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Excess Volatility Puzzle

Absence of arbitrage implies there exists a stochastic discount
factor M; such that the price of any asset S; is the present
value of future dividends Dy y:

Mtst - Et

T
Z MnDn + MTST]

n=t+1

So if we define the fundamental value
Si = R M.p, —|— oSt then Sp = E[S{] and Shiller
(1981) notes that we should have V(S;) < V(Sf). (why?)

Suppose that discount rates are constant M; = e~#* then

S, =E; Z e F=tp, 4 e AT-t)g_
n=t+1

Shiller's famous plot of S; versus S; shows excess volatility!



To illustrate further, suppose dividends are i.i.d. Define
dr = log Dy and with i.i.d. N(0,1) sequence of ¢;.

1
dir1=dr +p+0€p1 — 502
Then Sp = Do X-52; e~ 7" = Doy ~ 52 if the
transversality condition 5 > p holds.
So, we see that the price-dividend ratio is constant in this

world. The volatility of stock prices should be equal to that of
dividends!

This is the excess volatility puzzle: Stock prices are much
more volatile than the fundamental cash-flows they are a
claim to.

This ‘puzzle’ depends on

@ Constant discount rate (i.e., no discount factor risk)
@® i.i.d. dividend (i.e., no ‘long-run’ cash-flow risk)



The Campbell-Shiller decomposition

® |n discrete-time it is often helpful to use the simplifying
‘log-linearization’ of the Return equation (due to
Campbell-Shiller (1988)).
Consider the gross return Ry =
dividend ratio: PD; = S;/D;. Since

%. Define the price
t

Diy1 PDiy1 +1

R =

1T D, PD,
 Dey1 (1 + ePden)
D PD;

the log-return ri;1 = log R:41 can be expressed in terms of
log dividend growth AdtH log( f“) and log-price dividend

ratio pdy = Iog( £) as



re+1 = Ko + K1pdey1 + Adry1 — pde

where k1 = lf% and ko = log(1 4+ PD) — k1 pd and
PD = eP? is the value of the price dividend ratio around
which we log-linearize the expression log(1 + eP%+1).

® This expression can be helpful to derive expressions for the
equilibrium price dividend ratio. Define m;11 = log M,V%tl
Then E;[eM+117t+1] = 1 implies

Et[emt+1+f<o+n1pdt+1+Adt+1—pdt] -1
® In a conditionally log-normal framework, this is equivalent to:

E¢[mey1 + ko + k1pdiy1 + Adey1 — pdi] =

1
- EVt[mtJrl + K1pder1 + Ader1 — pde]



® For the case of a constant discount rate, this simplifies:

Et[e—ﬁ+l€o+mpdt+1+Adt+1—Pdt] -1
Looking for a constant price dividend ratio, we obtain:
—6+/€0—|—(I€1—1)pd—|—u:0

or equivalently plugging in the expression for kg, K1:

1+ PD
log( =)

)=B—u

Of course, with constant pd the log-linearization is exact but
not really useful (but it will be later for more general settings
where the pd-ratio is time-varying).



Predictable Returns or Dividends?

® |terating the Campbell-Shiller relation forward, we obtain:

o9 o)
pdt =C + Z fif_lAdt_Fn — Z /ﬁi'_er_,,
n=1

n=1

for some constant C. Now, taking conditional expectation, we
obtain:

o0 o0
Pdt =C+ Et[z HrfilAdpkn] — ]Et[z /@i’flrtﬂ,]
n=1 n=1
which shows that all variation in price dividend ratios must be
attributable to variation in expected returns and/or expected
dividend growth!



e Further multiplying by pd; — E[pd;]| and taking expectation,
we get the identity (Cochrane (1991)):

V(pd;) (COV[Z Ky Adeyn, pde] — Cov[ > K repn, pdi]
n=1

This identity shows that all variability in the price-dividend
ratio has to come from predictability in returns and/or
dividend growth! Dividing on both sides by V(pd;), we get a
decomposition of the coefficients in long-run predictability
regressions of returns and dividends on the price dividend:

B[Z Ky Adyyn, pde] — 5[2 kY resn, pde] = 1
n=1 n=1
See the recent paper by Cochrane (2008) and his presidential
address (2010) for further discussions of the implications of
this identity.



