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Intoduction to Asset Pricing I

• assets i = 1, · · · , N have prices Pi ,t and excess returns

Ri ,t+1 = Pi ,t+1 + Dt+1
Pi ,t

− Rf ,t︸︷︷︸
risk free rate

(1)

• if you invest fraction πi ,t of your wealth Wt into security i , the
rest stays on your bank account and grows at the rate Rf ,t :

Wt =
∑

i
πi ,tWt︸ ︷︷ ︸

investment in stock i

+ (Wt −
∑

i
πi ,tWt)︸ ︷︷ ︸

bank account

(2)



Intoduction to Asset Pricing II

and then you sell your investments at time t and collect
dividends so that

Wt+1 =
∑

i
Wtπi ,t

Pi ,t+1 + Dt+1
Pi ,t

+ (Wt −
∑

i
πi ,tWt)Rf ,t

= WtRf ,t + Wt
∑

i
πi ,tRi ,t+1

(3)
• Thus, the excess return on your wealth is

Wt+1
Wt

− Rf ,t =
∑

i
πi ,tRi ,t+1 = π′

tRt+1 (4)

• Thus, we want πt that gives good returns. But what is the
criterion?



Intoduction to Asset Pricing III

• Recall that, given the information set St at time t (St is the
vector of signals encompassing all useful information available
to investors at that time, e.g., all prices of all securities; all
macroeconomic variables; etc.), we can define the conditional
expectation of any random variable Zt+1 at time t + 1 :

Et [Zt+1] = f∗(St) (5)

where f (St) is the best prediction in the sense that

f∗(St) = arg min
f (St)

E [(Zt+1 − f (St))2] (6)

That is, we minimize over all possible linear and non-linear
functions!

• Standard models assume that agents are somehow able to
solve this (tremendously complex) minimization problem and
find Et [Zt+1].



Intoduction to Asset Pricing IV

• mean-variance optimization:

πt = arg max
πt

(
Et [π′

tRt+1] − 0.5 γ︸︷︷︸
risk aversion

Vart [π′
tRt+1]

)
(7)

• We have
Et [π′

tRt+1] = π′
t︸︷︷︸

∈RN

Et [Rt+1]︸ ︷︷ ︸
∈RN

, (8)

and
Vart [π′

tRt+1] = Covt(π′
tRt+1, π′

tRt+1)
=

∑
i ,j

πi ,tπj,t Covt(Ri ,t+1, Rj,t+1)

= π′
tVart [Rt+1]πt ,

(9)



Intoduction to Asset Pricing V

and the first-order conditions are

0 = ∂

∂πt
(Et [π′

tRt+1] − 0.5γVart [π′
tRt+1])

= Et [Rt+1] − γ Vart [Rt+1]πt ,

(10)

and hence the Mean-Variance Efficient (MVE) portfolio is

πt︸︷︷︸
tangency portfolio

= γ−1 (Vart [Rt+1])−1︸ ︷︷ ︸
N×N covariance matrix

Et [Rt+1]︸ ︷︷ ︸
N×1 expected returns

(11)



Intoduction to Asset Pricing VI

• Similarly,

π̃t = γ−1(Et [Rt+1R ′
t+1])−1 Et [Rt+1]

=︸︷︷︸
Sherman−Morrison formula

1
1 + Et [Rt+1]′Vart [Rt+1]−1Et [Rt+1]πt

(12)
where

Et [Rt+1R ′
t+1] = Vart [Rt+1] + Et [Rt+1]Et [Rt+1]′ (13)

• The magic behind is the

Lemma (Sherman-Morrison formula)



Intoduction to Asset Pricing VII

(A + xx ′)−1 = A−1 − A−1xx ′A−1

1 + x ′A−1x (14)

and
(A + xx ′)−1x = A−1x

1 + x ′A−1x (15)

