdings with payoff
0'X.

The asset span is M = {z € R® : z=0'X}

® Markets are complete if any date 1 consumption plan(in ]RN)
can be attained as a portfolio payoff:

Theorem
Markets are complete if and only if X has rank S.

Proof.



Market Structure Il

Recall that, by standard linear algebra, rank is the dimension of the
span of columns of X. Given a column X; = (Xis)2_; € R® (the
payoff vector of security i), we can write the payoff of a portfolio as

/
z = 0X= 0; Xi
portfolio payoff "' portfolio weight security i payoff

Thus, M = span of columns of X and, hence, hence the same
dimension as the rank of X. Since M C R®, market is complete if
and only if rank X = S. Ol



Arbitrage and State prices

A state price vector is an S-dimensional vector g such that
p=Xq
That is,

pi = gxi,s qs = Z f’/’j \CI,S./ (24)

S .
payoff in state s price of state s

An arbitrage is a trading strategy 6 such that ¢’p < 0 and
6'X > 0 with at least one strict inequality.

The first fundamental theorem of asset pricing for general
(possibly incomplete) markets:



Theorem
There are no arbitrage opportunities iff there exists a vector of
strictly positive state prices.
® |et us note here that if strictly positive state prices g >> 0
exist, then it is straightforward to show that there is no
arbitrage. Indeed, for any 6 such that /X > 0, we have
6’ Xq > 0, which implies that 8’p > 0 (and if /X > 0 then
0'p > 0).
® Further, note that when markets are complete, then it is clear
that a state price vector exists and that it is unique:

p=Xqge Xp=XXqg<=qg=(XX)Xp (25
When X is a square matrix (N = S), we get

g = X'X)'X'p=qg=XX)HXp = X"'p (26)



Law of one price

® The LOP says that any two portfolios with the same payoff
must have the same price:
if 01X = 05X then 01p = 05p.

® The LOP holds iff every portfolio with zero payoff has zero
price.

e If the LOP is violated then any payoff can be purchased at
any price.



® For any payoff in the asset span z € M consider the set of
possible prices:
q(z) = {0'p for some 0 s.t. z = 6'X}.
Then we have:
Theorem
The LOP holds if q(-) : M — R is a linear functional.

® Note that if the LOP holds, then the payoff pricing functional
q(+) links the price vector and the payoff matrix via:
0'p=q(0X) Vo € RN

e If XX’ is invertible (i.e., of rank N and there are no redundant
assets), then

z=0X & X =0xxX (27)
multiply by X’

which is equivalent to

2X'(XX)t = ¢ (28)



and, hence,
q(z) = price(@'X) = 0'p = 2X'(XX")"p (29)

short-sale constraints, funding costs, price impact, CIP,
interest rates. Please click on these links:

CIP Deviations

CIP Deviations and Convenience Yield

Institutional frictions imply that some assets are more
convenient than others
Convenience Yields of Near Money Assets


https://www.nber.org/system/files/working_papers/w23170/w23170.pdf
https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr1032.pdf
https://www.jstor.org/stable/26372682

Arbitrage

e A strong arbitrage is a trading strategy 6 such that /p < 0
and X6 > 0.

A strong arbitrage exists if and only if the LOP does not hold
(there is a (strong) arbitrage with zero payoff and negative
price).

An arbitrage is a trading strategy 6 such that 8/p < 0 and
X' > 0 with at least one strict inequality.

A linear function is (strictly) positive if it assigns a (strictly)
positive value to every positive and non-zero element of its
domain.

Theorem
There is no arbitrage if and only if the payoff functional is linear
and strictly positive.

Theorem
There is no strong arbitrage if and only if the payoff functional is
linear and positive.
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3. Optimal Consumption Problem



Kuhn-Tucker: Solving Optimization with Constraints

Problem:
max{f(x) : gi(x) <0, hi(x) =0}
—_———— ——
inequalities equalities

First Order Conditions (FOC) are:

Vf(x) = ZM:‘VgiJFZ)‘J'VhJ
i J

where the Lagrange Multipliers satisfy

wi >0, pigi =0 (Complementary slackness)



Example: Transaction costs

X'(p—(1+r)P(x)) — 0.5vx'Ix

where
P(x) = Palyso + Pelico

® Decompose

(x4, x2)
(- (L )P~ X (5 — (1 1)Ps)  (30)
— 05A (x4 — x_ ) (x4 — x_)



Consumption-Portfolio choice Problem |

There are i = 1,...,/ (finite) number of agents who consume
at period 0 and 1 with utility function u;(cp, c1), were ¢p is a
scalar and ¢ is a S dimensional vector of consumption in each
state.

Typically, we restrict consumption to be positive (in each time
and state) and utility to be (strictly) increasing, continuous,
and differentiable in every argument. In addition, it is often
assumed that utility is strictly concave in every argument.
Agent receive endowments (wp, w1 ), where wy is a scalar and
w1 is an S-dimensional vector.

An agent’s consumption-portfolio choice is maxc, ¢, o u(co, c1)
s.t. ¢ <wp — (9/p and ¢ <wj + 0'X.

