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The Economy

Consider a filtered probability space (2, F,{Ft},_o1,. .+ P).
We assume 2 is finite and time is discrete (think
multi-nomial, possibly non-recombining tree).

There are d + 1 assets S; = (S?, S1,...,S¢).

S2 >0 Vt is the numeraire asset with S =1 (S? = (1 + r)?)
if risk-free rate is constant).

All other risky assets pay a dividend D£+1 if you own one unit
of the stock j at time t for t =0,..., T and i=1,...,d.

Absence of Arbitrage implies there exists Q ~ P under which
discounted Gain processes are martingales.



® The following statements are equivalent:
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e Where the M, = ft and & = E.[92].



The Euler Equation

® Consider an investor who chooses his portfolio allocation and
consumption to maximize his expected utility:
T
maXe, m, E[> =g 0" u(cn)].

e His wealth dynamics are: Wiy = (W — ¢)miRey1 + Yeqa
where

® 7, is a vector of the proportion of wealth invested in the risky

and risk-free asset, i.e., ;1 = 1.

St11+Di11
St

Riy1 = is the vector of Gross returns.

Hence,

E[MeiWiia] = Ee[Mea(We — ce)miReqr + Yes)]
= (W; — co)mEt[Mey1Re1] + Ee[Mei1 Yiga] (1)
= Wi —c + E[Miy1Yetal

Y; is the endowment of the agent received at date t.
0 <1 is a time preference parameter.



Theorem
A necessary and sufficient condition for optimality (of both the
portfolio and consumption decision) is the Euler Equation

U (ce) = Eefou' (cesn)Ri(t +1)] ¥i=0,....d

® For any valid state price density, we have:

T-1 T
EMrWr + > MyCol = MW, + E[ Y M,Y,]
n=t n=t+1

® |n particular if at time T we have C+ = Wy and at time 0 we
define Wy = Yy then we get the intertemporal Budget
constraint:

T T
E[Y  MaCo] = E[>_ M,Y,]
n=0 n=0



The Complete market case

The optimal consumption-portfolio problem in a complete
market is equivalent to

T T T
max E[Z 0"u(cn)] s.t.E[Z Mpcp] < E[Z M, Y]
! n=0 n=0 n=0

where M; is the unique pricing kernel.
The FOC is 6%u/(ct) = yM; or equivalently C; = I(yd~tM;)
where [(-) is the inverse function of v/(+).

y is the Lagrange multiplier associated with the Budget
constraint, i.e., it solves

T T
E[Y " Mal(yd~"M,)] = E[>_ My Y,
n=0 n=0



® The optimal portfolio 7; then satisfies
Wii1 = (W — CF)miRe41 + Yig1 given Wy = Y and for any
t > 0 we define W; from:

T T
E[> MaCrl=MWe+ E[ > MY

n=t n=t+1



Time Consistency |

® The agent wakes up at time t and realizes that he chose his
Cf = I(yd~*M;). However, if he now repeats his analysis, he
is solving

T T T
max B> 6"u(cn)] s.t.E[> Mpca] < WeMy + Ec[Y - M, Y]

n=t n=0 n=0

which is equivalent to

T T T
meXEt[Z 5" tu(cp)] s.t.Et[Z M ncn] < Wt—i—Et[Z M 0 Yo

n=t n=t n=t

and the solution will be

G = I(}/t5_(n_t)Mt,n)'



Time Consistency |l
For the solutions to coincide, we need
yed TIMe, = y5M,
which is equivalent to
ye = yMiot.

By construction, any feasible consumption stream C; (and
hence C; always satisfies the budget constraint

T T
Et[z Mt,ncn] < Wi + Et[z Mt,n Yn]

n=t n=t
so that

T T
Et[z Mt,n/(yt5_(n_t) Mt,n)] < Wi+ Et[z Mt,nyn]

n=t n=t



Time Consistency Il

The key mechanism that makes all this work is time
consistency: We could move from §" to "t without
affecting the solution. However, if the agent discounts the
future using some other function, optimizing

-
max Et[z 6(t, nu(cn)]

n=t

with a normalization 6(t,t) = 1 at time t, time consistency
requires that d(t, n)d(n, m) = §(t, m). This only works when
d(t,n) ="t



Dynamic Programming

® For certain problems (Markov state vector, Recursive objective
function), Dynamic programming is a useful technique to
solve optimization problems.

® As an example, consider the problem
maxc, B[>_o u(n, Cs, X,)] subject to a state equation
Xev1 = F(t, Cey X, €141) where €;41 is a random vector of
shocks with a conditional distribution at time t.
For simplicity we assume that the ¢; are iid shocks Vt.

® We need to pick the control C, so as to ‘steer’ the state X,
optimally to maximize the objective function.



