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Hilbert Space refresher

• A Hilbert space is a vector space endowed with an
innerproduct < x , y > : H → R, which satisfies for x , y ∈ H:

• < x , y >=< y , x >
• < x , x >> 0
• < ax + bz , y >= a < x , y > +b < z , y >

• The inner product defines a norm ||x || = √
< x , x >.

• Orthogonality between to vectors x and y is defined by
< x , y >= 0.

• For any finite-dimensional subspace Z of H and any vector
x ∈ H, there exists a unique vector xZ ∈ Z and y ∈ Z⊥ such
that x = xZ + y . The vector xZ is the orthogonal projection
of x onto the subspace Z . Note that it satisfies
||x − xZ || ≤ ||x − z || ∀z ∈ Z .

• Riesz Representation theorem:
For any continuous linear functional L(·) : H → R there exists
a unique vector kL ∈ H such that L(x) =< kL, x > ∀x ∈ H.



• Below we will consider the Hilbert space of payoffs RS

endowed with the expectations inner product
< x , y >= E[xy ].

• Two linear functionals defined on the asset span M (which
may be a subspace of RS , but since it is a complete subspace,
it also qualifies as a Hilbert space) whose kernels are of
particular importance are:

• The pricing kernel kq, which satisfies E[kqx ] = q(x) ∀x ∈ M
• The expectation kernel ke , which satifies

E[kex ] = E[x ] ∀x ∈ M.
• Note that if the risk-free asset exists, then ke = 1. Else ke is

the projection of 1 onto the asset span.
• If markets are complete then kq = M, the unique state price

density. Else kq is the projection of M onto the asset span.



Mean Variance Preferences

• A payoff x is mean-variance efficient if there is no other payoff
y with the same price and mean but a lower variance.

Theorem
A payoff is mean-variance efficient if it lies in the span of ke and kq.

• Note that if you project any payoff onto the span of ke , kq, we
have x = ake + bkq + ϵ, with ϵ orthogonal to both ke , kq.
Using the definition of the two kernels implies that ϵ has both
zero price and zero expectation. Since x has a larger variance
than ake + bkq, the latter has to be on the mean-variance
frontier.



• We assume for the following that ke and kq are not colinear
(else all portfolios have the same expected return, which
equals the risk-free rate if the risk-free payoff is in M).

• If there are only two non-redundant securities, then the entire
asset span is mean-variance efficient.



• Any mv efficient return (which is an mv efficient payoff
divided by its price) can be written as

R = payoff
price

= ake + bkq
q(ake + bkq) = ke

q(ke) + ake + bkq
aq(ke) + bq(kq) − ke

q(ke)

= ke
q(ke)︸ ︷︷ ︸

Re

+ akeq(ke) + bkqq(ke) − ke(aq(ke) + bq(kq))
aq(ke) + bq(kq)

= Re + bq(ke)q(kq)
aq(ke) + bq(kq)( kq

q(kq) − ke
q(ke))

= Re + λ(Rq − Re) = Rλ

(1)
for some unique parameter λ, where Re = ke

q(ke) and
Rq = kq

q(kq) .



• Thus the mv frontier is a parabola. Each point on that
parabola is characterized by:
E[Rλ] = E[Re] + λ(E[Rq] − E[Re]) and
V[Rλ] = V[Re] + λ2(V[Rq − Re]) + 2λCov(Re ,Rq − Re)

• If a risk-free rate exists, then Re = Rf is constant, and the
above simplifies.

• Note that q(ke) = E[kqke] = E[kq]. Thus, E[Re] = E [ke ]
E[kq]

which equals 1/Rf if a risk-free rate exists. Further, since
q(kq) = E[k2

q ] = Var [kq] + E[kq]2 > E[kq]2, we have
E[Rq] = E [kq]

E [k2
q ] <

1
E[kq] , and thus E[Rq] < Rf if the risk-free

rate exists. This shows that Rq lies on the ‘inefficient’ part of
the frontier.

• There always exists a minimum variance portfolio, Rλ0 . It
satisfies ∂λV (Rλ) = 0. We find λ0 = −Cov(Re ,Rq−Re)

V(Rq−Re) . If there
exists a risk-free rate, we have Re = const, and hence λ0 = 0
and Rλ0 = Re = Rf .



• Take any efficient frontier portfolio Rλ with λ ̸= λ0, then one
can always find another frontier portfolio Rµ, such that
Cov(Rλ,Rµ) = 0. (simply solve
Cov(Re + λ(Rq − Re),Re + µ(Rq − Re)) = 0 for µ to get

µ = − Cov(Re + λ(Rq − Re),Re)
Cov(Re + λ(Rq − Re),Rq − Re)

Note that the denominator is zero for λ = λ0. Hence, we need
the λ ̸= λ0 condition.)

