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Discrete Time Model

Readings:
• Lamberton and Lapeyre Chap.1 & 2
• Duffie Chap. 1 & 2

Topics:
• Fundamental Theorems of Asset Pricing I & II:

• EMM exists ⇐⇒ AOA
• EMM unique ⇐⇒ Complete Markets

• Self-financing, dynamic trading strategies.
• Risk-neutral pricing.
• Pricing Kernel.
• Viability.
• Contingent claims pricing.



• American options and early exercise.
• Mathematical concepts:

• Martingales
• Separation of Convexes
• Snell envelope (stopping times)



The economy

• Consider a filtered probability space (Ω, F , {Ft}t=0,1,2... ,P).
We assume Ω is finite and time is discrete (think
multi-nomial, possibly non-recombining tree).

• There are d + 1 assets St = (S0
t , S1

t , . . . , Sd
t ).

• S0
t > 0 ∀t is the numeraire asset with S0

0 = 1 (S0
t = (1 + r)t)

if risk-free rate is constant).
• A trading strategy is an adapted process ∆t = (∆0

t , ∆1
t , . . .)

(∆t is Ft measurable). The corresponding portfolio value is
Vt(∆) = ∆t · St .



• A strategy is self-financing if there is no infusion of cash when
rebalancing:

∆tSt = ∆t−1St (1)

• It follows that Vn(∆) = V0 +
∑n−1

t=0 ∆tdSt where we define
dSt = St+1 − St .

• Define V ∗
t (∆) = Vt(∆)

S0
t

the discounted value of the portfolio,
and S∗

t = St
S0

t
the vector of discounted asset prices. We have

the following result:
• If ∆ is self-financing for S then ∆ is self-financing for S∗, i.e.,

V ∗
n (∆) = V0 +

∑n−1
t=0 ∆tdS∗

t

• Since, by definition,
V ∗

n (∆) = ∆0
n︸︷︷︸

risk free bond holdings

+
∑d

i=1 ∆i
n︸︷︷︸

stock i holdings

S i∗
n we

immediately have:



Theorem
For any adapted process (∆1

t , . . . , ∆d
t )︸ ︷︷ ︸

stock investments

and F0 measurable V0

there exists a unique adapted process ∆n
t given by

∆0
n︸︷︷︸

risk free bond holdings

≡ V ∗
n (∆) −

d∑
i=1

∆i
n︸︷︷︸

stock i holdings

S i∗
n ,

such that ∆t is self-financing and generates Vt(∆) with initial
value V0.

• An Arbitrage strategy is a self-financing trading strategy such
that (1) V0(∆) ≤ 0, (2) VT (∆) ≥ 0 and (3)
P(VT (∆) > 0) > 0.

• We shall prove the first fundamental theorem of asset
pricing:



Theorem
There is no arbitrage if and only if there exists a probability
measure Q equivalent to P such that discounted prices are
martingales under Q.

• In the above, we assumed that stocks do not pay any
dividends. As an exercise, how would you extend Theorem 2
to the case where:

• ownership of stock j at any date t entitles you to a dividend
Dj

t+1 at date t + 1 ∀j = 1, . . . , n. That is when all stocks,
except the numeraire asset, pay a dividend.

• ownership of stock j at any date t entitles you to a dividend
Dj

t+1 at date t + 1 ∀j = 0, 1, . . . , n. That is when all stocks,
including the numeraire asset, pay a dividend.



Mathematics Refresher

• A measure Q is equivalent to P (we write Q ∼ P) if ∀A ∈ F
we have {Q(A) = 0 ⇐⇒ P(A) = 0}.

• Q ∼ P implies we can define the random variable ξ(ω) = Q(ω)
P(ω)

and ξ(ω) > 0 and EP[ξ] =
∑

ω ξ(ω)P(ω) =
∑

ω Q(ω) = 1.
• Consider an integrable process M(t) (E[M(t)] < ∞ ∀t)

• An adapted process M(t) is a martingale if

Es [M(t)] = M(s) ∀s ≤ t.

