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Preface

This book compiles some teaching notes on axiomatic choice the-
ory which were developed from 1976 to 1981 at the Graduate School
of Business, Stanford University. The notes have been updated a bit,
and they have been cleaned up a bit, but they are otherwise much as
they were in 1981. They were used in conjunction with a one term
course for first year Ph.D. students, and they provide about enough
material for just such a course, when supplemented with one or two
advanced topics. The course was originally required of all the first year
Ph.D. students in the Business School, and so the level of mathemat-
ical complexity that could be permitted for most of the development
was low. Nonetheless, the purpose of the course was to give students
some basic training in the theorem proving parts of economic theory,
and the notes are written in the style of theorem-proof. Hence the
reader will find the book to be somewhat schizophrenic. The style is
such that it seems to want to be taken seriously as a reference book on
choice theory, but then whenever the mathematical going gets tough,
arms start to wave and the reader is sent to a real book on the subject.
Appearances notwithstanding, this is not intended to be a reference
book on choice theory. It is meant instead te be a first course on the
subject for graduate (Ph.D.) students, although I imagine it could be
used by really good undergraduates. Serious students of the subject
can use this book as a chatty introduction to some of the basic ideas
and logic, but it must be supplemented by a serious reference book.
When I taught the course, I would send students to Fishburn’s Utility
Theory for Decision Makers, to Krantz et al. Foundations of Measure-
ment, and, of course, to Savage’s Foundations of Statistics for the “real
stuff”; those recommendations are still quite good and valid. The
reader will notice as well that the general lines adopted are those of
Fishburn. It is hard to improve on that classic, although in places I
do move some stuff around. In any case, much of what is reported

here I learned by reading Fishburn, and an enormous intellectual debt
is owed to him.

The reader will note that the style of writing is both informal and,
uneven. I have not made a great effort to clean up the original notes,
which were not intended for this sort of dissemination, and excursions

xiii



X1v

into the first person or phrases masquerading as sentences will have
to be excused. Students have said that they found this style more
accessible than the standard texts; and I hope (a) this is correct and
(b) you will find it so.

At the end of most chapters are some homework problems. They
were an integral part of the course, and I would urge any serious reader

to try them out. This being a series in “Underground” writings, .

perhaps the publisher will allow me to suggest here that there are
copies of suggested solutions floating around in the deep underground.

The book comes roughly in three parts. After an introduction
(Chapter 1), we have a very brief excursion into the theory of choice
and preference without any uncertainty (Chapters 2 and 3). This goes
by very quickly, since the interesting questions in this development
become too mathematical in short order.

The second part of the book, and the bulk of it, is devoted to
the standard models of choice under uncertainty. Chapter 4 provides
an introduction to what will be sought, and then Chapter 5 takes on
" von Neumann-Morgenstern expected utility, first for finite outcome
lotteries and then more generally, via the mixture space approach of
Herstein and Milnor. Chapter 6 discusses the special case of utility
functions defined on dollar prizes, which is to say, a brief development
of the Arrow and Pratt measures of risk aversion. Chapter 7 presents
the development of subjective expected utility with extraneous objec-
tive randomizing devices, as given by Anscombe and Aumann. Chap-
ters 8 and 9 then introduce (but far from cover) the classic devel-
opment of Savage — subjective probability is discussed in Chapter 8,
with expected utility in Chapter 9. Finally, Chapter 10 gives a very
short discussion of conditional preference and conditional probability
within the Savage framework, and it introduces ideas about the use
of static theories of choice in the context of dynamic choice.

The third part of the book discusses a number of special topics,
the selection of which was entirely idiosyncratic and formed in part
by my then current research. Chapter 11 introduces the concept of
exchangeability and gives a simple version of de Finetti’s theorem. In
Chapter 12 we discuss why the classical models don’t work when they
are applied to pieces of a larger problem. Chapter 13 gives the reader
a quick taste of what I think dynamic choice theory ought to look like
(which is not what was discussed in Chapter 10). And in Chapter 14
the reader, by now exhausted, is given a very quick introduction to

the bac
TL
Michae
of the ¢
goes to
of Cha:
bastard
quently
Comme
who su:
made s~
grom cc
Gibb tu
which t!
dents of
manuscj
The
rison’s ¢
With ap



Xv

the bad news about the experimental evidence.

The course on which these notes are based was taught first by J.
Michael Harrison, and so much of the credit for the basic organization
of the course, left over after the large allocation of credit to Fishburn,
goes to him. He is also to be credited with any artistry in the drama
of Chapter 11, and I am grateful for his permission to include my
bastardized version of his classic. The teaching of the course subse-
quently was shared by Joel Demski, who made many contributions.
Comments and suggestions on the notes also came from the students
who suffered through them; without trying to recall everyone who
made suggestions, Rick Antle, Elchanan Ben-Porath, and Paul Mil-
grom come to mind as individuals who deserve special thanks. Renee
Gibb turned a badly typed typescript into serviceable TeX files, from
which this book eventually emerged, and Hideo Suehiro and the stu-
dents of Faruk Gul’s 1988 edition of the course read pieces of the final
manuscript and pointed out numerous typos.

The hero of this book is a character named Totrep, Mike Har-
rison’s acronym for a Trade-Off Talking Rational Economic Person.
With apologies, Totrep will use male pronouns throughout.

David M. Kreps
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Introduction

The subject matter of this book is the axiomatic development of
single-person choice theory, also known as decision theory and prefer-
ence theory. This includes bits of the philosophy of probability. The
easiest way to describe what we’ll be doing is to give an example. If
you've read a book on decision analysis or the economics of uncer-
tainty, you probably will be familiar with this example, although not
in quite so formal a manner.

Let P denote the set of all simple probability distributions on the
interval [0,100], where a simple probability distribution is one with a
finite number of outcomes. Such things can be represented graphically
by chance nodes, as in figure 1.1a below.

5 0
S5 60 1
Figure1.1a Figure 1.1b Figure1.1c

This represents a .5 chance at the prize 10, a .2 chance at 60, and
a .3 chance at 100. If p and p' are two such probability distributions
and a is a number between 0 and 1, we can define a new probability
distribution ap + (1 — a)p’ which is the “a,1 — a mixture of p and
p'.” For example, suppose that p is as above and p' is the distribu-
tion given by the chance node in figure 1.1b. Then .6p + .4p’ is the
distribution given by the chance node in figure 1.1c.

Interpret these probability distributions as gambles or lotteries
with dollar prizes between $0 and $100, based on devices such as fair

oins, dice, roulette wheels, etc.

An individual - you, your friend, the man in the street — whom

1



2 Chapter 1

we will call Totrep, for Trade-Off Talking Rational Economic Person,
has preferences among these lotteries. These preferences are described
by a binary relation = which stands for “strict preference” — we write
p > p' if and only if Totrep strictly prefers p to p’. (If you aren’t
sure what a binary relation is exactly, just go with the spirit of the

thing for the moment.)
Consider the following properties of such a binary relation:

Axiom (1.1). If p > p’, then not p' > p.
Axiom (1.2). If not p > p’ and not p' > p”, then not p > p.

Axiom (1.3). If we let 6, denote the lottery which gives the prize r
with certainty, then r > r’ implies 6, > 6.

J Axiom (1.4). If p > p' > p”, then there exw (0,1) such
that ap+ (1 —a)p” > p' > bp + (1 b)p”

J Axiom (15). Tf p = p', then for all a € (0,1) and p" € P it folows
that ap + (1 - a)p" - ap + (1 _ a)p" e

————

TT——

.These five axioms may not be in a form familiar to you, but
the following results are probably familiar. Some notation: If u is
a function from [0,100] to R (the real line), and if p is a simple

. probability distribution, then Ep[u] means the expectation of u taken
with respect to the probability distribution p. That is,

Y u(rp(r).

r€[0,100]

E, [u] =

e

\T:@o_rgnL(L). A bmary relation > on P satisfies Axioms (1.1)
through (1.5) if and only if there exists a strictly increasing function

u : [0,100] — R such that ———

if and only if E,[u] > Ep[u].

(1.7) p>p

\}\ Theorem (1.8). Suppose > on P satisfies Axioms (1.1) through (1.5)
and that u and u' are two functions : [0,100] — R such that (1.7)
holds. Then there exist real numbers ¢ > 0 and d such that cu+d =

u'.

\

!

———
———
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Introduction 3

This book will be spent developing results like Theorems (1.6)
and (1.8). Note carefully the steps:

(2) Some set of objects, the choice set X, is gg_x_lgﬁgd Typically the
objects in X will have some structure; for example, in this example,
X is the set P of probability distributions on the set [0,100].

(b) dxioms concerning Totrep’s preferepces.among members of X are
proposed. These are qualltatlve statements about tTle relation. -,
typically involving the structure in X.

(c) A representation theorem is stated and proved. Most of the time
we seek a function from the choice set to the real numbers (called a
utility function) such that higher utility corresponds to more preferred
items. The representation will typically exploit the structure; e.g., in
the example we have an expected utility representation.

When we look at a set of axioms and a representation, we will
sometimes wonder whether the axioms are sufficient for a representa-
tion, which means that if the axioms hold, then a representation is
possible, and whether the axioms are necesgary for the representation,
which means that if the representatlon holds, then the axioms must
hold. Note that in our example, Theorem (1.6) establishes that the
five axioms are both necessary and sufficient for the representation

(1.7).

(d) A uniqueness result is given - this characterizes the extent to which
two similarly structured representations of a given preference relation
can vary. Theorem (1.8) is an example of this. These sorts of results
are calléd uniqueness theorems because of the stock: phrase: “The
representation 15 @nigué Up15-...” (in the case of Theorem (1.8), “...
. a positive aﬁine transforma.tlon )

,(r ;,

What constitutes a_“good” set of axioms? This largely depends
on the application that you have in mind — c¢f. the next section. In
general, axioms should be basic, primitive, intuitive, qualitative, etc.,
whatever these things mean. But there are two technical properties
of sets of axioms that should be watched out for:

A consistent sg};_aﬂa.xi@is a set of axioms which can be satisfied
mmultam;g sly. That is, there is some identifiable collection of objects
which satisfies the axioms. For example, suppose I added to Axioms

-1) through (1.5) the following:




4 Chapter 1

Axiom (1.9). If p assigns probability .5 or more to prizes below the
value r, and p' assigns zero probability to this range, then p' = p.

Then I'd have an inconsistent set of axioms. (Can you prove this?)
An independent set of axioms is a set of axioms. where no subset of

them \—hﬁ/agesthe others. For example, consider ad_]ommms

(1.1) through (1.5) the following:

Axiom (1.10). If p > p’ and a,b € (0,1) are such that a > b, then

ap+(1—a)p >bp+§1—b)p _— L
Bb Elon) > bies enh [ A LgY 2 A

' This la.rger set of axioms is ot 1ndependen becaiise Axioms (1.1)
through (1.5) imply (1.10). (Can you give a proof?) Good sets of
axioms should be both consistent — for obvious reasons — and inde-

pendent — for reasons of parsimony.
That, more or less, is what constitutes choice theory. “So,” you

ask, “Why would anyone be interested?” There are two basic reasons ~

for this, with a lot of fuzzy middle ground between. Everything, we
shall see, depends on who is to play the role of Totrep.

NORMATIVE APPLICATIONS

Suppose that you, or a friend, had to choose one of the following
three lotteries:

$167
$117 27 _—%0
$377

$781 . 7 $456
(a) (b) (c)

$310

$689

.06
$1102

The choice is not an easy one, because there are lots of prizes and
“strange” probabilities such as .62. But if you examine the five ax-
ioms, you might be able to conclude that in this particular choice
situation you want your choice behavior to conform to the axioms.

|
!

(Altematlvely, you might be able to convince your friend that the five

axioms are reasonable guides to how a choice should be made in this °
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circumstance.) If you do come to this conclusion then the theorems
guarantee that you want your choice behavior to conform to expected
utility maximization. And you can then assess your utility function u
by making judgments about simpler lotteries and use the assessed u
to choose among the three complicated lotteries above. That is, you
solve the problem by analysis: (a) Decide that you want to obey the

axioms because they seem reasonable guides to behavior. (b) Assess \i
your utility function using simpler lotteries. (c) Combine the logi- |
cal conclusion of (a), the representation theorem, with the numbers |

derived in (b) to make your choice. (Similarly, for your friend.)

In this sort of normative application, there is obviously going
to be great emphasis on finding axioms that are reasonable guides to
behavior; intuitive axioms will be much prized. Also, you'll be content
with a sufficient set of axioms.

One normative application deserves special mention. Social scien-
tists, and often physical scientists, go around making pronouncements
about their theories being based on empirical evidence. This involves
statements of likelihood or degree of belief — if any sense is to be made
of such things, then “probability” had better be defined in terms that
social scientists can agree on. We'll touch on the very basics of this
problem, but we won’t get too far with it. Since axiomatizations of
probability and empirical proof should be of paramount concern to
any social scientist who is reading this book, you can supplement the
little we do here with the book of readings by Kyburg and Smokler

listed in the references.

1!

A X4 )L >
DESCRIPTIVE APPLICATIONS i s 7 cstudey
\'/ ) syt

Insofar as 1nd1v1dua.ls preference (as revealed by their ¢hoices -
more about this ] in n the next chapter) confarmn to the five axioms, their
behavior can be modeled as if they are expected utility maximizers.

Much of modern micro-economic theory, and its applications in
Accounting, Finance, Marketing, and so on, is done in this fashion:
Models of organizations/economies are studied wherein all the agents
or actors are copies of Totrep in one or more of his various guises.

The obvious question in such applications is empirical: To what

extent do individuals’.choices.conform to a-given set-of axiomsand/or -

a given representation? In looking at this question, the emphasis will

g



6 Chapter 1

be on testable axioms, on necessary sets of axioms, and on testable
implications c of "given set of axioms/representation.

Descriptive applications; at least in the realm of economics that
I know best, raise all sorts of tough philosophical questions. No one
that I know of would seriously maintain that individuals do conform

exactly to the sorts of axiomatic systems that will be studied here.

Indeed, in the last chapter we’ll see some empirical evidence which .

casts great doubt on the standard models of choice that economists
use. At_bggt__th\en, individual behavior approxima t e axmrrgxtlc

base

the actors are presumed to satisfy exactly the axiom systems? The
~answer must be: Because if their behavior is approximately what
' is modeled, then the model _will tel us something about how “their
~ behaviors interact or intertwine in the system. This, the reader  will
surely note, takes a somewhat large leap of faith; a leap for which this

book will not provide assistance.

NN f\:}‘!‘-f . 1%

~ L

PROBLEMS

(1) Assume the truth of Theorem (1.6). Show that the set of axioms
(1.1) through (1.5) and (1.9) are inconsistent. Show, on the other

hand, that Axioms (1.1) through (1.5) are consistent.

(2) Assume the truth of Theorem (1.6). Show that the set of axioms
(1.1) through (1.5) imply axiom (1.10).

(3) Show that Axiom (1.1) is independent of Axioms (1.2) through
(1.5). This is not a trivial exercise. You are being asked to prove
that there is no possible proof that (1.2) through (1.5).imply-(1.1).
Even if you can’t do this for the particular axioms here, discuss how
such a thing could conceivably be proved. If you are really up for a
challenge, show that each of the first five axioms is independent of the
other four. You will be in better shape to tackle this assignment after
you finish Chapter 5, including the problems given there.

f
l
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2

Preference Relations and
Revealed Preference

BINARY RELATIONS

For a given set X, let X x X denote the usual Cartesian product
of all ordered pairs (:c, ‘)’where_l)ot‘l; z and y are e from X.

A bmary relation B on the set X is formally defined as a subset
of X X X - write BC X x X, and (z,y).€_B_if the ordered pair
(z,y) is in the relation B. Another, qmcker way to write (:z: y) €B
is z By, whlch can be read as “z Bees y” or “z stands in the relation

B to y.” If (z,y) ¢ B, I'll write “not zBy” or zBy.

Examples: poos R T
(a) Let X = {1,2,3} and B = {(1,1),(1,2),(1,3),(2.3), 3, 1)}

(b) Let X = all people in the world and let B be the relation “shares
at least one given name with.”

(c) Let X = R (the real line, remember) and let B be the relation
“greater or equal to”; that is, B =>.

' (d) Let X = R and let B be the relation: zBy if [t —y| > 1.

(e) Let X = R and let B be the relation zBy if z — y is an integer
- multiple of 2.

There is a long list of properties that a given binary relation
might or might not have. The properties that will be important in
this book are the following. A binary relation B on a set X is:

reflexive if zBz for all z € X ;

irreflexive if zBz for all z € X ;

symmetric if By implies yBz;

asymmetric if By implies yBz;
antisymmetric if By and yBz imply z = y;
transitive if zBy and yBz imply zBz;

7



Chapter 2

negatively transitive if :sz a.nd yBz imply zBz;
complete or connected if for all z,y € X; zByoryBxz (or both
“or”s are never exclusive in this book unless specifically mentioned);

weakly connected if for all z,y e X, z = y or zBy or yBz;
acyclic if z)Bz3,72Bz3,...25-18z, lmPIY T1# Ta.

Example (a) (above) is weakly connected, but nothing else. Example
(b) is reflexive and symmetric. Example (c) is reflexive, antisymmet-
ric, transitive, negatively transitive, complete, and weakly connected.
Example (d) is irreflexive, symmetric. Example (e) is reflexive, sym-
metric, transitive.

PREFERENCE RELATIONS

In this section, we take up the following simple story. There is
a set of items X, aund Totrep is willing to express his preferences
among these items by making paired comparisons of the form: “I
strictly prefer z to y” which is written = > y. “Strict preference” is
a binary relation on X . Consider the following properties that this

binary relation might possess:

(a) Asymmetry — if z is strictly preferred to y, then y is not strictly
preferred to z. (What do you think of this? Reasonable normatively?

How about descriptively? Think of these questions for each of the
following.)

(b) Transitivity — if z is strictly preferred to y and y is strictly pre-
ferred to z, then z is strictly preferred to z.

(c) Irreflexivity — no z is strictly preferred to itself.

(d) Negative transitivity — if z is not strictly preferred to y and y is

not strictly preferred to z, then z is not strictly preferred to 2.
Negative transitivity is a hard property to deal with intuitively

in the form given, so let me develop an alternative statement that is

- completely equivalent.
i Lemma (2.1). A binary relation B is negatively transitive iff (if and
only if) zBz implies that, for all y € X,_‘_:I:B,_‘y or yBz.

}
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/
\UProof. (Very pedantic.) The statement [M implies N] is the same as
the statement [N or not M], thus [M implies N] is the same as [not

N implies not M]. (The second equivalence is called contraposition.)- -

Thus [{zBz} implies {zBy or yBz for all y € X}] is the same as
[{not(zBy or yBz for all y € X)} implies {not zBz}] which is
[{there exists y € Z thh z By, agcl_sz}dmpheanBz_}.L.ﬂuch is

negatwe tra.nmtxwty

-

Now back to . Is negative transitivity reasonable? Isit reasonable to
say that if z is strictly preferred to z, then for all y either z is strictly
preferred to y or y is strictly preferred to 2?7 As a normative property,
I think it is (barely) reasonable. But as a descriptive property, I
don’t think it is reasonable. Suppose X = (0,00) x (0, 00), where
z = (z;,27) € X is interpreted as the commodity bundle z; bottles
of beer and z, bottles of wine. Totrep (if his tastes are like my
own) would certainly say that (10,10) > (9,9). But consider (15,6).
Totrep might not be willing to say either that (10,10) > (15,6) or
(15,6) > (9,9) — he might plead that comparisons called for are too
difficult for him to make.

Despite these difficulties with negative transitivity, it is standard -+ ~
to proceed assuming that > is asymmetric and negatively transitive. = -

<

-Definition (2.2). A binary relation > on a set X is called a preference oot

relation if it is asymmetric and negatively transitive. )
NN~ et N '

“Proposition (23). If > is a preference relation, then > is 1rreﬁex1ve,
transitive, and acyclic, T

Proof. (a) Asymmetry directly implies irreflexivity.

Xb) Suppose z > y and y > 2. By negative transitivity (and Lemma
(21)), z > y implies that either z > y or £ = z. But z > y is
impossible because y > z is assumed and > is asymmetric. Thus
T > z, which is transitivity.

() If z; > 29,23 > Z3,...,Zn—1 > Tn, then by transitivity z; = z,.
Since > is irreflexive, thxs 1mphes o # Tn- Thus > is acychc

When we are given a binary relation > that expresses strict pref-
€rence, we use it to define two other binary relations:

;z:tyify_% z, a.gglﬁ_gﬁ:vyifa:%yandry)r_‘f,

¢ 3

MmN

H W"' o

- -

-
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where we are using ¥ as shorthand for > or for “not >.” The relation >=. T

> is called _w__ggl;_prefgr,e;n,c_e,,,although it really expresses the absence*of ory, a

strict preference. The relation ~ is called indifference — it expresses | result

the absence of strict preference in either direction, which is perhaps '

not quite the same thing as active indifference. Propo:
new t

Proposition (24). If > is a preference relation, then: .

(a) For all z and y, exactly one of z > y,y > = or z ~ y holds.

/(b) > is complete and transitive.

(c) ~ is reflexive, symmetric, and transitive. Then .
A w>z,z~y,y>z imply w>y and z > z. Morec ™ *
(e)x>yiff x>y orz~y. above

(f) £ >y and y > z imply z ~ y.
Proof. (a) follows from the definition of ~ and the fact that > is
asymmetric. then
\J(b) By the asymmetry of >, either z % y or y ¥ z (or both) for all )
z and y, thus = is coinplete. For tranmsitivity of >, note that this The p:
follows immediately from the negative transxtlvltyﬁof - T~ with =
/(c) ~ is reflexive because > is irreflexive. ~ is symmetric because the | transit
definition of ~ is symmetric. For transitivity, suppose z ~ y ~ z. “ transit
Then 7 ¥y ¥ z and z ;‘ y ¥ . By negative transitivity of >, } I prefe
zfzyz,orz~z. ' person
+j(d) f w = z ~ y, then by part (a)oneof w>yory~wor y>w. :
But y > w is impossible, since then transitivity of > would imply f
y > z. And y ~ w is impossible, since then transitivity of ~ would @  REVE,
imply z ~ w, contradicting w > z. Thus w > y must hold. The {
other part is similarly done. : In
(e) z>=y iff y¥ z iff >y or z ~y (by part (a)). i paired
(f) This is immediate from the definitions of > and ~. scriptiy
concep
Note well the plot: Totrep expresses strict preferences, from That i:
which we define. weak preferences and indifference. It is strict pref- ual’s cl
erence that is basic - Totrep is not being called upon to express any can wit
judgments concerning weak preference or indifference, and he might vidual’:
“disagree with our use of those terms to describe the negation of strict . subject -
preference. mative
" Another possible plot would be to ask Totrep to express weak be mad

preferences or preference or indifference. That is, the basic relation is viewpo:
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>. Thisi is a plot that is followed in many developments of choice the—

results:

Proposition (2.5). Given a binary relation >' on a set X, define two
new binary relations >' and ~' from >’ by

z>'yify¥' z,andz~ yifz > yandy >z

Then if ' is complete and transitive, >' will be a preference relation.
Moreover, if we start with a binary relation >', define »' and ~' as

above from >', and then define > and ~ from »' by

z>yifyy' 'z, andz~yify ¥ z and z 'y,

"and ~.

then =’ and > will agree, as will ~
The proof is left as an exercise. So it doesn’t matter whether we start
with a strict preference relation that is asymmetric and negatively
transitive or with a weak preference relation that is complete and
transitive — we end up in the same place. For reasons of interpretation
I prefer to take strict preference as being basic. But it is a matter of
personal taste, and most authors do it the other way.

REVEALED PREFERENCE THEORY

In the previous section, the story was that Totrep was making
paired comparisons between items in-X. But especially from a de-
scriptive point of view, we would like to start with an even more basic
concept — that of choices made rather than preferences expressed.
That is, from a descriptive point of view what we see is an individ-

' ual’s cholce behavior —_we have to_connect_that behavxor as best we
¢an with his preferences which are never directly expressed The mdl-‘

vidual’ s choice behavior reveals his prefereE:?s hence the"hame of this
subject: revealed preference theory. This subject also has some nor-
mative justifications — taking preferences as given, how should choices
be made? But this subject is of greatest interest from the descriptive
VleWpo1nt



To keep matters simple, throughout this section I'll assume that
the choice set X is finite. Especially if the application you are think-
ing of is demand for consumption bundles or for any item that is in-
finitely divisible, this is not a very nice simplification. For nonempty
subsets of X, I'll use notation such as A, B, etc. The set of all
nonempty subsets of X will be denoted P(X).

: Definition (2.6). A choice function for a (finite) set X is a function ”

¥ ¢: P(X) — P(X) such that for all AC X, ¢(4) C A.

The interpretation is: If Totrep is offered his choice of anything
in the set 4, he says that any member of c A will do meﬁ'

the corresponding >- and ~), it is natural to suppose that he chooses

according to the rule that from a set_A, anything that is: undomgllat/ti,
will be okay. In symbols, define a functlon c(-,>) : P(X) by
A s

ofA,-)={z€A: forally € 4,y Y.z}

- It is clear that for any >, cLA =) C A, but it isn’t clear whether
c(A,>) # 0. Thus it isn’t clear that c( >) is a choice function.
That will be something to be investigated.
The other questions to be looked at are:

(2) From the normative point of view: Given a relation > (not nec-
essarily a preference relation), when is ¢(-,>) a choice function? If >
is a preference relation, what properties does ¢(-,>) have?

(b) From the descriptive point of view: Given a choice function ¢,
when is there a binary relation > such that ¢(-) = ¢(:,>)? When is
this binary relation a preference relation? (N.B., this last question is
the critical one, as we're going to be building models where individuals
are assumed to be maximizing their preferences according to some

preference relation.)

Proposition (2.7). If a binary relation > is acyclic, then c(-,>) is a
choice function.

Proof. We need to show that for A € P(X), the set

(A, =)={z€A: forally € A,y ¥ =},

T P e
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is nonempty. Suppose it was ,empty then for each zT€A there exists

_q._,v-—s_»/ -

z2 be z) s “y”. Let z3 be z9’s “y”, and so on. In other word% L

£1,%2,%3,... is a sequence of elements of A where .

S TR R DIl A / ~ ™ ’7(,,\

Because Ais a ﬁmte set, there must exist some m and n such that
Tm = z, and m > n. But this would be a cycle, and =18 assumed
to be acyclic. The necessary contradlctlon is established.
4. ﬁ'{‘ -
Note the following instant co;gilla.ry If > is a preference relation,
then ¢(-, ) is a choice function. Also, we can strengthen (2.7) as
follows.

-Proposmon (2.8). For a binary relation >, ¢(-,>) is a choice function
iff > is acyclic.

Proving this is left as an exercise.
Next we survey some properties of choice functions. The clas-

sic axiomatic property of choice is Houthakker s axiom of revealed .

preference.
—— s«

Houthakker's axiom (2.9). If z and y are both in A and B and if
z € ¢(A) and y € ¢(B), then z € ¢(B).

In words, if z is sometimes chosen (from 4) when y is available, then
s - B SUeMInes
whew and 1S avaxlable, z is also chosen

T T TR T e e i

Houthakker’s axiom is broken into two pieces by Sen:

Sen's property a (2.10). If z € BC A 'and = € c(A), then z € ¢(B).

Sen’s paraphrase of this is: If the world champion in some game is a
Pakistani, then he must also be the champion of Pakistan.