Proof of the Sherman-Morrison formula Recall that

xx ′ = (xixj)N
i ,j=1



Intoduction to Asset Pricing VIII

is a symmetric, positive, semi-definite, rank − 1 matrix (all
columns are proportional to x). Then,

(A + xx ′)(A−1 − A−1xx ′A−1

1 + x ′A−1x )

= I − xx ′A−1

1 + x ′A−1x + xx ′A−1 − xx ′ A−1xx ′A−1

1 + x ′A−1x

= I − xx ′A−1

1 + x ′A−1x + xx ′A−1 − xx ′A−1 x ′A−1x
1 + x ′A−1x = I

(16)
and

(A+xx ′)−1x = (A−1 − A−1xx ′A−1

1 + x ′A−1x )x = A−1x
1 + x ′A−1x (17)

• OK, this is the optimal portfolio, but what does this have to
do with asset pricing?



Intoduction to Asset Pricing IX

• Intuitively, we expect that

Pi ,t = (Rf ,t)−1 Et [Pi ,t+1 + Di ,t+1]︸ ︷︷ ︸
Definitely wrong in the data

(18)

because the discount factor (Rf ,t)−1 is too naive
• We need a smart discount factor (SDF):

Pi ,t = Et [ Mt,t+1︸ ︷︷ ︸
stochastic discount factor

(Pi ,t+1 + Di ,t+1)] (19)

• with a bit of algebra, this is equivalent to

Et [Ri ,t+1 Mt,t+1] = 0 (20)



Intoduction to Asset Pricing X

• By direct calculation,

Mt,t+1 = 1 − π̃′
tRt+1 (21)

does the job:

Et [Rt+1 Mt,t+1] = Et [Rt+1 (1 − π̃′
tRt+1)]

= Et [Rt+1] − Et [Rt+1R ′
t+1] π̃t = 0

(22)

implies
π̃t = Et [Rt+1R ′

t+1]−1 Et [Rt+1] (23)

• Now comes the big question: How do we measure the
conditional expectations, Et [Rt+1] and Et [Rt+1R ′

t+1]?
• Once can start with a simple prediction problem: measure

Et [Rt+1] by running a regression on observables (economic
variables) St using past data (time series prediction)



Overview

Readings:
• Leroy & Werner Chap. 1,2,3,5,6
• Back Chap. 4
• Cochrane Chap. 1 & 4

Topics:
• Arbitrage
• Stochastic Discount Factor
• State Prices
• Fundamental Theorems of Asset Pricing
• Complete Markets
• Pricing Kernel
• State Price density
• Risk-Neutral Measure
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Market Structure I

• Risky Asset prices p = [p1, . . . , pN ]′ with payoff matrix
X = {Xi ,s} for i = 1, . . . , N and s = 1, . . . , S.

• A portfolio is a (N, 1) vector θ of stock holdings with payoff
θ′X .

• The asset span is M = {z ∈ RS : z = θ′X}
• Markets are complete if any date 1 consumption plan(in RN)

can be attained as a portfolio payoff:

Theorem
Markets are complete if and only if X has rank S.

Proof.



Market Structure II

Recall that, by standard linear algebra, rank is the dimension of the
span of columns of X . Given a column Xi = (Xi ,s)S

s=1 ∈ RS (the
payoff vector of security i), we can write the payoff of a portfolio as

z︸︷︷︸
portfolio payoff

= θ′X =
∑

i
θi︸︷︷︸

portfolio weight

Xi︸︷︷︸
security i payoff

Thus, M = span of columns of X and, hence, hence the same
dimension as the rank of X . Since M ⊂ RS , market is complete if
and only if rank X = S.



Arbitrage and State prices

• A state price vector is an S-dimensional vector q such that
p = Xq

• That is,

pi =
∑

s
Xi ,s qs =

∑
s

Xi ,s︸︷︷︸
payoff in state s

qs︸︷︷︸
price of state s

(24)

• An arbitrage is a trading strategy θ such that θ′p ≤ 0 and
θ′X ≥ 0 with at least one strict inequality.

