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Discrete Time Model

Readings:
® | amberton and Lapeyre Chap.1 & 2
e Duffie Chap. 1 & 2
Topics:
® Fundamental Theorems of Asset Pricing | & II:

® EMM exists <= AOA
® EMM unique <= Complete Markets

Self-financing, dynamic trading strategies.

Risk-neutral pricing.

Pricing Kernel.
Viability.

Contingent claims pricing.



® American options and early exercise.
® Mathematical concepts:

® Martingales
® Separation of Convexes
® Snell envelope (stopping times)



The economy

Consider a filtered probability space (2, F,{Ft}, 41,
We assume Q2 is finite and time is discrete (think
multi-nomial, possibly non-recombining tree).

There are d + 1 assets S; = (S?, S}, ..., S9).

S2 > 0 Vt is the numeraire asset with S§ = 1 (S? = (1 + r)?)
if risk-free rate is constant).

P).

A trading strategy is an adapted process A; = (A?, Al .. )
(A; is Fr measurable). The corresponding portfolio value is
Vt(A) - At . St.



A strategy is self-financing if there is no infusion of cash when
rebalancing:

AtSt - At_]_st (].)

It follows that | V,,(A) = Vo + Z’t’;& A+dS; | where we define
dS; = Ser1 — St

Define V*(A) = % the discounted value of the portfolio,
and 5§} = % the veétor of discounted asset prices. We have

the foIIowintg result:
If A is self-financing for S then A is self-financing for S*, i.e.,
VE(A) = Vo + 205 AdS;

Since, by definition,
Vi (D) =

0 d i i*
An +Zi:1 An Sn we
~~ ~~
risk free bond holdings stock i holdings
immediately have:



Theorem
For any adapted process (Al, ..., Af) and Fo measurable V
|

. ) stock investments )
there exists a unique adapted process A} given by

d
0 — * i i*
An = Vn (A) - Z An Sn )
. Y . i=1 . .
risk free bond holdings stock i holdings

such that A; is self-financing and generates V:(A) with initial
value V.

® An Arbitrage strategy is a self-financing trading strategy such
that (1) Wo(A) <0, (2) V7(A) >0 and (3)
P(Vr(A) > 0) > 0.

® We shall prove the first fundamental theorem of asset
pricing:



Theorem

There is no arbitrage if and only if there exists a probability
measure Q equivalent to IP such that discounted prices are
martingales under Q.

® |n the above, we assumed that stocks do not pay any
dividends. As an exercise, how would you extend Theorem 2
to the case where:

® ownership of stock j at any date t entitles you to a dividend

D£+1 atdate t+1Vj=1,...,n That is when all stocks,

except the numeraire asset, pay a dividend.
® ownership of stock j at any date t entitles you to a dividend
D, atdate t+1Vj=0,1,...,n Thatis when all stocks,
including the numeraire asset, pay a dividend.



Mathematics Refresher

® A measure Q is equivalent to P (we write Q ~ P) if VA€ F
we have {Q(A) =0 <= P(A) =0}.

¢ Q ~ P implies we can define the random variable {(w) = LIC)

P(w
and €(w) > 0 and FF[¢] = 32, €(w)P(w) = X, Q(w) =

e Consider an integrable process M(t) (E[M(t)] < oo Vt)
® An adapted process M(t) is a martingale if

E[M(t)] = M(s) Vs < t.

® An adapted process M(t) is a super-martingale if
Es[M(t)] < M(s) Vs < t.

® An adapted process M(t) is a sub-martingale if

E[M(t)] > M(s) Vs < t.



® \We have the following results:
® M(t) is a martingale if and only if

M(t) = E[M(t + 1)|F] = EJ[M(t +1)]

® |Let A; be an adapted process then X; = Xy + Ef;ol A dM(t)
is a martingale, where we define dM(t) = M(t + 1) — M(t).
Note that dX; = A;dM; (X; is often called a martingale
transform; note the analogy to the stochastic integral).