® A stark conclusion of these accounting identities (!) is that if
there is variability in the price-dividend ratio (there is a lot!),
then it must be that either returns are predictable or dividend
growth is predictable (or both). Cochrane (1991, 2008) argues
that while the evidence for stock-return predictability is not
overwhelming, the “consensus” that dividend growth seems
unpredictable should lead to the conclusion that stocks are, in
fact, predictable. (this is The dog that didn’t bark argument).

® The jury is actually still out on whether dividend growth is
more or less predictable than returns. That said, these
relations clearly show that any "excess" volatility in prices
relative to dividends must be related to either volatility in (i)
long-term cash flows or (ii) discount rates (or in both). The
initial analysis of Shiller completely ignored the possibility of
stochastic discount rates.

® Note also that the relation does rely on the CS approximation
being accurate, which in turn depends on the stationarity
assumption of PD ratios (see the paper by Lettau and Van
Nieuwerburgh for a discussion).



The equity premium puzzle

® Grossman-Shiller (1981) point out that in the simplest
representative agent equilibrium exchange economy, we would
expect the discount rate to be stochastic and tied to
aggregate consumption. In fact, in a time separable utility
framework, M, = e Pt1/(C;) where C; is aggregate
consumption. And with u/(C) = C™7 = e 7€

T
St = Et Z e_ﬁ(n_t)_V(C"_Ct)Dn + e_ﬁ( T_t)_'Y(CT_Cf)ST
n=t+1

=E[S;]



® Grossman-Shiller plot the variability of their redefined
fundamental value and test the relation Var(S;) > Var(S;),
where they use aggregate consumption data as an input to
the stochastic discount factor for various levels of v. While
the "excess volatility" conclusion still holds, it is less striking
and now a function of the assumed level of risk-aversion
(Should v =1 or 107).

® We see that any test of excess volatility or, more generally, of
market efficiency will be a joint test of the model for the
stochastic discount factor.

® Further, volatility-bound tests are equivalent to return
predictability regressions. See, in particular, the insightful
discussion in Cochrane (1991).



® Mehra-Prescott (MP 1985) proposes to calibrate a
representative agent economy and look at the quantitative
predictions of their model for asset price moments (specifically,
risk-free rate level, PD ratio, and equity risk-premium,
volatility, and sharpe ratio). See your HW assignment.

® |f consumption equals dividends is such that with ¢; = log C;:

1
Cer1=Ce+ p+ o€ry1 — 502

o With CCRA myy1 = —f — yAcey1 implies that the
continuously compounded one period risk-free rate is

o2

re=—logEe[e™ ] = +yu—(v+1)5



¢ Note that if the consumption stream is deterministic (o = 0)
then the elasticity of intertemporal substitution (EIS) we

obtain from the Euler equation is 1) = % = % That is,

the EIS is equal to the inverse of the risk-aversion coefficient
for a CRRA investor.

® The return must be such that:
0= |Og Et[emt+1+rt+1]
In a conditionally log-normal setting, this implies:
1
E¢[met1 + reqa] + Evt[mtﬂ + rey1] =0

or equivalently

1 1
Ee[re1] + Ee[mesa] + EVt[ftH] + Evt[mtﬂ] =

— Cove(meta, re+,)



® Now since in conditionally log-normal setting the risk-free rate
is:

rF= —Et[mt+1] - %Vt[mt—i-l]

we obtain an expression for the risk-premium:

Ee[res1] — re + %Vt[rt+1] = —Covi(mes1, re4,)

e With a CRRA pricing kernel, we obtain that

1
Ee[req1] — re + EVt[rt+1] = yCove(Actyi1, re4,)

That is, only the covariance with contemporaneous
log-consumption growth matters for risk-premia.

® |f we use the definition of a log-return on a claim to aggregate
consumption and assume that the price-consumption ratio is

constant, then ryy1 = Acry1 + Iog(%) and it follows that:

1+ PC
PC

og(* 52 ") = B+ (v~ D~ 5y~ Do



Note the impact of risk-aversion on the PC ratio by
comparing it with our previous expression. Further, note that
the impact of an increase in ¢ and o on the PD ratio depends
on the sign of v — 1. For v =1 (log-utility) PC ratio is
independent of i, 0 and only depends on £.