• An adapted process M(t) is a super-martingale if

Es [M(t)] ≤ M(s) ∀s ≤ t.

• An adapted process M(t) is a sub-martingale if

Es [M(t)] ≥ M(s) ∀s ≤ t.



• We have the following results:
• M(t) is a martingale if and only if

M(t) = E[M(t + 1)|Ft ] = Et [M(t + 1)]

• Let ∆t be an adapted process then Xt = X0 +
∑n−1

t=0 ∆tdM(t)
is a martingale, where we define dM(t) = M(t + 1) − M(t).
Note that dXt = ∆tdMt (Xt is often called a martingale
transform; note the analogy to the stochastic integral).

• The following result is useful:

Theorem
An adapted process Mt is a martingale if and only if for any adapted
process ∆t we have E[

∑T
t=0 ∆tdMt ] = 0.



Proof of the First Fundamental Theorem of Asset Pricing

• Existence of EMM ⇒ AOA
Consider any self-financing trading strategy
V ∗

n (∆) = V0 +
∑n−1

t=0 ∆tdS∗
t . Then, by definition of EMM, S∗

t
is a Q-martingale. Therefore V ∗

n (∆) is a Q-martingale (why?)
and V0 = EQ[V ∗

T (∆)]. It follows that for any strategy such
that VT ≥ 0 and P(VT > 0) > 0, we must have V0 > 0
(why?), and there cannot be any arbitrage.



• Converse: AOA ⇒ EMM.
The converse is proved using reduction to one-period models.
Consider a self-financing strategy where we hold wealth in the
risk-free account, then invest at time t and sell everything at
time t + 1, and then hold proceeds in the risk-free account.
This is equivalent to a one-period problem. Thus, AOA
implies that there exists a conditional stochastic discount
factor (SDF) Mt,t+1 such that

S j
t = Et [Mt,t+1S j

t+1] (2)

and corresponding conditional EMM is given by
Mt,t+1/Et [Mt,t+1]P(ω) so that

S j
t = (1/R f

t )EQ
t [S j

t+1], R f
t = Et [Mt,t+1]−1 (3)



• What about the multi-period case? How do we compute the
one-period SDFs into a multi-period object?

Mt,t+τ =
τ∏

s=1
Mt+s−1,s

and, hence,

Mt,t+τ = Mt,t+τ−1 · Mt+τ−1,t+τ . (4)

Then,

Et [St+τ Mt,t+τ ]
= Et [St+τ Mt+τ−1,t+τ Mt,t+τ−1]

=︸︷︷︸
iterated expectations

Et [Et+τ−1[St+τ Mt+τ−1,t+τ ] Mt,t+τ−1]

= Et [St+τ−1 Mt,t+τ−1]
= · · ·
= Et [St+1Mt,t+1] = St

(5)



What about Martingales? Well, let us define interest rates

e−rt = Et [Mt,t+1], Mt,t+1 = e−rt ξt,t+1 . (6)

where
Et [ξt,t+1] = Et [ξt,t+τ ] = 1 . (7)

Write

M0,T =
T−1∏
τ=0

e−rτ ξτ,τ+1 = S0(T )ξ(T ) (8)

where

ξt,t+1 = Mt,t+1/Et [Mt,t+1], ξt,t+τ =
τ∏

s=1
ξt+s−1,t+s (9)

Define a new measure

Q = ξ(T )
E [ξ(T )] , ξ(T ) = ξ0,T . (10)



where ξ(t) is a martingale
Question: How do we compute conditional expectations with a
different measure?

Theorem

EQ
t [X ] = Et [ξT X ]

Et [ξT ] = Et [ξ0,tξt,T XT ]
Et [ξ0,tξt,T ]

= ξ0,tEt [ξt,T XT ]
ξ0,tEt [ξt,T ] = Et [ξt,T XT ]

Et [ξt,T ] = Et [ξt,T XT ]
(11)

Thus,

St = Et [ST Mt,T ]

= Et [ξt,T (
T−1∏
τ=t

e−rτ ST )] =︸︷︷︸
EQ absorbs ξt,T

EQ
t [

T−1∏
τ=t

e−rτ ST ] (12)



• Note on admissible strategies:
• An admissible trading strategy is a self-financing strategy such

that Vt(∆) ≥ 0 ∀t.
• It is often customary to restrict the definition of arbitrage to

strategies that are also admissible to rule out negative wealth
along the way.