Sen’s B (2. 11)\)If z,y € ¢c(A), A C B and y € ¢(B), then

l'Ec

Sen’s paraphrase: If the world champion in some game is a Pakistani,

then al] champions (in this game) of Pakistan are also world charnp1—
ons,

1/\‘

o '



i
ey

14 Chapter 2

Note that Houthakker’s axiom concerns A and B such that ,.
z,y € ANB. Property a specializes to the case B C A, and property °

B specializes to the case A C B. Property Wefened
to as Independence of Irrelevant Alternatives, the idea being that the

Nhoxce out_of alarger set of o options doesn’t change when some of th the- _

(ugihjosin,,__enge).lnﬁlexant alternatives-i sét are removed.
IL----~.,._.,._.k.,...,m‘_%hw

Progos:tton (2.12). For an arbitrary binary relation -, (s, >—) satxsﬁes '

The proof is left as an exercise. It is interesting that even if = is '7

acyclic, ¢(-,>) may fail ?o\s/z?t{s}}/ property (. Providing an example
makes a good homework exercise.

‘Proposition (2.13). If > is a preference relation, then ¢(-,>) satisfies

Houthakker’s axiom, hence both Sen’s a and Sen’s 3.

./ Proof. Suppose z and y are in A and B, z € ¢(4,>) and y €

c(B,>). Since z € ¢(A,>) and y € A, we have that y ¥ z. Since
y € ¢(B,»>), we have that for all z € B, z % y. Thus by negative
transitivity of >, for all z € B it follows that z % z. This implies

z € ¢(B,>).

Question: In this proof we seemingly only used the negative tran-

sitivity of . Does this mean that ¢(-,>) satisfies Houthakker’s axiom

whenever > satisfies negatlve tra.n51t1v1ty'7 -
- : Aoy wf e L)
Pz;opos:tlon (2. 14) If a choice functionn ¢ satisfies both propertles a

~ and g, then there exists a preference relation > such that ¢ 1s c(+,>).

N

Before proving this, note that it combines with (2 13) to lmply

Houthakker’s. a.x10m Also since we didn’t use the asymmetry of >
in the proof of (2 13), it seems to imply that negative transitivity of

> implies that > satisfies asymmetry. Or does it?

Proof. Define > as follows:

z >y if z # y and ¢({z,y}) = {z}.

e
»

est:
if 5
acy
wh:
foll.

It i
n t
ticy

CO
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The relation > so defined is obviously asymmetric. We need to check
that this relation is negatively transitive, and that ¢(4,>) = ¢(A) for
all sets A. We will do the la.tter ﬁrst )

. P ‘- ;.‘

"Fix a set A. fa: e e B
(a) If z.€ c(A), then for_g.}l.f € A,z af For 1f zt,;c_,_g_h_eg
c({x,z}) = {2z}, contradicting property a. Thus z€c(A,>-)=uy b
(b) If z & c(A), then let z be chosen arbitrarily from ¢(4). We claml PRV
that ¢({z,2}) = {2z} - otherwise property. 8 would be violated. Thus -
z>-z andz ¢ c(4,>).

Combining (a) and (b), ¢(A,>) = c(A) for all A. SR

Finally, to prove negative transitivity, suppose that z ¥ y and
y ¥ z, but £ > z. z > z implies that {z} = ¢({z,z}), thus
z € c({z,y,2}) by property a. Since z € ¢({y,z}), this implies
y & c({z,y,2}). (Why?) Which, since y € ¢({z,y}), implies = ¢ ’
c({z,y,2}). Which isn’t possible, as ¢ is a choice function. Contra- -
diction — proving that > 15 negatively transitive. . _

A R ES I L |

Propositions (2.13) and (2 14) are exact converses. It is inter-Z ¢ ¢¢ ;
esting to speculate on a possible converse to (2.12). ‘Is it true that ﬂ'A | /.
if a-choice function ¢ satisfies property a, then there exists some & #°
acyclic relation > such that ¢ = ¢(:,>)? The answer to this is no. ;&L {
which makes another good % for homework. So what fills in the

following blank?

y ke

c obeys property a and satisfies ..... iff
there exists some acyclic > such that ¢ = ¢(,>).

It is stsxble to fill in the blank, and you can find some blank fillers
in the literature, but none that you will find are, in my opinion, par-
+ ticularly intuitive. Any suggestions?

s CONCLUDING REMARKS

f A summary 6f these results follows:

There exists a preference relation - such that <(-) = c(-,>)
if and only if
5 c(-) satisfies Houthakker’s axiom
if and only if
() satisfies Sen’s a and f3.
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16 Chapter 2

A binary relation > is acyclic
if and only if
there exists a choice function ¢ = c(+,>) for >
which implies that, but is not implied by
c satisfies Sen’s a,
and none of the previous three imply or are implied by
c satisfies Sen’s 3.

e 2 s

e a1 BV

This is just an introduction to revealed preference theory — there
is a very large literature on the subject. Two important questions,
both related to the applications of these ideas to classical demand
theory in microeconomics, that we haven’t discussed are:

T pia s
d i

R LAY
X is an infinite set? (Where did we use the finiteness of X

%

What if

in the development above?) For one approach to an answer to this °

question, see problem 8 of the next chapter.

e ——— ——

Suppose we can’t observe Totrep’s choices from all subsets of X . That -
is, suppose .c.is-defined only for a subset of P(X). You can see how -
this would provide problems, especially if sets of the form {r,y} are .

not in the domain of ¢. And you can see why this is a natural question
— especially if we have in mind a descriptive theory of choice. What
can be said in such cases?

PROBLEMS

(1) For each of the five examples on page 7, show that the binary
relation has precisely the list of properties that are ascribed to it on

page 8 (from the list of properties on pages 7 and 8).

(2) A binary relation E that is reflexive, symmetric and transitive
is called an equivalence relation. (For example, if > is a preference
relation, then ~ is an equivalence relation; cf. Proposition (2.4)(c).)
Here is an easy proof that if E is symmetric and transitive, then it is
automatically reflexive (thus reflexive could be deleted from the list
of properties): Fix z € X and take some y such that zEy. Then
yEzr by symmetry, and hence zEz by transitivity. Unfortunately,
this easy proof is spurious. Why?

(3) Pr

(4) Sh

negati

(5) Pr
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(3) Prove Proposition (2.5).

(4) Show that the properties (for a binary relation) of asymmetry and
negative transitivity are independent.

(5) Prove Proposition (2.8): For a binary relation > (on a finite set
X), ¢(-,>) is a choice function if and only if > is acyclic. In what
sense is it important here that X is finite?

(6) Prove that for any binary relation >, ¢(-,>) defined as in the
display on page 12 satisfies Sen's a. (Is it important here that X is
finite? In what sense is it important that > is acyclic, even though
you weren’t told to assume acyclicity?)

(7) Give an example of a finite set X and an acyclic binary relation
where c(-,>) does not satisfy Sen’s property f.

(8) In and around Propositions (2.13) and (2.14), I seem to get very
confused about whether negative transitivity is all I need to prove
Houthakker’s axiom, and thus asymmetry. Unconfuse me. Have I
implicitly used asymmetry in the proof of (2.13), and if so, where?
Deal with the proof. I know (and so do you, if you did problem (4))
that negative transitivity doesn’t imply asymmetry, and I don’t want
an example of that — I want to know what is going on in the proof.

(9) Give an example of a finite set X and a choice function ¢ on

P(X) that satisfies Sen’s a but such that there is no binary relation
> such that ¢(-,>) =c.



3
Ordinal Utility

The storyline for this chapter is that there is a set of objects X,
and Totrep makes pairwise comparisons expressing strict preference
for some objects over others, formalized by the binary relation »>.
From > are defined > and ~ as in Chapter 2. We are looking for a
numerical representation of >;i.e., a function u : X — R such that

(3.1) z>y It u(z)> u(y)
FINITE X
We begin with the case of finite X .

Proposition (3.2). If X is a finite set, a binary relation > is a preference

relation if and only if there exists a function v : X — R such that

(3.1) holds.

Proof. We first prove that if such a function exists, then > is a
preference relation. Assume the existence of such a function u.

(a) z > y iff u(z) > u(y) iff u(y) Z u(z) which implies y ¥ z, thus
> is asymmetric.

(b)If z ¥ y and y ¥ z, then u(z) ¥ u(y) # u(z), which is the same
as u(r) < u(y) < u(z) which implies u{z) < u(2) or u(z) ¥ u(z)
which implies z ¥ z. Thus > is negatively transitive.

That was easy. Now to go the other way. (The method of proof
that I'm about to use is the most straightforward way to proceed, and
it has the advantage of introducing the uninitiated to the principle of
mathematical induction. But it is far from the most elegant proof
that can be given. To see an elegant method of proof, which could be
used here quite handily, see the proof of Theorem (3.5).) I'm going to
, Us¢ mathematical induction on the size (or cardinality) of the set X .

(Brief aside: The principle of mathematical induction says: Suppose
that T want to prove that a statement is true for all strictly positive

19



20 Chapter 3

integers n = 1,2,3,. . Then a valid method of proof is to show that
the statement is true for n = 1, and that for every n = 2,3,..., if
the statement is true for n — 1, then it is also true for n.)

I'm going to prove inductively: If X has n elements (n =
1,2,3,...) and > is a preference relation on X, then there exists
a function u : X — R such that (3.1) holds. In fact, in the proof I'm -
going to show that this can be done with the range of u being the |
interval (0,1).

First I must prove that this result is true for n = 1. In this case
X is a singleton, say {z}, and if I define u(z) = 1/2, then neither
z > y nor u(z) > u(y) is possible for z,y € X (the former because
> is asymmetric), so (3.1) holds trivially.

Now I fix an integer n = 2,3, ... and hypothesize that the result
is true for sets of size n — 1. (This working hypothesis is called the
induction hypothesis). Fix a set X with n elements, and let > be a
preference relation on X. Let z° be any arbitrary element picked
from X, and let X' denote X \ {z°}. X' has n — 1 elements, so by
the induction hypothesis there exists a function u’ : X' — (0,1) such
that (3.1) holds for all z,yeX’'. (Oops, I forgot something! In order

to apply the induction hypothesis, I must show that > restricted
to X’ is a preference relation. It is, and I'll spare you the details.
But be sure that you understand (a) what this means, (b) why it is
necessary, and, if you can’t “see” the proof immediately, (c) how it :
would be proved formally.)

I have to consider four cases.

Case 1: There exists some z"” € X' such that z° ~ z”. In this case '

define u : X — (0,1) by

u(z) = {u'(x) ifz € X,

u'(z") if z =z°.

I claim that the range of this function u is indeed (0, 1) (obv1ous)
and that it satisfies (3.1) for all z,y € X:

If both z and y are from X', then z > y iff u'(z) > u/(y) (by
the induction hypothesis) iff u(z) > u(y) (since u = u’ on X').

If z € X' and y = z°, then z > y iff ¢ > 2" (since =" ~
y = z°) iff u'(z) > v'(2") iff u(z) > u(z®) (since u(z) = u'(z) and

u(z®) = u'(z")).

If 2
it u(a)
' If z
and (3.1

Case 2:

Again t]
Ifb
Ifz
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If z

and u(z

If 2
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If z=2z° and y € X', then z > y iff 2" > y iff v'(z") > ¥/(y)
iff u(z°®) > u(y)-

If £ =y = z°, then both = > y and u(z) > u(y) are impossible,
and (3.1) is satisfied trivially.

Case 2: If z° = z for all z € X'. In this case define

_ [ d(x) ifzeX'
wz) = { [max;ex'u'(z) +1}/2 ifz=2°

Again the range of u is (0,1) and it satisfies (3.1):

If both z and y are from X', then just as in case 1.

If z € X' and y = z°, then z > y is impossible by the hypothesis
of this case, and u(z) > u(y) is impossible by the construction of u.

If z =z° and y € X', then z > y by the hypothesis of this case,
and u(z) > u(y) by construction.

If £ =y = z°, then just as in case 1.

Case 3: If z > z° for all z € X'. In this case define

_ [ d(=z) ifz e X',
we) = { [mingexu'(2)]/2 if z =z°.

and proceed as in case 2. (These details can be awfully tedious.)

Case 4: If z # z° for any z € X' and there exist at least one z € X'
such that z > z° and at least one z € X' such that z° > z. In this
case, let T be such that u/(T) = mingyex.yy-o)u'(y) and let z be
such that u'(z) = max(yexi:zepy)t'(y). In words, T is the “worst”
thing in X' that is better than z°, and z is the “best” thing in X'
that is worse than z°. (How do I know that such T and -z exist?

You should be sure that you know how to provide this missing step.)
Then define u by

u'(z) ifz € X',

ue) = { [W(Z) +u'(2)/2 iz =z°

Note that if z € X' is such that £ > z°, then u'(z) > u/(Z) so that
Z 2 T. Similarly, z° > z implies that z > z. And since T > z° > z,

’ We—know by transivity that T > z, and thus u(Z) > u(z), so that
L U(@) > [u(T) + u(2)]/2 = u(z°) > u(z). Clearly, the function u has

the range (0,1). And (3.1) holds:



22 Chapter 3

If z and y are from X', proceed as in case 1.

Ifr=2°"and y€ X', thenz >y iff z° =2z >z > y iff
u(z®) = u(z) > u(z) 2 u(y).

If z € X' and y = z°, proceed as immediately above.

If £ =y = z°, proceed as in case 1.

Cases 1 through 4 exhaust all possibilities (if pressed, could you.

show this formally?), so that the induction step (extending the result
from a set of size n — 1 to a set of size n) is complete, and the

proposition is proven.

There is so much detail above that it is easy to lose track of
what is going on. Basically, it can be paraphrased as follows: Assume
(inductively) that the representation is possible for sets of size n —1.
Then take a set of size n and a subset of size n — 1, X'. Produce a
representation for X', called u’'. Let z° denote the point left out.

Now look for where u(z°) should fall. It will either be (case 1)
on top of some u'(z'), (case 2) to the right of all u'(z'), (case 3) to
the left of all u'(z'), or (case 4) between two u'(z')’s. Put it where

it belongs. All the detail in the proof is to show that if you do this,

then what results does indeed satisfy (3.1).
Now for the acid test of your comprehension. Nowhere in the
proof of the second half of the proposition (that a representation was

possible for a preference relation) did I use the words “negatively
transitive.” But the first half of the proof shows that somewhere I

must have assumed that > possesses this property. Where? Until
you can answer that question, you don’t comprehend the proof.

COUNTABLY INFINITE X

Now we can work on extending this result to infinite sets X. We
begin with the case of a countable set X .

(Aside: A set X is countable (or denumerable) if it is possible to
“count” the elements of X by listing them X = {z;,z,,...}. More
formally, a set is countable if there is a function f with domain
{1,2,3...} and range X which is onto X. (That is, f hits every-
thing in X at least once.) Finite sets are always countable, so the
expression countably infinite is sometimes used to distinguish sets that
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are countable and infinite from finite sets. A set is countably infinite
iff there is a one-to-one and onto function from {1,2,3,...} to the set.
Examples of countable sets are the integers and the rational numbers.
The set of real numbers R is uncountable, as is the unit interval [0,1]
(and if you’ve never seen this last statement proved, get someone to
do it for you).)

Proposition (3.3). w binary relation > is a preference

relation if and only if there exists a function v : X — R such that

(3.1) holds.

Proof. The proof of: “If there exists a function u satisfying (3.1),
then > is a preference relation” is exactly as in Proposition (3.2) -
nowhere in that part of the proof of (3.2) did we use the fact that X
is finite. . :

To prove that if the relation > is a preference relation, then such
a u exists, it suffices to look at the case where X is countably infinite
- if X is finite then (3.2) applies. So let X = {z,z3,...} (that is,
enumerate X ) and foreach n =1,2,..., let X,, = {z;,...,z,}. Note
that > restricted to X, (for each n) is a preference relation. (This
needs a proof, if you didn’t do it before.) I claim that for n =1,2,...,.
there exist functions u, : X, — R such that

(a) for all z,y € X, z > y iff uy(z) > ua(y),and
(b) for all z € Xp—1,upn—1(z) = up(z).

The last bit is the key. It says that once u,(z,) is defined, the
values tn41(Zn), nt2(Zn),. .. are all fixed and equal to u,(z,). The
proof of my claim is by induction in n — in fact the proof is identical
to the proof of (3.2): Define u;(z;) = 1/2, and if you have u,—;
produce u, by the procedure given with u,—; in place of v',u, in
place of u, and z, in place of z°. (For rigor freaks in the audience,
I'm being a bit sloppy here. Can you come up with an exact statement
which, when proved by induction, yields the result desired?)

Now define u : X — (0,1) by u(zn) = un(z,). (3.1) holds for
this because if z,y € X, then z = z,, and y = z,, for some integers
"and m. Let k = max{m,n}. Then ui(z,) = u(z,),ur(zm) =
UWZm), and Tp,Tm € Xk, thus z > y iff 2, > zpm iff ur(z,) >
Ue(zm) iff u(z) > u(y). (For the rigor freaks who know something
about mathematical set theory: Is what I just did legit? In particular,
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do I need the power of the axiom of choice to make this construction

work?) (If you don’t know what the axiom of choice is, please ignore !

the previous remark at peril of your sanity!)

UNCOUNTABLE X

Can we go any further? For example, is the following true?

Pseudo-proposition (3.4). For arbitrary X, a binary relation > is a |

preference relation if and only if there exists a function u : X — R
such that (3.1) holds.

It should be clear that if such a function u exists, then > is
a preference relation. This is just the first half of the proof of (3.2),

where we made no assumptions at all about the size of the set X. But }

if > is a preference relation, and X is “large”, then there needn’t exist

such a u. .
To develop an example, let X = [0,1] x [0,1] and define

(z1,22) > (y1,¥2) if 2 > yy or [z =y, and x5 > Ya).

This is a preference relation (can you verify this?), and it even has !

a name - it’s called the lexicographic preference relation. It is so
called because it resembles the rule by which things are ordered in
the dictionary: First alphabetize all the words you have by the first
letter, and only then (if there is a tie) go on to the second letter. This

preference relation cannot be represented by a numericalfunction u. |

To see why this is, suppose such a representation is possible. Let

u do the job. Then for every r € [0,1], it is the case that (r,1) > |

(r,0), thus u((r,1)) > u((r,0)). Define d(r) = u((r,1)) — u((r,0)).
We know that d(r) > 0 for each r. Thus we have that

co B L
0,1 = | J{r:d(r) > 1/n} ‘
, n=1 .

Now on the left hand side I have an uncountably infinite set (see
the end of the previous aside), while on the right hand side I have
a countable union of sets, so some of the sets on the right hand side
must be uncountable.
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Mathematical aside: A countable union of countable sets is count-
able. So if all of the sets on the right hand side were countable, then
the union would be countable. But the union, we know, or at least
we were told, is uncountable.)

So suppose that {r :d(r) > 1/n°} is uncountable.

Let u((1,1))—u((0,0)) = K, and let N be an integer larger than
Kn°+ 1. Pick a subset of N elements out of {r : d(r) > 1/n°} and
index the subset {ri,rs,...,rn} sothat 1y <r; <...<ry. Since

(rn,0) > (rn-1,1),
we know that u((rn,0)) > u((ra-1,1)). Hence

u((rn,0)) = ({rn-1,0)) > u((rn-1,1)) = w((ra-1,0)) > 1/n°.

Thus finally
K = u((l, 1)) - u((oa 0)) =

[u((1,1)) — w((r~, 0))] + [u((rN,0)) — w((rn-1,0))] + ...
+[u((r2,0)) — u((ry,0))] + [u((ry,0)) — u((0,0))]
>0+1/n°+1/n°+...+1/n°+0> (N -1)/n° > K.

This estublishes the necessary contradiction.
So what can be done for uncountable sets X? The “answer”

is somewhat technical and not always useful, but here it is, for the
record.

Definition. Suppose > is a binary relation on a set X. A subset Z of
X is called >-order dense if for all z,y € X such that z > y, there
exists some z € Z with z > z > y.

Theorem (3.5). For an arbitrary set X and binary relation >, there

exists a function u : X — R such that (3.1) holds if and only if > is

a preference relation and there.is. a .countable.~-order_dense_subset
Zof X,

Proof. Tt is left to you to show that if a representation is possible,
then there is a countable »-ordet dense subset of X .

Suppose there is a countable > -order dense subset Z = {z1,22,...}
of X. For each z, € Z,let r(z,) =1/2".
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For each z € X, let Z(z) = {z € Z: z > z} and let Z(z) =
{z € Z : z > z}. We claim that is z = z', then Z(z) C Z(z') and
Z(z) 2 Z(z'). (Details are left to you.) Moreover, if z > z’, then one
of the two set inclusions just given is strict. This follows because if
z > z’, there is some z € Z with z > z > z', and either z > z > 2
or z = z > z' or both. Now define

u(z) = Z r(z) — z r(2).

z€Z(z) 2€Z(z)

Since the sequence {r(z,)} is summable, u(z) is clearly well defined.
In fact, u(z) € [-1,1]. And by the remarks above, if z = z’, then
u(z) > u(z'), while if z > z', then u(z) > u(z'). Thus z > z' if and
only if u(z) > u(z'). That does it.

UNIQUENESS

The uniqueness result for the ordinal represeritation of preference
is easy.

Theorem (3.6). Given a set X, a preference relation > and functions u
and u' that represent > in the sense of (3.1), there exists an increasing
function f: R — R such that

(a) f is strictly increasing on {r : r = u(z) for some z} and

(b) u' = fou (that is, u'(z) = f(u(z))).

Moreover, for any strictly increasing function g : R — R, g o u repre-
sents >. '

This is loosely paraphrased: u is unique up to a strictly increasing
transformation. I'll omit the proof.

BELLS AND WHISTLES

(The material in this section requires some knowledge of real
analysis). ,.

Now we move on to bells and whistles on the basic story. One
seemingly natural variation on the results above, for the case of un-
countable X, is to imagine that X and > together are “nice.” Specif-
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ically, we consider cases in which X is a subset of a separable metric
space, and > is continuous.

(If you don’t know what it means for X to be a subset of a
separable metric space, then perhaps you can follow this if we say that
X is a subset of RF for some integer k. That is, X is a subset of
k-dimensional Euclidean space. This is natural in many applications
to economics, where X is a commodity space. And in this case X
will qualify as a subset of a separable metric space.)

What does it mean for > to be continuous? Simply this:

Definition. A binary relation > defined on a separable metric space
X is continuous if for all sequences {z,} from X with limit z, (a) if
z > y for some y € X, then for all large n, z, >y, and (b)if y > z
for some y € X, then for all large n, y > z,.

So what do we do with a preference relation that is continuous
on a separable metric space? One can show in this case that there is
a countable »-order dense subset of X and hence that > admits a
numerical representation. But we might want more. We might want
that > is represented by a numerical function u that is continuous
orn X. We state without proof:

Theorem (3.7). If X is a subset of a separable metric space, then
> is a continous preference relation if and only if there exists some
continuous function u : X — R such that (3.1) holds.

For a proof, consult a standard reference book in choice theory. For
the real math jocks in the audience, we can go further than this: We
can suppose that X is a topological space, and define continuity of
preferences by insisting that, for all z, the sets {y € X : z > y} and
{v € X : y = z} are both open. Then, if the topological space is
well-behaved — something akin to separability, we get an analogous
result to (3.7).

Another natural extension, at least for economists, is to consider
choice sets X that are convex subsets of linear spaces, and to define
that a binary relation is convex if {y € X : y > z} is convex for
all z € X. Any u that represents such a > will be quasi-concave.
(If you don’t know what that means, don’t worry.) But in general,
Tepresentation of a convex preference relation with a concave utility
function will not be possible. Necessary and sufficient conditions for
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representation by a concave utility function — if the choice space is
a subset of finite dimensional Euclidean space — are known and are
quite messy.

PROBLEMS

(1) In many of the proofs in this chapter, I made implicit use of the
result that if > is a preference relation on a finite set X and if X'
is a subset of X, then > restricted to X' is a preference relation.
Provide a proof. (What if > restricted to X'? If we think formally
of >~ as a subset of X x X, thenitis >N X' x X'.)

(2) Recall that right after the proof of Proposition (3.2), I remarked
that I didn’t seem to have used negative transitivity of > in order to
show that a representation exists. Of course, I must have used this
somewhere, even if implicitly. (Why “of course”?) Where?

(3) Recall that in the middle of the proof of Proposition (3.3), I said
that I was being sloppy in my use of mathematical induction. Unslop
me. What statement, when proved by induction, gives the desired
result? And, if you know about such things: A little later on I remark
that my proof may require the axiom of choice. Does it? If so, why?
If not, why not?

(4) Complete the proof of Theorem (3.5). Show that if u: X —» R
represents > in the sense of (3.1), then there is a countable > -order
dense subset of X.

(5) Concerning Theorem (3.6), suppose I modify it to read “... there
exists a strictly increasing function f: R — R such that u’' = fou.”
Show by example that this modification renders the theorem false.

(6) In Chapter 2, we questioned the assumption that strict preference
“ought” to be negatively transitive. So suppose we tried to get by with
a strict preference relation that was only asymmetri¢ and transitive:

(a) If > is asymmetric and transitive, is it acyclic? Either give a
proof or a counterexample.

(b) Define ~ by z ~y if z ¥ y and y % z. If > is asymmetric

|
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and transitive, then ~ is reflexive and symmetric. Provide a proof.
But ~ needn’t be transitive — provide a counterexample.

(c) Prove that if > is asymmetric and transitive, then there exists
a function u : X — R such that z > y implies u(z) > u(y). Assume
X is finite.

(d) Suppose > is a binary relation and u : X — R satisfies z >
y implies u(z) > u(y). Is > necessarily irreflexive?, asymmetric?,
transitive?, negatively transitive?, acyclic? For each, either provide a
proof or a counterexample. Again assume X is finite.

(e) One rationale for > that are not negatively transitive is that
there needs to be a “perceptible difference” between two items r and
y before Totrep will express strict preference. This suggests the fol-
lowing representation (for finite X ):

z >y iff u(z) > u(y) + 1.

If > has this sort of representation, is > asymmetric and transitive?
If > is asymmetric and transitive, can it necessarily be represented
in this fashion? Provide either proof or counterexample in answering
these questions.

(7) Prove as much’of Theorem (3.7) as you can. Take this in four
parts. You should be able to show that if © : X — R represents
> and u is continuous, then > is continuous. (If you can’t do this,
give up on the rest.) You will have a bit harder time with: If >
is continuous and X is a subset of a complete and separable metric
space, then X has a >-order dense subset. Even if you can’t do this,
assume it and comment on whether the function u constructed in the
proof of Theorem (3.5) will be continuous. And, if it isn’t, try to
prove that there is a continuous u that represents .

(8) Recall from Chapter 2 that we didn’t try to think about revealed
preference theory for infinite sets X. Now it is time to think about
, it. Suppose that X is, say, a subset of finite dimensional Euclidean
space. (If you have the math skills, you can generalize this setting
substantially.) We will not require that a choice function ¢ is defined
4 for all subsets A of X, but only for all compact subsets. (If you
think in terms of the application to demand theory, thinking that
¢ ¢ is defined for all compact subsets of X is not natural. But to
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weaken this really complicates matters.) And we will restrict attention
to preference relations that are continuous. With this as a starting
point, how much of the development of the previous chapter can you
replicate?