The trick is to consider controls that are in feedback form:
Cn = C(n, Xy). Then, the dynamics of the state vector are
clearly Markov: Xii1 = F(t, C(t, Xt), X, €¢41)

For a particular control C(t, X;) we can define the value
VE(t, Xe) = B[S, u(n, C(n, X,), X,)], which is a function
of the state by the Markov Property.

Note that V (¢, X;) + S20_% u(n, C(n, X,), X,,) is a
martingale (by the law of iterated expectation) so that
VE(t, Xe) = Eefu(t, C(t, Xe), Xe) + VE(t+1,X5)] VE< T,
where we set V(T +1,X) =0.

It is then natural to define the (Hamilton Jacobi Bellman)
equation of optimality as

V(t, X¢) = maxc E¢[u(t, C, X)) + V(t + 1, X51)]-

Note that when there is a finite horizon, this leads to a
natural backward recursion algorithm.



® Now suppose we can find a function V*(t, X) and a control
C*(t, X) that achieve the optimum, i.e., such that
V*(T +1,x) =0 and for all t < T we have

VE(t, Xe) > Eefu(t, Ce, Xe) + VI (t + 1, Xe1)]

and with equality if we pick C; = C*(t, X;).
® Then, note that
V*(t, Xt) = E¢fu(t, C*(Xe), Xe) + V*(t + 1, X7, 1)] so that
V*(0,X0) = Eo[X2 /g u(t, C*(X¢), X{)].
® Further, since
VE(t, Xe) > Eefu(t, G, Xe) + V*(t 4+ 1, X5 4)] VG, starting
at t =0 and |terat|ng forward we obtain that
V*(0, Xo) > Eo[)_o u(n, Co, XE)] VCo.
This establishes the optimality of C*(t, X) and of V*(0, Xp).



® Note that the FOC from the HJB equation is:

Ee[uc(t, C*, X)+ Vx(t+1, F(t, C*, X, €x41)) Fe(t, C*, X, €41)] = 0
(2)

® \We can also use the “Envelope Condition:” Differentiating

VE(t, Xe) = Eefu(t, C°(Xe), Xe)+ V7 (141, F(£, C7(Xe), Xt €¢41))]
(3)
with respect to X;, and using (2), we get
Vx(t, X) = E¢fux(t, C*, X)

4
+ VX(t + 17 F(ta C*7X7 6i‘-i-l)) FX(t7 C*axaet-‘rl)] ( )



Optimal portfolio choice

Let’s use dynamic programming to solve the optimal portfolio
consumption problem of an agent with CRRA utility

uic) = % when returns are i.i.d.

The value function is J(t, W;) = maxe, », E[>1_, 6"u(C,)].
Subject to Wiy1 = (Ws — ) Rp(t +1).

We ignore labor income for now, so the investor starts with
Wo = Yp and gets no future income.

We also assume that there exists a risk-free rate and solve for
¢, the vector of fractions of wealth invested in risky assets.

(so we have substituted the constraint 71 = 1). Thus we
define Ry(t + 1) = (R + 74 (Re+1 — Rel)).



® The HJB equation is
J(t, W) = max c{u(C)d" + E¢[J(t + 1, Wei1)]}
® The FOC is

0 = 6W(C)—Ee[dw(t + 1, Wer1)Rp(t + 1)]

= Eedw(t+ 1, Wen)(Riyy —RI Vi=1,....d
® Using the "envelope condition” the FOC become:

U (C) = Jw(t, W)
6U/(Ct+1)

0 = E¢ 7(C)

(R{—i-l_Rf)] V_j:].,,d

We recognize the Euler equation derived previously.



® For a CRRA investor we guess that J(t, W) = 6‘34;“”{%?
® Substituting into the FOC conditions, we get:

Ct - AtWt
0 = Ef(Rp(t+1) (R — R Vi=1,....d

Note that the optimal solution for the portfolio strategy is a
constant vector 7, since the returns are assumed to be i.i.d.
Further, that solution is identical to that obtained in the
one-period case. That is since returns are i.i.d., agents act
myopically with respect to their portfolio choice. Not so,
however, for their consumption decision.

® |ndeed, substituting the guess into the HJB equation, we
obtain C} = A:W; where A; solves a recursive equation:

_ Art1
At+1 + ((58)1/’7

subject to A7 =1 and where B = E,[(Ri(t +1))'77] a
constant since the optimal portfolio 7* is constant and returns
are iid.

At



The solution is easily derived Ar_; = W.
n=0

Note that when T — oo we obtain a simple solution
C; = AW; with A=1— (6B)Y/7 if it is positive (what
happens else?).

In that case the value function is simply

J(t, W) =gt AT

One can also attack the problem directly by looking for a
stationary solution in the HJB equation subject to a
transversality condition lim7_. E[J(T,Wr)] =0
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