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The Economy

• Consider a filtered probability space (Ω, F , {Ft}t=0,1,2... ,P).
We assume Ω is finite and time is discrete (think
multi-nomial, possibly non-recombining tree).

• There are d + 1 assets St = (S0
t , S1

t , . . . , Sd
t ).

• S0
t > 0 ∀t is the numeraire asset with S0

0 = 1 (S0
t = (1 + r)t)

if risk-free rate is constant).
• All other risky assets pay a dividend Di

t+1 if you own one unit
of the stock i at time t for t = 0, . . . , T and i = 1, . . . , d .

• Absence of Arbitrage implies there exists Q ∼ P under which
discounted Gain processes are martingales.
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• Where the Mt = ξt
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and ξt = Et [dQ
dP ].



The Euler Equation

• Consider an investor who chooses his portfolio allocation and
consumption to maximize his expected utility:
maxcn,πn E[

∑T
n=0 δnu(cn)].

• His wealth dynamics are: Wt+1 = (Wt − ct)π′
tRt+1 + Yt+1

where
• πt is a vector of the proportion of wealth invested in the risky

and risk-free asset, i.e., π′
t1 = 1.

• Rt+1 = St+1+Dt+1
St

is the vector of Gross returns.
• Hence,

Et [Mt+1Wt+1] = Et [Mt+1((Wt − ct)π′
tRt+1 + Yt+1)]

= (Wt − ct)π′
tEt [Mt+1Rt+1] + Et [Mt+1Yt+1]

= Wt − ct + Et [Mt+1Yt+1]
(1)

• Yt is the endowment of the agent received at date t.
• δ ≤ 1 is a time preference parameter.



Theorem
A necessary and sufficient condition for optimality (of both the
portfolio and consumption decision) is the Euler Equation

u′(ct) = Et [δu′(ct+1)Ri(t + 1)] ∀i = 0, . . . , d

• For any valid state price density, we have:

Et [MT WT +
T−1∑
n=t

MnCn] = MtWt + Et [
T∑

n=t+1
MnYn]

• In particular if at time T we have CT = WT and at time 0 we
define W0 = Y0 then we get the intertemporal Budget
constraint:

E [
T∑

n=0
MnCn] = E [

T∑
n=0

MnYn]



The Complete market case

• The optimal consumption-portfolio problem in a complete
market is equivalent to

max
cn

E[
T∑

n=0
δnu(cn)] s.t.E [

T∑
n=0

Mncn] ≤ E [
T∑

n=0
MnYn]

• where Mt is the unique pricing kernel.
• The FOC is δtu′(ct) = yMt or equivalently C∗

t = I(yδ−tMt)
where I(·) is the inverse function of u′(·).

• y is the Lagrange multiplier associated with the Budget
constraint, i.e., it solves

E [
T∑

n=0
MnI(yδ−nMn)] = E [

T∑
n=0

MnYn]



• The optimal portfolio πt then satisfies
Wt+1 = (Wt − C∗

t )π′
tRt+1 + Yt+1 given W0 = Y0 and for any

t > 0 we define Wt from:

Et [
T∑

n=t
MnC∗

n ] = MtWt + Et [
T∑

n=t+1
MnYn]



Time Consistency I

• The agent wakes up at time t and realizes that he chose his
C∗

t = I(yδ−tMt). However, if he now repeats his analysis, he
is solving

max
cn

Et [
T∑

n=t
δnu(cn)] s.t.E [

T∑
n=0

Mncn] ≤ WtMt + Et [
T∑

n=0
MnYn]

which is equivalent to

max
cn

Et [
T∑

n=t
δn−tu(cn)] s.t.Et [

T∑
n=t

Mt,ncn] ≤ Wt+Et [
T∑

n=t
Mt,nYn]

and the solution will be

C̃∗
n = I(ytδ

−(n−t)Mt,n).



Time Consistency II

For the solutions to coincide, we need

ytδ
−(n−t)Mt,n = yδ−nMn

which is equivalent to

yt = yMtδ
−t .

By construction, any feasible consumption stream Ct (and
hence C∗

t always satisfies the budget constraint

Et [
T∑

n=t
Mt,ncn] ≤ Wt + Et [

T∑
n=t

Mt,nYn]

so that

Et [
T∑

n=t
Mt,nI(ytδ

−(n−t)Mt,n)] ≤ Wt + Et [
T∑

n=t
Mt,nYn]



Time Consistency III

The key mechanism that makes all this work is time
consistency: We could move from δn to δn−t without
affecting the solution. However, if the agent discounts the
future using some other function, optimizing

max
cn

Et [
T∑

n=t
δ(t, n)u(cn)]

with a normalization δ(t, t) = 1 at time t, time consistency
requires that δ(t, n)δ(n, m) = δ(t, m). This only works when
δ(t, n) = δn−t



Dynamic Programming

• For certain problems (Markov state vector, Recursive objective
function), Dynamic programming is a useful technique to
solve optimization problems.

• As an example, consider the problem
maxCn E[

∑T
n=0 u(n, Cn, Xn)] subject to a state equation

Xt+1 = F (t, Ct , Xt , ϵt+1) where ϵt+1 is a random vector of
shocks with a conditional distribution at time t.
For simplicity we assume that the ϵt are iid shocks ∀t.

• We need to pick the control Cn so as to ‘steer’ the state Xn
optimally to maximize the objective function.



