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Overview

Readings:
• Rubinstein p.24-48 & p.87-95
• Kreps Chap. 1, 4, 5
• Back Chap. 1

Topics:
• Von Neumann and Morgenstern Expected Utility
• Risk-Aversion
• Arrow Pratt measures of risk
• Typical Utility Functions



Expected Utility: backround

• Historically (see Rubinstein), much interest in valuation under
uncertainty is motivated by gambling. The working
assumption is that the value of a gamble is its expected payoff
(Pascal, Fermat, Huygens in the 17th century).

• Bernouilli (1738) proposes Expected Utility (specifically the
expectation of the logarithm of the payoff) as an appropriate
valuation operator to circumvent his ‘St. Petersburg paradox’:
Consider the gamble of flipping a coin indefinitely to receive
2n if you flip heads for the first time in round n. The paradox
is that its expected value is

∑∞
n=1

1
2

n 2n = ∞. Yet you may
not want to pay an infinite amount for this gamble. With
Bernouilli’s solution the value of the gamble is∑∞

n=1
1
2

n log(2n) = 0.2 log 2 ≈ 1.4 < ∞. But see the
discussion in Rubinstein (p. 40-41) for Menger’s ‘super St
Petersburg’ paradox.



• Von Neuman and Morgenstern (1944,1947), in their treatise
on game theory, propose an axiomatization of the idea that
rational agents should make choices under uncertainty by
maximizing the expected utility criterion (see the discussion in
Rubinstein (p. 88-95) for appropriate historical references).
Here, we present them very succinctly.



Axiomatic system

• Why use an axiomatic system to describe behavior?
• As a normative guide to behavior (I believe these axioms - how

should I behave)
• As a positive explanation for the observed behavior

• What is a good axiomatic system:
• Parsimonious (as few independent axioms as possible)
• Consistent
• Realistic

• Von Neuman and Morgenstern’s axiomatization takes
objective probabilities of states as input (assumed common
knowledge) ∼ frequentist.

• Savage (1954) proposes an axiomatization that only depends
on objective states and actions. Given his axioms, agents’
preferences can be represented by the expected utility with
subjective probabilities ∼ Bayesian.



Axioms of behavior under uncertainty

• We assume, for simplicity, that the set of possible outcomes
X : {xs}s=1,...,S is finite and known by all agents.

• A simple lottery is a probability distribution on these
outcomes: p = (p1, . . . , pS) with ps ≥ 0 and

∑
s ps = 1.

• Assume that agents have a preference relation ⪰ on the set of
lotteries, which satisfies the classic axioms of utility theory
under certainty:
A1 Completeness
A2 Reflexivity
A3 Transitivity

In addition, we require
A4 Continuity: pa ⪰ pb ⪰ pc implies

∃α ∈ [0, 1] s.t. pb ∼ αpa + (1 − α)pc

A5 Independence: pa ⪰ pb iff
αpa + (1 − α)pc ⪰ αpb + (1 − α)pc ∀α ∈ [0, 1]



• From Classic Utility theory, we know that axioms A1-A4
guarantee the existence of a preference ordering on the set of
lotteries, i.e., there exists a Utility function V (p) : P → R
such that pa ⪰ pb iff V (pa) ≥ V (pb). Note that if the
underlying choice set is countable, then such a function is
easy to construct (how?). For uncountably infinite sets, an
additional axiom is required (cf. discussion in Kreps).



• The independence axiom A5 then is the cornerstone of
classical VNM decision theory under uncertainty. It guarantees
that the preference order can be represented by a utility
function that is linear in probabilities. Specifically,

Theorem
Under axioms A1-A5, there exists scalars us such that for any two
lotteries pa and pb we have pa ⪰ pb iff

∑
s pa

s us ≥
∑

s pb
s us .

• It is also straightforward to see that the expected utility
representation is unique up to an increasing affine
transformation.

• The result generalizes easily to lotteries with payoffs on
multiple dates (how?). Note that it does not imply the
additively separable form often used in the literature.

• The generalization to uncountably infinite X is non-trivial
(See discussion in Kreps).



Critique of Expected Utility: The Allais Paradox

• Compare lotteries a and b. Which do you prefer? Then
compare c and d.

payoff pa pb pc pd

$5M 0 .1 .1 0
$1M 1 .89 0 .11
$0 0 .01 .9 .89

Most individuals rank pa ⪰ pb and pc ⪰ pd . But this is
inconsistent with the independence axiom. Prove it.