(9) In the last mentioned bell-or-whistle, I said that > was said to
be convex if {y € X : y > z} was convex for all z. And I said that
any representation u of a convex preference relation was necessarily
quasi-concave. In case you didn’t know, a real-valued function f on
a convex set X is said to be quasi-concave if for all z,y € X and
a € [0,1], f(az + (1 — a)y) > min{f(z), f(y)}. Prove that if >
is a convex preference relation as defined above and u represents >
in the sense of (3.1), then u is quasi-concave. If > is represented
by u in the sense of (3.1) and u is quasi-concave, is >~ a convex
preference relation? Give a proof or supply a counterexample. What
would happen in this problem if I defined convexity of preference
differently, saying that preferences (now specified by weak preference
>) are convex if, for all z, {y € X : y > z} is convex? Finally,
provide a counterexample to the statement that if > is convex, then
there must exist some concave function u that represents > in the
sense of (3.1). Note well, this doesn’t say that all functions u that
represent > must be concave — but only that there is some one concave
function. You have to produce a convex > such that every u that
represents it is not concave. And remember, the rules are that X must
be a convex set. If you want a real challenge, give a counterexample
where X is a subset of R? and all the indifference sets (sets of the
form {y € X : y ~ z} for some z) are “thin.” I won’t try to give a
definition of the term thin here — if you see the point of this addition
to the problem, you’ll know what I mean. This last challenge, by the
way, ought to point you towards a counterexample to the proposition
without the added condition on indifference sets.
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Choice Under Uncertainty:
Formulations and
Representations

The topic for the next few chapters is choice under uncertainty.
Basically, we seek to expand upon the story of the last section, where
we had a binary (preference) relation > on a set X and we sought a
function u : X — R representing in the sense of

z > y if and only if u(z) > u(y).

Now we'll make assumptions about the mathematical structure of
the objects in the set X — we'll want z € X somehow to represent
uncertain prospects. And by imposing further conditions on > having
to do with the mathematical structure of X, we’ll try to specialize
the form of the function u.

This leaves us with two immediate questions: How mathematically
do you model an uncertain prospect? Given the structure of the
mathematical model, what corresponding forms of functions u will
we seek?

The literature contains (basically) three sets of answers to these
questions, differing in whether they treat uncertainty as objective or
subjective. The two polar cases are associated with the names of von
Neumann-Morgenstern (hereafter abbreviated NM), for objective un-
certainty, and Savage, for subjective uncertainty. I’ll use those names
as designators. A third, middle course is taken by Anscombe and Au-
mann — I’ll refer to this either as the A-A or the horse lottery-roulette
wheel theory. ,

What I want to do in this chapter is to lay out these three formu-
lations — the point is for you to understand how they differ as repre-
sentations of uncertain prospects and, especially, to think of why one
might give a more appropriate model than another.

31
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NM MODELS

The NM model views uncertainty as objective, in the sense that
there is given a quantification of how likely the various outcomes are,
given in the form of a probability distribution. Formally, there is
given some arbitrary set Z of prizes or consequences, together with a
second set P of probability measures or probability distributions on Z.
P is the choice set — Totrep is choosing/expressing preference among
probability distributions. '

Which set of probability distributions? There is some leeway
here: If Z is finite, we always take P to be all the probability dis-
tributions on Z,where by a probability distribution p we mean a
function p: Z — [0,1] such that > ., p(z) = 1.

If Z is countably infinite, we may still define P exactly as above
— all the probability distributions on Z. (If you are well trained in
mathematics, you should have just smelled a rat. See problem 4 of
Chapter 8.) But when Z is infinite, countable or not, we sometimes
take P to be the set of all simple probability measures on Z. A simple
probability measure (or distribution — I use the terms interchangeably)
is represented mathematically by a function p: Z — [0,1] such that
p(z) # 0 for at most finitely many z and ) ., p(z) = 1, where in
this sum we mean to sum over the Z such that p(z) is nonzero. The
idea is simple (ouch): simple probability measures are measures that
charge/put mass on/give positive probability to a finite subset of the
prize set.

For infinite Z, we might also take P to be the set of all discrete
probability measures on Z, where a discrete probability measure is
just like a simple measure, but the set of nonzero probability prizes
can be either finite or countably infinite.

And for infinite Z, we can take P to be more complicated sets
of probability measures. For example (not expected to be quite com-
prehensible for many readers), if Z is a topological space, we might
take P to be the set of all Borel probability measures on Z. If Z
is some interval on the real line, we might take P to be the set of
all probability measures on that interval that have continuous density
functions. We might take P to be the set of all probability measures
on Z. (The technically minded and extremely well-educated reader
will note: I haven’t said that these probabilities must be o¢-additive
- finite additivity may be all I desire). Now for each of these more
complicated sets P I have to be more exact than I am being — I have
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to be mathematically precise concerning what I mean by a probability
distribution. But whenever I can do that I am potentially in business
according to the terms of NM style theory.

Note well: In this theory, the externally imposed objects are (a)
a set Z of prizes, and (b) a set P of some sort of probability measures
on Z —an z € X represents an uncertain prospect where as part of
the objective description of the prospect we have what probabilities
it assigns to various prizes and/or sets of prizes.

Inside such a setting, we seek conditions on binary relations >
defined on P that give an expected utility representation: There is a
function u : Z — R such that

(4.1) p > p' if and only if Zp(z)u(z) > Z p'(2)u(2).
€2 2€Z

Note that the summation in (4.1) definitely makes sense if either Z
is finite or if P is the set of simple probability measures on some
(arbitrary) Z - it may make sense if P is the set of discrete probability
measures on some Z. (Math jocks: it certainly makes sense if u is
a bounded function, since then the sums converge absolutely for all
z € X). And it definitely doesn’t make sense in the more general
types of P that are referred to above. For those more general types,
we will have to generalize (4,1) so that integrals, appropriately defined,
can replace the summations, and again we’ll want to assume that any
such integrals are well defined for all r € X.

But however we finesse the definition, the idea of the represen-
tation should be clear: u gives some index of how good each prize z
is. And then a probability distribution over prizes is indexed by the
expected value of that index.

SAVAGE STYLE MODELS

In the Savage style models, uncertainty is viewed as being sub-
jective in the sense that there are no objective (externally) imposed
Probabilities. Probabilities will enter the story, being part of the even-
tual representation, but they will be supplied by Totrep on the basis
of his subjective preferences. X

The basics of the Savage formulation are

(a) a set of prizes or consequences, denoted Z; and
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(b) a set of states of the world or of nature denoted by S with typical
element denoted by s. Each s € S is a compilation of all character-
istics/factors about which Totrep is uncertain and which are relevant
to the consequences that will ensue from his choice. The set S is to
be an exhaustive list of mutually exclusive states — some one s is/will
be the state.

From Z and § we construct the choice space, which is denoted
by F', as the set of all functions from S to Z. Formally we would
write X = Z°. Elements of X are called acts. The idea is that
Totrep cannot fully specify the consequences that will ensue from the
action chosen. Instead, Totrep’s choice of action sets up a function f
from states of nature to the consequences for Totrep — Totrep chooses
one such action from some set of available actions, and Totrep’s pref-
erences over actions are given by a binary relation > defined on F.

The representation that we look for in this setting goes as follows:
There exist a function p: S — [0,1] such that }  sp(s) =1 and a
function u : Z — R such that

(42)  f= f'ifandonlyif Y p(s)u(f(s)) > Y p(s)u(f'(s)).
3€ES IES

Actually, Savage is looking for something a bit more complicated — the
above makes sense if S is finite, but for reasons we’ll discuss in due
course, Savage will need to assume that S is infinite (and, loosely,
uncountable, although this isn’t really quite accurate). So in the
eventual Savage representation, the probability measure p will need
to be fancier, and the summations in (4.2) will have to be replaced by
integrals.

Still, the form above communicates the basic nature of the Savage
formulation and representation — I'd like to discuss it a bit here making
the assumption that S and Z are both finite so that no mathematical
difficulties get in the way of the conceptual content.

There are three things to note about this representation:

(a) Both tastes, given by the utility function u, and beliefs, given by
the probability measure p, are subjective. That is, both arise from
the relation . Compare with the representation in NM theory, where
the probabilities are given objectively or exogenously. ’

(b) Tastes and beliefs are independent. That is, the utility of a conse-
quence does not depend on the state in which it is received, nor does
the prize received in a state affect the probability of that state.
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(c) The probability measure p is independent of the action taken, and
the utility of a particular consequence is independent of the action

taken.

Point (a) is obvious. In order to understand points (b) and (c),
let’s look at a couple of standard examples that are hard to fit into
the Savage setup if we're going to get the representation (4.2).

Suppose, to begin, that you are going on a picnic, you're unsure
about the weather, and you’re trying to decide what equipment to
bring. A naive formulation would have:

The state space gives the various possible states of the weather: S =
{rain, cloudy, sunny}.

Prizes in Z are of bundles of equipment. For example, suppose that
you can take on this picnic any/all of: fried chicken; fruit; coffee; iced
tea; umbrella; frisbee; suntan lotion. Then a typical prize z would be
some subset of these items, such as {fruit, iced tea, frisbee}, and Z
would be the set of all subsets of the items above.

An act f € F then is a function from states to bundles of equip-
ment; say the act f which is {fruit, iced tea, frisbee} if it rains,
{fruit, iced tea, umbrella} if it is cloudy, and {fried chicken, suntan
lotion, umbrella} if it is sunny. The nature of this problem is such
that it seems natural to look only at constant acts — acts where the
prize doesn’t change with state — because those presumably are what
are truly feasible acts. That is, you can’t take some act which will
make the bundle of equipment that you have available depend on the
weather. (You might be able to do this if you could arrange to have
some picnic equipment service agree to deliver to your picnic site a
bundle which is contingent on the weather.) But as part of the Sav-
age setup we have to think about all the functions from S to Z as
acts. From a normative point of view, we do this so that the axioms
eventually stated will give us the strongest possible results, being ap-
plicable to the largest possible set of objects — that is, for “for all”
types of axioms. Of course, the problem with this is that Totrep will
~ need to be able to conceptualize any incredible acts and to sign off
on the axioms as regards incredible acts as well as the credible acts.
This is a point we've seen once already (where?) and that we’ll keep
. Coming back to.

With this setup, is it reasonable to suppose that we can find p
and u so that (4.2) is satisfied? Not if we’re talking about my pref-
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erences. Note that the utility of a bundle of equipment is supposed
to be given by a function u in the representation which is indepen-
dent of the state s, while the desirability to me of, say, the bundle
{umbrella, fried chicken} depends on the weather. That is, the utility
of a prize may depend on the state that occurs.

How do we deal with this? There are two standard cures: First,
reformulate prizes so that the problem goes away — instead of mak-
ing the prizes bundles of “capital equipment,” make prizes the flow of
services derived from the capital. That is, a typical prize would be a
vector z = (2y,23,...,25) where z; gives the level of food satiety, 2,
the level of thirst, z3 the level of body comfort in terms of temper-
ature, z4 the level of body comfort in terms of wetness/dryness, zs
whether or not sunburned, and zs the level of entertainment. Then
the act of taking along {fried chicken, iced tea, frisbee} results in the
act f that is given by:

f(rzin) = (satiated, not thirsty, cold, wet, no sunburn, not amused);

f(cloudy) = (satiated, not thirsty, cool, dry, no sunburn, amused);
f(sunny) = (satiated, not thirsty, warm, dry, sunburned, amused).

The problem with this cure is that in some cases the prize space
you'll need to formulate is so far removed from what is objectively
describable that the representation becomes tautological.

A second cure is to give up on trying to have a state independent
representation — look instead for a representation of the form: There
exist functions p : § — [0,1] with }_ p(s)=1land u:Z xS —> R
such that

(43)  f> fff Y p(s)u(f(s),s) > Y p(s)u(f'(s),s).

In the literature this is called a “state-dependent expected utility”
representation. With regard to which, note that the function p plays
no real role here - if you can find functions p and u satisfying (4.3),
then for “almost any” other p’ there is a u’' that together with p’
also satisfies (4.3). (Question which, if you can answer it, means that
you understand what I just said: What is the needed-restriction on
p'?) So it is “more honest” to write this as follows: There exists a
function v: Z x S — R such that L

(4.4) £ Y u(f(s)s)> ) o(f(s), 9),
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and call this an “additively-separable-across-states” representation,
which is (in my opinion) a much more appropriate description than
“state dependent expected utility.” In any case, having additive sepa-
rability is something, but clearly it is less than a Savage representation.

Question: Why didn’t we encounter this sort of problem when
we discussed the NM setup? Does that setup somehow avoid this
problem?

The second example to illustrate (b) and (c) concerns Totrep
as a marketing manager: Consider the decision to advertise a new
product, which will either sell like hotcakes or bomb. Consequences
in terms of dollar profits are: if Totrep doesn’t advertise and it sells,
profits are $1M; if Totrep does advertise and it sells, profits are §.9M;
if Totrep doesn’t advertise and it bombs, profits are $0; or if Totrep
does advertise and it bombs, profits are $-.1M

The naive formulation of this would run:

the state space S is the set {sells, bombs};
the set of prizes Z = {$1M, $.9M, $0, $-.1M};

and then the two feasible acts out of the sixteen in total that Totrep
will have to think about are

fi(sells) = $1M,  f,(bombs) = $0,
which is “don’t advertise”, and
fa(sells) = $.9M, fo(bombs) = § — .1M,

which is the act “advertise”.

But this won’t work — it doesn’t matter what are p and u so
long as u is increasing - in (4.2) with this formulation, “advertise”
is always worse than “don’t.” The problem is obvious: presumably
the action of advertising increases the chances of the item selling -
something the Savage representation, in which the likelihood of the
states are independent of the acts, cannot accommodate.

In this case, the cure is easy — change the state space to S =
{s1, 59, s3}, where s; is the state that the product sells whether you
advertise or not, s, is the state that the product sells only if you
advertise, and s3 is the state that the product bombs regardless of
what you do. Then the two feasible acts are

don’t advertise: fi(s;) = $1M, fi(s2) = $0, f1(s3) = $0, and
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advertise: z4(s1) = $.9M,z,(s3) = $.9M,z5(s3) =§ - .1M.

But in other examples of this sort of thing, the cure may not be so
apparent — cf. the Martian problem given at the end of this chapter.

ANSCOMBE-AUMANN

A strength of the Savage setup is that none of the uncertainty is
objective — probabilities are completely subjertive. But this strength
comes at a price — obtaining the representation is (as you’ll discover)
quite a hard task. There isn’t much doubt that the NM formula-
tion, with objective probabilities only, is not good enough for all the
applications of which we can think. Suppose I asked you to choose
between:

if Yankees win next World Series, you win $1000, and otherwise you
get $0; or

you win $1000 if a fair coin that I flip comes up heads four times in a
row, and otherwise you win $0.

The uncertainty in the first gamble is certainly not objective, and 1
expect that some of you (quite rationally) would take the gamble,
while others would select the sure thing. Note that this can’t have
anything to do with your utility function for money (assuming that
you like more money to less); all that is important is whether you
think the Yankees have a better than 1 in 16 chance of winning the
World Series next year. In order to deal with decision making under
uncertainty for such problems, we certainly do need a theory that
deals with subjective uncertainty.

But is it necessary to go as far as Savage and have all uncertainty
objective? Can't we agree (if only as a “thought experiment”) that
there are objective randomizing devices such as fair coins, perfect dice,
balanced roulette wheels, urns filled with colored ping pong balls, etc.?
If we can, then a lot of the difficulty that Savage encounters can be
eliminated using a “middle of the road” formulation and development
due to Anscombe and Aumann. The setup starts the same as the
Savage setup — we are given:

(a) a state space S, which we will assume is finite for simplicity — this
represents the subjective uncertainty, just as in Savage; and

v
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(b) a set of prizes Z, also assumed to be finite for simplicity.

But now instead of looking only at acts which are functions from
states to prizes, we imagine that acts are functions from states to
probability distributions on prizes. The idea is that the subjective un-
certainty will resolve, and depending on how it resolves Totrep will
get an objectively uncertain prospect with prizes out of Z. Thinking
of S as the results of a horse race (subjective uncertainty) and the
resulting gamble being based on something objective such as the spin
of a balanced roulette wheel, we will refer here to this theory as the
horse race-roulette wheel theory.

Formalizing this is easy. Let P be the set of probability distribu-
tionson Z - since Z is finite we mean all the probability distributions.
And for the choice space, take H = P°, or H is the set of all func-
tions from outcomes of the horse race to probability distributions over
prizes.

The representation we seek is: There exist functions = : S — [0, 1]
with D0, csm(s) =1 and u: Z — R such that

h > R' if and only if

45) Y)Y hls)z) - w2 > 3o w()Y Hs)(z) - u(z)]

8€S 2€Z sES z€Z

(In order to interpret this, remember that h(s) is a probability distri-
bution on Z, so h(s)(z) should be read as the probability that h(s)
gives to the prize z.)

Note that in the special case where h is such that each A(s)
gives some prize with certainty, this specializes to exactly the Savage
representation. What A-A have done is to enlarge the domain of
choice in the Savage formulation in the hope (as it turns out well-
founded) that this will make matters easier.

Of course, this makes the A-A setting as vulnerable as the Savage
setting to the sorts of problems that we just discussed — that will be
something to watch out for.

PROBLEMS

K}

(1) As an alternative to the Savage style representation (4.2), I sug-
gested the “state-dependent expected utility representation” (4.3).



40 Chapter 4

Suppose that for a given finite state space S and finite prize space Z
Totrep’s preferences > conform to this sort of representation: There
is a probability distribution p on Z and a function U:Z xS — R
such that (4.3) holds. For precisely what other probability distribu-
tions p’ istherea U’ : Z xS — R such that this sort of representation
of > holds for the pair (p’,U’)?

(2) You are engaged in a game of chance with Leonard Savage and a
Martian. The game is simple — in the room is a closed steel box which
either contains nothing or $100. You may have either the contents of
the box (no looking!!!) or $5. Whichever you choose, we open the
box. Moreover, if you choose the box, Savage will offer you a bet of
$1 to win $1000 that it is empty, while if you choose the $5, Savage
will offer you a bet of $1 to win $1000 that the box has the $100 in it.

To help you try to decide what to do, Savage suggests that you should
use the following formulation, which fits into his framework.

Z - prize space — $1100, $1005, $100, $5, $4, $0, $-1

S - state space — s; — $100 in box, s, — box empty

In this case the four “feasible” acts are:
r, — take box and bet z;(s;) = $1100, z(sz) =$ —1;
T, — take box, no bet z3(s1) = $100, z,(s2) = $0;
z3 — take $5 and bet z3(s;) = $4, z3(s2) = $1005;
T4 — take $5 and no bet z4(s;) = 85 z4(s2) = $5.

Here is the catch. This Martian claims that she can foretell the future.
She has already foretold whether you would pick the box or not, and
has either not placed or placed the $100 accordingly, so as to guarantee
that Savage will win any wager you make with him. If you find this
hard to believe, Savage and the Martian can show you affidavits from
5000 people with whom they have previously played this game, each
testifying that the Martian correctly predicted what the person would
do. (Moreover, you can be sure that the Martian and Savage have
played this game exactly 5000 times.)

If you believe these affidavits (better still, if you now assess proba-
bility .97 that the Martian can and does foretell the future), will the
formulation that Savage has suggessted lead to a Savage style rep-
resentation of your preferences? (By a Savage style representation
I mean the sort of representation given in (4.2).) Why not? (Don’t
bother to try and explain why — the answer to my first question is no.)




Uncertainty — Formulations and Representations 41

Can you suggest another Savage style formulation that will result in a
Savage style representation? (I am specifically interested in the case
where you believe that the Martian can probably foretell the future,
but you aren’t certain of this.) Spell out this alternative formulation.

(3) Suppose that you and I are about to play the following game with
the help of John Nash {a famous game theorist). The props are a
silver dollar, 1 red marble, 1 blue, 1 green, 1 orange, and two cards
which are marked as follows:

green orange green orange
red 10,-1 1,1 red -1,10 1,1
blue -1,10 1,1 blue 10,-1 11
H card T card

You hold the red and blue marbles, I hold the green and orange. Prof.
Nash takes the coin and the two cards and leaves the room. He flips
the coin - if it comes up heads he returns with the card H; if tails he
returns with the T card. He places the card face down on the table.
(There are no distinguishing marks on the backs of the cards.) Prof.
Nash invites you to look and see which card he has brought in - I
am not allowed to see which card he brought in whether you look
or not, but I am allowed to see whether you looked (in fact, I must
be given this information). Finally, you select either the red or the
blue marble, I select either the green or the orange, and we reveal
our selections simultaneously. Payoffs are made according to the two
numbers in the relevant cell — you get the first number in the cell, I
get the second. So, for example, if Nash brings in the T card, you
select the red marble and I select the green marble, you get $-1 and I
get $10. (This game is being funded by the NSF.) Of course, negative
Payoffs are losses. You must decide:

(a) Whether or not to look at the card.
. (b) If you look, what to do next (which color to play).
) (¢) If you don’t lbok, what to do next.
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This book is supposed to be about choice theory, so it ought to have
something to say about your choice problem. Does it (so far)? Can
you fit this decision problem into any of the frameworks we have
discussed so far? Begin by deciding what you will do in this case.
Then formulate the problem according to some one or more of our
models, and see if what you’ve chosen to do can be “rationalized” by
the representation we have suggested for the form of model you've .
chosen.




5
von Neumann-Morgenstern
Expected Utility

FINITE PRIZE SPACES

In our development of von Neumann-Morgenstern (or NM) ex-
pected utility theory, we’ll begin with the easiest case, where the set
of possible prizes is a finite set.

Let Z be a finite set and let P be the set of probability measures
on Z. That is P is the set of functions p : Z — [0,1] such that
Y .ezP(2) = 1. (Throughout this section, all sums are over Z unless
otherwise specified.) The choice set in this formulation is P — Totrep
is presumed to be making pairwise comparisons between members of
P, indicating strict preference by the binary relation ». (Note well,
P is an uncountably infinite set if Z has more than one element, so
using the results of Chapter 3 will not e easy.)

If p and ¢q are both in P and a € [0,1], then there is an element
ap+ (1 —a)g in P which is defined by taking the appropriate convex
combinations of the probabilities of each prize separately, or

(ap + (1 — a)g)(2) = ap(2) + (1 — a)g(2).

It may help you to think of ap + (1 — a)g as representing a com-
pound lottery: First an experiment with two outcomes (say Blue and
Orange) is carried out, where the probability of Blue is a. If Blue
transpires, then the lottery p is performed. If Orange transpires,
then ¢ is performed. But while you may wish to think of the lottery
ap + (1 — a)q in this fashion, doing so may lead you into some inter-
Pretational difficulties; see the remarks later on and the development
in Chapter 12.
Now for some axioms about Totrep’s preferences on P.

Axiom (5.1). » is a preference relation.

43
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We discussed this axiom in Chapter 2, and we said there that negativé
transitivity might be troublesome. This richer setting doesn’t make
it any less troublesome, but we won’t worry further about it.

Axiom (5.2). For all p,q,r € P and a € (0,1], p > ¢ implies ap +
(1-a)r>aqg+(Q1—a)r.

This is commonly called the substitution or the independence axiom.
The motivation for it (thinking in terms of compound lotteries) is:
The difference between ap + (1 — a)r and aq + (X — u)r is what
happens if Blue transpires (and as a > 0, there is positive probability
that Blue will transpire). So how Totrep feels about ap + (1 —a)r vs.
ag + (1 — a)r should be determined by how he feels about p vs. q.

Axiom (5.3). For all p,q,r € P, if p = ¢ > r then there exist a,b €
(0,1) such that ep+ (1 —a)r = g>bp+ (1 - b)r.

This is called the Archimedean or continuity axiom. It roughly says
that there is no gamble p so good that for ¢ > r, a small probability
b of p and a large probability 1 — b of r is always better than gq.
Similarly, there is no gamble r so bad that for p > ¢, a large proba-
bility a of p and a small probability 1 —a of r is always worse than
q. It is called the Archimedean axiom because of the resemblance to
Archimedes’ principle: No matter how small is z > 0 and how big is
y > 0 there i1s an integer n such that nz > y. The reason that it is
called the continuity axiom will become clear in a little bit.

Most people, viewing the substitution axiom for the first time,
think it looks pretty convincing on first principles as a normative
precept for choice under uncertainty. The idea is a straightforward
and compelling one: When comparing two (complex) entities, you
should disregard those places in which the two are the same and focus
your attention on the differences. Of course, there is more to this
axiom than that, in that the way in which the things are the same
is (according to the axiom) not to matter. Put it this way: Suppose
that you are comparing two dinner menus. In the first, you start
with smoked salmon, continue on to a steak, and finish with apple
pie. In the second, you start with smoked salmon, then have grilled
salmon, and then finish with apple pie. Now these two differ only in
the entree, steak vs. grilled salmon. And you may have a general
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preference for grilled salmon over steak. (You may not, but suppose
you do.) Still, having an appetizer of smoked salmon may well tip
the balance towards the first menu. The point of this is that your
preferences are defined over the entire “package” of the meal, and
it isn’t so sensible in this setting to restrict attention to individual
pieces.

The substitution axiom, however, is saying that you can look at
individual pieces when comparing two packages. Why is this sensible
in this setting? Sometimes the reason is put as some sort of indepen-
dence of irrelevant alternatives. In the comparison of ap + (1 — a)r
with aq + (1 — a)r, either the d@ outcome happens or the 1 —a. If
the former happens, then what you would have gotten in the 1 — a
outcome is irrelevant — it didn’t happen, and you may as well ignore
it. On the other hand, if the 1 — a outcome does happen, then it
is irrelevant which of the two you selected. So, the story goes, it is
sensible to ignore the 1 — a part, which is irrelevant for purposes of
comparison, and focus on the comparison of the two a pieces.

This is, though, just a story. From the point of view of normative
theory, it is up-to the decision maker (you?) to decide whether you
think this is a sensible axiom to follow. And, as we’ll see in Chapter
14, there are a number of well-known and well-honed cases in which
the substitution axiom, as a description of how people do choose, is
falsified empirically. ’

The Archimedean axiom is, typically, the one that causes most
people to express doubts. Consider the following example: p is a
gamble in which you get $1000 for sure; ¢ is a gamble in which you
get $10 for sure; and r is a gamble in which you are killed for sure.
Most people would express the preference p > ¢ = r. And so, the
axiom holds, there must exist a probability a € (0,1), presumably
close to 1, such that ap + (1 — a)r > ¢. That is, you are willing
to risk a small (but nonzero) chance of your death, to trade up from
$10 to $1000. This, many people say, is rather dubious. One hears
such lovely sentiments as “no amount of money is worth my health,”
and so on. But consider: Suppose I told you that you could either
have $10 right now, or, if you were willing to drive five miles (pick
some location five miles away from where you are), an envelope with
$1000 was waiting for you. Most people would get out their car keys
at such a prospect, even though driving the five miles increases ever
so slightly the chances of a fatal accident. So perhaps the axiom isn’t
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so bad normatively as may seem at first.
Regardless of how you feel about them, together these three ax-
ioms yield the following result.

Theorem (54). A binary relation > on P satisfies Axioms (5.1-3) if
and only if there exists a function u : Z — R such that

(5.5) p>qiff Z u(z2)p(z) > Z u(z)q(z).

Moreover, if u represents > in the sense of (5.5), thea a function
u' : Z — R also represents > in this sense if and only if there exist
real numbers ¢ > 0 and d such that u'(-) = cu(-) +d.

Note that this gives both necessary and sufficient axioms for the repre-
sentation (5.5) (which is called an expected utility, or von Neumann-
Morgenstern, or cardinal utility representation). It gives as well the
uniqueness result for the representation. This uniqueness result is of-
ten paraphrased as: u is unique up to a positive affine transfcrmation.