In addition, we often impose that ¢g > 0 and ¢; > 0.

go(c,0) = co — (wo — 0'p), gs(c,0) = cr(s) — (w1 +60'X)
The first order conditions are:



Consumption-Portfolio choice Problem I

(b) O =Ag0)g, =X and A >0, A(co — (wo — 0'p)) =
(€) Oc,u=ps and ps >0, ps(ci(s) — (w1 +60'X)) =0, for all
s=1,...,S.
(d) 0 = A(go)o + > 1s(gs)e is equivalent to Ap = Xp.
® Assuming an interior solution exists with c¢p, c1, A, 4t >> 0 we
obtain:

O, u(co,c1)
E M 1 )
p=X5| where X = Goulaa)

® A simpler way to see it is to substitute budget constraints,
assuming they are binding:

Q= wo — 9/p, 1 = wi+ o' X. (31)

Then, the FOC become

d
0 = %u(wo 0’ p,w1+0'X) = —pdgu(co, c1) + X0 u(co, c1),
(32)



Consumption-Portfolio choice Problem Il

that is
p o aClu(C())Cl), qs — aCl,su(co’cl) (33)
Ocoti(co, 1) Ocoti( o, €1)
N—————

state prices q

® This connects the consumption portfolio choice problem to
state prices and the absence of arbitrage, as we now clarify.

® If there is an interior solution to some agent’s optimal
consumption-portfolio choice problem, then there exist strictly
positive state prices, namely that agent's intertemporal
marginal rates of substitutions (IMRS).



® Connection between the absence of arbitrage and the existence
of a solution to an individual's consumption-portfolio problem:

Theorem

If some agent'’s optimal consumption portfolio problem admits a
solution, and her utility function is strictly increasing, then there is
no arbitrage.

Theorem
If there is no arbitrage, and if agents’ consumption is restricted to

be positive, then the optimal consumption portfolio choice problem
admits a solution.
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4. Valuing Non-Redundant Securities



Extension and valuation functional

e A valuation functional Q(-) : R° — R is an extension of the
payoff functional to the entire contingent claim space R®, i.e.,
such that Q(z) = q(z) Vz € M.

® The fundamental theorem of Asset pricing:
Theorem

There is no arbitrage if and only if there exists a strictly positive
valuation functional.



® A weaker form is

Theorem
There is no strong arbitrage if and only if there exists a positive
valuation functional.

e Consider an arbitrary contingent claim payoff z € R®. Define
the upper and lower replicating prices by respectively:
® g.(z) =ming{#'pst. X >z} and
® gqu(z) = maxg{0'ps.t. X <z}
® We have the following results on these upper and lower
replicating prices:

Theorem

If there is no arbitrage then

(a) qu(2) < qu(z) Vz € R®

(b) qi(z) = qu(2) = a(2) ¥z € M
(c) qe(2) < qu(z) ¥z € RS\ M



Proof of the theorem

 Assume that M is a strict subset of R® (else there is nothing
to prove).

® We show how to extend the valuation functional in one
dimension (subsequent steps are similar until we cover all of
R®).

® Fix a payoff 2 ¢ M and define
N={y : y=z+ A2 withze M and X\ € R}.

® Fix a m such that q,(2) > 7 > qu(2).

¢ Define the functional Q(-) : N — R by Q(z+ A2) = q(z) + A\«

Theorem
Ifq(-) : M — R is a strictly positive linear functional then so is
Q(:): N —=R.

e |t is clear from the proof that if M is a strict subset of R,
then the valuation functional is not unique. In fact, a
continuum of extensions exists (depending on the choice of
7). Each valuation functional must agree on the payoffs that
are in the asset span however.
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Second fundamental theorem

® This result is often called the second fundamental theorem of
asset pricing:

Theorem
Suppose there is no arbitrage. Then security markets are complete
iff there exists a unique strictly positive valuation functional.

* A linear functional Q(-) : R® — R can be identified by its
values on the basis vectors ey, ..., es (es has a one on sth row
and zeroes everywhere else). Speuﬁcally define
qg=1(q1,...,qn) with gs = Q(es), then Q(z) = zq Vz € R®.

® Thus we can price any arbitrary contingent payoff (row)
vector z by first computing a set of valid state prices g by
solving the system p = Xgq for a strictly positive solution and

then computing the inner product zq.



® Note that when S > N, then we expect more than one
solution to that system, and if there are no arbitrage, then at
least one of these solutions should be strictly positive. We
have

Theorem

There exists a strictly positive valuation functional iff there exists a

strictly positive solution q to the system p = Xq. Each strictly

positive solution q defines a strictly positive valuation functional

Q(z) = zq Yz € R>.

® |f markets are complete, then there should be only one

solution, and if there are no arbitrage then that unique
solution should be strictly positive.

® |f z happens to be in the market span, then any strictly
positive g solution will give the same price.

® This last theorem shows that we can construct valuation
functionals from state prices and vice-versa.



