Asset Pricing Theory

Problem Set 1: Absence of Arbitrage

1. Arbitrage and Negative State Prices in complete markets

Consider the economy with three assets and three payoff states. asset 1 has price $P_1 = 2.5$ and payoff vector $X_1 = [3, 2, 1]$. Asset 2 has $P_2 = 15$ and $X_2 = [4, 5, 6]$. And asset 3 has $P_3 = 4$ and $X_3 = [2, 3, 1]$.

- Is this a complete market economy?
- Determine a vector of state prices. Is it unique?
- Is the economy arbitrage-free? If not, construct an arbitrage trading strategy.

hint: you may need to inverse a matrix using Matlab or alike...

2. Arbitrage and Negative State Prices in Incomplete Markets

- Construct an example of an incomplete market economy (e.g., write down the payoffs of 2 risky securities in three states) where negative state prices are supporting the economy, but there are no-arbitrage opportunities when restricted to trading the existing securities.
- In your example economy, give the payoff pricing functional q(z) defined for any $z \in \mathcal{M}$. Then, choose a payoff \hat{z} that is not spanned by the existing securities. Derive the upper and lower replication prices of \hat{z} . Finally, give a valuation functional Q(y) defined for any $y \in \mathbb{R}^3$ using the payoff \hat{z} . Is that valuation functional unique?
- Suppose you add a third security to your example that completes the market (i.e., its terminal payoff is not a linear combination of the two other securities' payoff). Can you still have negative state prices and no-arbitrage? What is then the relation between the payoff pricing functional $q(\cdot)$ and the valuation functional(s) $Q(\cdot)$?

3 One Period, Complete Markets

Suppose there is only one risky asset S and one risk-free asset S^0 . The risky asset will be worth $\tilde{w} \cdot S$ at the end of period T, where \tilde{w} is the only source of risk in the economy. \tilde{w} can take only 2 values u with probability p and d with probability 1-p. The risk-free asset will be worth $R \cdot S^0$. Assume u > d.

Let us define the state price of the up state by q_u and the state price of the down state by q_d .

- 1. Show that there is a unique state price vector consistent with the two prices (S^0, S) and that the market is arbitrage-free if and only if u > R > d.
- 2. Show that one can define an **equivalent martingale measure** Q_0 (characterized by the probability $\pi^{Q_0} = Q_0(\tilde{w} = u)$) such that the stock price is equal to the expected value of its discounted future cash-flows, i.e., $S = E^{Q_0} \left[\frac{\tilde{\omega}S}{R} \right]$.
- 3. What is the relation between the state price q_u and the risk-neutral probability π^{Q_0} ?
- 4. Show that markets are complete in the sense that any contingent claim with promised payoff of $h(\tilde{w} \cdot S)$ at time T can be perfectly replicated by a portfolio investing in the stock and the bond.

- 5. Show that the value of this portfolio is equal to the expectation under the equivalent martingale measure Q_0 of the discounted final payoff of the contingent claim.
- 6. Conclude that the augmented market (S^0, S, h) is arbitrage-free if and only if Q_0 is an equivalent martingale measure for the redundant security as well.

4 One Period, Incomplete Markets

Suppose now that \tilde{w} can take on multiple (possibly a continuum of) values with support [u, d] at date T. From the previous problem clearly absence of arbitrage requires u > R > d which we will assume in the following.

1. Show that, in general, there is a continuum of possible equivalent martingale measures for the market (S^0, S) .

Hint: for example, consider \tilde{w} taking on three possible values: u > m > d with probability p_u, p_m, p_d .

2. Consider the augmented market (S^0, S, h) and assume $h(\cdot)$ is convex and increasing (it could be a European call option for example). Show that the price h_0 of the contingent claim paying $h(\tilde{w} \cdot S)$ is bounded above by the value in a market where \tilde{w} takes on values u or d only and below by the value in a market where $\tilde{w} = R$ a.s.. In other words, denoting Q the set of all equivalent martingale measures, show that

$$\sup_{Q_i \in \mathcal{Q}} \frac{1}{R} E^{Q_i} \left(h(\tilde{w} \cdot S) \right) \leq \frac{1}{R} \left(\pi^{Q_0} h(u \cdot S) + (1 - \pi^{Q_0}) h(d \cdot S) \right)$$

$$\inf_{Q_i \in \mathcal{Q}} \frac{1}{R} E^{Q_i} \left(h(\tilde{w} \cdot S) \right) \geq \frac{h(R \cdot S)}{R}$$

where π^{Q_0} is the complete market's Q_0 probability identified above.

Hint: use a line going through $(d \cdot S, h(d \cdot S))$ and $(u \cdot S, h(u \cdot S))$, and the fact that $h(\cdot)$ is convex for the first inequality, and the line tangent to $h(\cdot)$ at the point $(R \cdot S, h(R \cdot S))$ for the second inequality.

Interpret your result in terms of the volatility of an option, i.e., when is an option most valuable?