• The first fundamental theorem of asset pricing for general
(possibly incomplete) markets:



Theorem
There are no arbitrage opportunities iff there exists a vector of
strictly positive state prices.

• Let us note here that if strictly positive state prices q >> 0
exist, then it is straightforward to show that there is no
arbitrage. Indeed, for any θ such that θ′X ≥ 0, we have
θ′Xq ≥ 0, which implies that θ′p ≥ 0 (and if θ′X > 0 then
θ′p > 0).

• Further, note that when markets are complete, then it is clear
that a state price vector exists and that it is unique:

p = Xq ⇔ X ′p = X ′Xq ⇐ q = (X ′X )−1X ′p (25)

When X is a square matrix (N = S), we get

q = (X ′X )−1X ′p = q = (X−1(X ′)−1)X ′p = X−1p (26)



Law of one price

• The LOP says that any two portfolios with the same payoff
must have the same price:
if θ′

1X = θ′
2X then θ′

1p = θ′
2p.

• The LOP holds iff every portfolio with zero payoff has zero
price.

• If the LOP is violated then any payoff can be purchased at
any price.



• For any payoff in the asset span z ∈ M consider the set of
possible prices:
q(z) ≡ {θ′p for some θ s.t. z = θ′X}.
Then we have:

Theorem
The LOP holds if q(·) : M → R is a linear functional.

• Note that if the LOP holds, then the payoff pricing functional
q(·) links the price vector and the payoff matrix via:
θ′p = q(θ′X ) ∀θ ∈ RN

• If XX ′ is invertible (i.e., of rank N and there are no redundant
assets), then

z = θ′X ⇔︸︷︷︸
multiply by X ′

zX ′ = θ′XX ′, (27)

which is equivalent to

zX ′(XX ′)−1 = θ′ (28)



and, hence,

q(z) = price(θ′X ) = θ′p = zX ′(XX ′)−1p (29)

• short-sale constraints, funding costs, price impact, CIP,
interest rates. Please click on these links:
CIP Deviations
CIP Deviations and Convenience Yield

• Institutional frictions imply that some assets are more
convenient than others
Convenience Yields of Near Money Assets

https://www.nber.org/system/files/working_papers/w23170/w23170.pdf
https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr1032.pdf
https://www.jstor.org/stable/26372682


Arbitrage
• A strong arbitrage is a trading strategy θ such that θ′p < 0

and X ′θ ≥ 0.
• A strong arbitrage exists if and only if the LOP does not hold

(there is a (strong) arbitrage with zero payoff and negative
price).

• An arbitrage is a trading strategy θ such that θ′p ≤ 0 and
X ′θ ≥ 0 with at least one strict inequality.

• A linear function is (strictly) positive if it assigns a (strictly)
positive value to every positive and non-zero element of its
domain.

Theorem
There is no arbitrage if and only if the payoff functional is linear
and strictly positive.

Theorem
There is no strong arbitrage if and only if the payoff functional is
linear and positive.
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Kuhn-Tucker: Solving Optimization with Constraints

Problem:
max{f (x) : gi(x) ≤ 0︸ ︷︷ ︸

inequalities

, hi(x) = 0︸ ︷︷ ︸
equalities

}

First Order Conditions (FOC) are:

∇f (x) =
∑

i
µi∇gi +

∑
j

λj∇hj

where the Lagrange Multipliers satisfy

µi ≥ 0, µigi = 0 (Complementary slackness)



Example: Transaction costs

•
x ′(µ − (1 + r)P(x)) − 0.5 γ x ′Σx

where
P(x) = PA 1x>0 + PB 1x<0

• Decompose

x = x+ − x−, g1(x+) = −x+ ≤ 0, g2(x−) = −x− ≤ 0 .