® The following result is useful:

Theorem
An adapted process M; is a martingale if and only if for any adapted
process A we have ]E[Z;O ArdM,] = 0.



Proof of the First Fundamental Theorem of Asset Pricing

e Existence of EMM = AOA
Consider any self-financing trading strategy
VH(A) = Vo + 0=5 A+dS;. Then, by definition of EMM, S;
is a Q-martingale. Therefore V(A) is a Q-martingale (why?)
and Vo = EC[V%(A)]. It follows that for any strategy such
that V+ > 0 and P(V7+ > 0) > 0, we must have Vy >0
(why?), and there cannot be any arbitrage.



e Converse: AOA = EMM.
The converse is proved using reduction to one-period models.
Consider a self-financing strategy where we hold wealth in the
risk-free account, then invest at time t and sell everything at
time t + 1, and then hold proceeds in the risk-free account.
This is equivalent to a one-period problem. Thus, AOA
implies that there exists a conditional stochastic discount
factor (SDF) M ¢11 such that

Sl = ElMi 11504 (2)

and corresponding conditional EMM is given by
Mt7t+1/Et[Mt7t+1]P(W) so that

St = (/RDER[SI L), RE = EMeea]™  (3)



® What about the multi-period case? How do we compute the
one-period SDFs into a multi-period object?

r
Mt,t—i—T = HMt+s—1,s

s=1
and, hence,
Mt,t+7 = Mt,t+7—1 : Mt+7—1,t+7- (4)
Then,
Et[5t+TMt,t+T]
= Et[5t+TMt+T—1,t+T Mt,t+T—1]
Ny Et[Et+T—1[St+TMt+T—1,t+T] Mt,t—l—T—l]
iterated expectations (5)

= Et[StJrT—l Mt,t+r—1]

= Et[StJrlMt,tJrl] = St



What about Martingales? Well, let us define interest rates

e = E[Miry1], Meey1 = e "
where
Eiléte+1] = Eeléteer] = 1.
Write
T-1
Mo = [[ e &rrin = SUTIET)
7=0
where

-
§t,t+1 = Mt,t+1/Et[Mt,t+1]> ft,t—i-r = H§t+s—1,t+s

s=1
Define a new measure

_«n
Ele(T)]

, E(T) = &1



where {(t) is a martingale

Question: How do we compute conditional expectations with a
different measure?

Theorem

E?[X] _ EférX]  Eilo,e&e, 7XT]

Eifér]  Eeléo,ée,T] (11)
_ o,eEe[&e, 7 XT] _ E¢[&:, 7XT] — Bt rX7]
€o.Eelée 7] Ee[¢r.7] herar

Thus,

St = IE:t[STMt,T]

T-1 T-1 (12)
= Eléer([[emsrl = E2][e"S7]

ES absorbs &1



® Note on admissible strategies:
® An admissible trading strategy is a self-financing strategy such
that V;(A) > 0 Vt.
® |t is often customary to restrict the definition of arbitrage to

strategies that are also admissible to rule out negative wealth
along the way.



However, in the discrete finite dimensional setup, this is
unnecessary as we have the result (exercise!):

Theorem
There exists an arbitrage for general trading strategies if and only
if there exists an arbitrage for admissible trading strategies.

This implies that we might as well rule out general arbitrage
trading strategies. However, in continuous time, because of
so-called ‘doubling strategies,” we will have to restrict the
definition of arbitrage to admissible strategies. Specifically, in
continuous-time, there will be price processes that rule out
arbitrage for admissible strategies while allowing arbitrage in a
more general (but economically implausible) sense.



Relation between EMM and Pricing Kernel

¢ AOA <= 4 EMM Q under which any stock price satisfies:

S(T),
SO(T)

= E“S[fsjo((g]

= Eg[M(T)S/(T)]

Si0) = S

where we have defined the change of measure random variable

§(w) by

_ QW)
f(W) - ]P)((U)
and the pricing kernel or state price density:
M(T) = ot

SO(T)



® Bayes Rule for Conditional expectation states that for any
JF1-measurable random variable X we have

oy Erl€X]
EeX =g

where we use the notation E[X] = E[X|F:].