Note also that if we have u: Z — R and define f: P —+ R by
f2) =Y u(2)p(2),

z

then (5.5) becomes p > ¢ iff f(p) > f(g¢). That is, f gives an
ordinal representation of the preference relation > (in the sense of
(3.1)). Since P is uncountable, we know from Chapter 3 that there
is a countable >-order dense subset of P. Somehow, this is implied
by some one or more of our three axioms We’ll later discover that it
is mostly (5.3) that is doing this.

To prove this result, we need the following lemmas.

Lemma (5.6) If > on P satisfies Axioms (5.1-3), then:

(a) p>gand 0<a<b<1 imply bp+ (1 —b)g >~ ap + (1 —a)g.
(b) p = ¢ >=r and p > r imply there exists a unique a* € [0,1] such
that ¢ ~a*p+ (1 —a*)r.

(c) p~ q and a € [0,1] imply ap + (1 — a)r ~ ag + (1 — a)r for all
r€P.

Remarks. Part (b) of the lemma sometimes appears directly as an
axiom, in which case it is called the calibration or solvability axiom.
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Also, this part of the lemma is what causes (5.3) to be called a conti-
nuity axiom. To see why, recall from calculus the intermediate value
theorem, which says that if f is a continuous function which takes on
a value y; at some argument z; and another value y; at z3, then
for any value y3 between y; and y, there is some argument between
z; and z3 at which the function takes on the value y3. In part (b)
of the lemma, we are seeing that along the “line segment” joining p
and r, for any ¢ that is between p and r in terms of preference,
there is some convex combination ap + (1 — a)g which is indifferent
to ¢ . In other words, preference is continuous in probability. As we
will see, the proof of part (b) relies enormously on (5.3). Finally, part
(c) sometimes appears as an axiom and, just like (5.2), is called the
substitution or the independence axiom.

Proof. (a) First consider the special case a = 0. Then p > ¢ and
0 < b <1 with Axiom (5.2) imply bp+(1—-d)g>bg+(1—b)g=q=
ap+ (1 —a)gq. Now let r = bp + (1 — b)q and suppose a > 0. Then
(a/b) < 1, and r > ¢ and (5.2) together imply that

r= (1-(a/b))r +(a/b)r > (1-(a/b))q + (a/b)r
= (1= (a/b))g + (a/b)(bp + (1 - b)q) = ap + (1 — a)g.

(b) Since p > r, part (a) ensures that if a* exists it is uhique. If
p~ gq, then a* =1 works. If ¢ ~ r, then a* = 0 works. So we need
only consider the case p = ¢ > r. Define

a* =sup{a € [0,1]: ¢ = ap+ (1 — a)r}.

- Since a = 0 is in the set, we aren’t taking a sup over an empty set.

By the definition of a*, if 1 > a > a*, then ap + (1 — a)r > gq.
Moreover, by (a), if 0 < a < a*, then ¢ > ap + (1 — a)r. To see this,
note that if 0 < @ < a*, then there exists a’ such that 0 < a'< o' < o*
and ¢ > a'p + (1 — a')r by the definition of a*. And a < o' implies
¢zadp+(1—a)r>=ap+(1-a)r.

There are three possibilities to consider.

Suppose a*p + (1 — a*)r > ¢ > r. Then by (5.3) there exists
b€ (0,1) such that b(a*p+(1—a*)r)+(1—b)r = ba*p+(1—ba*)r > q.
But ba* < a*, so by the previous argument ¢ > ba* + (1 — ba*)r.
Contradiction.
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Suppose p = ¢ = a*p+ (1 — a*)r. Then by (5.3) there exists
b € (0,1) such that ¢ > d(a*p+ (1 —a*)r)+ (1 —b)p = (1 —b(1 -
a*))p + ((1 — a*))r. Since (1 —5(1 — a*)) > a*, we have from above
that (1 —5(1 —a*))p + (b(1 — a*))r > q. Contradiction.

This leaves us with the third possibility (which is what we want),
namely that a*p+ (1 —a*)r ~ gq.

(c) This result is trivial for case where, for all s € P, p~ g~ s.
So suppose that there is some s € P with s > p ~ ¢. Suppose as well
that ap+(1—a)r > ag+(1—a)r. An application of (5.2) shows that for
all b€ (0,1), bs+(1—0b)g > bg+(1—b)g = g ~ p, and hence a second
application of (5.2) shows that a(bs+(1—-b)q)+(1—a)r > ap+(1—a)r
for all b € (0,1). Since (by assumption) ap+(1—a)r > ag+(1—a)r,
(5.3) implies that there exists for each b some a*(b) € (0,1) such that
ap+(1—a)r > a*(b)(a(bs+(1-b)g)+(1—a)r)+(1—a"(b))(ag+(1—a)r).
Fix, say, b = 1/2, and let a*(1/2) be written a*; then we have that

ap + (1 —a)r > [a*a/2]s + [a*a/2 + (1 — a”)a]q + [1 — a]r.
But the term on the right hand side is
al(a®/2)s + (1 - a*/2)q] + (1 — a)r,

and since a*/2 > 0, this must > ap + (1 — a)r, a contradiction. The
other cases are handled similarly.

Before giving the next lemma, we need a bit of notation. For any
z € Z,let 6, denote the probability distribution degenerate at z, i.e.,

1 f2z'==2

b:(+) = {0 if 2/ # 2

Lemma (5.7). If > on P satisfies Axioms (5.1-3), then there exist z°
and z, in Z such that 6,0 > p > §,, forall pe P.

The proof is left as an exercise, with the hints that you should
use induction on the size of the support of p, and that part (c) of
Lemma (5.6) and Axiom (5.2) play major roles in the proof. Finally,
we are ready for:
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Proof of Theorem (5.4). Suppose such a function u exists. Then show-
ing that (5.1-3) all hold is a straightforward exercise and is omitted.
(If you try to supply the proof and you get to the point of showing
that (5.3) is implied by.the representation, don’t forget our discussion
of the intermediate value theorem.) |

Suppose that > satisfies (5.1-3). Apply Lemma (5.7) to produce
z° and z,. If 8, ~ §,, , then u = ¢ for some constant c satisfies (5.5),
as neither p > ¢ nor Y u(2)p(z) > 3 u(z)g(2) is possible. Moreover,
it should be clear that u constant is the only possible function for
this representation in this case, so u' is any other representation iff
u' = eu + d for constants e > 0 and d. So for the rest of the proof
we consider the case §,0 > 6, .

For p € P define
f(p) = a where ad;s + (1 - 0)52° ~ P

By the lemmas, such an a exists and is unique, so f is well defined.
Moreover,

f(p) > f(g) iff f(p)bzo+(1—f(p))bz. > f(q)bzo+(1—f(g))d:, iff p >~ g

by part (a) of the lemma and standard properties of preference and
indifference relations. Hence f(-) is a representation of > in the
sense of Chapter 3. (We've already gotten the result that there is a
countable >-order dense subset in P. How did that happen?)

Next, for all p,q € P and « € [0,1], by repeated application of
part (c) of the lemma,

ep+(1-a)g ~ a[f(p)éz +(1=f(p))b:, ] +(1—a)[f(g)6-+ +(1—£(4))éz.]-

Thus by the definition of f,

(5.8) flap + (1 — a)g) = af(p) + (1 — a)f(q).

If you like fancy math-speak, (5.8) says that the function f is an affine
function. Remember this step in the development, as we’ll come back
to it in a bit. In fact, put an X in the margin of the page right here

(in pencil, please), so that you'll be able to find this spot quickly later
on.
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Now for z € Z define
u(z) = f(8,).

By virtue of the above, we'll have the representation (5.5) as soon as
we show that

(5.9) fp) =) u(2)p(2),

z

for all p € P. The method is to use (5.8) and induction on the size of
the support of p. (The support of p is the set {z € Z : p(2) > 0}.)
If the support of p has one element, say 2’, then p = §,» and (5.9)
follows trivially.

So suppose inductively that (5.9) is true for ps with support of
size n —1 > 1. Take any p with support of size n > 1, and let 2’ be
ir- the support of p. Then if ¢ is defined as

ifz=2

0
(=) = { P(2)/(1-p() iz

q has support of size n — 1 and p = p(2')é, + (1 — p(z'))q.
By (5.8) and the induction hypothesis applied to g,

f() =p(z")f(62) + (1 — p(z'))f(q)
= p(")u(z") + (1 = p(2') Y [p(2)/(1 = p(z")u(z) = Zp 2)u(z).

zF£ 2!

This establishes (5.9) by induction, since Z is finite.

It is left to you to establish the uniqueness result, namely, if u
and u' are two utility functions representing > in the sense of (5.5),
then each is a positive affine transformation of the other.

Before moving on to the NM representation for more complicated
settings, I would like to close this section with a few comments about
the role of compound lotteries in this theory. )

In a number of books, the theory above is descnbed and moti-
vated with compound lotteries, as we did above. Typically, there are
pictures that look like figure 5.1, which is supposed to represent, say,
drawing a ball out of an urn with one blue and three orange balls, and
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then, if a blue ball is drawn, rolling a perfect die, etc. This is presum-
ably distinct from the lottery depicted in figure 5.2, which represents
drawing a ball from an urn with 154 balls: 14 blue, 14 orange, 14 red,
18 pink, 36 purple and 66 mauve, with outcomes z; if blue comes up,
etc. And when motivating the substitution axiom, it is figure 5.1 that
is drawn to represent the convex combination of lotteries depicted in
figure 5.3 and and not figure 5.2.

Figure 5.1
1/3 “1 1/7_—7%
1/3 ,
1/4 2+ 3/4 25
13 ™~z 47~z
Figure 5.3

The point is that the theory given above is a mathematical theory
of preference among objects which are depicted by figure 5.2, and not
by figure 5.1. It.is figure 5.2 that is meant by the convex combination
in figure 5.3. Now there is nothing inherently wrong with depicting
the lottery in figure 5.2 as we have done in figure 5.1, as long as you
are willing to agree that they are the same object. But insofar as there
1s any difference between figures 5.1 and 5.2, in that Totrep might like
one better than the other, this is not a difference that our theory can
ever record, because our theory has no way (yet) to make a distinction
between the two. Carrying things a bit further, our theory identifies
any two lotteries that attach the same probabilities to the same prizes,



52 Chapter 5

even if the randomizing devices are different. The theory is a theory
of choice among probability distributions — and when we seek to apply
it to real phenomena that involve randomizing devices, or collections
of randomizing devices used in sequence, there is an implicit axiom
zero that all that matters to Totrep are the probabilities and prizes -
the randomizing devices and their order are inconsequential to him.

This doesn’t mean that one can’t have a theory of preference
where Totrep distinguishes between “compound” and “simple” lot-
teries (between figures 5.1 and 5.2) — only that the theory developed
above is incapable of such distinctions. To build a theory that makes
this sort of distinction, we’ll first need mathematical way of distin-
guishing compound and simple lotteries. Problem 6 in Chapter 12
gets you started on doing this, if you so desire.

THE MIXTURE SPACE THEOREM

The next order of business is to obtain the NM representation
for cases where Z is infinite and probability measures are more com-
plicated. The method we’ll take to do this is a little indirect, but this
indirection will pay a large dividend later on — we look at a purely
mathematical result called the mixture space theorem. (The original
reference for this theory is Herstein and Milnor (1953).) This theorem
concerns an abstract object, called a mixture space.

Definition (5.10). A mixture space is a set of objects II, with typical
elements 7, p, i, and v, and a family of functions h, : II X II — II
for a € [0,1] such that:

(a) hi(m,p) =,

(b) ha(ﬂ',P) = h1-a(p,7), and

(C) ha(hb("ra P),P) = hab(ﬂ’p)'

The use of Greek letters is supposed to suggest to you that this is
an abstract object — in examples, I'll use standard Roman letters, to
indicate that I have in mind something specific.

Example 1. Let Z be a countable set and let P be the set of all
probability measures on Z. For p,q € P, define h,(p,q) € P by
ha(p,q) = ap + (1 — a)q. It is easy to verify that (P, {ha}aepo,1)) 50
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defined satisfies the conditions of Definition (5.10) and so is a mixture
space.

Example 2. Let Z be any arbitrary set and let Ps be the set of
simple probability measures on Z. That is Ps is the set of functions
p : Z — R such that there is a finite subset supp(p) of Z with
p(z) =0for z¢Y and 3,¢ supp(p) P(2) = 1.

Another way to say the same thing is to say that Pg is the set
of probability measures on Z that have finite support. For p,q € P
define ha(p,q) = ap+(1—a)q. (Note that supp(h.(p,q)) = supp(p)U
supp(q), for a € (0,1). Don’t move on until this makes sense to you.)
Again the conditions of the definition all hold, and we have a mixture
space.

Example 3. Let Z = R and let Pp be the set of probability distribu-
tions on Z which have continuous deénsities. That is, Pp is the set of
probability distributions (or measures) p such that p(Y) = [,, f(r)dr
for all sets Y C R, where f is a continuous function and such that
Jr f(r)dr = 1. (If you know enough to worry about such things, I
really only want this to hold for measurable sets Y'.) For p,q € Pp
define hq(p,q) = ap + (1 — a)q — that is, h,(p,q) is the probability
distribution whose density is af + (1 — a)g where f is the density of
p and g is the density of ¢. Again the conditions of the definitioa
can be verified — we have a mixture space.

Example 4. So far, all examples have been sets of probability measures.
Here is an example that is different. Let S be a finite set, and let Z
be another. Let P be the set of all probability distributions on Z,
and let H = PS. That is, an element h of H is a function from S
into P — for each s € S there is a corresponding probability measure
h(s) € P on Z. Define hq(p,q) = ap + (1 — a)q pointwise. That
18, (ha(p,q))(s) = ap(s) + (1 — a)g(s). Once again, you can verify
that the conditions of the definition are satisfied, and thus we have a
mixture space.

In each of the above examples, we wound up writing h.(p,q) = ap +
(1—a)g — where addition here eventually resolves into addition of real
numbers. Indeed, there are some standard reference books (and I'm
thinking here of Fishburn (1970)) that use the notation ap + (1 — a)q
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from the start. 1 don’t do so to keep you aware of the fact that the
mixture space theory is an abstract theory, stated without reference
to any particular context having to do with addition of real numbers,
(But on this point, see the discussion near the end of this section.)

Theorem (5.11). Suppose II is a mixture space and > is a binary
relation on II. Then
(a) > is a preference relation,
(b) ® > p and a € (0,1] implies hq(x,p) > ha(p,p) for all p € 1II,
and .
(c) ® > p > p imply that there exist a,b € (0,1) such that he(m,u) >
p > hy(m, 1),
if and only if
(d) there exists a function F' : II — R such that

(di) = > p iff F(7) > F(p), and

(dF) F(ha(m,p)) = aF(x) + (1 — a)F(p).
Moreover, if F represents > in the sense of (d), F' is another rep-
resentation (in this sense) if and only if F' = aF + b for constants
a >0 and b.

This is quite a mouthful. Note the general flow: Properties (a), (b),
and (c) are necessary and sufficient for the representation (d), and the
representation (d) is unique up to a positive affine transformation.

This begs for comparison with the von Neumann-Morgenstern
expected utility theorem, Theorem (5.4), that we proved in the previ-
ous section. Of course, (a), (b), and (c) look just like the three axioms
(5.1,2 and 3). All that is different is that ps and g¢s have changed to
7s and ps. As for (d), remember that in the proof of Theorem (5.4),
I told you to put a big X in the margin. At just that point, we had
reached a conclusion that looks just like (d). (Don’t erase the X just
yet.) So, except for the uniqueness result, which looks the same as in
Theorem (5.4), we have here a part of Theorem (5.4), up to the point
where we used induction in order to show (in the proof of (5.4)) that
if f is affine, then it has an expected utility representation. Nothing
like that here, but otherwise this mixture space theorem looks like
just what we had before.

And the proof of this looks pretty much like the proof of the
theorem. To provide all the details, we would begin with a lemma
analogous to Lemma (5.6). Let me set aside for the moment com-
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mentary on how the analogous lemma would be proved and proceed
on the basis of the assumption that we have obtained such a lemma
-for general mixture spaces.

Once we have the result analogous to Lemma (5.6), we are almost
in business. The next step in the proof of Theorem (5.4) was to state
and prove Lemma (5.7), which established (well, claimed, since it was
left to you to do) that there was a best and worst prize. Note how
we used that lemma in the proof of the theorem: We could calibrate
(using part (b) of the first lemma) every gamble p in terms of a simple
convex combination of the best and worst prize: If p ~ ab,. + (1 —
a)b,, , then we defined f(p) = a. Now in general, we can’t establish
that there will be a best and worst element in the mixture space - in
some applications, that just simply won’t be true. So we’ll have to do
without Lemma (5.7).

How? It is really not too complicated. In the first place, consider
the case where m ~ p for every n and p in II. Not a very interesting
case and simple to deal with: > is represented by any constant func-
tion. So we pass on to there case where there is at least one pair (7, p)
with 7 > p. Fix any such pair, calling the better element n° and the
worse element 7,. Define F' on these two elements by F(7°) =1 and
F(r.)=0.

Now we have to define F for all the other = € II. There are three
cases to consider. First, suppose that n° > n > n,. Then, just as
in the proof of the theorem, we can apply part (b) of the “analogous
lemma” (that is, Lemma (5.6) stated for mixture spaces) to generate
some unique a such that 7 ~ h,(7°,7,). Define F(r) = a. Second,
it might be that = > #°. In this case there is a unique a such that
7° ~ hg(m,m,). And in this case define F(a) = 1/a. (How do we
know that a € (0,1)?) Finally, there is the case that 7, > 7. Then
there is a unique a such that m, ~ ho(7°, 7). Define F(7) = a/(a—1)
for this a.

What’s going on here? Is is simpler than it looks. We set a
scale from 7° to m, and then we calibrate everything else on that
scale. The scale is set so that 7, is at the level zero, and 7° at the
level one. For anything that falls between them, we calibrate as in
the proof of Theorem (5.4) — nothing new here. What about things
which are better than n°? For these we find where 7° would fall on
a scale from 7, up to the element m that we are measuring. Then
if F is to be affine, since 7° ~ h,(m,7,), it will have to be that
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1= F(7°) = aF(r)+(1—a)F(7,) = aF(r) (since F(m,) =0). Solve
this equation, and you have F(7) = 1/a, which is just what we did.
(Now you show why we did what we did for the case where 7 falls
below =,.)

This defines a function F'. Does it represent >, and is it really
affine? The answers are yes to each, although showing this is a tedious
affair of algebra. I leave the details to you. Also left to you are the
very simple details of showing that (d) in the theorem implies (a)
through (c), and also showing that the representation is unique up to
positive affine transformations. If you don’t want to do the algebra
yourself, any of the standard reference books will provide the details
for you.

So we are done. Except that we still have to obtain a result
analogous to Lemma (5.6) in this setting. Will the proof we gave
before work in this general setting? Not quite. In all the applications
that we've discussed, h,(p,q) = ap + (1 — a)g where the addition is
eventually addition of real numbers. Thus things like

ap+(1—a)bg+(1—a)(1-0)r

are well defined in applications — it is ap + (1 — a)(bg + (1 — b)r) or
ha(p, hs(q, s)). But because addition of real numbers is associative,
in all applications this is the same as

+ (1-a)b
a+b—abp a+b—a

(a+b— ab) q)+ (1 (a+b—ab)r,
or
ha—(—-b—-ab(ha/(a-}-b—ab)(p’ Q)’ T).

The question is: Is “this” true in general - for a general mixture space
is it the case that

ha(m, ho(p, 1t)) = hatb—ab(haj(atb—ab)(T, ), 1)?

No, this isn’t implied by the definition of a mixture space that we
gave above. And, if you go back and review carefully the proof that
we gave of Lemma (5.6), you'll see that this property was assumed.
So. what do we do? There are two options. We can add this
property to our definition of a mixture space. After all, this property
is satisfied by the examples we gave, and, as you will see, it will be
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satisfied by all the examples of mixture spaces that we will have in
this book. Hence, for purposes of the applications in this book, the
proof of Lemma (5.6) that we gave will suffice. Alternatively, we can
go looking for a proof of the lemma which doesn’t use this property.
Such proofs do exist — you will find one in Fishburn (1970), if you
look.

By either of these means, we have an abstract result which looks
a lot like our NM theorem for a finite prize space (at least as far as
the X you put in the margin). We move on now to applications.

SIMPLE PROBABILITY DISTRIBUTIONS

For our first application, we look at the set of simple probability
distributions over an arbitrary set Z. Recall from Example 2 above
that a probability distribution p on an arbitrary set Z is a simple
probability distribution if it has finite support (or, in other words,
if it gives positive probability to a finite number of outcomes in Z).
This 1s, as we noted, a mixture space, with component-wise addition
of probabilities the mixing operation. Parts (a), (b) and (c) of the
mixture space theorem are just Axioms (5.1), (5.2) and (5.3) in this
case, and so we have the following instant corollary to the mixture
space theorem:

Corollary (5.12). For arbitrary set Z and Ps the space of simple
probability distributions on Z, a binary relation > on Ps satisfies
Axioms (5.1-3) if and only if there is a function F' : Ps — R such
that, for all p,q € Ps and a € [0, 1],

p = ¢ if and only if F(p) > F(gq), and

(5.13) F(ap + (1 - a)q) = aF(p) + (1 — a)F(q).

Moreover, F in the representation is unique up to a positive affine
transformation.

How does this compare with the von Neumann-Morgenstern ex-
Pected utility representation that was obtained in Theorem (5.4) for
finite Z? It is weaker than that theorem, because in Theorem (5.4)
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we had a bit more; we concluded that the function F' that represents
> could be written as

(5.14) F(p) =) u(z)p(2),

2€Z

for some function u : Z — R. It is easy to see that any function F
on Ps that can be written as in (5.14) satisfies (5.13). But it isn’t -
obvious that any function F' on Pg that satisfies (5.13) can be written
in the form (5.14).

But while this isn’t obvious, it is true. Look back at the proof
of Theorem (5.4), beginning just after the point where you put the
X in the margin. Essentially, we got to the point of the corollary
above, and then we used an argument by induction on the size of
the support of p to show that, for u(z) = f(é.), (5.14) would hold.
Pretty clearly, we can do exactly the same thing here, because it isn’t
the finiteness of Z that is critical, but the finiteness of the support
of each p. And in this case, where we are looking only a simple
probability distributions, the finiteness of the support of each p is
ensured. So if we define u(z) = F(6,) for the function F' given to us
by the corollary, and we repeat the argument in Theorem (5.4), we
have the following;:

Theorem (5.15). For arbitrary Z, a binary relation > defined on the
set Ps of simple probability distributions on Z satisfies Axioms (5.1-
3) if and only if there is a function u : Z — R such that, for all

?qE€ PS)
p>qiff Y p(2)u(z)> ) g(z)u(2),
2z b4
where the two sums in the display are over all z in the respective
supports of p and ¢q. Moreover, another function u' gives this repre-
sentation if and only if u' is a positive affine transformation of u.

There is one comment to make before we move on: In the case of
a finite set Z, we know (more precisely, you were supposed to show)
that there are a best and a worst prize. For the set of all simple
probability distributions on an arbitrary set, this is certainly not the
case. (Provide a counterexample. You should be able to do so in
at most thirty seconds, if you understand that the representation in
(5.15) is necessary and sufficient for the three axioms.) So in this case
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we really do need the fancier technique of the mixture space theorem,
which is proved without the assumption of a best and worst prize.

NON-SIMPLE PROBABILITY MEASURES AND
THE SURE-THING PRINCIPLE

What happens when we try to extend our previous results to non-
simple probability measures? To see what might happen, consider the
following example.

Let P° be the set of all probability distributions on the real line
R that are convex combinations of simple probability distributions
and probability distributions with continuous density functions. To
be precise, let Ps be the set of all simple probability distributions
on the real line, and let Pp be the set of probability distributions
on the real line that have continuous density functions. That is, for
every p € Pp there exists a continuous function f: R — [0, 00) such
that [ f(r)dr = 1. The probability that this p gives to a subset
B of Ris [g f(r)dr. Note that any such p gives zero probability
to any single point or any finite collection of points. A standard
example of such a probability distribution is the Normal distribution,
with density function exp(—r2?)/v27 = f(r). (I'm relying on your
knowledge of such probability distributions being sufficient to follow
what will ensue. I think that this will make sense from all possible
states of knowledge.) In fact, there is a one-to-one correspondence
between elements p of Pp and functions f as above. So by abuse
of notation, I will write f as the element of Pp really meaning the
probability distribution with density function f.

An element of P° is then a probability distribution p = ap,+(1—
a)f for given'a € [0,1], p, € Ps and f € Pp. f p=ap, + (1 — a)f
and ¢ = bg, + (1 — b)g are two elements of P°, then for c € [0,1] we
can define ¢p + (1 — ¢)q € P° by

cp+ (1 —c)g = (ac+ (1 — c))[ac+ ;1(01 — c)p, + aclf}(-lb(—lt2 C)qal
+ (1-ac—b(1 =)= :ﬁl__b(al)_ c)f 1 (~1a—cc—)(bl(1——l-))6)g]'

(Can you verify that this is indeed an element of P°? What is involved
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in that verification?) With this definition and with k.(p,¢q) defined
to be ¢p + (1 — ¢)g, it can be shown that P° is a mixture space.
There is nothing mysterious in this construction. P° is merely
the set of probability distributions on the real line “gotten” by doing
some two outcome (blue vs. orange) experiment, then if blue comes
up, doing an experiment with finitely many real valued outcomes,

while if orange comes up, doing an experiment that produces a real -

number according to some continuous probability distribution. And
the convex combinations defined above are just the obvious mixing of
two such probability distributions.

So we can imagine Totrep contemplating a choice among such
probability distributions, where the prizes are, say, dollar prizes. Ac-
tually, it will make things a little smoother if we assume that the
prizes lie in some finite interval of real numbers — say 0 to 1017,
(So we want in P° only convex combinations of simple probability
distributions on this range and probability measures with continuous
densities f that are zero outside this range.) Letting Totrep express
his preferences among such lotteries by the binary relation > as usual,
we posit the standard three von Neumann-Morgenstern axioms:

> 1s a preference relation;

if p,q € P° are such that p > ¢, then for all » € P° and a € (0,1] it
follows that ap + (1 — a)r > ag+ (1 — a)r; and

if p,q,r € P° are such that p > ¢ > r, then there exist a,b € (0,1)
such that ap+ (1 —a)r > g > bp+ (1 - b)r.

Before going any further, stop and think — is there any new reason
to suppose that these axioms are not reasonable (normatively) in this
expanded setting?

Directly from the mixture space theorem:

Corollary (5.16) A binary relation > on P° satisfies the three mixture

space axioms given above if and only if there exists a function F :
P° — R such that

p>qiff F(p) > F(q) and F(ap+(1—a)q)=aF(p)+(1—-a)F(q)

Moreover, such functions F' are unique up to positive affine transfor-
mations.

S
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Not bad, but is this an expected utility representation? Not really —
an expected utility representation would read something like:

Pseudo—theorem_(5;17) A binary relation > on P° satisfies the three
axioms if and only if there exists a function u : [0,107°°] — R such
that

(5.18) p > qiff Ep[u] > Eg[u].

Moreover, such functions u are unique up to positive affine transfor-
mations.