5 One Period, Incomplete Markets in the Real World: SPY Options Column names:

• ticker: Ticker

• stkpx: Stock price (price of the underlying)

• expirdate: option expiration date;

• yte: years to expiry

• strike: Option strike

• cvolu: Call volume

• coi: Call Open Interest

• pvolu: Put Volume

• poi: Put Open Interest

• cbidpx: Call bid price

• cvalue: call "smart mid" (cleaned mid price)

• caskpx: Call Ask Price

• pbidpx: Put Bid Price

• pvalue: Put smart mid

• paskpx: Put Ask Price

• cbidiv: Call Bid Implied Vol (IV)

cmidiv: Call Mid IVcaskiv: Call Ask IV

• smoothsmvvol: Smoothed IV

pbidiv: Put Bid IVpmidiv: Put Mid IVpaskiv: Put Ask IV

• irate: Annualized Interest rate

• divrate: Dividend rate

• residualratedata, delta, gamma, theta, vega, rho, phi, driftlesstheta, extvol, extctheo, extptheo: Option Greeks

• spot_px: Nan

• trade_date: Date on Trading

Investigate the Data. Does the Law of One Price Hold? Is the Data Arbitrage Free? Use the Breeden-Litzenberger formula to find state prices. Are they positive? How do you construct them when there are bid-ask spreads?

No Arbitrage With Option Prices

• $C_A(K) \ge C_B(K)$, $P_A(K) \ge P_B(K)$: bid and ask prices of calls and puts with strike K. Let also r_+ be the lending rate and r_- the borrowing rate. $S_A > S_B$ are the ask and bid prices of the stock.

We always need to verify no-arbitrage conditions; otherwise, utility maximization will have an infinite solution.

- Positive bid-ask spreads

$$P_A(i) \ge P_B(i), C_A(i) \ge C_B(i) \tag{1}$$

- put-call parity arbitrage: since

$$(x-K)^+ - (K-x)^+ = x - K,$$

we can build arbitrage portfolios: if we buy the call, sell the put, sell the underlying, and buy K units of the bond, we get zero at T, and hence, I cannot get money from this: we must have

$$C_A(i) - P_B(i) \ge S_B - K_i(1 - r_-)$$
 (2)

Similarly, we need to have

$$C_B(i) - P_A(i) \le S_A - K_i(1 - r_+)$$
 (3)

- We have that $(K-x)^+$ and $(x-K)^+$ are convex functions in K. Thus,

$$(x - K_i)^+ \frac{K_{i+2} - K_{i+1}}{K_{i+2} - K_i} + (x - K_{i+2})^+ \frac{K_{i+1} - K_i}{K_{i+2} - K_i} > (x - K_{i+1})^+.$$

As a result, a violation of the inequality

$$P_A(K_i)\frac{K_{i+2} - K_{i+1}}{K_{i+2} - K_i} + P_A(K_{i+2})\frac{K_{i+1} - K_i}{K_{i+2} - K_i} > P_B(K_{i+1})$$
(4)

is an arbitrage opportunity. However, already if we have

$$P_A(K_i) \frac{K_{i+2} - K_{i+1}}{K_{i+2} - K_i} + P_A(K_{i+2}) \frac{K_{i+1} - K_i}{K_{i+2} - K_i} < P_A(K_{i+1}),$$
 (5)

this is a quasi-arbitrage opportunity. Namely, if the dealers are positing ask prices that satisfy 5, any market participant can offer the price

$$\hat{P}_A(K_{i+1}) = P_A(K_i) \frac{K_{i+2} - K_{i+1}}{K_{i+2} - K_i} + P_A(K_{i+2}) \frac{K_{i+1} - K_i}{K_{i+2} - K_i}.$$
 (6)

Indeed, if we simply by the portfolio of puts: $P_A(K_i) \frac{K_{i+2} - K_{i+1}}{K_{i+2} - K_i} + P_A(K_{i+2}) \frac{K_{i+1} - K_i}{K_{i+2} - K_i}$, this is a **super-hedge** for our position. We then sell the K_{i+1} -put at this price and consume the difference. Similarly, for calls, we ought to have

$$C_A(K_i)\frac{K_{i+2} - K_{i+1}}{K_{i+2} - K_i} + C_A(K_{i+2})\frac{K_{i+1} - K_i}{K_{i+2} - K_i} > C_B(K_{i+1})$$
 (7)

and we can always offer an $C_A(K_{i+1})$ given by

$$\hat{C}_A(K_{i+1}) = C_A(K_i) \frac{K_{i+2} - K_{i+1}}{K_{i+2} - K_i} + C_A(K_{i+2}) \frac{K_{i+1} - K_i}{K_{i+2} - K_i}$$

• Breeden-Litzenberger Let K_1, \dots, K_N be the grid of strikes. Pick $K_0 < K_1, K_{N+1} > K_N$. Define $C(j) = C(K_j)$ and

$$C(0) = \tilde{S} - \tilde{B}K_0$$
, $C(N+1) = C(N+2) = 0$.

where \tilde{S} is the stock price and \tilde{B} is the bond price. Define the (N+2)-dimensional vector $q=(q_i)_{i=0}^{N+1}$ via

$$q_0 = \tilde{B} + \frac{\tilde{B}K_0 - \tilde{S} + \tilde{C}(1)}{K_1 - K_0}$$

and

$$q_j = \left(C(j+1)(K_{j+1} - K_j)^{-1} + C(j-1)(K_j - K_{j-1})^{-1} - C(j)[(K_{j+1} - K_j)^{-1} + (K_j - K_{j-1})^{-1}] \right), \ i \ge 1$$

Show that q is a vector of state prices in the sense that

$$C(j) = \sum_{i} q_{i}(K_{i} - K_{j})^{+}$$
(8)

Do the same calculation for puts.

6 CIP Arbitrage Study and derive the formula for covered interest parity arbitrage.

Describe exactly how you can make money today using this trade. Read

https://www.dropbox.com/s/tzm2ytm48591jiw/Manuscript_Avdjiev_Du_Koch_Shin_AER_Insights_Revision.pdf?dl=0