Then,

f (x+, x−)
= x ′

+(µ − (1 + r)PA) − x ′
−(µ − (1 + r)PB)

− 0.5 A (x+ − x−)′Σ(x+ − x−)
(30)



Consumption-Portfolio choice Problem I

• There are i = 1, . . . , I (finite) number of agents who consume
at period 0 and 1 with utility function ui(c0, c1), were c0 is a
scalar and c1 is a S dimensional vector of consumption in each
state.

• Typically, we restrict consumption to be positive (in each time
and state) and utility to be (strictly) increasing, continuous,
and differentiable in every argument. In addition, it is often
assumed that utility is strictly concave in every argument.

• Agent receive endowments (ω0, ω1), where ω0 is a scalar and
ω1 is an S-dimensional vector.

• An agent’s consumption-portfolio choice is maxc0,c1,θ u(c0, c1)
s.t. c0 ≤ ω0 − θ′p and c1 ≤ ω1 + θ′X .
In addition, we often impose that c0 ≥ 0 and c1 ≥ 0.

• g0(c, θ) = c0 − (ω0 − θ′p), gs(c, θ) = c1(s) − (ω1 + θ′X )
(a) The first order conditions are:



Consumption-Portfolio choice Problem II

(b) ∂c0u = λ(g0)c0 = λ and λ ≥ 0, λ(c0 − (ω0 − θ′p)) = 0
(c) ∂c1,s u = µs and µs ≥ 0, µs(c1(s) − (ω1 + θ′X )) = 0, for all

s = 1, . . . , S.
(d) 0 = λ(g0)θ +

∑
s µs(gs)θ is equivalent to λp = Xµ.

• Assuming an interior solution exists with c0, c1, λ, µ >> 0 we
obtain:

p = X µ
λ where µ

λ = ∂c1 u(c0,c1)
∂c0 u(c0,c1)

• A simpler way to see it is to substitute budget constraints,
assuming they are binding:

c0 = ω0 − θ′p, c1 = ω1 + θ′X . (31)

Then, the FOC become

0 = ∂

∂θ
u(ω0−θ′p, ω1+θ′X ) = −p∂c0u(c0, c1) + X∂c1u(c0, c1),

(32)



Consumption-Portfolio choice Problem III

that is

p = X ∂c1u(c0, c1)
∂c0u(c0, c1)︸ ︷︷ ︸
state prices q

, qs =
∂c1,s u(c0, c1)
∂c0u(c0, c1) (33)

• This connects the consumption portfolio choice problem to
state prices and the absence of arbitrage, as we now clarify.

• If there is an interior solution to some agent’s optimal
consumption-portfolio choice problem, then there exist strictly
positive state prices, namely that agent’s intertemporal
marginal rates of substitutions (IMRS).



• Connection between the absence of arbitrage and the existence
of a solution to an individual’s consumption-portfolio problem:

Theorem
• If some agent’s optimal consumption portfolio problem admits a

solution, and her utility function is strictly increasing, then there is
no arbitrage.

Theorem

•• If there is no arbitrage, and if agents’ consumption is restricted to
be positive, then the optimal consumption portfolio choice problem
admits a solution.
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Extension and valuation functional

• A valuation functional Q(·) : RS → R is an extension of the
payoff functional to the entire contingent claim space RS , i.e.,
such that Q(z) = q(z) ∀z ∈ M.

• The fundamental theorem of Asset pricing:

Theorem
There is no arbitrage if and only if there exists a strictly positive
valuation functional.



• A weaker form is

Theorem
There is no strong arbitrage if and only if there exists a positive
valuation functional.

• Consider an arbitrary contingent claim payoff z ∈ RS . Define
the upper and lower replicating prices by respectively:

• qu(z) = minθ{θ′p s.t. θ′X ≥ z} and
• qℓ(z) = maxθ{θ′p s.t. θ′X ≤ z}

• We have the following results on these upper and lower
replicating prices:

Theorem
If there is no arbitrage then
(a) qℓ(z) ≤ qu(z) ∀z ∈ RS

(b) qℓ(z) = qu(z) = q(z) ∀z ∈ M
(c) qℓ(z) < qu(z) ∀z ∈ RS \ M



Proof of the theorem
• Assume that M is a strict subset of RS (else there is nothing

to prove).
• We show how to extend the valuation functional in one

dimension (subsequent steps are similar until we cover all of
RS).