Further, note that the expected excess log-return
1 2
Elrep1] — re + EV[rtH] =0

and the Variance of log-returns: V[re 1] = o2.

Thus, the log-return Sharpe ratio is vo.



® Mehra-Prescott's main conclusion is that they cannot
reconcile the asset pricing moments estimated in the data
with the very low variability of aggregate consumption.
® To match the equity premium requires a large risk-aversion
coefficient. Too large based on “introspection" (this is the
equity premium puzzle).
® |f they push the risk-aversion coefficient to such a high level
(maybe introspection does not apply to the representative
agent?), then the risk-free rate is too high. This is the risk-free
rate puzzle.

® |n the end, risks that appear to be priced in asset returns
(equity volatility, Sharpe ratio, low risk-free rate) seem too
high relative to the macro-economic quantity of risk
(consumption volatility) we measure in the data.

® The model relies on simplifying assumptions:

® Representative agent (and/or complete markets).
Time-separable CRRA utility function.

i.i.d. consumption growth.

i.i.d. dividend growth (equal to consumption growth in the
simplest setting).



Habit Formation (Campbell-Cochrane)

e CC assume representative agent with external habit formation:
_Bt(C=X)1—
U(t, C,X) = e Pt
® Assume X; is external (i.e., the agent does not take into
account that his actions affect future dynamics of the habit),

then the standard Euler equation holds.

M1 e Ciy1 — Xey1 =
Mt Ct - Xt



® Defining the Surplus Consumption Ratio S; = Cf Xt , CC
assume that the dynamics of X are such that s; = Iog S
follows:

ser1 = (1= )5+ ¢st + A(st)oera
ACt+1 = H+U€t+1—0'2/2
)‘(St) = e_§ 1-— 2(St — g) -1
e§ = O L

1-¢
® The log pricing kernel is then given by
M1 = —fB — YA(se41 + Cev1)
® The risk-free rate satisfies e™"* = E.[e™+1], which in the
conditionally Gaussian setting leads to a constant interest rate:

1
reo= _Et[mt+1]_§Vt[mt+l]

= Bhaln 0?2~ (- 9)



® For the price-consumption ratio, they need to solve it
numerically. They solve using quadrature techniques the
recursive equation:

PC(st) = Et[emHHACM(l + PC(st+1)]

® Pick parameters ji — 02/2 = 1.89%, o = 1.5%, rr = 0.94%
(matched with 3 = —log(0.89)). Then set v = 2,
¢ = 0.87and e° = 0.057.

® They also assume that dividends are riskier than aggregate
consumption and price the claim to aggregate dividends.

® With these parameters, they ‘claim to’ be able to match the
average equity premium (6.5%), the average volatility of stock
returns 15%, and the average Sharpe ratio, as well as the level
of the PD ratio, and the autocorrelation in PD ratios.



® How does it work?

® |t turns out that « is not the RRA coefficient any longer. The
actual RRA coefficient is f%cfc = ve~*t. This is highly
volatile and, on average, equal to 40!

® |n bad times, consumption falls close to the habit, which raises
risk-aversion and thus risk-premia
= countercyclical risk-premia and PD ratios.

® Their model avoids the risk-free rate puzzle (high risk-aversion
= high desire to borrow to smooth consumption = high
equilibrium risk-free rate) by having ad-hoc A(s) function
calibrated so that precautionary motive for saving is
time-varying and exactly cancels the effect of risk-aversion on
the risk-free rate.



® The numerical simulations in the original paper are incorrect.
The solutions are highly sensitive to the integration bounds. It
is more robust to estimate the solution by calculating the
present value of future dividends discounted at the risk-free
rate (constant!) under the risk-neutral measure. This
approach is more stable.

® In the model the consumption surplus is perfectly correlated
with aggregate consumption and with PD ratios. However, in
the data, both are far from perfectly related.



Heterogeneous Agents
and Idiosyncratic Labor income

e Constantinides-Duffie (CD 1996) propose to relax the notion
of a representative agent to explain the equity premium puzzle.

® |n their model, agents have idiosyncratic labor income shocks
specified in such a way that their model supports a no-trade
equilibrium given any pattern in stock return and aggregate
consumption.