However, in the discrete finite dimensional setup, this is
unnecessary as we have the result (exercise!):

Theorem
There exists an arbitrage for general trading strategies if and only
if there exists an arbitrage for admissible trading strategies.
This implies that we might as well rule out general arbitrage
trading strategies. However, in continuous time, because of
so-called ‘doubling strategies,’ we will have to restrict the
definition of arbitrage to admissible strategies. Specifically, in
continuous-time, there will be price processes that rule out
arbitrage for admissible strategies while allowing arbitrage in a
more general (but economically implausible) sense.



Relation between EMM and Pricing Kernel
• AOA ⇐⇒ ∃ EMM Q under which any stock price satisfies:

S j(0) = EQ
0 [ S j(T )

S0(T ) ]

= EP
0 [ξ S j(T )

S0(T ) ]

= EP
0 [M(T )S j(T )]

where we have defined the change of measure random variable
ξ(ω) by

ξ(ω) = Q(ω)
P(ω)

and the pricing kernel or state price density:

M(T ) = ξ

S0(T )



• Bayes Rule for Conditional expectation states that for any
FT -measurable random variable X we have

EQ
t [X ] = EP

t [ξX ]
EP

t [ξ]

where we use the notation Et [X ] = E[X |Ft ].



• Recall the definition of conditional expectation: Consider the
probability space (Ω, F ,P). Let X be an integrable r.v. Then
E[X |Ft ], is the unique Ft-measurable random variable Y
which satisfies:∫

Y (ω)1{A}dP(ω) =
∫

X (ω)1{A}dP(ω) ∀A ∈ Ft

So, we need to show that

EQ
[
EP

t [ξX ]
EP

t [ξ]
1{A}

]
= EQ

[
X1{A}

]
∀A ∈ Ft



• To that effect

EQ
[
EP

t [ξX ]
EP

t [ξ]
1{A}

]
= EP

[
ξ
EP

t [ξX ]
EP

t [ξ]
1{A}

]

= EP
[
EP

t [ξ]E
P
t [ξX ]
EP

t [ξ]
1{A}

]
= EP

[
EP

t [ξX1{A} ]
]

= EP
[
ξX1{A}

]
= EQ

[
X1{A}

]
• Then, at any time t ∈ [0, T ] we have

S j(t)
S0(t) = EQ

t [ S j(T )
S0(T ) ]

=
EP

t [ξ S j (T )
S0(T ) ]

EP
t [ξ]



• This implies M(t)S j(t) = EP
t [M(T )S j(T )] for all j , where

the pricing kernel is defined as

M(t) = ξ(t)
S0(t)

and we have defined the conditional likelihood ratio
ξt = EP

t [ξ].



Relation between EMM and Viability

• An economy is viable if the price system supports the optimal
portfolio and consumption decision of an agent with a
standard (i.e., continuous, increasing, and concave)utility
function.

• Specifically, and economy is viable if there exists U(c) such
that supc∈C U(c) admits a solution, where the budget feasible
consumption set from an initial endowment e denoted by Ce
is the sequence of positive random variables ct that satisfy:

VT = cT ≥ 0
Vt+1 = Vt + ∆tdSt − ct
V0 = e

for some admissible trading strategy ∆ and initial endowment
e.



• Let us restrict ourselves to time-separable expected utility
functions of the type U(C) = EP[

∑T
t=1 ut(ct)] with ut(c)

continuous increasing and concave. It is clear that AOA is
necessary for a solution to exist (why?). Conversely, AOA
guarantees a solution to the utility maximization problem by
ensuring that the feasible set is compact (and using
Weierstrass’s theorem). Exercise!