In this pseudo-theorem, E,[u] means the expectation of u taken with
respect to p; if p = ap, + (1 —a)f, then

10100

Bl =L p(uz)+(1-a) [ ufe)s

where the summation is taken over all z in the support of p,. If
you are worried about whether u is an integrable function, stifle your
concern. Or, if you are both a chronic worrier and well enough trained
to know what this means, rewrite the theorem to read in line 2 “if and
only if there exists a bounded and measurable function u : [0, 101%0] —

R such that..” As we'll see in a minute, this pseudo-theorem will
fail for reasons unrelated to the restriction that u is bounded and
measurable.

Can this stronger result be deduced from the corollary? It was
possible when instead of P° we had Ps - then defining u(z) = F(§,)
and the induction argument did the trick. But the induction argument
will hardly work here.

Just because our old argument doesn’t suffice to prove this pseudo-
theorem doesn’t mean that it is false. But, as it happens, it is false.
Here is a counterexample:

For p = ap, + (1 — a)f where p, € Ps and fePp define

F*p)=(1—-a)+a Y zp.,(2)
z:p,(2)>0

Then F* is a well-defined function from P° into R. (How do I know
this? What do I need to show in order to really prove this?) Moreover,
it can be shown (by you for homework perhaps) that F'* satisfies

F*(ap+(1—a)g) = aF*(p) + (1 — a)F"(9)-
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So if I define a binary relation > on P° by
p > qif F*(p) > F*(q),

then Corollary (5.16) ensures that > satisfies the three axioms. And
yet, for > so defined, no function u exists that will satisfy (5.18).

To see this takes two steps: First, suppose such a u did exist. -
Let u(101°) = u° and u(0) = u,. Pick any number z € [0,101%7),
and note that F*(6,) = z = F*[(2/10'9%)6;9100 + (1 — z/101%0)&y].
Thus 6, ~ (2/10199)6,g100 + (1 — 2/10199)§;. Then by the assump-
tion that such a u does exist, we would have u(z) = (z/101%)u° +
(1 — z/10'%%)y, , which implies that u(z) = az+ b for some constants
a > 0 and b. What are we doing here? It is really quite simple.
We know that u(z) = z represents > restricted to simple probability
distributions, because that is how > is defined. So by the uniqueness
result for expected utility representations on simple probability dis-
tributions, we know that any other utility function will have to be a
positive affine transformation of u(z) = z. All that the details in this’
paragraph do are to verify that fact.

Now compare the following two lotteries — a uniform distribution
on the interval [0,.5], call this p', and the degenerate distribution at
3/4, call this p”. Since p’ is purely a continuous density distribution,
we have that F*(p') = 1. And p” is purely simple, so F*(p") =
2 2p(2)>0 zp'(z) = 3/4. Thus p' > p” by the definition of >. But
under the supposition that a u exists, and the fact that such a u must
have the form u(z) = az + b, we would have

Eyfu] = /0 's(az +b)2dz = (a/4) + b < (3a/4) + b= E,u[u].

This contradicts p’ > p”, and we have the desired counterexample.

It isn’t hard to see what is going wrong in this counterexample. Look-
ing at p’ and p'", we have two distributions where the first (p’) is
certain to give us a prize (between 0 and 1/2) that we like less than
the prize we are certain to get from the second. And yet the first is
preferred to the second. The example shows that such anomalies are
not ruled out by the three mixture space axioms, so we'll have to add
an axiom that rules them out.
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Axiom (5.19). If r,q € P° and B C [0,10!%} are such that r(B) =1
(that is, both the simple and continuous density parts of r are zero
outside of B) and §, > ¢ for every z € B, then r > ¢q. And if
r,q € P° and B C [0,10'%°) are such that r(B) =1 and ¢ > 6, for
every z € B, then ¢ > r.

In words, if r is concentrated on a set, and if every prize in that
set is as good as ¢, then r is as good as ¢. And vice-versa. This
seems a perfectly sensible axiom, and it is this axiom that the example
violates. This sort of axiom is typically called a “sure-thing” principle,
for obvious reasons.

So, it is natural to ask, will this axiom joined to the other three be
enough to guarantee the sort of expected utility representation that we
want? The answer is: almost, but not quite. There are some technical
niceities that must be assumed as well. To go into them would make
things too complex for this first pass through the subject, so I will
leave off the story here, leaving it to the diligent reader to chase down
the complete story in some standard reference book. As usual, my
recommendation is Fishburn (1970). But you can take it more or less
on faith that an executive summary of this state of affairs runs as
follows: In order to get an expected utility representation theorem for
other than non-simple probability measures, necessary and sufficient
conditions are (a) the three mixture space axioms, (b) the sort of sure-
thing principle sketched above, and (c) some technical conditions. (If
you insist on seeing a complete treatment of expected utility for other
than simple probability distributions, go to the final section of this
chapter — one way to proceed with something extra in the bargain is

sketched there.)

BOUNDED UTILITY

An important point about von Neumann-Morgenstern expected
utility for non-simple probability distributions should be made. Most
treatments that you will find in the literature have as part of the
big theorem that the utility function u must be bounded. Especially
when the prize space is the real line, this isn’t very nice. (Why isn’t
this very nice? Because, for example, we’ll want to talk about “risk
averse” utility functions on the real line — these are concave — and
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there are no strictly increasing, concave and bounded functions on
the real line.)

Why do utility functions necessarily come out being bounded?
Roughly, the reason is as follows. In most treatments, the allowed
probability distributions include all those with countable support and
lots more besides. Probability distributions with countable support
are just like a simple probability distributions, except that the support -
can be countably infinite. Suppose then that the utility function u
was unbounded. It will then be unbounded either above or below
— let’s suppose below. Then there are prizes zj,24,... such that
u(zx) < —2%. Now let p° be the probability distribution assigning
probability 1/2* to prize zx. We have

o
Epolu] = 3 u(za)pla) = —co.

k=1
The expected utility of p® is —oo. This will screw up the Archimedean
Axiom, for one thing - if p' and p” are such that co > E,[u] >
Epn[u] > —oo, then p’ > p" > p°, yet for a € (0,1), Eype 4 (1-a)p[u] =
—o00, or p" > ap® + (1 —a)p’. That is, this is true supposing that we
allow —oo as an expected utility in our representation. If we don’t
allow this, then we’re sunk as soon as p° is produced. The only way
this can be avoided, and the axioms satisfied, is if u is bounded ...

. or if we don’t allow probability distributions like p°. For ex-
ample, we could look at sets of probability distributions with bounded
support. Then all that would be needed is that u is bounded on
bounded sets — not a very onerous condition. Of course, it needs to
be shown that a representation theorem for this sort of set of proba-
bility distributions is possible. And you will have a hard time finding
this sort of result in standard reference books. But it can be done.
For one way, although it takes a bit of math, see the next section of
this chapter.

My point is that most standard references have bounded utility
functions in their von Neumann-Morgenstern expected utility theo-
rems, and this causes some grief in applications. But this isn’t nec-
essary — it certainly isn’t necessary when you're looking at simple
probability distributions only, and it can be done without for larger
classes of probability distributions. In general, what is needed is that
the utility function must be such that plus and minus infinity are not
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possible expected utilities for the class of probability distributions un-
der consideration. In general, you will need this sort of restriction,
but nothing more.

CONTINUITY

The material in this section is likely to be inaccessible to readers
without a good background in mathematics. Sorry.

We said way back at the start that the Archimedean axiom is
sometimes referred to as the continuity axiom. Roughly, this is be-
cause this axiom says that preferences are continuous in probabilities.
If p > g, for any r at all, we tend to think that lim,—.; ap+(l—a)r =
p, and so we would want, for a sufficiently close to one, to find that
ap+ (1 —a)r > ¢. (And similarly on the other side.)

But there is another way to define continuity. For the sake of this
discussion, assume that Z is the real line. Let Ps denote all simple
probability distributions on Z and let P be all (Borel) probability
distributions on Z. If you don’t know what the space of Borel prob-
ability distributions is, don’t worry about it. On the other side of the
spectrum, if you know all about such things and are wondering why
I've restricted to the case that Z is the real line, you can proceed
directly to the case of Z a connected subset of some Euclidean space,
or even just a separable metric space. I'll talk in terms of Z being
the real line, but it is easy to see how all this extends, if you know
the requisite math.

There is something called the weak topology defined on P. Let
me remind the reader who may have seen it: This topology is defined
by saying that p, —» p if for every bounded and continuous function
f on the real line, [g f(z)dpn(z) — [g f(z)dp(z). This topology
is metrizable, by the so-called Prohorov metric, when restricted to
probability distribution functions.

For those of you who have never seen this sort of thing, let me
give you three examples of convergent sequences in this topology.
First, consider the sequence of degenerate probability distributions
{6141 /n}. That is, in the nth distribution, you get the prize 14 1/n
with certainty. Now as anyone can clearly see, this has as “limit” the
Probability distribution which gives the prize 1 with certainty, or 6;.
And, indeed, this sequence does converge to this limit in the weak
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topology. Second, consider the sequence of probability distributions
{pn} where p, gives prizes {0,1/n,2/n,...,(n —1)/n,1}, each with
probability 1/(n + 1). This sequence, in the weak topology, has as
limit the uniform distribution on [0, 1]. Finally, consider the sequence
of probability distributions {p,} where the nth distribution is Nor-
mal with mean 4 (say) and variance 1/n. This sequence converges
in the weak topology to the distribution which is degenerate at the
value 4.

I want to add to the three von Neumann-Morgenstern axioms
one more:

Axiom (5.20). The binary relation > is continuous in the weak topol-
ogy.

Recall from Chapter 3 what it means for preferences to be continuous.
Now one thing is immediate: Since lim,—; ap + (1 — a)r = p and
lim,_,¢ ap+(1—a)r =r in the weak topology, this axiom supercedes
the Archimedean axiom. But it says something much stronger than
the Archimedean axiom, as the following results establish.

Theorem (5.21). A binary relation > defined on Pg satisfies Axioms
(5.1), (5.2) and (5.20) if and only if there is a bounded and continuous
function u : Z — R such that preferences are represented in the usual
sense by expected utility calculated with u. Moreover, this represen-
tation is unique up to positive affine transformations, something I'll
hereafter neglect to say as we move along.

What is added in this theorem over Theorem (5.15) is the conti-
nuity and boundedness of the utility function u. Since we didn’t have
continuity or boundedness in Theorem (5.15), they are not implied,
for simple probability distributions, at least, by the three standard
mixture space axioms. (So, with particular reference to continuity,
when we call the Archimedean Axiom a continuity axiom, we should
be careful to say in what topology we mean continuity.)

How is this proven? Let me sketch one part of the proof. Assume
that the three axioms hold. Now since (5.20) implies (5.3), we know
(see Theorem (5.15)) that there is an expected utility representation,
and moreover the representing function u is unique up to positive
affine transformations. So suppose it isn’t continuous at, say, the value
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z. Suppose, to take one possible case, that u(z) > lim inf,, u(z,) for
some sequence {z,} with limit 2. There is a point z,, far enough
along the sequence so that for n > m, 2, for sure is worse than a
gamble which gives z,;, with probability 1/2 and z with probability
1/2, which in turn is worse than z for sure. (Fill in the many blanks -
this is just a sketch.) This, then, would violate weak continuity of > .
I leave it to you to show that u must be bounded. (You won’t have
a chance of doing this if you don’t know about the weak topology.)
On the other side, suppose that u is bounded and continuous. Then
continuity in the weak topology for preferences given by expected
utility is virtually a matter of definition.

And we can quickly extend this to all of P:

Corollary (5.22) A binary relation > on P satisfies Axioms (5.1), (5.2)
and (5.20) if and only if there is a bounded and continuous utility
function u : Z — R such that > is represented in the usual sense by
expected utility computed using u.

Wow! We got expected utility for all sorts of probability distributions
without anything like the sure-thing axiom stated above. (In truth,
continuity in the weak topology is a lot stronger than the wimpy sure-
thing axiom stated previously.) How is this proven? Going from the
repesentation to the axioms is virtually a matter of definitions. As
for the other direction, I leave it to you — if you're still reading this,
you probably have the math skills needed to prove this — with the
hint that simple probability distributions are dense in the space of all
(Borel) probability distributions in the weak topology. Have fun!

One thing you may not like about what just happened is that
the utility function wound up being bounded. Continuity of u is
actually somewhat desirable, but bounded utility will be a real pain
in applications. How to cure this? Well, there is one very cheap way to
do it. Simply restrict attention to the case where Z is a bounded set
(say, some bounded subinterval of the real line). Then you wouldn’t
be worried about u being bounded - if it’s continuous, it has to be

bounded.

But that is rather too cheap. We'd like to get rid of bounded
U and, at the same time, keep Z all of R. The way to do this
18 to strengthen somewhat the requirements for convergence in the
continuity axiom; if it is harder to converge, then the continuity axiom
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will have less bite. For example, and it is only an example, consider the
following construction. First, let Pk be the set of all Borel probability
distributions with compact support. (Note that Ps C Pk.) Suppose
that > is defined on Pk only, and replace Axiom (5.20) with the
following:

Axiom (523). If p > q, and if {p,} is a sequence of probability
distributions that approach p in the weak topology and that have
supports that are uniformly bounded, then p, > ¢ for all sufficiently
large n. And vice versa, for ¢ > p.

I'm being sloppy, but you get the point. Note that Axiom (5.23)
implies Axiom (5.3) for the case of > defined on Pg. (Proof?) So
we know that Axioms (5.1), (5.2) and (5.23) will give us an expected
utility representation on Pgs. Well, to make a long story short, they
do even better than that: .

Theorem (5.24). A binary relation > defined on Py (or just on Pg, if
you prefer) satisfies axioms (5.1), (5.2) and (5.23) if and only if there
is a continuous function u : Z — R such that > is represented in the
usual sense by expected utility computed with u.

Bingo. Continuous but not bounded utility. I leave the proof in
your hands, which are, no doubt, quite capable if you’ve persevered
in reading this section. And I close with a puzzle. What I really
want for some applications is to have unbounded utility (I'd really
like utility functions that are exponential, for reasons that you’ll see
in the next chapter) and probability distributions that include the
family of all Normal distributions. Can you now see how to do it?

PROBLEMS

(1) Planners in the war room of the state of Freedonia can express the
quality of any war strategy against arch-rival Sylvania by a probability
distribution (py,pz,1—p; —pa) on the three outcomes: Freedonia wins;
draws; loses. Rufus T. Firefly, Prime Minister of Freedonia, expresses
his preferences over such probability distributions by the lexicographic
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preferences:

(p1,P2,p3) > (91,92, 93) if p3 < g3 or [ps = ¢3 and p2 < ¢3).

By the methods of Chapter 3, it is easy to show that these preferences
cannot be represented by an ordinal utility function, let alone by an
expected utility representation. So some one or more of the three von
Neumann-Morgenstern axioms must be violated here. The question
is: Which of the three axioms does this binary relation satisfy (if any),
and which does it violate? Of course, you should prove any statement
that you make.

(2) Let Z be any set, let Ps be the set of simple probability distribu-
tions on Z, and let > be a binary relation on Pg satisfying the three
von Neumann-Morgenstern axioms. Then > has an expected utility
representation. Since this encompasses an ordinal representation of
>, we know that there exists a countable > -order dense subset @ of
Ps. The problem: Produce one such @. If you find this too hard,
you should try it assuming that Z is finite.

(3) Prove that the three von Neumann-Morgenstern axioms (in the
setting, say, of a finite set of prizes Z and all the probability distri-
butions P on Z) form an independent set of axioms.

(4) Provide a proof for Lemma (5.7).

(5) In the theorems of this chapter, we always left it to you to show
that if an expected utility representation holds, then the three axioms
hold. Show this now. Specifically, show first that, in the setting of
arbitrary Z and Ps the set of simple probability distributions on
Z, if we are given a function u : Z — R and we define from it a
function F: Ps = R by F(p) = 2 supp(p) P(2)u(2), then F satisfies
the second half of (5.13). Then show that, in the general context of
Theorem (5.11), if a binary relation on IT and a function F : Il — R
satisfy part (d) of the theorem, then the binary relation satisfies (a),
(b) and (c).

.(6) Give the details (for any of the representatioh theorems) for prov-
ng the uniqueness result.
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(7) In the definition of a mixture space, Definition (5.10), it is not as-
sumed that hq(w,7) =7 for all a and 7. But this property was used
(implicitly) in several places. Is this implied the the three properties
in (5.10), or do we need to add this property to the list of properties
that defines a mixture space?

(8) Fill in the many blanks in the final section of this chapter.

(a) Give all the details for showing that if preferences over simple
lotteries on the real line are represented by expected utility for a dis-
continuous utility function, then these preferences are not continuous

in the weak topology.

(b) And show that if the utility function is unbounded, preferences
aren’t continuous in the weak topology.

(c) Provide the details for extending Theorem (5.21) to Corollary
(5.22). ’ .

(d) Provide a proof of Theorem (5.24).

(e) Provide a theory along the lines of this last section which will
allow you to have all Normal distributions among the probability dis-
tributions you may consider, and which will not rule out the utility
function U(z) = —exp(—\z), for A a positive constant. (Good luck.)
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Utility Functions
for Money

In common applications of von Neumann-Morgenstern expected
utility theory, the prize space is some subset Z of the real line, with
the interpretation that the prizes are money amounts, say reckoned in
dollars. To make things as concrete as possible, suppose for the time
being that Totrep is entering into gambles involving his net worth
(bank balance) — these gambles are based on randomizing devices with
objective probabilities, and the outcomes are independent of anything
else affecting Totrep, such as other income he may earn. (We'll see
why this assumption is necessary in Chapter 12.) Moreover, all gam-
bles under consideration are described by simple probability distribu-
tions, and Totrep happily ascribes to the three mixture space axioms
in this context, so that we know his preferences can be represented by
expectation of a utility function u : Z — R. Interpret the outcome
z as Totrep’s bank balance after the gamble is conducted, and not as

his net winnings from the gamble. The question is: What can be said
about this function u?

BASIC PROPERTIES-AND DEFINITIONS

To keep things simple, I’ll assume throughout that Z is an open
interval (z,,2°) C R. The cases 2z, = —oo and z° = oo are not ruled
out. Pg will denote the set of simple probability distributions on Z,
with typical elements p,q,r. Totrep’s preferences over Ps will be
denoted by the binary relation > as usual. For the lottery degenerate
at the (real) value z I'll write §,. And for any function f:Z — R,
the expectation of f taken with respect to p will be written E|[f;p].

Il use e(p) to denote the expected value of p, and v(p) to denote
¢ variance of p.

71



Chapter 6

=]
o

An almost trivial property of u (and one that is normatively
unobjectionable) is strict monotonicity.

Proposition (6.1). The utility function u is strictly increasing if and
only if
6,6 iff 2> 2.

The proof should be clear to you. I'll assume from here on out that
u is strictly increasing.

Next comes the property of risk aversion. Preferences > are said
to be risk averse if 6.,y > p for all p € P. Preferences > exhibit
strict risk aversion if é.(p) > p for all p € P such that v(p) > 0. >
exhibits risk neutrality if 8. ~ p for all p € P. > exhibits risk
seeking behavior if p > 6.(,) for all p € P, and it exhibits strict risk
seeking behavior if p > 6.,y for all p € P such that v(p) >0

I rather expect that you know these things, but let me give here
a few definitions from mathematics: A function f: Z — R is concave
if flaz+(1—a)y) 2 af(z)+(1—a)f(y) forall 2,y € Z and a € [0,1]
It is strictly concave if this holds with strict inequality for z # y and
a € (0,1). It is affine if f(z) = az+ b for some constants a and b. It
is convex if the weak inequality is reversed, and it is strictly convex if
we have a strict (reversed) inequality for all z # y and a € (0,1).

Let me also state a couple of elementary propositions concerning
concave and convex functions: For p a simple probability distribution
on Z, f(e(p)) > E[f;p] if f is concave, with a strict inequality if
f is strictly concave and v(p) > 0. If f is affine, the inequality
is an equality. If f is convex, the weak inequality reverses, and if
f is strictly convex, the weak inequality is strict running the other
way for p such that v(p) > 0. These inequalities are proved (by
you for homework) by induction on the size of the support of p.
They generalize to the case where p is any probability distribution
with, let us suppose, compact support, in which case they are known
(variously) as Jensen’s inequality.

Some other elementary propositions that will come in handy are:
If a concave function u is defined on an open interval in the real line, u
is continuous, and it is continuously differentiable almost everywhere.
(For those of you who followed the last section Chapter 5, what is
the implication of this in terms of continuity of preferences and risk
aversion?) It has well defined left-hand and right-hand derivatives
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everywhere. Ignoring the points where the derivative is not defined,
u', the derivative, is nonincreasing, and at points where u is not
differentiable, the left hand derivative is the limit of u’' from the left,
and the right hand derivative is the limit of 4" from the right. Finally,
if u is concave and twice continuously differentiable, then u” (the
second derivative of u) is nonpositive. Affine functions are certainly
differentiable, and their derivatives are constant — you didn’t need me
to tell you that. For convex functions, the mirror-image results to
those stated above are true.

The results stated in the paragraph two before this one make
almost immediately obvious the following:

Proposition (6.2). > exhibits risk aversion if and only if u is concave.
>~ exhibits strict risk aversion iff u is strictly concave. > exhibits
risk neutrality iff u is affine. > exhibits risk seeking behavior iff u is
convex, and strict risk seeking behavior iff u is strictly convex.

It is typical in most economic applications to assume that all
agents are risk averse, not excluding the extreme case of a risk neutral
agent. How does risk aversion do as a descriptive property? The
answer is: moderately well, althnugh gambles with negative prizes
and gambles with small probabilities of enormous gains tend to screw
this up. As to whether risk aversion is any good as a normative
property — what do you think?

To take the next step, fix the preference relation >, and for
p € P, define C(p) by

C(p):{ze.Z:‘5,~p}.

That is, C(p) is the set of certainty equivalents for p - the set of “for
certain” monetary amounts that Totrep rates as just as good as p. In
general, C'(p) may be empty and it may be multivalued. But:

Proposition (6.3). (a) If u is strictly increasing, then C(p) is at most
a one element set.

(b) If u is continuous, then C(p) is nonempty.

‘. (¢) If u is concave (if preferences exhibit risk aversion), then C(p) is
‘ honempty:.
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The proofs of (a) and (b) are left as easy exercises. For (c), use the
fact that any coucave function on an open interval of R is continuous,
Assume for the remainder of this chapter that u is strictly in-
creasing and concave. Then C(p) is a singleton set, and I'll denote
the single element of C(p) by ¢(p).
Next define the risk premium associated by gamble p by

rp(p) = e(p) — c(p).

Since preferences are risk averse and monotone increasing, it is easy
to see (do you?) that rp(p) is nonnegative for all p. This is called the
risk premium because it denotes the amount that Totrep would pay
to replace p by its expected value. That is, as ¢(p) = e(p) — rp(p),
Totrep is indifferent between p and the amount of money e(p) —rp(p)
for sure.

DECREASING, INCREASING, AND
CONSTANT RISK AVERSION

Recall that the prizes z are supposed to be Totrep’s net wealth
after the gamble is conducted. In general, this will be the sum of
Totrep’s wealth prior to the gamble and his net winnings from the
gamble. Letting w be Totrep’s wealth prior to the gamble and letting
q be a (simple) probability distribution representing his net winnings
from the gamble, I will write w + ¢ to denote the (simple) probability
distribution that describes Totrep’s final wealth position. That is,
Totrep seeks to maximize E[u;w + g| through his choice of the net
gamble ¢ that he chooses.

How does Totrep’s attitude towards various gambles change as his
wealth changes? For example, suppose Totrep has a choice between a
gamble represented by ¢ and a sure net payment (positive or negative)
in the amount z. That is, at wealth level w he can have either ¢ +w
or z + w. His choice (clearly) depends on whether

Elu;q+w] >,=, or <u(w+ z).
The question I'm asking is, how does this change with changes in

Totrep’s initial wealth w? (Another way to interpret the same math-
ematical question is — how does Totrep’s attitude towards risk change
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as gambles are “shifted” towards greater terminal wealth positions?
That is, how will his choices be affected if I increase all the prizes by
a constant amount?)

Definition (6.4). Totrep (characterized by his preferences > or, equiv-
alently in this chapter, by his utility function u) is said to be decreas-
ingly (absolute) risk averse if for all ¢ € P,z € R,w and w' € R such
that ¢ + w,q+w',w+ 2, and w' + z all lie in Z and w' > w,

(6.5) if Elu;w + ¢q] > u(w + 2), then E[u;w' + q] > u(w' + 2).

The motivation behind this definition is: If Totrep prefers the
risky gamble ¢ to the sure thing z at wealth level w, then if we
increase his wealth to w’' he doesn’t become “more risk averse” and
prefer the sure thing. My use of “decreasingly” here would more prop-
erly be termed “nonincreasingly” — I'm not insisting on any “strict
decrease” in risk aversion. A parallel definition can be given for in-
creasing risk aversion — change the direction of implication in (6.5)
- and for constant risk aversion — make the implication in (6.5) two
sided). Finally, “absolute” is sometimes used here to distinguish this
from “relative” risk aversion — see ahead.

An alternate and equivalent definition of decreasing risk aversion
is given as follows.

Proposition (6.6). Totrep (and his u) is decreasingly risk averse if and

only if for all ¢ € P the function w — rp(g + w) is nonincreasing in
w.

Remember, we assume throughout that u is strictly increasing and
concave. The obvious modifications are made for increasing and con-
stant risk aversion. I hope that the interpretation is obvious. The
proof, which is something of a matter of marshalling definitions, is
left as an easy exercise.

Before going any further, what do you think of decreasing, in-
Creasing, and constant risk aversion as normative properties? In par-
ticular, what do you think of constant risk aversion as a normative
Property when all the gambles being contemplated are small in com-
Parison with the amount of money you are comfortable handling?
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Later on I'll try to convince you that you should be very comfortable
with constant risk aversion in this sort of situation.

In order to keep the analysis simple, I'm now going to make
what economists call a “purely technical and innocuous” assumption,
that u is twice continuously differentiable. I'll write u' for the first
derivative of u and u' for the second derivative. By our previous
assumptions, u’ > 0 because u is strictly increasing, and u” < 0
because u is concave.

Theorem (6.7). Totrep (his utility function u) is decreasingly risk
averse if and only if the function

u"(Z)

="

is nonincreasing in z. Totrep is increasingly risk averse if and only if
A(z) is nondecreasing. Totrep has constant risk aversion if and only
if A(2) is constant, in which case there exist constants a > 0 and b

such that
(2) = az+b if \(2) =0, or
W= —ae ™ +b if Mz)=A>0.

The proof will be given eventually (or rather, a sketch will be given).
But for now, some discussion may help. The function A(z) is called
the Arrow-Pratt measure of (absolute) risk aversion. Note that if I
replace u(z) by the equivalent (in terms of >) au(z) + b, the value
of the function A(z) does not change — it is a property of > and not
of the representing function u chosen. A(z) is certainly well defined,
because u'(z) > 0. And as u'(z) < 0 we have A(z) > 0. (The
function A could be defined as long as u' > 0, even if u"” was not
restricted in sign. In this case positive A would correspond to “local
risk aversion,” negative A to “local risk seeking,” and zero A to “local
risk neutrality.”)

You can picture A as a local measure of risk aversion as follows:
Suppose that I have two utility functions » and v with corresponding
measures of risk aversion A and p. Then A(2°) > p(z°) roughly
means that u is more risk averse for prizes close to z° than is v. The
picture you should carry in your head is to pick constants ¢ > 0 and
b so that '

u(z°) = av(z°) + b and ¥(2°) = av'(z°).
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Then, because A(z°) > p(z°), if we graph u and av + b together we
get the picture shown in figure 6.1. That is, av + b is “more flat” or
“more linear” or “closer to risk neutral.” (How do I know that this is
the picture? Those of you who know some math should work out an
answer to this question.)

aviz)+b

Figure 6.1

COMPARISON OF THE RISK AVERSION
OF TWO TOTREPS

As a step in proving the theorem, and because it is of independent
interest, I want to take a small detour at this point and pursue the
story begun just above. Suppose we have two utility functions u
and v, giving the preferences of two Totreps whom we’ll refer to as
Totrep I and Totrep II, respectively. Both u and v are assumed to
be twice continuously differentiable, concave and strictly increasing.