® Recall the definition of conditional expectation: Consider the
probability space (2, F,P). Let X be an integrable r.v. Then
E[X|F¢], is the unique F;-measurable random variable Y

which satisfies:
/Y( 1, dP(w) /x W), dP(w) YA€ F;

So, we need to show that

EF[EX]

S HE



® To that effect

E[eX]
= [

:E]Pg

[ EF[eX]
Ef[¢] ~™
EP[eX
EP P[g] EIEE‘E]] {A}]

7 [EE(eXt,,

EF [ex1,, ]

EQ [x1 {AJ

® Then, at any time t € [0, T| we have

S(T)

Ef[¢ ;‘3&;1

El¢]




e This implies | M(t)S/(t) = E¥[M(T)S/(T)]

the pricing kernel is defined as

M(t) = 550((?)

for all j, where

and we have defined the conditional likelihood ratio

ft = E]tp[f]



Relation between EMM and Viability

® An economy is viable if the price system supports the optimal
portfolio and consumption decision of an agent with a
standard (i.e., continuous, increasing, and concave)utility
function.

¢ Specifically, and economy is viable if there exists U(c) such
that sup.cc U(c) admits a solution, where the budget feasible
consumption set from an initial endowment e denoted by C,
is the sequence of positive random variables ¢; that satisfy:

VT =CT > 0
Vt+1 = Vt + AtdSt — Ct
Vo = e

for some admissible trading strategy A and initial endowment
e.



® | et us restrict ourselves to time-separable expected utility
functions of the type U(C) = EF[2]; u(cr)] with ue(c)
continuous increasing and concave. It is clear that AOA is
necessary for a solution to exist (why?). Conversely, AOA
guarantees a solution to the utility maximization problem by
ensuring that the feasible set is compact (and using
Weierstrass's theorem). Exercise!



® Suppose there exists an optimum consumption process &.
Then, a necessary condition for an optimum is

o U(e+38) - U(e)

6—0 1) =0

for any ¢ process in Cgp. In the time-separable case assuming
u(c) is differentiable, this condition simplifies to

.
0=E [Z u;(et)a] (%)

t=0



® For example, choose for any A € F;

Cs
Ct

cr

— 6§51

0 Vs#t, T
—55{1{A}
{A}

This is clearly in Cy, since all we need is

As
A
A

A, Vs £t T
%@ +01,,
A, -1,

Then (*) above implies the Euler Condition:

u'(&)St = Ef[u/(¢7)S)]

which shows that ‘ M(t) = u’t(?:t)‘

® If us(-) is Concave then the Euler Condition is both a
necessary and sufficient condition for optimality of the
portfolio and consumption decision.



Contingent Claims

A contingent claim (CC) is defined by a 71 measurable payoff
h (e.g., a European call h = |S/(T) — K|T).

A CC is attainable if there exists a self-financing trading
strategy worth hat T.

The market is complete if every CC is attainable.

We shall prove the Second fundamental theorem of asset
pricing:



Theorem
An arbitrage-free market is complete if and only if there exists a
unique EMM under which discounted asset prices are martingales.

® Suppose the market is arbitrage-free and complete, but that
there are two EMM ©Q; and Q. Then for any Fr-measurable
payoff h we have:
EQI[ EQQ[

hy_gorh
0 s

Using h = S%1, implies Q1(w) = Qa(w) Vew.



® For the converse, suppose that an arbitrage-free market is
incomplete so that there exist Fr-measurable payoffs that are
not attainable, say h. Define
G* = {x(w) : x(w) = e + X/ A+dS;} the set of
attainable payoffs starting from an initial endowment ¢y that
is Fo-measurable. Clearly, S—’Z,T ¢ G*. Therefore, G* is a strict

subset of R, Suppose Q; is an EMM and define the inner
product < X, Y >=E24[XY] on R? x R®. There exists a
random variable X(w) that belongs to G** such that
E&[XY] =0 VY € G*.