• Suppose there exists an optimum consumption process ĉ.
Then, a necessary condition for an optimum is

lim
δ→0

U(ĉ + δc̃) − U(ĉ)
δ

= 0

for any c̃ process in C0. In the time-separable case assuming
u(c) is differentiable, this condition simplifies to

0 = E
[ T∑

t=0
u′

t(ĉt)c̃t

]
(∗)



• For example, choose for any A ∈ Ft
c̃s = 0 ∀s ̸= t, T
c̃t = −δS j

t1{A}

c̃T = δS j
T 1{A}

This is clearly in C0, since all we need is
∆s = ∆̂s ∀s ̸= t, T
∆j

t = ∆̂j
t + δ1{A}

∆j
T = ∆̂j

t − δ1{A}

Then (*) above implies the Euler Condition:

u′(ĉt)S j
t = EP

t [u′(ĉT )S j
T ]

which shows that M(t) = u′
t(ĉt)

• If ut(·) is Concave then the Euler Condition is both a
necessary and sufficient condition for optimality of the
portfolio and consumption decision.



Contingent Claims

• A contingent claim (CC) is defined by a FT measurable payoff
h (e.g., a European call h = |S j(T ) − K |+).

• A CC is attainable if there exists a self-financing trading
strategy worth h at T .

• The market is complete if every CC is attainable.
• We shall prove the Second fundamental theorem of asset

pricing:



Theorem
An arbitrage-free market is complete if and only if there exists a
unique EMM under which discounted asset prices are martingales.

• Suppose the market is arbitrage-free and complete, but that
there are two EMM Q1 and Q2. Then for any FT -measurable
payoff h we have:

EQ1 [ h
S0

T
] = EQ2 [ h

S0
T

]

Using h = S0
T 1{ω} implies Q1(ω) = Q2(ω) ∀ω.



• For the converse, suppose that an arbitrage-free market is
incomplete so that there exist FT -measurable payoffs that are
not attainable, say h. Define
G∗ = {x(ω) : x(ω) = e0 +

∑T−1
t=0 ∆tdS∗

t } the set of
attainable payoffs starting from an initial endowment e0 that
is F0-measurable. Clearly, h

S0
T
⊈ G∗. Therefore, G∗ is a strict

subset of RΩ. Suppose Q1 is an EMM and define the inner
product < X , Y >= EQ1 [XY ] on RΩ × RΩ. There exists a
random variable X (ω) that belongs to G∗⊥ such that
EQ1 [XY ] = 0 ∀Y ∈ G∗.



• Let us define Q2(ω) = Q1(ω) ∗ (1 + X(ω)
2 supω |X(ω)|). note that

since 1 ∈ G∗ (there exists a numeraire!), EQ1 [X ] = 0.
Therefore

∑
ω Q2(ω) =

∑
ω Q1(ω) + EQ1 [ X(ω)

2 supω |X(ω)| ] = 1.
Also, clearly Q2(ω)

Q1(ω) > 0 and thus Q2 ∼ Q1. Finally, we note
that

EQ2 [
T−1∑
t=0

∆tdS∗
t ] = EQ1 [

T−1∑
t=0

∆tdS∗
t ] = 0

Therefore, Q2 is an EMM distinct from Q1.



Pricing and hedging in Complete Markets

• If markets are complete, then for any CC with FT -measurable
payoff h there exists a self-financing trading strategy ∆ such
that VT (∆) = h(ω) ∀ω. Further, Vt(∆)

S0
t

= EQ
t [ h

S0
T

] ∀t. In
particular, Vt(∆) is the wealth needed at time t in order to
replicate the final payoff of the CC. It is thus natural to define
the price of the contingent claim
Pt(h) = Vt(∆) := S0

t EQ
t [ h

S0
T

]. Note that it is a linear pricing
rule.



• In general, it is difficult to identify the hedging strategy
without specifying the model further. One good example is
the binomial model of Cox, Ross, and Rubinstein (see
exercise). In continuous time, the Itô-Doeblin formula and the
Martingale representation theorem allow us to go further.