For simplicity, suppose the two functions have the same domain of
definition Z.

Definition (6.8). Totrep I (with utility function u) is said to be at
least as risk averse as Totrep II (with v) if, for all simple lotteries p
. on Z, the risk premium that Totrep I would pay for p is at least as
large as that Totrep II would pay. Equivalently, Totrep I’s certainty
equivalent for any p is no larger than Totrep II's, for every p € P.
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The notation is not nice, but I'll use rp.(p), rPu(pP), cu(p) and
¢,(p) to denote, respectively, the risk premiums of Totrep I and II
and the certainty equivalents of Totrep I and II for the gamble p.
Then Totrep I is at least as risk averse as Totrep II if for all p € P,
rpu(p) 2 rpy(p) or, equivalently, ¢,(p) < cv(p)-

There is no reason to believe that this “ordering” of Totreps
is complete — that is, it may be (and is) that there are two utility
functions u and v neither of which is at least as risk averse as the

other.
A little more notation: Define

uu(z) B _vu(z)

Mz) = ) and p(z) = ()"

That is, A is Totrep I'’s Arrow-Pratt measure of risk aversion, and p
is Totrep II's.

s

Lemma (6.9). If u and v are such that A(2) > p(z) for all z € Z,
then u(z) = f(v(z)) for some concave, strictly increasing function f
from the range of v to R.

Proof. The existence of a strictly increasing f with u(z) = f(v(2))
is derived as follows. Since v is continuous and strictly increasing,
there is a strictly increasing and continuous function v~! from the
range of v into Z satisfying v~!(v(z)) = z. Then defining f(:) =
u(v~1(+)) produces z strictly increasing function with u(z) = f(v(z)).
It remains to show that f is concave. Differentiating u = fov
(and using the chain rule) gives u'(z) = f'(v(2))v'(z), or f'(v(z)) =
u'(z)/v'(2).

Differentiating again yields
F'(0(2))'(2) = u"(2)/v'(2) = v"'(2)w'(2)/(v'(2))?, or

F'(v(2)) = [W'(2)/v'(2)’][u"(2)/w'(2) = v"(2)/v'(2)] or
F'(v(2)) = [W'(2)/v'(2)][p(2) — M(2)}-

Now f is a concave function if and only if its second derivative is ev-
erywhere nonpositive — since u'(z)/v'(z)? is positive and p(z) < A(2),
this follows immediately from the expression above. (I cheated you.
How did I know that f is differentiable, let alone twice differentiable?
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If you know enough math to be bothered by this, provide a clean proof
of this lemma.)

Proposition (6.10). Totrep I is at least as risk averse as Totrep II if
and only if, for all z € Z, A(2) 2 p(2).

In words, for Totrep I to be at least as risk averse as Totrep II it is
necessary and sufficient that Totrep I's Arrow-Pratt measure of risk
aversion be everywhere at least as large as Totrep II's.

Proof. Suppose A(z) > p(z) holds for all z. Then u(z) = f(v(z)) for
some strictly increasing concave function f. Pick any p € P. Then

u(cu{p)) = Elu(2); p] = E[f(v(2)); ]
< f(E[v(2);p]) (for justification see below).

= f(v(cu(p)) = u(cu(p))

Thus by the fact that u is strictly increasing, c.(p) < ¢,(p), which
is the desired conclusion. The key step in this chain is the inequality
E[f(v(2));p] < f(E[v(z);p]). This follows from the concavity of f; cf.
our discussion a while back concerning properties of concave functions.

Now to go the other way. Suppose rp,(p) = rpy(p) forall p € P,
but that for some z € Z it is the case that A(2) < p(z). Consider
the simple probability distribution p® that gives prize z+6 and z2—§
each with probability 1/2. (Since Z is an open interval, for small
enough 6, p® has support in Z.)

Now E[u;p°] = (u(z + 6) + u(z — 6))/2. Using a Taylor series
expansion of u around z, this is

Eluip] = (u(z) + 6u'(2) + 8%"(2)/2 + o(5%)
+ u(z) — 8u'(2) + 6%u""(2)/2 + o(62))/2
= u(z) + 6%u"(2)/2 + o(6?),
where o(62) are terms that are “small” relative to 62 in the sense
that as 62 — 0, 0(6%)/6% — 0.

Also, e(p®) = z, so u(z—rp.(p®)) = E[u;p%], or, again using the
Taylor series expansion,

u(z) — ¥'(2)(rpu (p%)) + o(rpu(p?)) = E[u; p®], and thus
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u(z) — 0/ (2)(rpu(p®)) + o(rpu(p®)) = u(z) + 6%u"(2)/2 + o(6?).

If I can show that rp,(p®) is of order no greater than 62, I'm
entitled to conclude that

rpu(p®) = —6%u"(2)/2u/(2) + o{87) = §2A(2)/2 + o(62).

In fact, I can show that rp,(p®) is of order no greater than 62, al-
though I'll leave this to you (if you are so inclined). So this is a valid
conclusion.

Similarly, I can show that

roo(p’) = 82p(2)/2 + o 8%).

So by my assumption that p(2) > A(z), for small enough é I have that
rpy(p?) > rpu(p?), contradicting my hypothesis that u is at least as
risk averse as v. ‘

PROOF OF THEOREM (6.7)

Now I'm ready to prove Theorem (6.7). Actually, I won’t try
to give a formal proof, but rather to sketch what I'd say in a formal
proof. If you have doubts about what I’'m about to say, it would be a
good idea to try and fill in the outline with details.

Step 1. Suppose A(z) does increase over some range. That is, there
exist w and w’ with w’ > w yet A(w') > AMw). Then consider the
gamble ¢ that gives prizes § and —§, each with probability 1/2, and
compare risk premia of w' + ¢® and w + ¢°. Using almost exactly
the argument in the second half to the last proposition, you’d be able
to show that rp(w’ + ¢%) > rp(w + ¢°), showing that this u is not
decreasingly risk averse.

Step 2. Suppose A(z) is nonincreasing. Fix w and w' with w’' > w.
Then in comparing rp(w' + q) with rp(w + ¢) (for given ¢), think
_of the former as rp,.(q) where v°(z) = u(w’ + z) and think of the
latter as rp,,(gq) where vo(z) = u(w + z). Since w’' > w and A
is nondecreasing, the Arrow-Pratt measure of risk aversion for v° is
everywhere no larger than that of v, (at least where their domains
overlap), and thus by the previous proposition rp,e(gq) < rp,, (g)-
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But this is just rp(w' + ¢) < rp(w + ¢), hence u is decreasingly risk
averse by Proposition (6.6).

Steps 1 and 2 together prove the first statement of the theorem.
The second is proved by symmetrical argument, and the third by-
intersecting the first two and integrating —u" /u' = constant.

In these proofs, I've made abundant use of my assumption that u
is twice continuously differentiable. Without getting into details here,
let me assert that this assumption is really unnecessary. If u has con-
stant risk aversion, then it can be shown that u is twice continuously
differentiable. While for u to be, say, decreasingly risk averse, conti-
nuity of the second derivative isn’t necessary, but there is a sense in
which a second derivative must exist. Some of the problems will let
you hassle with this.

RELATIVE RISK AVERSION

In the story on (absolute) risk aversion, the basic question in-
volved how risk attitude changes with changes in the initial wealth
position, without changes in the size of the gamble. A variation on
this theme concerns changes in risk attitude as initial wealth and the
scale of the gamble change together proportionally.

For simplicity, fix a Totrep who is choosing among simple prob-
ability distributions on the set Z = (0,00). This Totrep has strictly
increasing, concave utility function u, which happens to be twice con-
tinuously differentiable.

Let w denote Totrep’s initial wealth, and imagine that the gam-
ble he is contemplating calls for an investment of all his wealth — let
q be a simple probability distribution on Z - then if Totrep takes ¢,
he will wind up with final wealth wz with probability ¢(z). That is
¢ gives the distribution of return per dollar invested. I'll use wq to
denote this probability distribution on final wealth.

Suppose Totrep has a choice between the gamble q and a sure
thing investment that will leave him with wealth wz°. He chooses
between the two according to whether

)

u(wz®) >, =, or < Efu;wq].
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Definition (6.11). Totrep (and his utility function u) is increasingly
relative risk averse if for all w' > w and q and z°.

Elu; w'q] > u(w'z®) implies E[u;wq] > u(wz®).

He has decreasing relative risk aversion if this holds with the implication
reversed. He has constant relative risk aversion if the implication holds
in both directions.

Guestion: What do you think normatively of increasing, decreasing,
and constant relative risk aversion?

Proposition (6.12). Totrep (or u) has increasing relative risk aversion
if and only if the function

wu' (w)
w— ——

u'(w)
is a nondecreasing function (of w); u has decreasing relative risk
aversion iff this function is nonincreasing; and u has constant relative
risk aversion iff this function is a constant, in which case there exist
constants a > 0 and b such that either u(z) = aln(z) + b or u(z) =
avyz” + b for some vy € (—o0,0) U (0,1).

For proof, see either a reference book on choice under uncertainty, or
see the classic article by Pratt (1964).

NORMATIVE USES OF THESE PROPERTIES

After all this work, it is natural to wonder why any of this is
useful. We’ll look at some of the normative uses in this section, and
discuss (very briefly) one aspect of the descriptive uses in the next.

To discuss the normative uses of the developments of this chapter
requires us to go back one step, to the normative uses of expected
utility theory itself. Let me illustrate these uses by recounting a speech

that is often made to “clients” of these techniques. In this case, it is .

an abridgment of a speech that is made to MBA students at Stanford
University in a course on Decision Making Under Uncertainty.
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“Suppose that you (the student) had choose among the four gam-
bles depicted in figure 6.2.

. 525 95 ~$105
2_$150 05
l 6600 $-100

Figure 6.2

“The probabilities depicted on the chance nodes will be objec-
tively determined — the gambles are all based on things like the spin
of a smooth roulette wheel, etc.

“It is very likely that you won’t find it very easy to make a choice.
At least, I myself have a hard time making a selection, because I find
it hard to think about probabilities such as .22 and to think about
gambles with four possible prizes. But if in this choice situation I
subscribe to the three axioms of von Neumann and Morgenstern, then
I know that my choice should be based on maximizing the expectation
of a utility function. And, having considered the matter, I see nothing
wrong with those axioms in this setting, although there are settings
in which there are problems with the axioms. [To readers of this
book: We’ll discuss those problems in Chapter 12.] So I want my
choice behavior among the four gambles to conform to expected utility
maximization. All that I need to do is to discover my own utility
function, and I’'m in business: I'll compute the expected: utility of
each of the four gambles, and choose whichever comes out highest.

“Since I don’t have handy my utility function, you may consider
that this conclusion is quite useless. But that is not correct. I can
discover (or, more accurately, I can assess) my utility function by
making some judgments easier than what is called for in a direct
choice among the four gambles above.

“First, I ask myself: What is my certainty equivalent for the gam-
ble that gives,me probability one-half of getting $1000 and probabilit-y
one-half of getting $-100? Note that this gamble, depicted overleaf, is
selected so that its two prizes bracket all the prizes in the four gambles
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from which I must choose, and it gives probability 1/2 to each.
5, ~$100

)
$1000

It isn’t a trivial judgment to make, but it is not so hard, because I'm
askirig myself to compare sure things with a gamble having only two
prizes and a simple 50-50 probability structure. In any event, right at
the moment I assess that I'm roughly indifferent between the gamble
above and $400 for sure. '

“So next I ask myself: what is my certainty equivalent for the
gamble:

$400

$1000

Note that this gamble has top prize equal to the upper prize from my
previous question, and bottom prize equal to my previously assessed
certainty equivalent. And [ answer: Approximately $675.

“Next question: What is my certainty equivalent for the gamble:

$400

$-100

Answer: Approximately $100.

“The point of this is that, if I am able to answer these questions,
then I'll have five points on my utility function in the range $-100 to
$1000 — assigning $-100 utility level 0 and $1000 utility level 1, (these
two utility levels are arbitrary, as long as $1000 gets a higher level
than $-100, although the zero-to-one scale is convenient), the answers
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that I gave above tell me that the utility level .5 goes with $400, utility
level .75 goes with $675, and utility level .25 goes with $100. With
those five values, I can rough in a pretty good approximation of my
utility function and compute expected utilities for the four original
gambles, making my choice accordingly. Even if my approximation
is off, if it is close to my “true utility” the choice according to the
approximation will be nearly as good as the best gamble using my
“true utility.” This sort of approximation result is easy to formalize
and to prove. [To mathematically inclined readers of the book: Give
it a shot. If you need some hints as to how to proceed, problem 8 will
get you started.]

“Of course, I'm making some judgment calls above, and I may
not be doing so well. But the data above allow me to run consistency
checks, such as: What is my certainty equivalent for:

$100

$675

It should be $400. Why? Because, if I am conforming to the axioms,
this is a gamble whose prizes have utilities .25 and .75, so it has
expected utility .5, and the certain amount of money that has utility
5 is $400. As it turns out, my assessed certainty equivalent for this
gamble is approximately $375, but now I can go back to my original
assessments and try to fudge them enough so I have five consistent
values.

“Why is this procedure better than just choosing one of the orig-
inal four gambles? Because the numerical judgments that I'm asking
myself to make are for the easiest conceivable cases that aren’t trivial
- two prize lotteries with equally likely outcomes. I’'m quite ready to
believe that I'm better at processing that sort of gamble than I am at
the four more complicated gambles with which we started.

“Is this benefit coming for free? No — I also had to make a
qualitative judgment that in this choice situation, the three axioms
are good guides for choice behavior. But because I know where the
Pitfalls in those axioms can be found [to the reader: as will you after
Chapter 12], I am confident that, in this case, the axioms are a sound
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guide to behavior.”

This is where the speech stops with MBA students. When I've
made this speech to them, they tell me that it convinces them, al-
though they probably (at least in part) are telling me what they think
I want to hear. (If so, they're certainly correct about what I want to
hear.) The hard part, they claim, is that they still are called upon to
assess some certainty equivalents — isn’t there anything that I can do
to make that part easier?

This is where the material from this chapter would come in handy
(if it was something that I could make MBA students understand).
For example, I'm happy with the following statements concerning my
preferences in this choice situation:

(a) I like more money to less.
(b) I'm risk averse in the range of prizes being considered.

(¢) P'm decreasingly absolute risk averse over this range, and at that
only slightly. In my current bank balance/permanent income position,
a loss of $100 and a gain of $1000 are not big deals. At 10% rate of
interest, $1000 is the same as a perpetual stream of $100 per year.
That isn’t much, in the scale of decisions that I have to make. I'd be
surprised if a decrease in my lifetime income of even $500 per year
made much of a difference in my choice over lotteries.
So when I assess my utility function:

(2) It will be strictly increasing.
(b) It will be concave.

(c) It will have —u"/u' decreasing slightly, and will be virtually a
function of the form u(z) = —exp(—Az) for z in the range of these
gambles (where z here represents my net winnings from these gam-
bles, which is added to or subtracted from my bank account).

This last bit is especially helpful — I can look for my certainty
equivalents for the two gambles depicted on the next page and know
that they ought to be $100 different. This is helpful because I'm prob-
ably better at assessing my certainty equivalent for the first gamble
than for the second - this has to do with the “framing” of the question
on which the assessment is based. Specifically, I'm not very good at
making assessments for gambles that entail losses, even when, given
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my current state of financial health, the losses are relatively insignif-
icant. Framing is a topic that we’ll take up in Chapter 14, but the
idea is that I’'m better at judging/processing questions framed in one
manner than in another. And having judged that my utility is virtu-
ally exponential in the range $- 100 to $1000, I can assess the relevant
single parameter A with each of several well-framed questions, check-
ing the consistency of my answers by checking whether the certainty
equivalents that I give lead me to the same rough estimate of this

parameter A.
5, ~$100 5 ~%0
$0 $-100

In particular, when I went back to gambles that I used to assess
my utility function over the range $-100 to $1000, I discovered why I
didn’t pass the consistency check. The problem was in the third step,
when I assessed my certainty equivalent for the 50-50 gamble with
prizes $-100 and $400. Recall that my assessment at the time was.
that my certainty equivalent was $100. But if I reframe the question,
asking for my certainty equivalent for a 50-50 gamble with prizes $0
and $500, I come up with the assessment of $230 or $235 or so. I'm
decreasingly risk averse, but not quite that much! What is going on
is that the minus sign on the prize $-100 is getting too much weight
in my considerations. By reframing the question and relying on the
fact that I know I’'m nearly constantly risk averse over this range, I
come up with a much better utility curve. By the way, in case you’re
checking me, the implied value of my coefficient of risk aversion A is
around .0004.

Of course, all this would be less helpful if I multiplied all prizes in
this section by a factor of 100, because then, while I do think I'm still
risk averse over this larger range and I do think I’m decreasingly risk
averse, the decrease in my coefficient of risk aversion (over this range)
is probably quite significant. Certainly an assumption of constant risk
aversion over this larger range is unwarranted. Still, knowing that my
utility function should exhibit decreasing risk aversion may be a help.

That is, as the range increases, the properties discussed in this
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chapter are harder (normatively) to subscribe to, and one gets. corre-
spondingly less out of them. But for problems such as the one with
which this section started, they can be quite useful.

ON DESCRIPTIVE APPLICATIONS AND
“STRONGER MEASURES OF RISK AVERSION”

These properties for utility functions on money have also been
used descriptively in economic theory. It is typically assumed that
economic agents are described by decreasing absolute risk aversion.
Based on this assumption, we might be able, for example, to derive
some implications for the demand of individuals for risky assets as
their wealth increases. Or we might assume that people of one sort or
from one economy are less risk averse then people of/in another, and
derive comparisons of how they will act as individuals and what will
be the consequences of that behavior on market equilibrium.

I will not take you into such applications, per se. They belong
to a course on the economics of uncertainty, and this book is limited
to choice theory. But there is one question to raise concerning those
applications, asked first (to my knowledge) by Ross (1981). We can
approach this question by asking either of the following two:

(a) Suppose we have two Totreps with utility functions u and v, and
we have two probability distributions p and ¢ on their final wealth
such that p has higher average return than does ¢, but p is also
riskier than ¢q. If Totrep I is at least as risk averse as Totrep II, and if
Totrep I prefers p to ¢, then does Totrep II also prefer p to ¢? Put
another way, shouldn’t “at least as risk averse as” be defined in a way
that makes the answer to this question yes?

(b) Suppose Totrep is decreasingly risk averse, and he has a choice
between two gambles whose payoff (not including his initial wealth)
are given by simple probability distributions p and ¢. As before,
suppose p has higher average return than does ¢ but that p is riskier
than ¢q. If Totrep chooses p over ¢ when his initial wealth is w,
then does he also choose p over q at all higher wealth levels w'?
Put another way, shouldn’t “decreasing risk aversion” be defined in a
manner that makes the answer to this question yes?

If in the above questions, ¢ is a degenerate (single prize) lottery,
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then with the definitions of “as risk averse as” and “decreasingly risk
averse” given above, the answers to the questions are yes — in fact, this
is virtually the definitions of the two terms. But the two questions
above are posed for the case where ¢ is not necessarily degenerate,
“and that could conceivably make a difference. Of course, to handle
such cases we must first tackle a preliminary task: We must formalize
what it means for p to be riskier than gq.

For any simple probability distributions p and ¢ with the same
expectations, I'll say that p is as risky as ¢ if, for {z1,...,2} the
support of ¢, there exist simple probability distributions ¢;,...,¢n
with

(i) e(g;) =0 for j =1,...,n, and

(i) p(2z) = 3°7-; 9(zj)g;(z — 2;) for all 2.
An example may helpful illustrate this definition. Suppose ¢ is

1/3 10=Zl
1= 2/3
15=‘-Zz
Let ¢; and g3 be
17272 17376
qi = and qo=
1/2 /3
2 -3

Then setting p(z) = Z§=1 ¢(zj)g;j(z — zj), we obtain the probability
distribution that is computed by compounding ¢ with ¢; if the out-
come of q is z; and with g5 if the outcome of ¢ is 25, and then adding
the outcomes. (See overleaf for the picture.) In general, the definition
tomes down to this: p is as risky as ¢ if, on some probability space,
You can find joint random variables X and Y such that Y has the

fiistribution g, X has distributio:x p, and E[X | Y] =Y. The idea
. 18 that we get p by running the gamble ¢ and “adding noise”. The
. Precise distribution of the noise can depend on the outcome of ¢, but
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it is called “noise” because its conditional expectation, conditional on

the outcome of ¢, is zero.)

1/ 10+2=12

8
10-2=8 1/
P= = 12
15+6=21
2/9 21
15-3=12

Why is this a good definition of “as risky as?” The intuition is
that p is sort of fair odds garbling of ¢ — to carry out p, first do ¢
and then, dependir:g on the outcome of ¢, run one of several even
money gambles. Since the second round of gambles are even money
gambles, any risk averse person would (weakly) prefer to stop after
the first round. We have

Proposition (6.14). If p and ¢ have the same expectation and p is as
risky as ¢, then no risk averse Totrep would ever strictly prefer p to

q.
And, conversely:

Proposition (6.15). Given two distributions p and ¢ with the same
expectation, p is as risky as ¢ if every risk averse Totrep weakly

prefers g to p.

For p and ¢ with different expectations, simply say that p is as risky
as ¢ if p — e(p) is as risky as q — e(gq). In the construction of p from
g as above, this corresponds to

Step 1: Run ¢ and make the appropriate payoffs.

Step 2: Run-some “even money” gamble, depending on the outcome
in step 1 and make the appropriate payoff.
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Step 3: No matter what happened in steps 1 and 2, make the payoff
e(p) — e(g)-

If this can be done so the entire payoff has distribution p, then p is
as risky as q.

So suppose we have two gambles p and ¢ with p as risky as
g. By Proposition (6.14), p could never be strictly preferred to ¢

if e(p) < e(q) (proof?), so assume e(p) > e(g). Now go back to
questions (a) and (b) above. For such p and g¢:

(a) If Totrep I is at least as risk averse as Totrep II in the sense of
Definition (6.8), and if Totrep I strictly prefers p to ¢, then does
Totrep II strictly prefer p to ¢?

(b) If Totrep has decreasing risk aversion as defined in Definition (6.6),
and if he strictly prefers p to ¢ at wealth level w, then does he strictly
prefer p to ¢ at all higher wealth levels w'?

The answer to each of these questions is no. (As you could have
guessed. Why would I be saying all this otherwise?) Ross (1981)
gives examples, and he goes on to develop stronger definitions of “at
least as risk averse as” and “decreasing risk aversion” based on a
stronger “measure” of risk aversion. (And he does the same thing
for relative risk aversion.) These stronger definitions are essentially
set up so that the answers to (a) and (b) are yes — the point of Ross’
paper is: What are necessary and sufficient conditions on Totrep I and
II’s utility functions/on Totrep’s utility function so that the answers
are yes? You should consult Ross (1981) for answers if you are so
inclined (and anyone using this book as a supplement to a course on
the economics of uncertainty should certainly be so inclined).

Since I'm not going to give you the answers, you may well ask:
Why did we bother with all this? We did so to make the following

point.

From a descriptive point of view, it may be important that “as
risk averse as” and “decreasingly risk averse” are defined so that the
answers are yes. In descriptive applications of this theory one typically
looks at how choices between two risky situations, one more risky than
the other, and not at the choice between a risky situation and one that
1s risk free. This is so because the, choices we see people make (and
that we would wish to make predictions about) are only part of the
overall choices they are making. There is uncertainty in their lives
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that they cannot control (entirely), or that is outside the scope of
the current analysis. Insofar as descriptive theory is about pieces
of a larger puzzle, the “two risky gamble” choice situations are the
interesting ones, and the old, weak definitions do not give very strong
results — they only work in the “one risky, one safe” choice situation.
This is a theme to which we will return in Chapter 12, when we look
at whether the von Neumann-Morgenstern axioms themselves can be
safely applied to pieces of a larger problem. But since you are apt
to see the measures of risk aversion developed in this chapter used
descriptively on parts of larger choice situations, I thought it a good
idea to sound an alarm now.

A final bibliographic note. My definition of “p is as risky as
q” is loosely transcribed from a large economics literature on the
subject. The concept sometimes appears in the literature under the
rubric “second degree stochastic dominance.” If you're interested in
it, standard references are Rothschild and Stiglitz. “Increasing Risk,
I, II, and Addendum,” found in the Journal of Economic Theory, (1970-
3). Once again, I'm dodging this subject because it doesn’t quite
belong in a book on choice theory per se. But it would be the next
thing to do in developing economic implications of the von Neumann-
Morgenstern expected utility model, and you may wish to go chase it
down if you haven’t already.

PROBLEMS

(1) Show that if f is a concave function and p is a simple probability
distribution, then f(e(p)) > E[f;p]. Show that the inequality is strict
if f is strictly concave and v(p) > 0.

(2) (This takes a little mathematical expertise. Although if you have
the mathematical expertise it requires, then there is a good chance
that you’ve already done all these finger exercises. Even if so, quickly
remind yourself of how they go.) Show that if f is a concave function
on an open interval of the real line, then f is a continuous function.

(What happens if f is defined on an interval which may not be open?)

Show that if u is concave, then u is differentiable almost everywhere,
and has right hand and left hand derivatives everywhere. Show that
if we plot the function u’ (leaving it blank at points where u is not

A A - T
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differentiable, then u' is a decreasing function. Prove that the right
and left hand derivatives at points of nondifferentiability of u are the
right and left hand limits, respectively, of u'. Show that if u is twice
continuously differentiable at some point, this second derivative must
be nonpositive. Finally, what can you say about the second deriva-
tive of u? (That is, if u is concave, must it be twice continuously
differentiable everywhere?; almost everywhere?; somewhere?)

(3) (A bit more math expertise is needed:) Use the results in problem
(2) to show that the results given in (1) extend to the case where, say,
p is a probability distribution given by a continuous density function
on a compact subinterval of the open interval on which f is defined.
(If you know more math, generalize the statement as far as you can.
What happens if f doesn’t have compact support?)

(4) (Only if you know a lot of mathematics:) Suppose I defined a
concave function as a function f such that f((z +2')/2) > (f(2) +
f(z'))/2. That is, we have the definition given early in this chapter,
but only for the special case of a = 1/2. Suppose that I tell you
that the function f (defined on some open interval in the real line)
is concave in this sense and is (Borel) measurable. Is it then the case
that f is concave according to the original definition? Either give a
proof or a counterexample. -

(5) Prove Proposition (6.3).
(6) Prove Proposition (6.6).

. (7) Suppose a decision maker you know has constant absolute risk
| aversion over the range $-100 to $1000. We ask this decision maker
for her certainty equivalent for a 50-50 gamble with prizes $0 and
$1000, and she says that her certainty equivalent for this gamble is
$488. What, then, should she choose, if faced with the choice of: (a)
a gamble with prizes $-100, $300, and $1000, each with probability
1/3, (b) a gamble with prize $530 with probability 3/4 and $0 with
Probability 1/4, or (c) a sure thing payment of $385?