® Let us define Qa(w) = Q1(w) * (1 + %) note that

since 1 € G* (there exists a numeraire!), E< [X] =0.
Therefore Zw QZ(Q}) = Zw Ql( ) EQ [m]

Also, clearly gigig > 0 and thus Q» ~ Q1. Finally, we note
that

T-1 T-1
EQ2[Z A.dS]] = EQl[Z A:dS ] =0
t=0 t=0

Therefore, Q5 is an EMM distinct from Qj.



Pricing and hedging in Complete Markets

® |If markets are complete, then for any CC with Fr-measurable
payoff h there exists a self-financing trading strategy A such
that V7 (A) = h(w) Vw. Further, Vts(?A) = E?[é] Vt. In
particular, V;(A) is the wealth needed at time ¢ in order to
replicate the final payoff of the CC. It is thus natural to define
the price of the contingent claim
Pi(h) = Vi (A) = SQE?[S—’},T] Note that it is a linear pricing

rule.




In general, it is difficult to identify the hedging strategy
without specifying the model further. One good example is
the binomial model of Cox, Ross, and Rubinstein (see
exercise). In continuous time, the [t6-Doeblin formula and the
Martingale representation theorem allow us to go further.

An American CC specifies a sequence of random variables
(ht)¢=0,1,... 7 adapted to F; that represents the profit upon
exercise to the holder of the CC. (for an American Call

hy = |S¢ — K|T).

The buyer of the claim has to find the optimal exercise
("stopping") time T so as to maximize the value of his claim.
We motivate the optimal policy using a backward induction

argument. Then introduce more formally stopping times and
the Snell envelope of a process.



® Note that
® att = T: VT:hT-
©att=T-L Vry=max|hr1, S ES [4]] =
4
max |:hT_1,59,—71E$ 1[5 ]}
® by induction at V; = max [hh SO]EQ[Vt+1]:|

® This construction suggests the following results:

® The discounted value of the American option is a Q-super
martingale. Defining V;* = 50' we have V; > E2[V; ).

® Prior to early exercise, namely as long as V;* > hy, the
discounted value of the option is a Q-martingale, i.e.,
Vi = E2[V;4] for all (t,w) such that Vi (w) > hi(w).
® |t is optimal to exercise the first time V;* < hf.
® To prove these results more formally, we introduce the notion
of stopping time and Snell envelope.



American Contingent claims and Early exercise

e A random variable 7 with values in {0,1,..., T} is a stopping
time if for any t, {7 < t} € F;.

e Consider a process X; adapted to F;. The stopped process
X{ is defined by:

i <
XtT:{ X if t<71

X, if t>r7

Note that we can write X7 = Xo + >.f25(1 — 1 dX,.

e If X; is a martingale (resp. super-martingale) and 7 a stopping
time then X7 is a martingale (resp. super-martingale).

fr<n)

® The Snell envelope of an adapted process (Z;) is the adapted
process U; defined recursively by

Ur = Zr
Ut = max(Zt,Et[Ut_,_l]) Vi< T



® The snell envelope of Z; is the smallest super-martingale that
dominates the process (Z;).
Indeed, consider My another supermartingale that dominates
Zi. Then Mt > Z+ = Ut. But ifMt+1 > Ut+1 then
M; > E[M¢11] > E¢[Usy1] and thus
M; > max[Z;, Et[Us+1]] = Uk.

¢ |If we define the stopping time 7o = inf{t > 0 : U; = Z;} then
U{° is a martingale. Note that dU{® = (1 1{70<t})dUt. And
on the set {w : 1{ = = 0} we have U; > Z; and

= E{[Ui+1]. So E [dU,_TO] =0.