• Consider any payoff xj ∈ M. By projection, we have
xj = ajke + bjkq + ϵj where ϵj has zero expectation and zero
price. Therefore, dividing by q(xj) = q(ajke + bjkq), we find
that any traded security return can be written as:

Rj = Rµ + βj(Rλ − Rµ) + ϵ̃j

for some constant βj . Indeed, since Rµ, Rλ form the linear
span of {ke , kq}.



Further, taking λ ̸= λ0 and Rµ the zero covariance frontier
return we have:

Cov(Rj ,Rλ) = Cov(Rµ + βj(Rλ − Rµ) + ϵ̃j ,Rλ) = βjV(Rλ)

so that βj = Cov(Rj ,Rλ)
V(Rλ) .



• Note the implication. As long as second moments are
well-defined, there always exists a one-factor beta asset
pricing model where the expected return on any security in
excess of some benchmark frontier return (Rµ) lines up with
the beta of that security with another reference frontier excess
return (Rλ − Rµ).

• The CAPM obtains if the market portfolio lies on the efficient
frontier (and is different from the minimum variance
portfolio).



• This leads to the Roll (1977) ‘critique(s).’ Any test of the
CAPM boils down to a test of the mean-variance efficiency of
the market portfolio. This makes the test difficult because (a)
the true market portfolio is not observable (human capital,
real estate, private equity, non-traded assets, . . . ), (b) in a
finite sample, one can always find an ex-post mean-variance
efficient portfolio, which is used as a proxy for the market
portfolio would satisfy the CAPM by construction.



Hansen-Jagannathan Bounds

• Note that absence of arbitrage implies there exists a state
price density M such that

• Pi = E[MXi ].
• 1 = E[MRi ].
• 0 = E[M(Ri − Rj)].

• In a representative agent setting we have M = ∂u(c0,cs)/∂cs
∂u(c0,cs)/∂c0

.
• Using the definition of covariance, we obtain

E[Ri − Rj ] = − 1
E[M]Cov(M,Ri − Rj)



• Now since Cov(M,Ri − Rj) = ρσMσi−j with |ρ| ≤ 1 we
obtain:

sup
i ,j

|E[Ri − Rj ]
σi−j

| ≤ σM
E[M]

In other words, the maximum Sharpe ratio of any zero-cost
portfolio that one can find in the economy provides a lower
bound to the volatility of the state price density normalized by
its mean (recall that if there exists a risk-free rate

1
E[M] = Rf = 1 + rf ). This is known as the Hansen
Jagannathan bound. The literature on ‘asset pricing
anomalies’ has pushed this bound to very large numbers,
which is a challenge for the standard representative agent
consumption-based model.



• We can always project M onto the market span, and therefore
the absence of arbitrage also implies 0 = E[Rq(Ri − Rj)]. It
follows that E[Ri − Rj ] = − 1

E[Rq]Cov(Rq,Ri − Rj). If we pick
Rj = R0 (the zero covariance return for the pricing kernel),
then we get the beta pricing model
E[Ri − R0] = − 1

E[Rq]Cov(Rq,Ri). Since it holds for Rq, we
also find:

E[Rq − R0] = − 1
E[Rq]V(Rq).

Dividing both we obtain:

E[Ri − R0] = βi(E[Rq] − E[R0])

So, the absence of arbitrage alone guarantees that a
one-factor beta pricing model exists where the sole priced
factor is a traded return (Rq).



• We note that the Hansen-Jagannathan bound also applies to
the pricing kernel (the projection of M onto M). Thus we
have

sup
i ,j

|E[Ri − Rj ]
σi−j

| ≤
σRq

E[Rq]
• Now note that above, we showed that

σRq

E[Rq] = −E[Rq − R0]
σRq

• This shows that a specific trading strategy (Short Rq long R0)
will attain the Hansen-Jagannathan bound for the state price
density with the lowest variance, which is the projection of M
onto the asset span if a risk-free rate is traded. Indeed, in that
case, R0 = Rf and we have that E[Rq−R0]

σq−0
= E[Rq−Rf ]

σRq
. If the

risk-free rate is not traded, then the Sharpe ratio on Rq − R0

is | E[Rq−R0]
σ(Rq−R0) | = |E[Rq−R0]√

σ2
q+σ2

0
| < |E[Rq−R0]

σq
| = σRq

E[Rq] which shows
that the HJ-bound is not attained by the Sharpe ratio on
Rq − R0 (or indeed by any zero-cost portfolio’s Sharpe ratio,
why?) in the absence of a risk-free rate.



Capital Asset Pricing Model

• The CAPM is obtained when the market portfolio lies on the
efficient frontier.

• The market portfolio is the portfolio that holds all traded
securities in proportion to their relative market capitalizations.

• Define Rm to be the return on the market portfolio. If it is on
the efficient frontier (and different from the minimum variance
portfolio), then, for any traded security return, we obtain:

E[Rj ] = Rz + βj(E[Rm − Rz ]),

where βj = Cov(Rj ,Rm)
V(Rm) and Rz is the zero beta asset expected

return (which is the risk-free rate if it exists).
• The Zero Beta Rate is different from the risk-free rate!

https://www.nber.org/papers/w31596


• Sufficient conditions for the market portfolio to be efficient
are that all investors choose a mean-variance frontier portfolio
and that at least one investor invests in a portfolio on the
efficient part of the frontier and different from the minimum
variance portfolio. Then, since the market portfolio is a
convex combination of all the portfolios held by all investors,
it will be an efficient portfolio.



