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Pareto Efficiency

• An allocation {c i} Pareto dominates another {c̃ i} if
ui(c i) ≥ ui(c̃ i) ∀i where the inequality is strict for at least
one agent.

• A feasible consumption allocation (i.e., such that∑
i c i ≤

∑
i ωi) is Pareto optimal if there is no other feasible

allocation that Pareto dominates it.

Theorem
An allocation is Pareto optimal if and only if it is the solution of
the optimization problem of a social planner with social welfare
function given by Uµ(Ω) = maxc i

∑
i µiui(c i) subject to∑

i c i ≤
∑

i ωi ≡ Ω for some vector of positive weights µ.



• If the set of feasible allocations is compact and the utility
functions are continuous, then the social planner’s problem
admits a solution.

• The first order conditions of the planner’s problem imply that:
• Marginal rates of substitution across states are equal for all

agents.
• The ratio of marginal utilities of consumption for two agents is

independent of the state.



• The central planner’s problem implies that in a Pareto
Optimal allocation, individual agents’ optimal consumptions
are given by sharing rules:

c i∗
s = f i

s (Ω, µ)

• If the agents have time-separable expected utility (i.e., they
maximize

∑
s πsui(c i

s) then so does the social planner:
Uµ(Ω) =

∑
s πsuµ(Ωs) where

Uµ(Ω) = maxc i
{∑

µiui(c i) s.t.
∑

i c i = Ω
}
.



• When agents have time-separable expected utility:
• Sharing rules (individual’s optimal consumption) only depend

on aggregate consumption in that state and the vector of
central planner’s weights:

c i∗
s = f i(Ωs , µ)

• Sharing rules are increasing in aggregate consumption when
agents are risk-averse,

• Sharing rules are co-monotone: an agent has higher
consumption in a state if and only if all other agents have
higher consumption in that state.

• Sharing rules are linear if and only if agents have linear risk
tolerance.



Complete markets

• A security market equilibrium is a set of prices p and
dividends X such that all I agents (a) solve their individual
optimal consumption investment problem, (b) financial
markets clear, and (c) consumption markets clear:
(a) maxθi ,c i

s
ui(c i) s.t. c0 + θ′p ≤ ωi

0 and c i
1 ≤ ωi

1 + θ′X and
c i

0, c i
1 ≥ 0.

(b)
∑

i θi = 0.
(c)

∑
i c i

s =
∑

i ωi
s .

• An Arrow Debreu equilibrium is a set of state prices q (which
corresponds to the identity payoff matrix), such that all agents
(a’) solve their optimal consumption allocation problem, and
(b’) consumption markets clear.
(a’) maxc i

s
ui(c i) s.t. c i

0 + c i
1q ≤ ωi

0 + ωi
1q and c0, c1 ≥ 0.

(b’)
∑

i c i
s =

∑
i ωi

s .



• The two equilibrium concepts are equivalent in complete
markets :

Theorem
If markets are complete (and u′

i > 0), then there is a security
markets equilibrium if and only if there is an AD equilibrium.

• If markets are complete (and u′
i > 0) the first welfare theorem

holds:

Theorem
If security markets are complete and u′

i > 0 ∀i then every
equilibrium consumption allocation is Pareto Optimal



• We also have the second welfare theorem (decentralization):

Theorem
If security markets are complete and u′

i > 0, u′′
i < 0 ∀i , then every

Pareto optimal allocation is an equilibrium allocation for some
distribution of the aggregate endowment.

• In fact, in complete markets, we can construct the equilibrium
allocation by solving the no-trade equilibrium for a
representative agent endowed with the aggregate endowment.



Theorem
If markets are complete and u′

i > 0, u′′ < 0 ∀i , then for any Arrow
Debreu equilibrium (characterized by (c1, . . . , c I , q)) there exists a
vector µ ∈ RI

+ such that (Ω, q) is a no trade AD equilibrium for
the single representative agent Uµ(Ω) defined above. Further
(c1, . . . , c I) solves the planner’s problem:
Uµ(Ω) = max

∑
i µiu(c i) s.t.

∑
i c i = Ω.

•



• An immediate corollary is that if Uµ is differentiable, then we
can use as state prices supporting the equilibrium

qs = ∂sUµ(Ωs)
∂0Uµ(Ω0) .

• Further, if agents have time-separable expected utility with
the objective probability of states π1, . . . , πS so that
ui(c0, c1, . . . , cS) = ui

0(c0) + δ
∑S

s=1 πsui
1(cs), then the

representative agent’s utility also has that form and we obtain

qs =
πsδu′

µ(Ωs)
u′

µ(Ω0) = πsδu′
i(c i

s)
u′

i(c i
0)

∀i .