• Fix a payoff ẑ /∈ M and define
N = {y : y = z + λẑ with z ∈ M and λ ∈ R}.

• Fix a π such that qu(ẑ) > π > qℓ(ẑ).
• Define the functional Q(·) : N → R by Q(z + λẑ) = q(z) + λπ

Theorem
If q(·) : M → R is a strictly positive linear functional then so is
Q(·) : N → R.

• It is clear from the proof that if M is a strict subset of RS ,
then the valuation functional is not unique. In fact, a
continuum of extensions exists (depending on the choice of
π). Each valuation functional must agree on the payoffs that
are in the asset span however.
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Second fundamental theorem

• This result is often called the second fundamental theorem of
asset pricing:

Theorem
Suppose there is no arbitrage. Then security markets are complete
iff there exists a unique strictly positive valuation functional.

• A linear functional Q(·) : RS → R can be identified by its
values on the basis vectors e1, . . . , eS (es has a one on sth row
and zeroes everywhere else). Specifically define
q = (q1, . . . , qn) with qs = Q(es), then Q(z) = zq ∀z ∈ RS .

• Thus we can price any arbitrary contingent payoff (row)
vector z by first computing a set of valid state prices q by
solving the system p = Xq for a strictly positive solution and
then computing the inner product zq.



• Note that when S > N, then we expect more than one
solution to that system, and if there are no arbitrage, then at
least one of these solutions should be strictly positive. We
have

Theorem
There exists a strictly positive valuation functional iff there exists a
strictly positive solution q to the system p = Xq. Each strictly
positive solution q defines a strictly positive valuation functional
Q(z) = zq ∀z ∈ RS .

• If markets are complete, then there should be only one
solution, and if there are no arbitrage then that unique
solution should be strictly positive.

• If z happens to be in the market span, then any strictly
positive q solution will give the same price.

• This last theorem shows that we can construct valuation
functionals from state prices and vice-versa.



• In fact we can redefine the upper and lower hedging prices in
terms of state prices. qu(z) = maxq≥0{zq : p = Xq}
and
qℓ(z) = minq≥0{zq : p = Xq} Indeed, note that we have
shown that for any payoff z not in M one can find a valuation
functional that assigns Q(z) = π for any π ∈ (qℓ(z), qu(z)) (is
it a closed or an open interval?). Thus this interval is the
range of arbitrage-free prices for this payoff consistent with
existing traded securities. Since Q(z) can also be represented
in terms of the state price vector q, we must obtain the same
price interval as we consider all consistent state price vectors.

• Risk-neutral probabilities (‘measures’) are yet a third
equivalent way to characterize valuation functionals as we will
see below.



Optimal consumption portfolio choice problem through
state prices

• We note that the optimal consumption portfolio choice
problem presented above can be rewritten in terms of the
valuation functional (or state prices) as follows:



• An agent’s consumption-portfolio choice is maxc0,c1,z ui(c0, c1)
s.t. c0 ≤ ω0 − q′z and c1 ≤ ω1 + z and z ∈ M. (As before,
we may also want to explicitly impose the constraints that
c0 ≥ 0 and c1 ≥ 0).

• This recasts the problem in terms of asset payoffs and
valuation functional rather than prices and trading strategies.
This approach is often preferred for solving equilibrium
problems (where security prices themselves are unknown).

• In the case of complete markets, the constraint z ∈ M can be
dropped, which considerably simplifies the problem. Note that
in this case, we obtain from the FOC that q = ∂c1 ui

∂c0 ui
, which

states that marginal rates of substitution for all agents must
align with the unique state prices (and valuation functional).
(What happens when markets are incomplete?).

• Next we rederive the fundamental theorem of asset pricing
starting from the concept of state prices.