® Suppose there is a continuum of agents indexed by /. Each
with consumption C;; = v;:C; where C; is aggregate
consumption. The idiosyncratic shock is modeled as follows:

1

Vjt+1 2
log(———) = Ni,t4+1Ye+1 — Eyt—i-l
Vit

2
Yiv1 = \/’Y(’V‘Fl)(mtﬂ + 6 +yAcey1)

where
® ¢ =log C;
® m; = log =3 Meat for some pricing kernel M, i.e., such that
E;[eM+ Rt+1] =1 for any traded asset with return R;.
® 7i++1 are i.i.d. standard normal random variables.



® Note that to be well-specified, CD assume that such a pricing
kernel exists and satisfies.

meyq + 1) + ’YACtJrl >0

® Under this assumption, CD show that any aggregate
consumption process C; and any return process Ry is
consistent with a buy and hold equilibrium. Indeed, the Euler
condition is satisfied for any agent:

1=F, e 0—7AG Rt

® |t thus seems that CD’s argument can reconcile arbitrary
smooth aggregate consumption with very volatile stock
returns if individual agents’ consumption is affected by
persistent idiosyncratic shocks v ¢.



® How does it work?
Note that Individual optimality holds in that for all i the Euler
condition is satisfied. With CRRA, that is

0 = Ee[e 72941 (Ryy 1 — Ry)]

Suppose for intuition purposes that the cross-sectional
distribution of log individual consumption is log-normally
distributed with mean fic ;11 and variance v¢ ¢41. Then,
integrating the Euler equation across that distribution, we get:

2
0= Et[e—’wc,tﬂ-l-%vc,tﬂ(RH_l — Rf)]

This shows that with heterogeneous agents and cross-sectional
variance in their individual consumption, if the Euler equation
holds at the individual level, then both the cross-sectional
average consumption (~ aggregate consumption) and its
variance should drive the pricing kernel. For the latter to
matter and raise the equilibrium risk-premium, we see from
the equation above that v ; needs to be time-varying and
high when market excess return is low (why?).



® The specification of the idiosyncratic shocks in CD precisely
satisfies these requirements.

® |n effect, CD do not really solve the equity premium puzzle.
Their model shows that if agents face very specific types of
idiosyncratic shocks that have time-varying cross-sectional
variance that is high when stock markets are low, and if these
shocks are completely unchangeable, then agents may be
stuck with a very volatile individual consumption even though
aggregate consumption can be very smooth. And this can
explain very high risk-premia on asset prices. However, in the
model, the consumption CAPM holds at the individual level,
and we explain high asset premia because individual
consumption is very volatile.



® This has led to various tests of that proposition by resorting
to PSID data on household consumption. The typical findings
are that the equity premium puzzle basically holds at the
individual level. Individuals have too smooth a consumption
to explain asset returns. This empirical literature uncovers
further puzzles: Individuals have too little exposure to stock
returns given their consumption dynamics and also do not
seem to optimally invest over the life-cycle (see Heaton and
Lucas).



® In general, the consensus in the literature seems to be that
the CD explanation requires labor income shocks that are
entirely permanent, which seems inconsistent with empirical
evidence. With less permanent shocks, agents can typically
hedge these shocks by trading in existing securities, even if
these provide imperfect hedging. In that case, the effects of
market incompleteness due to heterogeneous labor income on
risk-premia seem much less important (see Telmer).

® Empirically, the CCAPM seems not to hold at the individual
agent’s level. However, there is still literature focusing on
specific agents (rich individuals, art and luxury goods
consumption, trash, etc...) that finds more promising results.



Kreps-Porteus-Epstein-Zin Utility

® Recursive utility seeks to separate risk-aversion from EIS. The
continuation utility of a consumption stream is now defined
recursively via:

Ve = (1—eP)Cl + e PRJVELY YV p#0
logVi = (1—eP)log Gt + e P logEy] tojrl]l/o‘ if p=0



® One verifies that if p = « then V; is of the time-separable
CRRA form. Further, Epstein and Zin (1989) show that for
gambles that are risk-free, the continuation utility is of the
form constant EIS (i.e., identical to the CRRA time separable
model) with an EIS coefficient ¢ = 1% Instead, if agents
consider one-period risky gambles, then the risk-premium they
are willing to pay to avoid such a gamble is identical to that a
CRRA utility agent would pay with a CRRA coefficient equal
to v =1 — «. In that sense, this utility separates the
coefficient of EIS from that of relative risk aversion. It turns
out it also leads to a preference for early resolution of
uncertainty, as we now show. The following is based on
Epstein, Farhi, and Strzalecki (2014).