• Sufficient conditions for investors to hold an mv frontier
portfolio is that

• they have no end-of-period endowment (or that the latter be
in the market span) and that they have quadratic preferences.

• they have a strictly concave utility function, and all
endowments and returns are jointly normally distributed.

• As an exercise, you can also prove by aggregating the
first-order conditions that the CAPM holds for these two
cases. For the second case, use the following result, known as
(Rubin)Stein’s lemma: for any continuous and differentiable
function f (·) and jointly normally distributed random variables
X ,Y , the following holds
Cov(f (X ),Y ) = E[f ′(X )]Cov(X ,Y ).



Factor Models and Arbitrage Pricing Theory

• Suppose there exists K factors f1, . . . , fK with K < n the
number of securities.

• Without loss of generality assume E[fi ] = 0 and E[fi fj ] = 0.
• We talk about K-factor Beta pricing if E [Ri ] = γ0 +

∑
k βi ,kγk

where βi ,k is the regression coefficient of Rj onto fk and γk is
the factor premium.
γk can be interpreted as a risk-premium if fk is a security
return.
γ0 is the expected return on an asset with zero factor beta
(i.e., the risk-free rate if it exists).

• Note that since covariance is linear, if a K-factor beta pricing
model exists, then there must also exist a 1-factor beta pricing
model.



• Of course, we know that any efficient frontier return and the
corresponding zero-beta return can be used to obtain a
1-factor pricing model.

• We obtain the result:

Theorem
K-factor beta pricing obtains if there exists a state price density M
that is affine in the factors and γ0 = 1

E[M] and γk = −E[Mfk ]
E[M]

• In particular, if kq lies in the factor span, then K-factor beta
pricing is obtained.

• Note that if K-factor beta pricing holds then
M = 1

γ0
−

∑
k

γk
σ2

fk
γ0

fk is a valid State price density (i.e.,
E[RiM] = 1). If f has unbounded support, then M will take
on negative values. How can we reconcile this with the
absence of arbitrage?

• Note that one can always project returns onto the factor span
to obtain: Ri = E[Ri ] +

∑
k βik fk + ϵi with E[ϵi ] = E[ϵi fk ] = 0.



• Let’s define the pricing error for security i as

ψi = E[Ri ] − γ0 −
∑

k
βkiγk

for the minimum variance pricing kernel (i.e., for M = kq and
thus γ0 = 1

E[kq] and γk = −E[kqfk ]
E[kq] ).

• Then we have the following bound on the pricing error:

|ψi | ≤ σ(ϵi)
1

E[kq] ||kq − kF
q ||

where kF
q is the projection of kq onto the factor span.



• To develop the intuition further, suppose that there is an
exact factor structure, i.e., ϵi = 0 ∀i . Then consider any
portfolio θ′R = θ′E[R] + θ′βf . For any θ such that θ′β = 0
absence of arbitrage requires that θ′E[R] = Rf . This in turns
implies that E[R] − Rf 1 = βγ for some k dimensional vector.
Note that we could also have proved that k-factor beta pricing
holds simply by using the definition E[kqRi ] = 1 ∀i .



• The Arbitrage Pricing Theory (APT) of Ross starts from an
assumption about the factor structure of returns. Namely, it
assumes that residuals are uncorrelated E[ϵiϵj ] = 0 in the
decomposition Ri = E[Ri ] +

∑
k βik fk + ϵi , to derive limiting

results about the pricing errors as the number of securities
grows to infinity.

• The intuition is that in a large diversified portfolio, the
variance will depend only on factor risk and not on diversifiable
risk (Cov(

∑
i πiRi ,

∑
j πjRj) = factorrisk +

∑
i π

2
i V(ϵi) with

the second component going to zero as n → ∞ and
πi ≈ 1/n). It is natural then to think that the pricing kernel
will depend only on factor risk in that setting and thus that
pricing errors will become small. The APT theory tries to
formalize that intuition. Most APT theorems prove that as
the number of securities grows ‘large,’ only a ‘small’ number
of pricing errors can be large and so K-factor beta pricing
must hold for all but a ‘small’ number of securities. The
difficulty lies in making these statements precise.



• We have the following result:

Theorem
If returns have a factor structure then∑

i
ψ2

i ≤ max
j
σ(ϵj)2 1

E[kq]2 ||kq − kF
q ||2

• The upper bound does not depend on n the number of
securities (assuming that σ(ϵj)2 < σ ∀j).
It follows that as the number of securities goes to infinity, only
a ‘small’ number of them can be mispriced by the K-factor
beta pricing model. Further, as expected, when the pricing
kernel is ‘close’ to the K-factor span, the pricing errors are
small.
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