Fundamental Theorem of Asset Pricing
(Take II)

• Risky Asset prices p = [p1, . . . , pN ]′ has matrix payoff
X = {Xi ,s} for i = 1, . . . , N and s = 1, . . . , S.

• Recall that a state price vector is an S-dimensional vector q
such that p = Xq, and

• An arbitrage is a trading strategy θ such that θ′p ≤ 0 and
θ′X ≥ 0 with at least one strict inequality.

• We shall prove the first fundamental theorem of asset
pricing using a separation theorem for convex sets:

Theorem
There is no arbitrage if and only if there exists a vector of strictly
positive state prices



Mathematical Results

• Separating a convex set from a point

Theorem
Let C be a closed convex set in Rn which does not contain the
origin. Then there exists a real linear functional L(·) : Rn → R and
α > 0 such that ∀x ∈ C L(x) ≥ α. In particular, the hyperplane
L(x) = 0 does not intersect C.



Proof.
Since C is closed and 0 ⊈ C we know that
0 < ||x0|| = infx∈C∩B(λ). where C ∩ B(λ) is the intersection of the
set C with a ball centered at the origin with radius λ chosen
sufficiently large so that the intersection is non-empty. (note that
Weierstrass’ theorem guarantees the existence of x0.) Now, for any
x ∈ C we have tx + (1 − t)x0 ∈ C and therefore Since this holds for
arbitrary t ∈ [0, 1] this implies ∀x ∈ C x · x0 ≥ ||x0||2. Therefore a
candidate linear functional is L(x) = x0 · x and α = ||x0||2.



• Separating two convex sets

Theorem
Let K be a compact convex set in Rn and G a subspace of Rn. If
G ∩ K = ∅ then there exists a linear functional L(·) : Rn → R such
that:

L(x) > 0 ∀x ∈ K (∗)
L(x) = 0 ∀x ∈ G (∗∗)

Therefore the subspace G is included in a hyperplane that does not
intersect K.



Proof.
Let C = K − G = {x ∈ Rns.t.∃(y , z) ∈ K × G and x = y − z}.
Clearly, C is closed and convex and does not contain the origin. It
follows from the previous theorem that there exists a linear
functional L(·) and α > 0 such that ∀x ∈ C L(x) ≥ α. Therefore
∀(y , z) ∈ K × G L(y) ≥ L(z) + α. Since G is a subspace and L(·)
is linear we must have L(z) = 0 (why?) and hence L(y) > 0.

• Riesz Representation theorem:

Theorem
Any linear function L(X ) : Rn → R can be represented by a vector
A in Rn such that L(X ) = A′X.

• Exercise: Prove the fundamental theorem using these
mathematical results.
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State Prices, Risk-Neutral Measure, Stochastic Discount
Factor, Pricing Kernel

• Suppose there exists a state price vector q >> 0.
• If there exists a set of objective probabilities for the states

P = [P1, . . . , PS ] then we can define the pricing kernel or
state price density M as the random variable such that
pi = E[MXi ] where PsMs = qs ∀s.

• Further we can define the risk-neutral probability measure
by Qs

Rf
= PsMs = qs so that pi = EQ[ Xi

Rf
] where we define

Rf = 1∑
s qs

(is equal to the gross risk-free rate if a risk-free
asset exists).

• Note that State prices are often called Arrow-Debreu State
prices, and the corresponding securities are Arrow securities.

• M is often called the stochastic discount factor.



• When markets are complete, then the risk-neutral measure is
unique.

• When Markets are incomplete, then there exists a set of
risk-neutral measures Q = {Q : pi = EQ[ Xi

Rf
] ∀i = 1, . . . , N}.

• In fact, we can redefine the upper and lower hedging prices in
terms of the set of risk-neutral measures:
qu(z) = maxQ∈Q{EQ[ z

Rf
]}, and

qℓ(z) = minQ∈Q{EQ[ z
Rf

]}
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