® Suppose consumption is i.i.d. as before; what is the
continuation utility of such consumption stream? Let's focus
on the case p = 0 where calculations are simple. Guess that
log Vi = a + bc: then plugging into the recursion we obtain

a+ bec = (]_ _ e*ﬁ)ct + e B |OgEt[eaa+bact+1]l/a

or

1
atbe,=(1-e)er+ePlatblce+p— 502) + b*ac?/2)

Equating terms in ¢; and constants, we find two equations
that are easily solved for a, b. We find b =1 and
1521 002
a= e*5w210—+f27/2) and thus
—e
(u—0?/2)

log Vo = —B e
gVo=cate T 5 (1—eh)



® To see the effect of early resolution of uncertainty, consider
the case where all consumption risk is resolved next period.
So in period 1, the agents know the whole future path
Cl,...,Cx0- TIhis utility at time 1 is simply.

logVf = (1—eP)logCi+ e Plog Vs
= C0+AC1+675AC2+672ﬁAC3+...

which is normally distributed with mean M; = ¢y + %

o2

. —i28 __
and variance Vi = >~ o2e 20 = Tl




® We can thus find the continuation utility at date O from this
early resolution consumption plan. It solves

1
log V; = (1 — eiﬁ)C() + 676(/\/’1 + EQVI)
2 2
_ —,B(M—U/z) 5 0°/2
= ¢ +te 1 _ o B + «e (1—e )

If we compare both utility streams we see that
log V§ — log Vo = —ae 502/2m Thus:
® if o = 0 they are both equal.
® if « =0 = p then both are equal.

® if o > 0 then early resolution is (i) preferred if & < 0 = p, but
(ii) disliked if @ > 0 = p.



® There is another interesting alternative consumption plan to
consider. Suppose instead that the agent is proposed a
consumption stream, where in period one he will get one
random draw Acy and that for all future dates Ac¢; = Acy,
that is future consumption shocks are perfectly correlated,
there is no time-diversification in consumption chocks.
Let's call the utility associated with this consumption plan
V¢, then as before:

logVf = (1—eP)logCi + e Plog Vs
= ¢+ A+ e_BAcz + e_25AC3 + ...

which is normally distributed with mean M; = ¢y + (p=0?/2)

1—e P
; c _ 2(y 00 ,—if)\2 _ __ o2
and variance V§{ = 04(}_2ge 'P)* = ey



® We can thus find the continuation utility at date 0 from this
"correlated" consumption plan. It solves

1
log Vy = (l—e’ﬁ)co—kefﬁ(l\/ll—kian)
2 2
_ _s(p—0"/2) 5 0°/2
= ¢+e 1o B + ae 1—e 7y

If we compare both utility streams we see that
2
log V§ — log Vo = —ae_w%. Thus:
® if o = 0 they are both equal.
® if « =0 = p then both are equal.
® if o > 0then (i) V§ > W if a <0=p, but (i)V§ > W if
a>0=p.



® Note that the difference Vi — V{ contains two components,
one due to early resolution and one due to time-diversification.
We can isolate the pure time-diversification component by
comparing Vj to V. in particular, note:
log V§ — log V§ = —2ae‘ﬁ% Thus:
® if o = 0 they are both equal.
® if « =0 = p then both are equal.
® if 0 > 0 then time-diversification is preferred if « < 0 = p, but
(ii) disliked if @ > 0 = p.
® This result can be generalized to p # 0. In general, investors
prefer early resolution of uncertainty and time-diversification if

a>p.