Risk Aversion

• An investor is risk-averse if he prefers to avoid zero-mean risks
at all levels of wealth, i.e., u(W0) ≥ E [u(W0 + ϵ̃)] for any
random variable ϵ̃ such that E [ϵ̃] = 0.

• An equivalent definition is that an agent is risk-averse iff
u(E [W̃1]) ≥ E [u(W̃1)]

• This is equivalent (by Jensen’s inequality) to the statement:
An individual is risk-averse if his utility function is concave.

• u1 is more risk-averse than u2 if u1 dislikes all the risks that
u2 dislikes at all initial wealth levels (assumed to be identical
for both). This is equivalent to:

• u1 is an increasing concave transformation of u2 (meaning
u1 = ϕ ◦ u2 with ϕ increasing and concave).

• A1(x) > A2(x) ∀x where Ai(x) = − U′′
i (x)

U′
i (x) is the Arrow-Pratt

measure of Absolute Risk-aversion.



• We define a risk-premium π to be the amount the risk-averse
agent is willing to give up to avoid a risk:

E[u(W0 + ϵ)] = u(W0 − π)

• W0 − π is also called the certainty equivalent wealth for the
gamble ϵ.

• Show that if u1 is more risk-averse than u2 then
π1(W0, ϵ) > π2(W0, ϵ). (obvious for small risks; see below).

• Consider now the behavior of the risk-premium for ‘small’ ϵ
(Back p.7 makes this rigorous). Using Taylor expansion, we
obtain the Arrow-Pratt approximation to the risk-premium:

π(W0) ≈ 1
2σ

2
ϵ A(W0)



• Similarly, if we consider small multiplicative risks, i.e. ,
E[u(W0(1 + ϵ)] = u(W0(1 − π̂)) then the approximation
becomes:

π̂(W0) ≈ 1
2σ

2
ϵ R(W0)

where R(x) = − xU′′
i (x)

U′
i (x) is the Arrow-Pratt measure of

relative risk-aversion.
• In the CARA-Normal setting (combination of negative

exponential utility u(W ) = −e−αW and normally distributed
returns with additive risks), the approximation is exact (does
not depend on ‘small’ ϵ): π = 1

2ασ
2
ϵ



Some classic Utility functions

• Widely used utility functions
• Quadratic u(w) = − 1

2 (w − ζ)2

• Log u(w) = log w
• Constant relative risk-aversion (CRRA) u(w) = w1−ρ

1−ρ for ρ ̸= 1
• Negative exponential (CARA) u(w) = −e−αw

• Shifted Log: u(w) = log(w − ζ)
• Shifted Constant relative risk-aversion (CRRA)

u(w) = ρ
1−ρ

(
w−ζ

ρ

)1−ρ

for ρ ̸= 1
• All of them belong to the so-called Hyperbolic absolute risk

aversion (HARA) since their absolute risk-aversion is a
hyperbola: A(W ) = 1

a+b W



• They form the so-called Linear Risk-Tolerance family of
utility function:

τ(W ) = 1
A(W ) = a + bW

. It will be central to many aggregation results.
• See discussion in Back p.12 for interpretation of the

parameters.
• You should calculate A,R, τ for all these utility functions.

Also, note that the log utility function can be recovered as the
limiting case of the CRRA utility function when ρ = 1
(applying l’Hopital’s rule to u(w) = w1−ρ−1

1−ρ ).



Consumption Euler Equation I

• If consumers maximize

U(C0,C1) = u(C0) + e−ρ E [u(C1)]︸ ︷︷ ︸
subjective probabilities

= u(C0) + e−ρ
S∑

s=1
ps︸︷︷︸

subjecive probability of state s

U(C1,s)
(1)

under the budget constraint

C0 = w0 − θ′p, C1 = w1 + θ′d (2)

where d =payoff, then the first order condition is

−u′(C0)p + e−ρE [u′(C1)d ] = 0. (3)



Consumption Euler Equation II

Defining

M = e−ρ u′(C1)
u′(C0) = MRIS,

we get

p = e−ρE [u′(C1)d ]/u′(C0) = E [Md ] =
S∑

s=1
πsMs︸ ︷︷ ︸

=qs

ds (4)

In the multi-period case,

U(C) =
T∑

t=0
e−ρtE [u(Ct)] . (5)

Marginal argument: we can always move a bit of consumption
from t to t + 1.