• An American CC specifies a sequence of random variables
(ht)t=0,1,...,T adapted to Ft that represents the profit upon
exercise to the holder of the CC. (for an American Call
ht = |St − K |+).

• The buyer of the claim has to find the optimal exercise
("stopping") time τ so as to maximize the value of his claim.

• We motivate the optimal policy using a backward induction
argument. Then introduce more formally stopping times and
the Snell envelope of a process.



• Note that
• at t = T : VT = hT .
• at t = T − 1: VT−1 = max

[
hT−1, S0

T−1E
Q
T−1[ h

S0
T

]
]

=

max
[
hT−1, S0

T−1E
Q
T−1[ VT

S0
T

]
]

• by induction at Vt = max
[
ht , S0

t EQ
t [ Vt+1

S0
t+1

]
]

• This construction suggests the following results:
• The discounted value of the American option is a Q-super

martingale. Defining V ∗
t = Vt

S0
t
, we have V ∗

t ≥ EQ
t [V ∗

t+1].
• Prior to early exercise, namely as long as V ∗

t > h∗
t , the

discounted value of the option is a Q-martingale, i.e.,
V ∗

t = EQ
t [V ∗

t+1] for all (t, ω) such that V ∗
t (ω) > h∗

t (ω).
• It is optimal to exercise the first time V ∗

t ≤ h∗
t .

• To prove these results more formally, we introduce the notion
of stopping time and Snell envelope.



American Contingent claims and Early exercise

• A random variable τ with values in {0, 1, . . . , T} is a stopping
time if for any t, {τ ≤ t} ∈ Ft .

• Consider a process Xt adapted to Ft . The stopped process
X τ

t is defined by:

X τ
t =

{
Xt if t ≤ τ
Xτ if t > τ

Note that we can write X τ
t = X0 +

∑t−1
n=0(1 − 1{τ≤n})dXn.

• If Xt is a martingale (resp. super-martingale) and τ a stopping
time then X τ

t is a martingale (resp. super-martingale).
• The Snell envelope of an adapted process (Zt) is the adapted

process Ut defined recursively by{
UT = ZT
Ut = max(Zt ,Et [Ut+1]) ∀t < T



• The snell envelope of Zt is the smallest super-martingale that
dominates the process (Zt).
Indeed, consider Mt another supermartingale that dominates
Zt . Then MT ≥ ZT = UT . But if Mt+1 ≥ Ut+1 then
Mt ≥ Et [Mt+1] ≥ Et [Ut+1] and thus
Mt ≥ max[Zt ,Et [Ut+1]] = Ut .

• If we define the stopping time τ0 = inf{t ≥ 0 : Ut = Zt} then
Uτ0

t is a martingale. Note that dUτ0
t = (1 − 1{τ0≤t})dUt . And

on the set {ω : 1{τ0≤t} = 0} we have Ut > Zt and
Ut = Et [Ut+1]. So Et [dUτ0

t ] = 0.
• Denote by Tt,T the set of stopping times taking values in

{t, t + 1, . . . , T}. Then we have:

U0 = E[Zτ0 ] = sup
τ∈T0,T

E[Zτ ]

For any stopping time, the supermartingale property implies
Uτ

0 ≥ E[Uτ
T ] = E[Uτ ] ≥ E[Zτ ]. For the specific stopping rule

τ0 the martingale property implies
Uτ0

0 = E[Uτ0
T ] = E[Uτ0 ] = E[Zτ0 ].



• We obtain the general characterization of the optimal
stopping rule. A stopping time is optimal if and only if
Uτ = Zτ and Uτ

t is a martingale.
• Every supermartingale has a unique (Doob-Meyer)

decomposition: Ut = Mt − At where Mt is a martingale and
At is a non-decreasing, predictable process, null at 0. Set
U0 = M0. Taking the difference, we must have
Ut+1 − Ut = Mt+1 − Mt − (At+1 − At). Taking expectation,
we see that the predictable component is defined recursively
via: At+1 − At = Ut − Et [Ut+1] ≥ 0 and the martingale
residual: Mt+1 − Mt = Ut+1 − Et [Ut+1].