® As we will see next, a preference for the early resolution of
uncertainty is crucial to explaining asset pricing puzzles in the
Bansal-Yaron paper.

e Epstein et al. (2015) extend the analysis above to discuss the
magnitude of the preference for early resolution. They argue
that for the preference parameters chosen by BY, agents would
be willing to give up an unreasonably (based on introspection)
large amount of wealth (or per-period consumption) to move
from V to V€. So, in a sense, they argue that while the RRA
and EIS coefficients seem "reasonable," the combination of
both within the EZ utility leads to an unreasonably high
aversion to late resolution for the parameters and endowment
process chosen by BY. So perhaps the puzzle is still alive...



The stochastic discount factor in the EZ economy

® Suppose we want to value long-term assets in a BY economy.
® Let's derive the Euler equation for the EZ agent.

e Consider an optimal feasible consumption plan C; and a
deviation whereby on an F; measurable state A, we have
C; = C; —€ly and at t + 1 we have
Cir1(w) = Cep1(w) + €Rer1(w)la. Note that C; is feasible
and only differs from C; on A.

® Then \N/t = Vt — %EIA + Zw %EIARt+1(W)



® Setting lim._,q V:Vf = 0 we get the relation:

7
S ) Ra(w) =1 VAE Fe
w act
This implies:
M
Et[ﬁlfmﬂ =1

oV
T ( ) Mt+1 _ 8Ct+1(w)
t M,



® Now, we use the chain rule to rewrite

M OVe MGya(w)
Trt(OJ) Mt - 8\/{»4.1(&)) MCt

with
_ Ve sy Veyi-p
MC, = act_(l e )(Ct)
aV — P a—
: = thl pEt[Vto-éH]p" 7Tt(‘*“’)\/1r+11((*“’)

OVir1(w)

Combining, we get a state price deflator:

Mt+1 -5 Ct+1 (p—1) Vt+1 —
=e (=) (tTa )
Ee[Vi, ]2/

M, Ce



® |n the literature, the state price deflator is often re-expressed
in terms of the Return to the aggregate consumption claim
Rc(t + 1) defined via the wealth equation:

Wt_|_1 == (Wt - Ct)RC(t + ].)

and where the agent’s wealth is defined by

MW, = Et[z M;n Ct+n]

n=1

assuming the transversality condition holds.



¢ To identify Rc(t + 1) note that V; is homogeneous of degree
one in C¢, Vit1(w) so that by Euler's theorem:

oV;
Vi = MG G + Z 8\/7() Viri(w)
t

Setting
Vi

MC;

we can rewrite this expression as

Wt:



® |terating forward, we see that this relation indeed defines W;
(assuming the transversality condition holds). Thus

Vip 1t MG _ e/g(Ct+1)1_p( Vis1 y
Ce Ee [V ]

Re(t +1) =
c(t+1) =y v —ma.c

Note in particular that for the log-EIS case (p = 0), we
immediately get:

log Re(t+1) = B+ Acry1

Since log Re(t + 1) = Aci41 + log % this implies that
the wealth consumption ratio is constant when agents have
log-EIS (p = 0):

wc

w1 ~"



® However, note that the pricing kernel still reflects the
risk-aversion coefficient of the agent «:

Va
M e Cy1 )1 t+1 )

Me G VRV )0

For the case where p # 1, we can get a simpler expression for
the pricing kernel by substituting the expression for R¢ into
the pricing kernel we obtain:

M1 _
Mt Ct

or equivalently in logs:

_ e—ﬂG(@)G(p—l)RC(t_i_ 1)9—1

mep1 = —08+0(p — 1)Acer1+ (0 — Dre(t + 1)

where 0 = a/p.



i.i.d. Consumption Growth

e Using the Campbell-Shiller approximation (exact in this case)
and looking for a constant PC ratio, we have

1+
re(t+1) = log(——=— )+ Acti1

Thus, noting that 8(p — 1) + (9 - 1) =a—1= —v the RRA
coefficient.

1+ PC
PC

mey1 = —96 — ")/ACt+]_ + (9 — 1) lo

® This implies that the risk-premia in this economy are all
identical to the CRRA economy (Why?).
Only the risk-free rate is changed relative to the benchmark,
i.i.d. CRRA economy.



® |et us first solve for the equilibrium PC. The claim that
aggregate consumption solves

1= Et[emt+1+fc(t+1)]
® in this conditionally Gaussian setting, we have equivalently:
1
Et[mt+1 + rc(t + 1)] = —EVt[mHl + rc(t + 1)]

1+PC 1 ,,
pc ~ 2%°

—0B8 + a(p — 02/2) + b log

gives the solution for the PC ratio.