Consumption Euler Equation III

Consider an optimal feasible consumption plan Ct and a deviation
whereby on an Ft measurable state A, we have C̃t = Ct − ϵ1A and
at t + 1 we have C̃t+1(ω) = Ct+1(ω) + ϵR̂t+1(ω)1A, where

R̂t+1 = Pt+1 + dt+1
Pt

. (6)

Note that C̃t is feasible and only differs from Ct on A:

−e−ρtE [U ′(Ct)1A] + e−ρ(t+1)E [U ′(Ct+1)R̂t+1(ω)1A] = 0 (7)

that is
Et [e−ρ U ′(Ct+1)

U ′(Ct)
R̂t+1] = 1 . (8)

Thus, for time-separable utility, the stochastic discount factor is

Mt,t+1 = e−ρ U ′(Ct+1)
U ′(Ct)

(9)



Consumption Euler Equation IV

Thus, state price are separable: If the time-t state of the world is
ωt , then

Mt,t+1 = M(ωt , ωt+1) = e−ρ U ′(C(ωt+1))
U ′(C(ωt))

(10)



The Ross Recovery Theorem

• Xt is a Markov chain capturing the “true" state of the world
• Asset prices satisfy

Pt = Et [Mt,t+1 (Pt+1 + dt+1)]

• In the Markov world,

P(i) =
∑

j
πi ,jM(i , j) (P(j)+d(j)) =

∑
j

q(i , j) (P(j)+d(j))

• q(i , j) are the “state prices". They are “kind of observable"
• Question: Can we recover Π = (πi ,j) from Q = (qi ,j)?
• This is the “holy grail" of asset pricing: Can we recover

(beliefs about) physical probabilities from asset prices



• Ross’ insight: when M(i , j) = δU(j)/U(i) then we can
• Trick:

Q = δ diag(U)−1Π diag(U)

and hence Q is similar to Π

diag(U)Q diag(U)−1 = δΠ

•
diag(U)Q diag(U)−11 = δΠ1 = δ1

Theorem
Let

Qz = δ z

be the unique positive right eigenvector of Q (by the
Perron-Frobenius Theorem, it is unique and strictly positive).
Then, U = z−1 and

Π = δ−1 diag(U)Q diag(U)−1 .



Kreps-Porteus-Epstein-Zin Utility I

• Recursive utility seeks to separate risk-aversion from EIS. The
continuation utility of a consumption stream is now defined
recursively via:

V ρ
t = (1 − e−β)Cρ

t + e−βEt [V α
t+1]ρ/α ∀ ρ ̸= 0

log Vt = (1 − e−β) log Ct + e−β logEt [V α
t+1]1/α if ρ = 0



• One verifies that if ρ = α, then Vt is of the time-separable
CRRA form. Further, Epstein and Zin (1989) show that for
gambles that are risk-free, the continuation utility is of the
form constant EIS (i.e., identical to the CRRA time separable
model) with an EIS coefficient ψ = 1

1−ρ . Instead, if agents
consider one-period risky gambles, then the risk-premium they
are willing to pay to avoid such a gamble is identical to that a
CRRA utility agent would pay with a CRRA coefficient equal
to γ = 1 − α. In that sense, this utility separates the
coefficient of EIS from that of relative risk aversion. It turns
out it also leads to a preference for early resolution of
uncertainty, as we now show. The following is based on
Epstein, Farhi, and Strzalecki (2014).



• Suppose that

Ct+1 = Ct Xt+1, log Xt+1 ∼ N(µ, σ2), i .i .d .,

so that Ct is a geometric random walk and let

ct = log Ct .

What is the continuation utility of such a consumption
stream? Let’s first focus on the case ρ = 0, where calculations
are simple. We have

ct+1|ct ∼ N(µ+ ct , σ
2), Et [eact+1 ] = ea(µ+ct)+0.5a2σ2

Making an Ansatz log Vt = a + bct and then plugging into
the recursion

log Vt = (1 − e−β) log Ct + e−β logEt [V α
t+1]1/α ,



we obtain

a + bct = (1 − e−β)ct + e−β logEt [eaα+bαct+1 ]1/α

or

a + bct = (1 − e−β)ct + e−β(a + b(ct + µ) + b2ασ2/2)

Equating terms in ct and constants, we find two equations
that are easily solved for a, b. We find b = 1 and
a = e−β (µ+ασ2/2)

1−e−β and thus

log V0 = c0 + e−β µ

1 − e−β
+ αe−β σ2/2

(1 − e−β)