° Denote by T¢, T the set of stopping times taking values in

{t,t+1,..., T}. Then we have:

Uo =E[Z,] = sup E[Z/]
T€T0, T
For any stopping time, the supermartingale property implies
U§ > E[U7] = E[U;] > E[Z;]. For the specific stopping rule
To the martingale property implies
Ugo = E[U;Q] = E[UTO] = E[Z’TO]'



® \We obtain the general characterization of the optimal
stopping rule. A stopping time is optimal if and only if
Ur; = Z: and U] is a martingale.

® Every supermartingale has a unique (Doob-Meyer)
decomposition: U; = M; — A; where M; is a martingale and
A; is a non-decreasing, predictable process, null at 0. Set
Uo = My. Taking the difference, we must have
Uir1 — U = Myy1 — My — (Aey1 — Ar). Taking expectation,
we see that the predictable component is defined recursively
via: Ary1 — At = Up — Et[Ue41] > 0 and the martingale
residual: Myy1 — My = Upy1 — Ei[Upy1].



® The Doob-Meyer decomposition gives an idea of how to
derive the replicating portfolio for an American contingent
claim. Specifically, we define the discounted value of the
American option value U as the Snell envelope of the process
i = % From the results above, we have the following:

Uf = sup IEtQ[ZT]

T€Te, T

Also, Uy = M; — A; for some Q-martingale M; and some
increasing predictable process A;. Since the market is
complete, there exists a self-financing adapted strategy such
that V1 (A) = SS M. By definition of the risk-neutral
measure we have

Vi(A) = ER[VH(D)]
EL[M7]
- M,



® Thus, Uf = V{"(A) — A;. What's the interpretation?
V:(A) is the value at any time of a self-financing trading
strategy starting from Vo(A). Therefore, following the trading
strategy A, one is guaranteed to have an amount of money
greater or equal to the value of the American option U; at all
times. A; represents the value of the optimal replicating
strategy in excess of the value of the option. (Of course, if the
option is optimally exercised, then A; =0 Vt. So A; can be
interpreted as the gains from selling an option at the
arbitrage-free price Up, replicating it optimally using A, and
benefitting from a suboptimal exercise policy.)



Pricing and hedging in Incomplete Markets

® Suppose the securities market with d securities
Se =(S9,...,59) is incomplete. We consider the pricing of
some CC with Fr-measurable payoff h.

® Since markets are incomplete, there is a set of EMM Q under
which discounted prices are martingales. It is thus natural to
consider that the set of arbitrage-free prices for the CC is

A= {E%[L]: v e Q).



Proof.

Consider any augmented market with d + 1 securities

(S9..., Sd*t1Y where the added security satisfies S%’-H = h. Then,
for this augmented market to be arbitrage-free, there must exist a
set of EMM Q such that VO € Q all discounted prices are
martingales. In particular, VQ € Q S} = E2[S39] = E?[é]
Since we clearly have @ € Q (why?) this shows that the set of

arbitrage-free prices is a subset of A. For the converse inclusion,
take some @ € Q and define the price process S¢1 = SQEtQ[SLO]
T
Then the market (S, ..., 5¢*1) thus defined clearly is
arbitrage-free (why?). Thus, A belongs to the set of arbitrage-free
prices. L]

® Since the set of equivalent martingale measure QQ is a convex
set we can characterize A as an interval. Let us define:

#(h) = sup E9J
QeQ

x(h) = inf EQ[i]
Qe 'S%

N
52



Then we have
® If his attainable then 7t(h) = #(h
® |f his not attainable then either
A= (%(h), 7(h))
Note that 7t(h) is the smallest amount at which one can sell
the claim and use the proceeds in a dynamic self-financing
trading strategy so as to not lose money at maturity, i.e.:

#(h) =inf{Vy : Vo + > A¢dS; > h}
t

).
A =0 or#(h) < #(h) and

This is called the super-replication cost of the CC.

Similarly, 7t(h) is the largest amount that one can afford to
pay for the CC while engaging in a dynamic self-financing
trading strategy and not losing money at maturity, i.e.:

#(h) =sup{Vo : Vo + > AudS: < h}
t

This is called the sub-replication cost of the CC.

Why is the interval A an open interval when the claim is not
attainable?
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