• The trick is to consider controls that are in feedback form:
Cn = C(n, Xn). Then, the dynamics of the state vector are
clearly Markov: Xt+1 = F (t, C(t, Xt), Xt , ϵt+1)

• For a particular control C(t, Xt) we can define the value
V C (t, Xt) = Et [

∑T
n=t u(n, C(n, Xn), Xn)], which is a function

of the state by the Markov Property.
• Note that V C (t, Xt) +

∑t−1
n=0 u(n, C(n, Xn), Xn) is a

martingale (by the law of iterated expectation) so that
V C (t, Xt) = Et [u(t, C(t, Xt), Xt) + V C (t + 1, XC

t+1)] ∀t ≤ T ,
where we set V (T + 1, X ) = 0.

• It is then natural to define the (Hamilton Jacobi Bellman)
equation of optimality as
V (t, Xt) = maxC Et [u(t, C , Xt) + V (t + 1, XC

t+1)].
• Note that when there is a finite horizon, this leads to a

natural backward recursion algorithm.



• Now suppose we can find a function V ∗(t, X ) and a control
C∗(t, X ) that achieve the optimum, i.e., such that
V ∗(T + 1, x) = 0 and for all t ≤ T we have

V ∗(t, Xt) ≥ Et [u(t, Ct , Xt) + V ∗(t + 1, Xt+1)]

and with equality if we pick Ct = C∗(t, Xt).
• Then, note that

V ∗(t, Xt) = Et [u(t, C∗(Xt), Xt) + V ∗(t + 1, X ∗
t+1)] so that

V ∗(0, X0) = E0[
∑T

t=0 u(t, C∗(X ∗
t ), X ∗

t )].
• Further, since

V ∗(t, Xt) ≥ Et [u(t, Ct , Xt) + V ∗(t + 1, XC
t+1)] ∀Ct , starting

at t = 0 and iterating forward we obtain that
V ∗(0, X0) ≥ E0[

∑T
n=0 u(n, Cn, XC

n )] ∀Cn.
This establishes the optimality of C∗(t, X ) and of V ∗(0, X0).



• Note that the FOC from the HJB equation is:

Et [uC (t, C∗, X )+VX (t +1, F (t, C∗, X , ϵt+1)) FC (t, C∗, X , ϵt+1)] = 0
(2)

• We can also use the “Envelope Condition:” Differentiating

V ∗(t, Xt) = Et [u(t, C∗(Xt), Xt)+V ∗(t+1, F (t, C∗(Xt), Xt , ϵt+1))]
(3)

with respect to Xt , and using (2), we get

VX (t, X ) = Et [uX (t, C∗, X )
+ VX (t + 1, F (t, C∗, X , ϵt+1)) FX (t, C∗, X , ϵt+1)]

(4)



Optimal portfolio choice

• Let’s use dynamic programming to solve the optimal portfolio
consumption problem of an agent with CRRA utility
U(C) = C1−γ

1−γ when returns are i.i.d.
• The value function is J(t, Wt) = maxcn,πn E[

∑T
n=t δnu(Cn)].

• Subject to Wt+1 = (Wt − ct)Rp(t + 1).
• We ignore labor income for now, so the investor starts with

W0 = Y0 and gets no future income.
• We also assume that there exists a risk-free rate and solve for

πt , the vector of fractions of wealth invested in risky assets.
(so we have substituted the constraint π′1 = 1). Thus we
define Rp(t + 1) = (Rf + π′

t(Rt+1 − Rf 1)).



• The HJB equation is
J(t, Wt) = maxπ,C{u(C)δt + Et [J(t + 1, Wt+1)]}

• The FOC is

0 = δtu′(C) − Et [JW (t + 1, Wt+1)Rp(t + 1)]
0 = Et [JW (t + 1, Wt+1)(R j

t+1 − Rf )] ∀j = 1, . . . , d

• Using the “envelope condition” the FOC become:

δtu′(Ct) = JW (t, Wt)

0 = Et [
δu′(Ct+1)

u′(Ct)
(R j

t+1 − Rf )] ∀j = 1, . . . , d

We recognize the Euler equation derived previously.



• For a CRRA investor we guess that J(t, W ) = δtA−γ
t

W 1−γ

1−γ
• Substituting into the FOC conditions, we get:

Ct = AtWt

0 = Et [(Rp(t + 1))−γ(R j
t+1 − Rf )] ∀j = 1, . . . , d

Note that the optimal solution for the portfolio strategy is a
constant vector π∗, since the returns are assumed to be i.i.d.
Further, that solution is identical to that obtained in the
one-period case. That is since returns are i.i.d., agents act
myopically with respect to their portfolio choice. Not so,
however, for their consumption decision.

• Indeed, substituting the guess into the HJB equation, we
obtain C∗

t = AtWt where At solves a recursive equation:

At = At+1
At+1 + (δB)1/γ

subject to AT = 1 and where B = Et [(R∗
p(t + 1))1−γ ] a

constant since the optimal portfolio π∗ is constant and returns
are iid.



• The solution is easily derived AT−t = 1∑t
n=0(δB)n/γ

.

• Note that when T → ∞ we obtain a simple solution
C∗

t = AWt with A = 1 − (δB)1/γ if it is positive (what
happens else?).

• In that case the value function is simply
J(t, W ) = δtA−γ W 1−γ

1−γ

• One can also attack the problem directly by looking for a
stationary solution in the HJB equation subject to a
transversality condition limT→∞ E[J(T , WT )] = 0
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