® The equilibrium risk-free rate solves

e*ff — Et[emtﬂ]



® |n this conditionally log-normal setting we can rewrite:

re = —E¢[me 1] — %Vt[mt-i-l]

Thus,

1+ PC

re=08+9(n—0%/2) = (0 — 1) log —5~

Substituting for the PC ratio, we find

= B+ /b — (1 +9)/0?

1
27202



® The excess log-return on the stock satisfies:

Et[rC(t+1)]+E[mt+1]+%vt[mt+1]+%v[rC(t+1)] = —Cov¢[meqr, re(t+1)]

It follows then that is identical to that obtained in the CCRA
model:

Eelre(t +1)] = 17 + 5Vlre(t + 1) = 70°

® The Variance V[log rc(t + 1)] = o2 and thus the Sharpe
Ratio is unchanged relative to the CRRA case at vo.

® Note, however, that the model can potentially solve the
risk-free rate puzzle! By breaking the link between RRA and
EIS, we can have both high RRA and high EIS, which goes in
the right direction to solve the puzzles!



Long-Run Risk Model (Bansal-Yaron)

® BY specify log-consumption (Ac,,,) and log-dividend (Ad,,,)
dynamics as driven by two persistent variables (x,, o,):!

ACt+1 = H,+X +o, gc, t+1

Adt+1 = :ud + det + Vco—t gc, t+1 + Vth gd, t+1
Xpp = PX Tt ngtgx, t+1
ol = o +p, (af - 62) FU, € -

® The time interval At is monthly. We closely follow BKY in
setting the parameters p. = 0.0015, p, = 0.0015 p, = 2.5,
v, =26, v, =45, p =098 v, =0038 & = 0.0072,
p. = 0.995, v_= 0.0000028.
1This specification has one drawback: variance is modeled as an AR1 that
can become negative. We nevertheless keep this specification since it is very
tractable and allows us to follow existing literature for calibration. In principle,
this issue could be avoided by specifying o, to follow an AR1 process or by
directly modeling variance as a compound autoregressive affine process (a true

discrete time square root process) as proposed by Gourieroux, Monfort and
Polimenis (2007) and Le, Singleton and Dai (2010).




® Preferences are specified to be recursive as in Epstein and Zin
(1989), which implies that the logarithm of the one-period
(time-t conditional) pricing kernel can be written as:

m = flogd—

t+1

6

@Acﬁrl + (9 - 1)rc,t+17
where r_ is the log-return on the consumption claim, v is
relative risk aversion coefficient (o« =1 — ), ¥ is the
elasticity of intertemporal substitution (p = 1 — 1/4), and

0= (:5%)



® For tractability, two approximations are made. The first is
model-specific and assumes that log price/consumption is
approximately affine in the state variables:

Vc, t
Ct

z, = Iog( ) ~ A +AX+ Acotz.

® The second approximation (the Campbell/Shiller
approximation) is mechanical and approximates the log-return
r. = log R_ on the consumption claim to be linear in the log
price-dividend (a similar approximation is made for
log-stock-return):

¢ %

c,t

V..a+C
— c,t+1 t+1 ~ .
r. = log ( N Ky + Kz, — 2z, + Ac,,,

where the constants k,, k, are expressed in terms of
z=A, + A2



To identify the pricing kernel, the six parameters
{Z, Ky, Ky, Ay, A, A} are determined from the three equations
for {k,, k,,Z} and from the Euler equation:

_ m_  +r
1 = Et [e t+1 c,t+1:|’

which in this conditionally normal framework can be
re-expressed as

0 = E, {mtﬂ + rc,t+1:| + %Vart {mm + rc’tﬂ} .