• using the definition of the pricing kernel qs = πsMs , we see
that Ms is simply the ratio of marginal utilities in each state.

Ms =
δu′

µ(Ωs)
u′

µ(Ω0) = δu′
i(c i

s)
u′

i(c i
0)

∀i .



Pareto optimal allocation

• If agents are risk-averse and maximize expected utility, then
we have the following

Theorem
If agents are risk-averse, then in any Pareto-optimal allocation,
sharing rules are increasing in aggregate consumption, i.e., each
individual’s consumption is an increasing function of the aggregate
endowment in each state.

• If agents have linear risk-tolerance, then we can characterize
explicitly the form of the sharing rules:



Theorem
Consumption-sharing rules are linear in aggregate endowment if
agents have linear risk tolerance with a common slope.
This implies that when agents have linear risk tolerance, any
optimal consumption allocation lies in the span of the risk-free
asset and a claim to aggregate consumption. In turn, this implies
that any optimal allocation can be achieved by a security market
equilibrium with only two securities: the risk-free asset and a claim
to aggregate consumption. This is called two-fund separation. If
these two securities are available, then the security market
equilibrium will be equivalent to a complete market equilibrium,
even if markets are incomplete.
This is an example of effectively complete markets.



Equilibrium in incomplete markets: Constrained Optimality

• If markets are incomplete, then the first and second welfare
theorem do not hold in general. In incomplete markets, agent
IMRS need not be equalized (and, in fact, in general, will
differ).

• However, we can define the concept of constrained optimality
if we restrict attention to those consumption allocations that
are attainable by trading in marketed securities.

• A feasible consumption allocation is constrained optimal if it
is attainable by trading in security markets and there does not
exist any other feasible allocation, also attainable through
security markets, that Pareto dominates it.



Theorem
If u′

i > 0 ∀i then every security market equilibrium is constrained
optimal.

• Markets are effectively complete if every Pareto optimal
allocation can be obtained by trading in security markets.

Theorem
If security markets are effectively complete, and if for every feasible
allocation, there exists a Pareto-optimal allocation that weakly
Pareto dominates that allocation, then every constrained optimal
allocation is Pareto optimal.



• It follows that, under these same conditions, every equilibrium
allocation in effectively complete markets is Pareto optimal.

• Further, in effectively complete markets, any complete market
equilibrium will also be a security market equilibrium.

• Conversely, if each agent chooses an interior solution in a
security market equilibrium, then it also corresponds to a
complete market equilibrium.

• We saw one example of effectively complete markets (agents
have linear risk tolerances and the risk-free rate and the claim
to aggregate consumption are traded).

• See Leroy Werner Chapter 16 for further discussion and
examples of effectively complete markets.
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Inelastic Markets I

IN SEARCH OF THE ORIGINS OF FINANCIAL
FLUCTUATIONS: THE INELASTIC MARKETS HYPOTHESIS
In this paper, the authors suggest that, in reality, investors are
constrained in their ability to express views. Consider a simple
demand curve

D(p) = γ−1(E [d ]︸ ︷︷ ︸
views

− p) (1)

and market clearing is

D(p) = S︸︷︷︸
supply

(2)

so that
p = E [d ] − γ S (3)

Thus,
• Prices move one-to-one with expectations

https://www.nber.org/system/files/working_papers/w28967/w28967.pdf
https://www.nber.org/system/files/working_papers/w28967/w28967.pdf


Inelastic Markets II

• when risk aversion γ is large, prices are extremely sensitive to
supply shocks.

• In reality, this does not happen in real data. One story is that
E [d ] is, in fact,

αd̄ + (1 − α)E [d ] , (4)

where α is close to one.



But, here is another possibility. Consider an agent (a fund) who
has Assets Under Management (AUM) Wt . He splits it into

Wt = xtpt︸︷︷︸
stock investment

+ bt︸︷︷︸
cash

(5)

Suppose that the agent follows a 60/40 rule: with α = 0.6, the
agent always holds exactly αWt in stocks:

xtpt = α Wt = α(xtpt + bt), (6)

so that
xt = 1

pt

α

1 − α︸ ︷︷ ︸
multiplier

bt . (7)

Now, suppose this is the representative stock investor who has to
hold the market: normalizing supply to 1, we get

p = α

1 − α
bt (8)

Flows affect cash bt . If quantity xt cannot adjust, prices need to
adjust without any capital being moved: Markets are extremely
inelastic.
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