(8) Suppose that Totrep is choosing among a set of *five complicated
gambles, each of which has a finite number of prizes. This five gam-
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bles have prizes that range from a maximum of $10,000 to a mini-
mum of $0. Totrep, having heard the speech given to MBA students
at Stanford University, decides that he subscribes to the three von
Neumann-Morgenstern axioms in this case, and so he will assess a
utility function over this range and then apply it to see which gam-
ble has the highest utility. Totrep always sets the scale of his utility
function so that $10,000 has utility level one and $0 has utility level
zero.

Totrep is, however, worried that the assessments he makes in coming
up with a utility function may be “off.” “Suppose,” he asks himself,
“I come up with a function u on this range that I use for the deci-
sion, when my ‘true’ utility function is some function U. How bad a
mistake will I make if [ use u?”

We will measure the size of mistakes that Totrep might make in what
seems rather natural units — dollar equivalents. Precisely, suppose
that Totrep is choosing among a set of gambles {p;,p2,...,pn}. Hels
doing this using the utility function u, and we suppose that py is the
one that seems to be best. Suppose that, if Totrep used his “true”
utility function U, he would have concluded that pps is best. If we
let cy(p) be the certainty equivalent of a gamble p computed with
the utility function U, we say that Totrep has just made an error of

size $(cu(pm) —cu(pn)).

Design a theory that leads to a result such as: If u is within § of
U, then the largest size error that Totrep could make in using u
(instead of U)is f(6) (or less). (You will want to have a theory where
f(6) > 0 as 6§ — 0.) The things you have to work out are: How will
we measure distance between u and U? What is the “modulus of
continuity” function f? You may assume throughout that Totrep
knows that he likes more money to less, so that both u and U are
strictly increasing functions. Can you improve your theory if you
know that u and U are both concave? Can you improve it further
if you know that both u and U exhibit decreasing (absolute) risk
aversion?

(9) Prove Proposition (6.14). This shouldn’t present a problem for
you. On the other hand, try to prove Proposition (6.15). For this,
you may want to do a little library research.
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(10) Consider the set of all simple probability distributions on the
real line that have expectation 150. Let ARA be the binary relation
“as risky as,” defined on this set as in this chapter. Prove or give a
counterexample to each of the following assertions:

. (a) ARA is reflexive.

(b) ARA is antisymmetric.

(c) ARA is transitive.

(d) If pARAq and rARAgq, thenforall a € [0,1], (ap+(1—a)r)ARAq.

(e) (Good luck!!!) Suppose that pARAq. Write {z),...,2,} for the
support of ¢, and let ¢y,..., ¢, be the simple probability distributions
described in the definition on page 89. Fix a constant a € (0,1) and
let r1,...,r, be the probability distributions defined by

rj(2) = gn(z/a) for j =1,...,n.

That is, rj is ¢; “shrunk” by a factor a. Now define r by

n

r(z) = Zq(z,-)r(z — z;) for all z.

i=1

That is, r is ¢ followed by “shrunk” versions of the ¢;. If there is any
justice in the world, we should have pARAr - - at least we should if
one’s intuition about “as risky as” is correct. So prove or provide a
counterexample to:

Suppose pARAq. Construct r as above. Then pARAr. (Hint: Try
a few examples before setting out to look for a proof. You might find

part (d) handy.)

(Regarding this last part: You might find the whole thing relatively
easy if you use Proposition (6.15). But if you like a challenge, try to
produce a direct proof, without using this result. It can be done, but
it isn’t easy.)

(11) Suppose that I have a single gamble and a vast number of Totreps,
all having the same risk averse utility function. We wiY] say that the
gamble is acceptable for sharing among N Totreps if there is some way
to divide the outcome of the one gamble N ways so that each of the
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N Totreps prefers his or her share to getting zero for sure. Show that
for a gamble to be acceptable for N Totreps for any NN, the gamble *
must have nonnegative expected value. Under what conditions on the
gamble and the Totrep’s utility function is it true that the gamble is
acceptable for N Totreps, as long as N is sufficiently large? What
can you say if the Totreps can have different utility functions?

(12) Now suppose that we have a given gamble, and N identical
Totreps. We will say that the gamble is acceptable for self-insurance
among N Totreps if there is some way to divide up the outcome of
N independent copies of the gamble N ways such that each of the
Totreps prefers his or her share to getting zero for sure. What can
you say about when a gamble is acceptable for self-insurance among
all large enough numbers of Totreps?

(13) When (and if) you ever teach expected utility to MBA students
(and probably in other contexts as well), you are likely to encounter
the following bit of nonsensc, concerning one Totrep and N indepen-
dent copies of a given gamble:

Suppose that I offered you, absolutely for free, a gamble where, with
probability .4 you win $1000, and with probability .6 you lose $500.
You might well choose not to take this gamble (if the alternative
is zero) if you are risk averse — although this gamble has a positive
expected value of $100, it also has substantial risk. But if I offered you,
say, 100 independent trials of this gamble, then you would certainly
wish to take them, because the law of large numbers says that you
will wind up ahead. That is, risk aversion is perhaps sensible when a
single gamble or just a few are being contemplated. But it is senseless
when we are looking at many independent copies of the same gamble.
Then the only sensible thing is to go with the long-run averages.

Is this nonsense? Can you produce a particular consumer who is
rational according to the von Neumann-Morgenstern axioms and who
would turn down any number of independent copies of this gamble,
no matter how many or how few? Or is it the case that any von
Neumann-Morgenstern expected utility maximizer would take these
gambles if offered enough independent copies?

Some hints: You should get one answer if you assume that the con-
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sumer is allowed to take any number of these gambles, with the num-
ber depending on the outcomes, and the consumer needn’t be solvent
except when he or she decides to stop. And you should get another
answer if the number of copies of the gamble must be fixed in ad-
vance. In this second variation, you can assume that the consumer is
never bankrupt — his or her utility function is specified for all levels of
wealth, positive and negative, and he or she must make good on any
losses. Or you can assume that this consumer must prespecify the
number of gambles, but if the gambles go against the consumer and
the consumer reaches a point where he or she couldn’t cover another
loss, the consumer is restrained from any further gambling. And if you
are up for a real challenge, suppose that the rules are in the second
option in the second variation. The consumer prespecifies a number
of gambles, but the gambling ends if ever the consumer’s wealth falls
so far that he or she can’t cover another loss. Then can you give
sufficient conditions on the consumer’s utility function so that, for N
sufficiently large, the consumer will always take N or more copies of
the given gamble? Can you give conditions on the utility function suf-
ficient to guarantee that for all N large, the consumer will turn down
N copies? Can you make your conditions necessary and sufficient?
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Horse Race Lotteries and
Roulette Wheels

In the story of Chapters § and 6, all uncertainty came with objec-
tive probability numbers attached. This isn’t a theory that works in
applications where it isn’t clear “what the odds are.” For example, if
'm going to bet on the outcome of a horse race in which three horses,
say Kelso, Swaps and Trigger are running, the theory in the previous
chapters doesn’t help me decide between the gambles depicted in fig-
ure 7.1. To choose between two gambles, I have to decide how likely
are the three outcomes and then combine those judgments with my
attitude towards the risk involved.

Swaps wins
Trigger wins . wap $50
$50
Swaps places $0
Trigger loses $0
Swaps shows $-50
Figure 7.1

| It isn’t clear at the outset that there is any way to quantify
\ likelihood, that such quantification if possible can be combined with
risk attitude as given in Chapter 5 by a utility function, or that such
quantification can be done independently of the risks involved. But
all this is possible if my preferences for this sort of gamble satisfy
tertain axioms — the representation that we are shooting for is to
have a probability number associated with every outcome of the race
(and with all events, or collections of outcomes, satisfying the laws of
probability theory) that is independent of the prizes in the gambles,
ad to have a utility function u on prizes, so that choice is according to

99
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the expectation, now subjective, of the utility function. In this chapter
we take a first shot at such a representation theorem, assuming that
Totrep has at his disposal some objective randomizing devices that he
can employ, such as fair coins, color wheels, roulette wheels, etc. (In
the following two chapters, we'll try to do without these extraneous
randomizing devices.) This development is due to Anscombe and
Aumann, in the classic paper listed among the references.

THE CHOICE SET

There is given a finite set of states of the world S. A typical
state will be denoted by s. I'll assume that the states are numbers,
so that § = {1,2,...,n}. In the horse race example, the states
would be all possible outcomes of the horse race, such as (Trigger
first, Swaps second, Kelso third). Counting ties, there are thirteen
possible outcomes.

Also given is an arbitrary set Z of prizes. If you want something
concrete, interpret Z = R and the prizes z as money to be won/lost
by betting on the horse race.

A simple act (or horse race lottery) is a function f : § — 2Z.
The interpretation is that in the lottery f, Totrep wins the prize
f(8) if s is the outcome of the horse race. I'll write f(s) and f,
interchangeably. The set of all such simple acts will be denoted F'.
Then Totrep’s problem is to choose one horse race lottery from a set
of available lotteries.

To make this problem easier, we envision that Totrep has at his
disposal extraneous randomizing devices. Formally, let P be the set
of all simple probability distributions on Z, and let H be the set of
all functions h : S — P. I'll write h(s) and h, interchangeably, so
that every h € H has the form

h=(h1,... hn)

where h, € P for s = 1,...,n. I've suppressed the subscript S on
P, standing for “simple”, since now S means something else.

The interpretation of this is that Totrep can imagine compound
lotteries involving both the horse race and the extraneous randomizing
devices. Each h € H is such a compound lottery — the horse race is
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run, and if the outcome is s the randomizing devices are used to
construct the simple probability distribution h,.

In a formal sense, F' can be identified with a particular subset
of H, namely the subset of compound lotteries where, after the horse
race is run, the roulette wheel lottery that ensues is degenerate. That
is, there is a compound lottery h in H that consists of conducting
the degenerate simple lottery éy(,) if the outcome of the horse race is
s. I'll abuse the notation and write f € H, meaning this particular
compound lottery.

We shall assume that Totrep’s preferences are defined on all of
H - in other words, Totrep has preferences on H (given by a binary
relation > ), and his preferences on F' are simply > restricted to F'.
Some words about the philosophy of this construction seem in order.
In most applications of this theory, Totrep’s actual available choices
will come only from F'. What we are doing here is to enrich the choice
set with imaginary objects — in this case compound lotteries. And we
shall try to get the representation on this expanded choice set. The
motive behind this is that axioms stated on a richer set of objects are
stronger axioms since they must be true for more cases — at least, if
the axioms are of the “for all” and not the “there exist” type — thus
axioms posed on the expanded choice set will make it easier to get
the representation.

This procedure of enriching the set of items t¢ which preference
must apply is quite standard. It makes perfectly good sense in nor-
mative applications, as long as the Totrep involved is able to envision
the extra objects and agree with the axioms applied to them. This
need be no more than a thought experiment for Totrep, so long as
he is willing to say that it is a valid (i.e., conceivable) thought ex-
periment. But this is a very dicey and perhaps completely useless
- procedure in descriptive applications. In descriptive applications, ax-
. ioms aré supposed to concern behavior that is observable, so what
. sense does it make to pose axioms about preferences/choices that are
never observed, because the items concerned don’t exist? Therefore,
. insofar as these compound lotteries are just imaginary constructions,
and don’t correspond to any objects that we might observe Totrep
+ choosing, I think we have to view the theory to follow as being as
close to purely normative as anything that we do in this book.
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H AS A MIXTURE SPACE

For h and g from H and for a € [0, 1], define ah + (1 —a)g by
(ah + (1 — a)g)(s) = ah(s) + (1 — a)g(s) for s € S.

That is, two compound lotteries are “mixed” by mixing the objective
lotteries that comprise them. For example, if S = {1,2} and I depict
two compound lotteries h and ¢ as in figure 7.2(a) and (b), then
.6h + .4¢ is the compound loitery in figure 7.2(c).

Then defining hq(h,g) = ak+ (1 —a)g, we have (with a little bit
of checking) a mixture space. (Guesses on what comes next?)

Axiom (7.1). = on H is a preference relation.

Axiom (72). h > k' and a € (0,1] imply that ah + (1 —a)g >~
ah' + (1 —a)g forall g € H.

Axiom (7.3). h > k' > h" imply that there exist a,b € (0,1) such
that ah + (1 — a)h” = h' = bh + (1 — b)R".

These are the same old axioms, but since they are in a very different
setting, you might want to give them some additional thought. Do
they still make sense normatively? Of course, we know what we will
conclude if they are assumed. There is going to be a function F' :
H — R that represents > and that satisfies F(ah + (1 — a)g) =
aF(h)+(1—a)F(g). From this corollary to the mixture space theorem,
we derive in this setting a very nice result.

Proposition (7.4). Axioms (7.1,2 and 3) are necessary and sufficient
for there to exist functions u;,...,un, each mapping Z into R, such
that

(7.5) h s g iff Z Y us(2)hy(2) > Z }:u,(z)g,(z)

a—l z

Moreover, if ul,... ,uh is another collection of functions satxsfymg
(7.5), then there exxst constants a > 0 and b, such that au,+b, = uj
for each s.
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(a)

Figure 7.2
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Note: In the representation, ). , means the sum over all ze€ 2
such that h,(z) or g,(z) are nonzero — that is, sum over the supports
of the objective probability distributions.

Proof. That such a representation implies the three axioms is left as
an exercise.

Assume that the three axioms hold. Repeating what we said just
a minute ago, by the mixture space theorem there exists a function

F :II — R such that
(7.6) h > g iff F(h) > F(g), and

(7.7) F(ah+ (1 - a)g) = aF(h) + (1 - a)F(g).

Moreover, this F' is unique up to positive affine transformations.
Let F' be any function satisfying (7.7). We will now show that

it has the form .
F(h) =33 u,(2)hs(2)

=1 =z

for some functions u,,...,u,. To do this, fix some A* in H. For
any h € H let hl = (hl, ;,...,h;),hz) = (h;,hz, 3,...,’1;), etc.
That is, h* is h* but with h, replacing h?%. Get out your pencil, and
observe that .

1 n—1 1

h h* = —h°.
SRR =00

(The reason for getting your pencil is: Put an X in the margin here.)
Thus by (7.7) and the standard induction argument on (7.7),

Z F(R®).

(7.8)

For s =1,...,n, define F,: P — R by

(7.9) F,(p) = F(hI ,hg 1:Ps h3+1’ )

Thus for h € H, this deﬁnition gives

Fy(hy) = F(h*

F(h™).
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Summing this last equation over s and dividing by n yields

n

LS R = 23 R - LR,
=1 s=1

Comparing this with (7.8), we have
(7.10) F(h) =) _ Fy(hy).
s=1

Now (7.9) combined with (7.7) yields

F,(ap + (1 — a)q) = aF,(p) + (1 — a)F.(9q).

For z € Z, let u,(z) = F,(6;) — then the usual induction argument,
using the fact that the support of distributions in P is finite, shows

that
Fy(p) =) _p(2)us(2).

This, combined with (7.6) and (7.10), establishes the desired repre-
sentation. ' .

The uniqueness result is left as an exercise — it follows from the
i uniqueness result for F'.

FIRST ROULETTE AND THEN THE HORSES

" That is all pretty slick and amazing. In fact, it is a bit too slick,
because the details of the proof do not really tell you just what is going
on. Let me defend that assertion by asking a question: Suppose that,
mstead of having the horses run first and the roulette wheel lottery
spun after, we first spin the roulette wheel and then run the horses.
Formally, we start with Z and S, but instead of constructing H = PS
(with F' a “subset” of H ), we construct F' and then II, which will be
the set of all simple probability distributions on F. Informally, the
idea is that the roulette wheel pays off in betting tickets (elements
of F), which prescribe what in Z will be won as a function of the
utcome of the horse race (the state s).
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In this setting, we can again pose the mixture space axioms, byt
applied to II. Since II is a set of simple probability distributions,
it is of course a mixture space. Before reading further, take a guess:
Will this different treatment of the problem matter? Is it important
whether we run the horses or spin the roulette wheel first?

It certainly does matter. If we apply the three mixture space
axioms to II, the conclusion is that there is a function V : F — R
such that > on II is represented by expected utility, computed using
V. This is much weaker than what we got in Proposition (7.4). This
function V doesn’t have to be additive over states at all. It could be,
for example (if X is some set of real numbers) V(f) = max, f(s). It
could be V(f) = (3, f(s))*/?. Any function V that we can imagine
“on F will give preferences >y on II by computing expected utility
that will necessarily satisfy the three mixture space axioms on II. (Re-
member that those axioms are necessary and sufficient for an expected
utility representation on a space of simple probability distributions.)

Why is it that running the horses first makes the mixture space
axioms so much more powerful? Wher. you understand the answer to
this question, you will understand the magic in the proof of Proposi-
tion (7.4).

To get to the answer, consider the question: What sort of corre-
spondence is there between H and II? That is, how do elements of
the horse-race-first construction correspond to elements of the spin-
the-wheel-first construction. Given any 7 € II, there is a natural
embedding in H: We let

ho(z) = > x(f).

{jesuppmf(s):z}

That is, for given w, the chances of getting z in state s are the
chances of getting a betting ticket f (from =) that gives the prize 2
in state s. (Is this induced h uniquely defined? Is there any other
candidate for the element h that corresponds to a given 7 ?)

Now try to go the other way. Given an h € H, what is the
corresponding m € 11?7 Here things are not so easy. To see why, let
me give you a very concrete example. Suppose, for simplicity, that
there are two states, 1 and 2. Suppose that Z = R. Consider the
element A € H which is: if the state is 1, you get a 50-50 chance at
prizes 10 and 0; and if the state is 2, you get a 50-50 chance at prizes
0 and 10. Now consider two elements of II: each is a 50-50 gamble; i3
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! the first, the prizes are 10 regardless of the state and 0 regardless of

the state; and in the second the prizes are (a) 10 in state 1 and 0 in
2 and (b) 0 in 1 and 10 in 2. Both these elements of II correspond
to the element h we just described: Each gives equal chances of 10
and 0 no matter which state prevails. So which of these two elements
of II will we associate with h?

There is no correct answer to this last question, so don’™ try to

- find one. The important point is that these two elements (and others
© besides) in II all correspond to a single element in H. Now when we

define > on II, there is no reason to believe that Totrep is indifferent
between any of these elements of II. At least, unless we pose this as
an axiom, it won’t follow; it certainly doesn’t follow from the mixture
space axioms on II. But when we use H as the basic choice set, we
are implicitly assuming that Totrep is indifferent among these many
“different” items, since they are all the same as elements of H. In
other words, thinking in terms of > on II, by saying that > can be
induced from preferences on H we are implicitly establishing large
indifference classes in II. Doing so makes the mixture space axioms
much more powerful, leading to the additive representation (7.5).

Where do we see this in the proof of the proposition? Go back
to where you were told to leave an X in the margin. At that point,
essentially, we constructed the same element in H in two different
ways in terms of elements in II. You'll have to do a bit of thinking
about all this before that last sentence makes sense to you. But when
it does, you've gotten the intuition in the proof. The way on the
right-hand side is, of course, extremely convenient, because it allows
us to look at the state-by-state components of the given h one at a
time, in a sum form. From there, it is all a matter of bookkeeping.

Are the implicit indifference relations that come from defining
> on H reasonable normatively? To give a complete answer, you'll
need at least to understand what those implicit indifference relations
are precisely, and I'm leaving that for homework. So I will leave this
one as well for you to puzzle at, saying only that the essence of the
implicit indifference relations is that all that matters to Totrep in
any compound gamble is, conditional on each state s, the marginal
distributions over prizes that is entailed in the compound gamble. The
joint distributions of the various roulette lotteries with each other
are immaterial. In the spirit of the independence axiom (see the
discussion in Chapter 5), this seems reasonable. (However see Chapter
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14 concerning the Ellsberg paradox.)

There is one further technical question. Suppose we took the
three mixture space axioms on II and added as an axiom those im-
plicit indifference relations. Would we then get the representation
(7.5)? More homework.

STATE DEPENDENT AND STATE INDEPENDENT UTILITY

Proposition (7.4) isn’t too bad a proposition, but it isn’t quite
what [ had in mind in the introduction. I want there to be a single
utility function u : Z — R and a probability distribution g on the
states of the world S = {1,...,n} such that

(711) k= giff Y u(s)D_ u(@)ha(2)] > D u(s)) u(2)gs(2)].
s=1 z s=1 z

This may seem a bit opaque to you, but it will probably be clearer
when 1 specialize to the case of pure horse lotteries. Then (7.11)

becomes
(7.12) f-fiff 2#(8)110(8)) > Z:#(S)u(f'(S))-

By comparison, in this special case, (7.5) is the weaker statement that
(7.13) f fiff ilu,( £(s) > z:u,( F1(s)).

You should convince yourself that (7.13) is indeed weaker than
(7.12). Representation (7.13) is called an addlttvely separable represen-
tation. (You will sometimes find it called a “state dependent expected
utility” representation. Since the probability distribution over which
one is taking expectation is almost completely arbitrary, this is not
very good termmology) In (7.12), the utility does not depend on the
state except via the scale factor of the probability of the state, and s0
(7.12) is called a subjective expected utility representation.

Since we want (7.11) and we have only (7.5), and since (7.5) i
necessary and sufficient for the three mixture space axioms, we nee
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to go looking for more axioms. First rule out the trivial case where

h~gforall hyge H.
Axiom (7.14). There exist h and g from H such that h > g.

Next a definition: State s is said to be null if h ~ ¢ for all pairs
h and g such that h, = g, for all s’ # s. That is, if we can’t find
compound lotteries that differ only in the sth component and that
are not indifferent to each other, then the sth state of nature can be
ignored and is called null.

Corollary (7.15). Let > satisfy Axioms (7.1,2 and 3) and let {u,,s =
1,...,n} represent > in the sense of (7.5). Then state s is null if and
only if u, is constant on X. Moreover, Axiom (7.14) implies that
there is some non-null state.

The proof is left as an exercise. It is so easy that I won’t even list it

among the problems at the end.
The key to getting (7.11) from (7.5) is the following axiom.

Axiom (7.16). If h € H, p,q € P are such that

(hl, ey hs—l:p3 ha-{-ls teey hn) - (hl" sy hs—laq1 h8+1s tecy hn)1

for some s, then for all non-null s’

(hl, ooy h,r_l,p, h,'+1, ceey h,-.) - (hl, .o ,h,l_l, q, h,'.'.l, ceny hn).

That is, if p is better than ¢ in state s, then p is better than ¢ in
all non-null states s’. Note that in the presence of Axioms (7.1,2 and
3), if Axiom (7.16) holds for any fixed h, then it holds for all A’.
This is a very strong axiom, and it will fail to hold in many ap-
plications. For example, suppose that the states are possible weather
types instead of the results of horse races and prizes are bundles of
picnic equipment. To be more exact, suppose S = {shine, rain}, and
p=6,, ¢ =6, where z and z' are identical bundles of equipment
except that z has an umbrella and 2’ doesn’t. Presumably Totrep
strictly prefers to have bundle z to 2’ in state 2 (rain), but is at best
indifferent in state 1. Indeed, in state 1 Totrep may strictly prefer
2, if the umbrella is heavy and must be carried around. Of course,
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in this example you wouldn’t (or rather, shouldn’t) expect a state
independent expected utility representation — tastes are quite clearly
state dependent. (Recall our discussion about potential “fixes” for
this problem in Chapter 4.)

Theorem (7.17). Axioms (7.1,2,3,14 and 16) are necessary and sufficient
for there to exist a nonconstant function 4 : Z —+ R and a probability
distribution 4 on S such that

(7.18) k> giff Y u(s)D u(@ha(2)] > 3w u(z)gs(2)].

s=1 z

Moreover, the probability distribution g is unique, and u is unique
up to a positive affine transformation in this representation.

Proof. That the representation implies the axioms and the uniqueness
statements are left as exercises.

Suppose that the axioms hold. Then by the first three, there is
a representation in the form of (7.5). Moreover, by (7.14) there is at
least one non-null state — let s° be one such. Take p,q € P and let s
be any non-null state. Then by the representation, for arbitrary A,

> ug(2)p(2) > Y u(2)g(2) iff
(hly- . ,hs_l,p, h3+1, ey hn) ~ (hla- ey h,_l,q, h3+1, ceay hn)
if and only if (by Axiom (7.16))
(hla ce hs“—l’Pa ha°+1a cee hn) - (hl’ e h8°—11 q h8°+1)' sy hn)

if and only if (by the representation (7.5) again)
S u (2)p(2) > 3 uee (2)a(2).

By the uniqueness result for von Neumann-Morgenstern utility for
simple lotteries, this says that there are constants a, > 0 and b, such
that

agttge (*) + by = uy(c).
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For null states such constants exist as well — but with a, = 0, since
s is null if and only if u, is constant. So if we define u(z) = u,0(2)
(and @se =1 and b,e = 0), (7.5) becomes

- giff Y (a,u(2) + b,)ha(2) > ) ) (a,u(2) + bs)gs(2),

s=1 =z a=1 =z

which simplifies to

hgiff Y by +a,[Y u(2)hs(2)] > ) bs + a,[Y  u(2)gs(2)].
s=1 z s=1 z

If we cancel the identical b, terms and then divide both sides of
the inequality by the strictly positive term ) ,_, a,, and then define
w(s) = as/ (34—, as), we have (7.18).

This gives the basic development by Anscombe and Aumann.
Extensions have been given in the literature to cases where there are
different prize sets for different states of nature and to cases where
S is infinite, in particular. (See Fishburn (1970).) In addition, there
has recently been some work using this basic setting to explore lex-
icographic probabilities, as a step in studying solution concepts in
noncooperative game theory.

" PROBLEMS

(1) Prove that if the representation (7.5) holds, > satisfies the three
. mixture space axioms in this setting.

{2) Give the details of the proof for the uniqueness result in Proposi-
tion (7.4).

(3) After the proof of Proposition (7.4), we discussed what would
happen if we had put the roulette lotteries first, so that > is defined
on [[. We gave there a map from II into H, which I’ll denote ¢.
That is, ¢ : Il — H is defined by

(8(m))s(2) = > (f)-

{fesupp(r):f(s)==} -
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Consider the three mixture space axioms on II, to which we adq
7w ~ %' if ¢(w) = ¢(7'). Do these four axioms give the representa-
tion in (7.5)7 Provide a proof or a counterexample. If you give a
counterexample, can you salvage this result (by adding yet another
axiom)? Finally, give as complete a characterization as you can of
¢-equivalence classes: sets {r € Il : ¢(x) = h} for given h.

(4) Prove that Axioms (7.1,2,3,14 and 16) are necessary for the rep-
resentation in Theorem (7.17). Prove the asserted uniqueness results
in that theorem.

(5) What happens to all this theory if the prize space Z changes with
the state? That is, suppose that in state s, the possible prizes are
given by a set Z,. How much of the development above can you
adapt to this setting? If you know that there are at least two prizes
that lie in each of the Z,, how much of this chapter’s development
can you carry over?

(6) Here is a variation on the results of this section. For the sake
of concreteness, let S = {1,2} and Z = [0,1], so that compound
lotteries look like A = (p,¢q), where p and ¢ are simple probability
measures on Z. Let p° and p, denote, respectively, the degenerate
simple probability measures with prizes 1 and 0.

An individual, Macsman (Most Acutely Cautious MAN), makes pair-
wise comparisons between elements of H — given by the binary rela-
tion ». This binary relation satisfies:

(a) > is a preference relation.

(b) (p,q) ~ (¢,p) for all p,g € P. (P denotes the set of simple
probabilities on [0,1].)

(c) (p°,9) = (P, q) = (Po, q) for all p,g € P.