® |n fact we can redefine the upper and lower hedging prices in
terms of state prices. q,(z) = maxq>0{zq : p = Xq}
and
qe(z) = ming>0{zq : p = Xq} Indeed, note that we have
shown that for any payoff z not in M one can find a valuation
functional that assigns Q(z) = m for any ™ € (q¢(2), qu(z)) (is
it a closed or an open interval?). Thus this interval is the
range of arbitrage-free prices for this payoff consistent with
existing traded securities. Since Q(z) can also be represented
in terms of the state price vector g, we must obtain the same
price interval as we consider all consistent state price vectors.

¢ Risk-neutral probabilities (‘measures’) are yet a third
equivalent way to characterize valuation functionals as we will
see below.



Optimal consumption portfolio choice problem through
state prices

® \We note that the optimal consumption portfolio choice
problem presented above can be rewritten in terms of the
valuation functional (or state prices) as follows:



An agent’s consumption-portfolio choice is maxc, ¢, > ui(¢co, c1)
st. o <wp—¢g'zand g <wi +zand z € M. (As before,
we may also want to explicitly impose the constraints that

co >0 and ¢ > 0).

This recasts the problem in terms of asset payoffs and
valuation functional rather than prices and trading strategies.
This approach is often preferred for solving equilibrium
problems (where security prices themselves are unknown).

In the case of complete markets, the constraint z € M can be
dropped, which considerably simplifies the problem. Note that
in this case, we obtain from the FOC that g = gzl Z: which
states that marginal rates of substitution for all aogents must
align with the unique state prices (and valuation functional).

(What happens when markets are incomplete?).

Next we rederive the fundamental theorem of asset pricing
starting from the concept of state prices.



Fundamental Theorem of Asset Pricing
(Take II)

Risky Asset prices p = [p1,- .., pn]’ has matrix payoff
X={Xjs} fori=1,...,Nands=1,...,S.

Recall that a state price vector is an S-dimensional vector g
such that p = Xq, and

An arbitrage is a trading strategy 6 such that ¢/p <0 and
6'X > 0 with at least one strict inequality.

We shall prove the first fundamental theorem of asset
pricing using a separation theorem for convex sets:

Theorem
There is no arbitrage if and only if there exists a vector of strictly
positive state prices



Mathematical Results

® Separating a convex set from a point

Theorem

Let C be a closed convex set in R" which does not contain the
origin. Then there exists a real linear functional L(-) : R" — R and
a > 0 such that Vx € C L(x) > a. In particular, the hyperplane
L(x) = 0 does not intersect C.



Proof.

Since C is closed and 0 ¢ C we know that

0 < |[xl|| = infyccnp(r). where C N B(A) is the intersection of the
set C with a ball centered at the origin with radius A chosen
sufficiently large so that the intersection is non-empty. (note that
Weierstrass' theorem guarantees the existence of xp.) Now, for any
x € C we have tx+ (1 —t)xp € C and therefore Since this holds for
arbitrary t € [0, 1] this implies Vx € C x-xg > ||x0||2. Therefore a
candidate linear functional is L(x) = xo - x and a = ||xo||?. O



® Separating two convex sets

Theorem
Let K be a compact convex set in R" and G a subspace of R". If
G N K = then there exists a linear functional L(-) : R" — R such
that:

L(x)>0 VxeK (%)

L(x)=0 Vx €G  (*x)

Therefore the subspace G is included in a hyperplane that does not
intersect K.



Proof.

Let C=K—-G={xeR".t.3(y,z) e KxGand x =y — z}.
Clearly, C is closed and convex and does not contain the origin. It
follows from the previous theorem that there exists a linear
functional L(-) and a > 0 such that ¥x € C L(x) > «. Therefore
V(y,z) e Kx G L(y) > L(z) + «. Since G is a subspace and L(-)
is linear we must have L(z) =0 (why?) and hence L(y) >0. [

® Riesz Representation theorem:

Theorem
Any linear function L(X) : R" — R can be represented by a vector
A in R" such that L(X) = A'X.
® Exercise: Prove the fundamental theorem using these
mathematical results.
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6. Risk-Neutral Measure and The Stochastic Discount Factor
(SDF)



State Prices, Risk-Neutral Measure, Stochastic Discount

Factor, Pricing Kernel

Suppose there exists a state price vector g >> 0.

If there exists a set of objective probabilities for the states
P =[Pi,...,Ps] then we can define the pricing kernel or
state price density M as the random variable such that

pi = E[MX;] where PsMs = g5 Vs.

Further we can define the risk-neutral probability measure
by % = PsMs = gs so that p; = EQ[,)?(—;] where we define
R = Zl o (is equal to the gross risk-free rate if a risk-free

asset exists).

Note that State prices are often called Arrow-Debreu State
prices, and the corresponding securities are Arrow securities.

M is often called the stochastic discount factor.



® When markets are complete, then the risk-neutral measure is
unique.
® \When Markets are incomplete, then there exists a set of
risk-neutral measures Q = {Q : p; = EQ[%] Vi=1,...,N}.
® In fact, we can redefine the upper and lower hedging prices in
terms of the set of risk-neutral measures:
qu(z) = maxgeg {EQ[£ ]}, and
qe(z) = minge{E°[£]}
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