• The Doob-Meyer decomposition gives an idea of how to
derive the replicating portfolio for an American contingent
claim. Specifically, we define the discounted value of the
American option value U∗

t as the Snell envelope of the process
Zt = ht

S0
t
. From the results above, we have the following:

U∗
t = sup

τ∈Tt,T

EQ
t [Zτ ]

Also, U∗
t = Mt − At for some Q-martingale Mt and some

increasing predictable process At . Since the market is
complete, there exists a self-financing adapted strategy such
that VT (∆) = S0

T MT . By definition of the risk-neutral
measure we have

V ∗
t (∆) = EQ

t [V ∗
T (∆)]

= EQ
t [MT ]

= Mt



• Thus, U∗
t = V ∗

t (∆) − At . What’s the interpretation?
Vt(∆) is the value at any time of a self-financing trading
strategy starting from V0(∆). Therefore, following the trading
strategy ∆, one is guaranteed to have an amount of money
greater or equal to the value of the American option Ut at all
times. At represents the value of the optimal replicating
strategy in excess of the value of the option. (Of course, if the
option is optimally exercised, then At = 0 ∀t. So At can be
interpreted as the gains from selling an option at the
arbitrage-free price U0, replicating it optimally using ∆, and
benefitting from a suboptimal exercise policy.)



Pricing and hedging in Incomplete Markets

• Suppose the securities market with d securities
St = (S0

t , . . . , Sd
t ) is incomplete. We consider the pricing of

some CC with FT -measurable payoff h.
• Since markets are incomplete, there is a set of EMM Q under

which discounted prices are martingales. It is thus natural to
consider that the set of arbitrage-free prices for the CC is
A = {EQ[ h

S0
T

] ; ∀Q ∈ Q}.



Proof.
Consider any augmented market with d + 1 securities
(S0

t , . . . , Sd+1
t ) where the added security satisfies Sd+1

T = h. Then,
for this augmented market to be arbitrage-free, there must exist a
set of EMM Q̂ such that ∀Q ∈ Q̂ all discounted prices are
martingales. In particular, ∀Q ∈ Q̂ S∗d+1

t = EQ
t [S∗d+1

T ] = EQ
t [ h

S0
T

].
Since we clearly have Q̂ ⊂ Q (why?) this shows that the set of
arbitrage-free prices is a subset of A. For the converse inclusion,
take some Q ∈ Q and define the price process Sd+1

t = S0
t EQ

t [ h
S0

T
].

Then the market (S0
t , . . . , Sd+1

t ) thus defined clearly is
arbitrage-free (why?). Thus, A belongs to the set of arbitrage-free
prices.

• Since the set of equivalent martingale measure Q is a convex
set we can characterize A as an interval. Let us define:

π̂(h) = sup
Q∈Q

EQ[ h
S0

T
]

π̌(h) = inf
Q∈Q

EQ[ h
S0

T
]



• Then we have
• If h is attainable then π̌(h) = π̂(h).
• If h is not attainable then either A = ∅ or π̌(h) < π̂(h) and

A = (π̌(h), π̂(h))
• Note that π̂(h) is the smallest amount at which one can sell

the claim and use the proceeds in a dynamic self-financing
trading strategy so as to not lose money at maturity, i.e.:

π̂(h) = inf{V0 : V0 +
∑

t
∆tdSt ≥ h}

This is called the super-replication cost of the CC.
• Similarly, π̌(h) is the largest amount that one can afford to

pay for the CC while engaging in a dynamic self-financing
trading strategy and not losing money at maturity, i.e.:

π̌(h) = sup{V0 : V0 +
∑

t
∆tdSt ≤ h}

This is called the sub-replication cost of the CC.
• Why is the interval A an open interval when the claim is not

attainable?
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