® By collecting terms linear in x,, linear in atz and independent
of the state vector, this equation generates three more
restrictions, which in turn allows the six parameters to be
identified. Moreover, the risk premia coefficients {\_, A, \_}
in the equation

€ er1 )\XO'tGX, t+1 Ao Vo€s 111

—E, [m = —)\.o,

m t+1}

t+1 t

are also identified.
The risk-free rate at date-t is determined from the pricing
kernel via:

e—rf(Xt»Ut) = Et [emt+1]
1 2
— e Tyt



® Once the pricing kernel has been identified, the same
approach is used to identify the claim to dividends. In
particular, we combine the proposed dividend dynamics in
equation (1) with the equations

— log (Y5t ~ F, 4+ Fx + F.0?
Zd,t = Og D ~ 0 + xXt + crO_t
t
ry = Ky + Hldzd,tJrl - Zd,t + Adt+1
1 = E, |:emt+1+rd,t+1:|

Fongs Fos Fur F, .

to identify the parameters {Z,, K, K., Fy, F.»



® The log expected excess return for the dividend claim is

d,t

r,, = logE, [e(r‘tfﬂrﬁf)}
= Vfﬁj F )\ + (yxmlde)\x + Vc)\c) O't2’

1d" o’'c

and the stock volatility is

o, = \/Iog E, [62(@&1&#)} —2logE, [e(rd»tﬂrf;t)}

= \/(K/ldFaVo')2 + O-tz |:VC2 + V3 + (K/ldeVx)Z:| :

® At the steady state values x, = O,Gt2 =52, the calibration
generates the realistic annual expected excess return of
7,, = 6.1%, and volatility o, , = 15.6%.



Long-Run Risk and/or Habits: some remarks

® Epstein critique: In the long-run risk model, risk-premia is
large because of early resolution premium. See the table in
their paper.

e Campbell-Beeler critique: In the long-run risk model, the term
structure of risk-free real rates is downward sloping.
Consumption growth and volatility are predictable, and stock
returns predict future aggregate consumption. (the model is
forward-looking.)



® Hansen-Sargent critique: If i.i.d. consumption is difficult to
distinguish from the long-run risk model for consumption for
the econometrician, then it should be so also for the agent in
the model. If he cares much about this risk, then shouldn’t it
affect his behavior = learning, uncertainty, robustness?

® Habit formation model: constant term structure of real rates.
The model is backward-looking. Consumption is truly iid.
Actual relative risk-aversion is at times very (unreasonably?)
high.

® Both Habit and Long-Run risk models predict counterfactual
upward-sloping term structure of dividend strip volatilities (see
Brandt, Koijen, VanBinsbergen (2012)). In the data, more
risk seems to be priced at the short end. Brandt et al. also
report some results about the term structure of dividend strip
Sharpe ratios that seem inconsistent with the predictions of
both types of models.



® For more discussion of some of these issues, see Belo, CD,
Goldstein (2014) on the term structure of dividend strips and
CD, Johannes, and Lochstoer (2014) on endogenous
subjective Long-run risks due to learning as a possible answer
to the Campbell-Beeler critique (and also to the Epstein
critique?).



® The elephant in the room: All this literature tries to explain
the ‘equity premium puzzle,” or in stochastic discount factor
language, it tries to generate a high enough conditional
volatility of the stochastic discount factor to explain a
‘maximal’ Sharpe ratio as high as that observed on equity
returns. However, agents can trade many other asset classes
(Currency, commodity, fixed income, real estate, private
equity, options, variance swaps, risk-reversals, correlation
swaps,. .. ). The evidence is that there are many high Sharpe
ratio strategies (‘anomalies’?) to be traded across all asset
classes that appear to not be perfectly correlated. If we take it
at face value, then the maximal Sharpe ratio that we should
be trying to explain is much higher, and all these models are
still underperforming by a significant margin. The financial
economics literature is still working in the Ether.



® One possible ‘explanation’ is that all these empirical results on
‘anomalies’ are pure data-mining, which uncover strategies
that might have been but won't be available in the future.
Another possible ‘explanation’ is that there is a lot of
unobserved risk (‘dark matter’) that agents are pricing.
Things like tail/catastrophic risks that occur with frequencies
of, say, 1 in a thousand years or less, and with perhaps
time-varying intensities that agents need to hedge against...
Both are not very satisfactory in my view. At least the first
one we'll be able to reject in a few years. Can you propose a
better explanation (perhaps based on imperfect information,
bounded rationality, limited cognitive abilities, political
economy, sociology, endogenous market segmentation. .. )?
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