Now, when ρ ̸= 0, we make the same Ansatz and substitute it
into

V ρ
t = (1 − e−β)Cρ

t + e−βEt [V α
t+1]ρ/α



to get

eρa+ρbct = (1 − e−β)eρct + e−βEt [eαa+αbct+1 ]ρ/α

It follows

eρa+ρbct = (1 − e−β)eρct + e−β[eαa+αb(ct+µ)+ 1
2 α2b2σ2 ]ρ/α

= (1 − e−β)eρct + eρbct e−βeρa+ρb(µ)+ 1
2 αρb2σ2

(11)
Dividing this identity by eρct , we get

eρa+ρ(b−1)ct = (1 − e−β) + eρ(b−1)ct e−βeρa+ρbµ+ 1
2 αρb2σ2

(12)
Matching the terms, we find that b = 1 and

eρa = (1 − e−β) + eρa−β+ρµ+ 1
2 ρασ2

,

so that

e−ρa = 1 − e−β+ρµ+ 1
2 ρασ2

(1 − e−β)



• To see the effect of early resolution of uncertainty, consider
the case where all consumption risk is resolved next period.
So in period 1 the agents knows the whole future path
c1, . . . , c∞. This utility at time 1 is simply

V ρ
1 = (1 − e−β)Cρ

1 + e−βV ρ
2

= (1 − e−β)(Cρ
1 + e−βCρ

2 + e−2βCρ
3 + . . .)

• For general ρ, we do not know the distribution of this future
utility stream (since it is an infinite stream of log-normal
random variables. However, when ρ = 0, then this expression
simplifies: We have

log Ct = ct = ct−1 + ∆c2, ∆c2 = log Xt ,



and therefore

log V early resol
1 = (1 − e−β) log C1 + e−β log V early resol

2

= c1 + e−β(log V early resol
2 − c1)

= (c0 + ∆c1) + e−β((1 − e−β) log C2 + e−β log V early resol
3 − c1)

= c0 + ∆c1 + ∆c2 + e−β(log V early resol
3 − c2)

= · · ·
= c0 + ∆c1 + e−β∆c2 + e−2β∆c3 + . . .

which is normally distributed with mean

M1 = E [c0 + ∆c1 + e−β∆c2 + e−2β∆c3 + . . . |c0]
= c0 +

∑
i

e−βiE [∆ci ]

= c0
µ

1 − e−β

(13)



and variance

V1 = Var [c0 + ∆c1 + e−β∆c2 + e−2β∆c3 + . . . |c0]
=

∑
i

e−2βiVar [∆ci ]

=
∑

i
e−2βiσ2 = σ2

1 − e−2β

(14)



• We can thus find the continuation utility at date 0 from this
early resolution consumption plan:

E0[(V early resol
1 )α] = E0[eα log V early resol

1 ] = eαM1+0.5α2V1

and

log V early resol
0 = (1 − e−β) log C0 + e−β log E0[(V early resol

1 )α]1/α

= (1 − e−β)c0 + e−β(M1 + 1
2αV1)

= c0 + e−β µ
1−e−β + αe−β σ2/2

(1−e−2β)

If we compare both utility streams we see that
log V early resol

0 − log V0 = −αe−βσ2/2 e−β

(1−e−2β) . Thus:
• if σ = 0 they are both equal.
• if α = 0 = ρ then both are equal.
• if σ > 0 then early resolution is (i) preferred if α < 0 = ρ, but

(ii) disliked if α > 0 = ρ.



• There is another interesting alternative consumption plan to
consider. Suppose instead that the agent is proposed a
consumption stream, where in period one he will get one
random draw ∆c1 and that for all future dates ∆ci = ∆c1,
that is future consumption shocks are perfectly correlated;
there is no time-diversification in consumption chocks.
Let’s call the utility associated with this consumption plan V,
then as before (see (13)):

log V1 = (1 − e−β) log C1 + e−β log V2

= c0 + ∆c1 + e−β∆c2 + e−2β∆c3 + . . .

= {by assumption, ∆ct = ∆c1} = c0 + ∆c1
∑

i e−βi

= c0 + ∆c1/(1 − e−β) ,



which is normally distributed with mean M1 = c0 + µ
1−e−β and

variance Vc
1 = σ2

(1−e−β)2 . Note that

E [log V early resol
1 ] = E [log V1]

but
Var [log V1] > Var [log V early resol

1 ] :
Vearly resol

1 has more time − diversification

(15)



• We can thus find the continuation utility at date 0 from this
"correlated" consumption plan. It solves

log V0 = (1 − e−β)c0 + e−β(M1 + 1
2αV

c
1)

= c0 + e−β µ

1 − e−β
+ αe−β σ2/2

(1 − e−β)2

If we compare both utility streams we see that
log V0 − log V0 = −αe−2β σ2/2

(1−e−β)2 . Thus:
• if σ = 0 they are both equal.
• if α = 0 = ρ then both are equal.
• if σ > 0 then (i) V0 ≥ V0 if α < 0 = ρ, but (ii)V0 ≤ V0 if
α > 0 = ρ.



• Note that the difference V0 − V0 contains two components,
one due to early resolution and one due to time-diversification.
We can isolate the pure time-diversification component by
comparing V0 to V early resol

0 . in particular, note:

log V early resol
0 − log V0 = c0 + e−β µ

1 − e−β
+ αe−β σ2/2

(1 − e−2β)

−
(
c0 + e−β µ

1 − e−β
+ αe−β σ2/2

(1 − e−β)2

)
= −2αe−β σ2/2

(1 − e−β)2(1 + e−β)
(16)

Thus:
• if σ = 0 they are both equal.
• if α = 0 = ρ then both are equal.
• if σ > 0 then time-diversification is preferred if α < 0 = ρ, but

(ii) disliked if α > 0 = ρ.
• This result can be generalized to ρ ̸= 0. In general, investors

prefer early resolution of uncertainty and time-diversification if
α > ρ.



• As we will see next, a preference for the early resolution of
uncertainty is crucial to explain asset pricing puzzles in the
Bansal-Yaron paper.

• Epstein et al. (2015) extends the analysis above to discuss the
magnitude of the preference for early resolution. They argue
that for the preference parameters chosen by BY, agents
would be willing to give up an unreasonably (based on
introspection) a large amount of wealth (or per-period
consumption) to move from V to V early resol . So, in a sense,
they argue that while the RRA and EIS coefficients seem
"reasonable", the combination of both within the EZ utility
leads to an unreasonably high aversion to late resolution for
the parameters and endowment process chosen by BY. So
perhaps, the puzzle is still alive...



The stochastic discount factor in the EZ economy

• Suppose we want to value long-term assets in a BY economy.
• Let’s derive the Euler equation for the EZ agent.
• Consider an optimal feasible consumption plan Ct and a

deviation whereby on an Ft measurable state A, we have
C̃t = Ct − ϵ1A and at t + 1 we have
C̃t+1(ω) = Ct+1(ω) + ϵRt+1(ω)1A. Note that C̃t is feasible
and only differs from Ct on A.

• Then Ṽt = Vt − ∂Vt
∂Ct

ϵ1A +
∑

ω
∂Vt

∂Ct+1(ω)ϵ1ARt+1(ω)
• πt(ω) the conditional probabilities



• Setting limϵ→0
Ṽt−Vt

ϵ = 0 we get the relation:

∑
ω

∂Vt
∂Ct+1(ω)

∂Vt
∂Ct

1ARt+1(ω) = 1 ∀A ∈ Ft

This implies:
Et [

Mt+1
Mt

Rt+1] = 1

where the stochastic discount factor Mt is defined by

πt(ω)︸ ︷︷ ︸
physical prob

Mt+1
Mt︸ ︷︷ ︸
SDF

=
∂Vt

∂Ct+1(ω)
∂Vt
∂Ct

∂Vt
∂Ct+1(ω) contains physical probabilities because V
contains expectations



• Now we use the chain rule to rewrite

πt(ω)Mt+1
Mt

=
∂Vt

∂Ct+1(ω)
∂Vt
∂Ct

= ∂Vt
∂Vt+1(ω)

MCt+1(ω)
MCt

with
MCt = ∂Vt

∂Ct
, MCt+1 = ∂Vt+1

∂Ct+1

• Recall that

V ρ
t = (1 − e−β)Cρ

t + e−βEt [V α
t+1]ρ/α ∀ ρ ̸= 0



•

MCt = ∂Vt
∂Ct

= (1 − e−β)(Vt
Ct

)1−ρ

∂Vt
∂Vt+1(ω) = e−βV 1−ρ

t Et [V α
t+1]

ρ−α
α πt(ω)V α−1

t+1 (ω)

Combining we get a state price deflator:

Mt+1
Mt

= e−β(Ct+1
Ct

)(ρ−1)( Vt+1
Et [V α

t+1](1/α) )α−ρ
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