(d) I (p°,p) = (p°, q), then (p',p) = (p',q) for all p' € P.

() If (p°,p) > (p°,q), then (p° ap+(1—a)r)>-(p ,ag + (1 —a)r)
for all a € (0,1] and r € P.

(f) If (p°,p) > (p°,q) = (»°,7), then there exist a and b in (0,1) such
that (p°,ap + (1 — a)r) > (p°,q) > (p°,bp + (1 — b)r).
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(8) (P°,0°) > (Po,Po)-
(b) If (»°,p) = (p°,q), then (p,q) ~ (¢,p) ~ (¢,9)-
Using (a) through (g), show that there exists a function u : [0,1] —

[0,1] and a complete and transitive ordering >* on [0,1] x [0, 1] such
o (p,q) = (p',¢') iff
D u(=)p(2), Y u(2a(=)] £ [Y u(2)p'(2), Y u(2)d'(2)].
Next show that (h), together with (a) through (g), imply that
(p,q) = (p',q") iff

min[) | u(2)p(2), Y u(2)g(2)] = min[Y _ u(2)p'(2), Y u(z)¢'(2)].

Finally, which of the axioms (7.1,2,3,14 and 16) does > satisfy?
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Subjective Probability

This chapter is something of a break from preference theory, al-
though it plays an important role in the next chapter. We consider
subjective probability theory, or how to quantify judgments of likeli-
hood. The story will go roughly as follows: There will be a set S of
states of the world. A will denote a collection of subsets of S - for
now think of A as the set of all subsets of S. Notation a € A and
a C S will be used.

Totrep, who for the time being is a social scientist, will compare
a and b from A and say things like

“I jucige a to be more likely than b.”

This will be written a>b. That is, he will make paired compar-
isons between events (subsets of S) saying when one event is, in his
judgment, more likely than a second.

We want to quantify these likelihood judgments with a probability
measure: a function p: A — [0, 1] satisfying

p(S)=1 and " plaUb)=p(a)+p(d)ifand=40.
This quantification p should be related to > by the condition
(8.1) a > b if and only if p(a) > p(b).
The question is: What conditions on = are necessary and sufficient
or there to be a p such that (8.1) holds? Note that in this story,

Totrep has no stake, financial or otherwise, in the eventual outcome

~he is an outside observer who is simply trying to give statements
2bout how likely things are.

115




116 Chapter 8

PROBABILITY MEASURES

Up to this point, we've dealt almost entirely with simple prob-
ability distributions. The few times we spoke of nonsimple proba-
bility distributions, we weren’t very exact about it. As long as all
I care about are simple probabilities on a set S, I can describe the
probability as a function p on S that is nonzero on only finitely
many elements. But for this chapter, we’ll need to go beyond simple
probability distributions, and to begin we need to cover some basic
definitions and concepts. (For more details on-these definitions and
concepts, consult a good book on probability theory, such as Chung
(1974), or Fishburn (1970, Chapter 10), from which this material is
loosely abridged.)

Begin with a set S. A collection of subsets of S, denoted by A4,
is called a (Boolean) algebra if
(a) SeA,

(b) a € A implies that a® € A, where a® denotes S \ a, the comple-
ment of a, and
(c)if a and b are in A then sois aUb.

It is easy to establish that for an algebra A:

(d) a;i € A for i =1,...,n implies that |J]_, a; € A, (or A is closed
under finite unions), and

(e) a; € A for i = 1,...,n implies that ()]_,a; € A (or A is closed
under finite intersections).

If in addition to (a), (b) and (c) (thus (d) and (e)) the algebra A
satisfies
(f) a; € A for i = 1,2,... implies that |J;2,a; € A (A is closed
under countable unions)
then A is called a o-algebra or o-field. Moreover, if A is a o -algebra,
it is closed under countable intersections.

Example 1. For any set S, the set of all subsets of S is a o-algebra.

Example 2. Let S = [0,1] and let A be the set of all subsets of [0,1]
that are finite unions of subintervals of [0,1]. A is an algebra but is

not a o-algebra.

If S isaset and A is an algebra of subsets of S, then a probability
measure on (S, A) is a function p: A — [0,1] such that
(a‘) p(S):' 1, and
(b) if a,b € A satisfy anb =0, then p(aU b) = p(a) + p(b).
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It is easy to see from (a) and (b) that

(c) p(a®) =1 —p(a) for all e € A.

A probability measure p is called o-additive (or countably additive) if,
in addition to (a) and (b) (hence (c)), p satisfies

(d) if a; € A,i =1,2,... are such that a;Na; = @ for i # j and
Ui ai € 4, then p(U:Z; @) = 332, p(ai)-

Some interpretation might be helpful. S is the outcome or state
space of some random experiment. Sets a € A are events, sets of
outcomes. p(a) is the probability of the set a. Probability is supposed
to be a quantification of likelihood, where this will be made precise
in a bit. The fact that p may not be defined for all subsets of S
(that is, A may be smaller than the set of all subsets of S) can be
interpreted as meaning that Totrep is unwilling to make likelihood
judgments concerning certain subsets of S; A is the collection of
all subsets that Totrep is willing to consider. Having the ability to
discuss probability where likelihood judgments need only be expressed
for an algebra smaller than the set of all subsets of S makes it a more
general, hence a more useful, concept.

One warning: When mathematicians use the term probability,
they almost always mean a o-additive probability measure defined
on a o-algebra. The reason for thic is that those extra properties are
needed to prove many of the mathematically interesting theorems in
probability theory. We'll have need of o-additive probabilities later
in the book, but for now we’ll deal with the finitely additive type.

QUALITATIVE PROBABILITY

Back to our main story. Giver are a state space S and an alge-
bra of events A. Totrep expresses “is more likely than” by a binary
relation > on A, and we’d like to get a theorem along the lines of

“The binary relation > satisfies — iff thereis a probability measure
Pon (S, A) such that a> b iff p(a) > p(b).”

Unhappily, we won'’t quite achieve this ideal of a single set of necessary

and sufficient conditions.

First let’s investigate some necessary conditions on > for there
o be representation by a probability measure.
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Since p, if it exists, gives a numerical ordering on A, it is ncces-
sary that >~ be asymmetric and negatively transitive. (Calling =
a preference relation would be formally correct, but seems to be in-
appropriate to the interpretation of this chapter.) Then defining >
and ~ in the usual way, these will be complete and transitive and
reflexive, symmetric and transitive, respectively.

Since p(a) > 0 = p(#), it is necessary that a> @ for all a.
Since p(S) = 1> 0 = p(9), it is necessary that S> 0.

Suppose aNc=>bNc=0. Then if p exists, plaUc) = .p(a) + p(c)
and p(bU c) = p(b) + p(c). So, in such circumstances, it is necessary
that a>-b iff aUc>bUc.

The four conditions give what is called a qualitative probability.

Definition (8.2). A binary relation > on A is called a qualitative
probability if

(a) > is asymmetric and negatively transitive,

(b) a0 for all a € 4,

(c) $*0, and

(d) [anc=>bNc=0] implies [a>biff aUc>bdU].

Then summarizing the above discussion, we have:

Proposition (8.3). A necessary condition for > to be represented by
a probability measure is that > is a qualitative probability.

It is easy to come up with other necessary conditions, such as
a> b iff b° > a°.

(Why is this necessary?) But this can be obtained from the conditions
in (8.2). Decompose S into four disjoint sets

I=a\b, II=b\a, III=anb, and IV =(aUb)".

It may help to draw a Venn diagram. Note that a = U III, af
ITUIV, b= IITUIII and b° = TUIV, where each of these is a dxs_]OlDt
union. Then a$ b iff IUIITS ITUIIT iff I I iff TUIV & IIUIV

iff ¢ > a®.
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Similarly:

Proposition (8.4). If > is a qualitative probability, then
(a) b C c implies Srexb>0,

(b) a~b and aNc =0 imply eUc>bUce,

(c) a>band aNc=9 imply aUc>bUc,

(d) e~ b,c~d,aNc=>bNd=0 imply aUc~bUd,

(e) a~b,c~d,anc =0 imply aUc*bUd, and

(f) ax=b,e-d,anc=0 imply aUc>bud.

The question is, since it is necessary for a representation that >
be a qualitative probability, what else will be sufficient? Maybe we’ll
get lucky and this will be necessary and sufficient. (Well, I already
told you that this wouldn’t happen.)

In 1959, Kraft, Pratt and Seidenberg showed that for finite S,
being a qualitative probability is insufficient. It takes a five element
set to show this. Let S = {s,t,u,v,w} and abbreviate subsets such
as {s,t,w} by stw. Define > as by

Suv > tw > stv > sw > uv > tv > stu > w >

tu>-sv>-vsusstu-t>s>0

(with the rest of > given by a> b iff >~ a®). Then > is a qualita-
tive probability (which you can verify), but it cannot be represented
by a probability measure p. For supposing that there was a proba-
bility representation, then
tu = sv implies p(t) + p(u) > p(s) + p(v),
v> su implies p(v) > p(s) + p(u),
sw > uv implies p(s) + p(w) > p(u) + p(v), and
suv > tw implies p(s) + p(u) + p(v) > p(t) + p(w).

Sum the right and left hand sides of these four inequalities, and
you get

2p(s)+p(t) +2p(u) +2p(v)+p(w) > 2p(s)+p(t) +2p(u) +2p(v) +p(w),

which won’t be easy to satisfy.

Kraft, Pratt and Seidenberg go on to show exact necessary and
sufficient conditions for there to be a quantitative probability rep-
fesentation of >, when S is a finite set. We won’t pursue these,
however, and turn instead to the approach pioneered by Savage.
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BASICS OF THE SAVAGE APPROACH

Before launching into the details, however, a few words of intro-
duction. For the remainder of this chapter and in the next, we take
up Savage’s axiomatization of choice under uncertainty, which begins
with an axiomatization of quantitative probability from qualitative
probability. Savage’s theory, which is the crowning glory of choice
theory, has its difficult mathematical moments, although many of the
steps are not so hard. In any event, we will not really prove much
of anything here. Instead of providing proofs, my objectives for the
rest of this chapter and the next is to take you on a guided tour of
Savage’s theory, as to how it is put together and what are some of the
key ideas. For those steps where the proofs are not difficult, I'll so
indicate; providing proofs then will become exercises. Those of you
who wish to chase down all the details should consult Savage’s classic
“Foundations of Statistics.” As always, Fishburn (1970) gives a very
nice and complete treatment.

The first thing to understand is that while the Pratt, etc. method-
ology is intended for finite S, Savage’s techniques are intended pre-
cisely for “large” S (infinite and more besides). Indeed, the basic idea
won’t work otherwise.

This basic idea is built up as follows. Suppose that for every
n = 1,2,..., the set S can be partitioned into 2" equally likely
events. That is, for each n there are sets

n n n
al,az,...,azn

all from A, such that a}Na} =0 for j # k, a} ~a} forall j and k,

and Uf;l al = S. One way that this would be possible would be to
have a fair coin lying around, which is flipped infinitely many times.
Then for each n, the events a} would be the various strings of heads
and tails on the first n flips, irrespective of what else happens. If
the coin is “fair,” then Totrep would say that these events are equally
likely.

Note that such aj can exist only if S is large — it certainly must
be the case that S is infinite. Moreover, no single state s € S can
have positive probability, since then it would be impossible to have a
partition that divides S into pieces of probability all smaller than the
probability of this s. However S need not be uncountable; on this
point see problem (4).
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Of course, if such a} exists, and if p is a probability measure
representing > , then it would have to be the case that p(a}) =1/2"
for all j and n.

Still supposing such a? exist, we can use them to find p(b) for
any other event b. Fix an event b. For each n, there is a smallest &k

such that
k
n
U aj > b
Jj=1

(This excludes the special case where b~ S, but that case is easy to
handle.) In view of the dependence on n, let this k¥ be called k(n).
Then if p exists, it is clear that

(k(n) —1)/2" < p(b) < k(n)/2".
So consider defining
(8.5) p(b) = nh_.rrgo k(n)/2".

Note well the technique. Having these sets a} is like having a set
of successively finer measuring rulers — each puts better (more fine)
bounds on p(b), and in the limit we get p(b) exactly.

This is a procedure that is bound to work if there is a repre-
sentation p and if these equi-partitions of S exist. Moreover, it is
obvious from the procedure that p, when it exists, must be unique -
any other representation p’ would have to put p (a") = 1/2", thus
(k(n) —1)/2" < p'(b) < k(n)/2" and thus p'(d) = hmnk(n)/2"

But will this work? If > is a qualitative probability and if these
partitions do exist, will p defined by (8.5) be a probability measure

and will it represent > in the sense of (8.1)?7 The answer is almost,
but not quite.

ITTOposition (8.6). If > is a qualitative probability and if these parti-
tions exist, then

(2) the limit in (8.5) exists (a technical matter; ignore it if you don’t
inderstand it),

(b) p so defined ic a probabxhty measure, and
() ab implies p(a) > p(b).
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The proof of this proposition is really fairly simple. The problem
with the result is that (c) isn’t quite enough - it may be that a>}

but p(a) = p(b).

FINE AND TIGHT QUALITATIVE PROBABILITIES

There are two things that can go wrong, so that a = b but p(a) =
p(b). To exhibit these two things, Ill need a bit of notation. Let
S1 = [0,1] and let A; be the algebra of subsets that are finite unions
of subintervals of S;. For any set a; € A;, let £(a;) be the “length”
of a; — the sum of the lengths of the disjoint subintervals that make
up a;. Similarly, let Sy = [2,3], let A; be the algebra of subsets that
are finite unions of subintervals of S;, and for a; € A, let £(a3) be
the length of a;. Finally, let § =[0,1]U[2,3] = S; U S3, and let 4
be the algebra for all subsets of S such that a € 4 if anN S} € A,
and anS, € A;. For subsets a € A, I'll generally write a; for an S,
and ay for anN S,, so that a = a; Ua,.

Example 1. For a = a,Ua, and b = b;Ub,, define @ > b if £(a;) > £(b))
or if [¢(a;) = €(by) and £(a3) > £(by)]. This is a lexicographic prob-
ability. You can verify that > so defined is a qualitative probability
and that S can be equi-partitioned — take

af =[G -1/2",;/2")U[2+ (G - 1)/2",2+j/27)

except for j = 2™, when you add the two right hand endpoints. It is
also straightforward to verify that p defined by (8.5) will satisfy

p(a1 Uaz) = €(ay).

But this doesn’t represent > : Consider a = [0,.5] U [2,2.5] and
b=1[0,.5]U[2,2.4]. Then a> b but p(a) = p(b) = 1/2. It is also not
hard to show that there is no probability measure p that represents
> . (Although there are easier ways to show this, one way to do so
from first principles is to go back to the proof that a lexicographic
preference relation cannot have a numerical representation, given in
Chapter 3.)

What’s gone wrong in this example with our surefire procedure
(8.5)7 Look at a and b above. We have a>b but the difference
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between them is smaller than any of our equi-partitioning sets. That
is, for any n, when we have enough pieces of our equi-partition so
that we are (just) larger than b, we are larger as well than a. Hence
even though a > b, for every n the k(n) that “works” for b also works
for a.

Example 2. For a and b as above, define a>b if #(a;) + €(az) >
f(bl) + e(bz) or if Z(al) + Z(ag) = Z(bl) + E(bg) and E(al) > Z(bl)
Again > is a qualitative probability and the same equi-partitions as
before will do. Moreover, p defined by (8.5) will give

p(a) = [£(a1) + £(a2)]/2,

which doesn’t represent > : If a = [0,.5] and b = [2.2.5], then a>b
yet p(a) = p(b) = .5. ,
How did we screw up this time? This time it’s even worse — a > b
yet there is no space at all “between” a and b. That is, if ¢ is any
set such that bUc> b, then bUc>a. So we could hardly expect to
be able to squeeze a member of our equi-partitions between a and b.

Definitions (8.6). A qualitative probability > is fine if for all a> 0,
there is a finite partition of S no member of which is as likely as a.
A qualitative probability > is tight if whenever a > b, there is some
set ¢ such that a=bUc>b.

In the first example, we have a qualitative probability that is not
fine — the set [2,2.5] is more likely than @, yet any finite partition of
S will contain at least one element that is more probable than [2,2.5].

In the second example, we have a qualitative probability that is
not tight. The sets a = [0,.5] and b = [2,2.5] are such that if b is
increased by any set ¢ that makes it more likely, then the increased
set is at least as likely as (indeed, in the example is more likely than)
the other. Yet a > b. -

The usefulness of these definitions comes in

Proposition (8.7). If = is a qualitative probability and if the equi-
partitions exist, then p defined as in (8.5) satisfies (8.1) if and only if
~ is both fine and tight. X

This isn’t too hard to prove.
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THE SAVAGE THEORY

We're almost done. The trouble with this result is that having
equi-partitions, fineness and tightness are not the most intuitive things
in the world — that is, they are not very good as normative axioms,
Fineness isn’t too bad, but tightness is a bit harder to understand.
And the equi-partition thing — well, it makes sense if Totrep has a
fair coin, but this is imposing a little bit of objective probability into
what is supposed to be a totally subjective story.

For the remainder of this chapter, assume that the algebra A of
subsets of S is the algebra of all subsets of S.

Axiom (8.8). If a and b are such that a> b, then there is a finite
partition {c;,...,c,} of S such that a> bUcy for every k =1,...,n.

Note that the partition {cj,...,c,} needn’t be a partition into
equi-probable sets — just that the “biggest” ¢; must be small enough
to fit between a and b. Savage tells the following story: Suppose
Totrep has a silver dollar. It isn’t clear (and indeed, it probably
isn’t true — whatever that means) that the bias of the silver dollar is
.5 exactly, but most Totreps would be willing to say that the bias is
between, say, .8 and .2. Then if we flip it enough times, the probability
of any particular string of heads and tails gets small - if I flip it, say,
1000 times, the probability of any particular string is no more than
(.8)}99°, The point is that I, and most any Totrep, would agree that
if a> b, I can flip the coin enough times so that the occurrence of &
or any one particular string of heads and tails is less likely than the
occurrence of a. This is exactly the axiom above. Note that there is
a bit of objective probability in this story, but only a very small bit.

Although the story in this axiom seems easier to swallow, the
conclusion that it gives remains the same.

Proposition (8.9). If > is a qualitative probability, then > satisfies
Axiom (8.8) if and only if >~ is fine and tight. And either of these is
sufficient to guarantee the existence of equi-probable partitions of .5

The first statement in this proposition is fairly straightforward.
The second is the one really difficult step in this development. Try
it if you wish, but you can also see Savage. Collecting everything
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together, we have the theorem:

Theorem (8.10). > is a qualitative probability and satisfies axiom
(8.8) if and only if there exists a probability measure p on (S, A)
such that

(a) a> b iff p(a) > p(b), and

(b) for all a € A and r € [0,1] there exists a subset b of a such that
p(b) = rp(a).

Moreover, the representation p is unique.

Note that (b), among other things, guarantees the existence of equi-
probable partitions. Also, Axiom (8.8) requires that S is infinite and
that {s}~@ forall s € S, thus by finite additivity {si,...,s,}~0 for
all finite subsets {s1,...,sn}. We still don’t have an axiomatization
of probability that works for finite S (or for countably infinite S that
gives o-additive probability).

PROBLEMS

(1) Prove that (a) through (c) in the definition of an algebra (page
116) imply (d) and (e).

(2) For example 2 on page 116, show that this is an algebra but not
¢ o-algebra.

(3) Let S =[0,1]. What is the smallest algebra of subsets of S that
contains all the singleton sets? What is the smallest o-algebra that
. ontains all the singleton sets?

. {¢) (This one takes some mathematical sophistication.) Let § =
{0,1,...}, and let A be the algebra of all subsets of. S. For any
mbset a C S, define f,(a) as the cardinality of a N {0,1,...,n}
;diVided by n+ 1. That is, fu(a) is the proportion of the first
' "+ 1 nonnegative integers in a. Define f(a) = lim sup,, fa(a), and
: {(a) = lim inf, fo(a). Is p*(a) = (F(a) + f(a))/2 a probability mea-
{ wre on A? If not, can you find « probability measure p on A that
| atisfies f(a) < p(a) < F(a)? (For those of you who know some
Mobability theory, remember that no one said anything here about
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o -additivity.)
(5) Prove Proposition (8.4).

(6) Show that if S has four elements and if > is a qualitative proba-
bility, then there is a (quantitative) probability representation of > .

(7) Prove Proposition (8.6).

(8) For the two examples on page 120, verify that in each case we have
qualitative probabilities, and verify that the procedure (8.5) will give
rise to the two probability measures that are claimed. Verify that in
each case there is no probability representation of > in the full sense
of (8.1). Finally, does example 1 satisfy tightness? Does example
satisfy fineness?

(9) Prove the first statement in Proposition (8.9). (If you want tc
prove both parts of the proposition, be my guest.) :
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Savage’s Theory of
Choice Under Uncertainty

In the last section we closed with Savage’s theory of subjective
probability. This is actually part of his theory of choice under un-
‘certainty, which is, as much as anything, the crowning achievement
“f single-person decision theory. Reviewing developments to date, we

sgan with von Neumann-Morgenstern utility theory, where the un-
certainty was objective. After this, and after diddling around with
‘properties of utility functions for money, subjective probability made
an appearance in the Anscombe-Aumann theory of choice, where sub-
iective and objective uncertainty were both present, and where the
:xistence of objective uncertainty in the form of extraneous random-
zing devices made life relatively easy. The last chapter concerned
pure subjective probability theory — no preferences, just “more likely
than” judgments, and no objective probabilities. Now we look at
choice theory, or “preferred to” judgments, with no objective uncer-
tainties.

As in the last chapter, I'm not going to try to give proofs of the
major results. Instead, the objective of this chapter is to cover the
asic logical flow for obtaining the representation. For the details of
ihe proofs, either provide them yourself or consult Savage or Fishburn.

"HE SAVAGE FORMULATION

The basics of the Savage formulation were given in Chapter 4.
’ll repeat them here: :

. There is a set Z of prizes or consequences.
)

. There is a set S of states of the world. Each s € S is a compilation of
. 'l characteristics/factors about which Totrep is uncertain and which

127
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are relevant to the consequences that will ensue from his choice. The
set S is to be an exhaustive list of mutually exclusive states — some
one s is/will be the state.

The algebra of all subsets of S is denoted A.

An act or action is a function f: S — Z, where f(s) represents the
consequences of taking action f if the state of the world is s. The
set of all act is the set of all functions from S to Z, denoted by F.

A binary relation > gives Totrep’s preferences over the set F' of acts.

For z,y € Z, I'll use notation like f > 2 and z > y, where 2
means here the act which always gives the prize z.

THE SEVEN SAVAGE AXIOMS

’

Axiom (9.1). > is a preference relation.
Accordingly, define > and ~.
Axiom (9.2). There exist ¢ and y from Z such that z > y.

This second axiom is purely structural and should bother no one. Now
for a real axiom.

Axiom (9.3). Suppose f,g,f and ¢' € F and a C S are such that
(a) f(s) = f'(s) and g¢(s) = ¢'(s) for all s € a, and

(b) f(s) =g(s) and f'(s) = g'(s) for all s ¢ a.

Then f > g if and only if f' > ¢'.

It is easiest to understand this axiom with a picture. Refer to figure
9.1. Note that in comparing f with ¢ and f' with ¢’, we only
“need” to be concerned with how they compare on a. This is because
they agree ( f with g and f' with ¢') on a°. And they “ought” to
compare the same way on a, because f = f' and ¢ = ¢’ on a. Of .
course, need and ought are in quotation marks, because the axiom is
the force behind those two prescriptions. Note that the “acts don’t
influence probabilities” assumption is written into this axiom, since
if f changed the probabilities inside a in a different way from f '
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Figure 9.1

(presumably because they differ on a®) then the axiom wouldn’t be
reasonable.

Because of this axiom, it makes sense to talk about conditional
preference.

Definition (9.4). Define f > g given a if f' > ¢' where f' = f and
g =gonaand f' =g off of a.

The axiom says that this is a sensible definition, in the sense that it
doesn’t matter what f' and ¢’ are off of a (as long as they are the
same), all that matters are the “on a” parts of f and g.

Lemma (9.5). The relation “> given a” is a preference relation if
Axioms (9.1 and 3) hold. Also “* given a” and “~ given a” defined
directly from “> given a” satisfy

(a) f =g given a iff f' > ¢' for f' and ¢' as above, and

(b) f ~g given aiff f' ~ ¢' for f' and ¢' as above.

This proof is very easy, and it is left as an exercise.

Definition (9.6). a C S is called null if for all f and ¢ from F, f ~g

given a.

Null events will turn out to be those with zero probability. The force
of Axiom (9.2) is that S is not a null event. |

Axiom (9.7). If a is not null, and if f(s) = z and g(s) = y for all
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s € a, then f > g given a iff z > y.

This is the “utility is not state dependent” axiom. You can see
how it compares with the similar axiom in the Anscombe-Aumann
theory.

Axiom (9.8). Suppose z,y,z',y', f,9,f',¢',a and b are such that

(a) z >y and z' > ¢/, .

(b) f(s) ==z and f'(s) =2’ on a, and f(s) =y and f'(s) =y’ on
a®, and .

(c) 9(s) =z and ¢'(s) =z’ on b, and g(s) =y and ¢'(s) = ¥’ on b°.
Then f>g iff f'>g'.

This one is quite a mouthful. Its interpretation runs as follows: The
acts f and g are pictured in figure 9.2(a). Since z > y, the act f
is a “win” (gives the better prize z) if a happens, while ¢ is a win
if b happéns. Presumably, then f > g if and only if a is judged
more likely by Totrep than 4. Similarly, as z’' > y', f' > ¢’ if and
only if a is more likely than b, since f' wins (gives the better prize)
if a happens, and ¢’ wins if b happens. See figure 9.2(b). So the
two pairs should compare similarly: f > ¢ iff a is judged to be more
likely than b iff f' > g'.

a b
f= [ g = c ’
y y
(a)
a 7 X b X'
f = c< g = ]
e 4 y'
, (b)

Figure 9.2
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This axiom also has some of the “acts don’t affect probabilities”
flavor to it. What would you think of this axiom if ¢ under f was
more likely than b under g, yet a under f' was less likely than &
under ¢'?

Axiom (9.9). For all a C S,
(a) [f > g{s) given a for all s € a] implies f > g given a.
(b) [g(s) > f given a for all s € a] implies g > f given a.

This is the “sure-thing principle,” a version of which we saw back in
Chapter 5 when we talked about extending von Neumann-Morgenstern
utility to nonsimple probability distributions. Its role here is exactly
as there.

Axiom (9.10). For all f and ¢ from F such that f > g and for all
r € X, there is a finite partition of S such that for every a in the
partition, :

(a) [f'(s) == for s € a, f'(s) = f(s) for s € a°] implies f' > g, and
(b) [¢'(s) =z for s € a,¢'(s) = g(s) for s € a°] implies f > g'.

The picture to think of is: Cut S up into finitely many (but many)
pieces, and for each piece, modify f so that it is identically = on the
piece. If the piece is small enough in terms of its likelihood relative
to how bad is £ and how much better than ¢ is f, then as f > ¢,
the changed f (which is called f' in the axiom) is still strictly better
than ¢g. And for each piece in turn, change ¢ so that it is = on the
piece; the.changed ¢ (or g') will be strictly worse than f, if the pieces
are small in terms of their likelihood relative to how good is z and
~ how much worse than f is g.

The entire force in this axiom comes in the requirement that the
partition must be finite - we must be able to break S into finitely
many pieces each of which is small enough. This is an extremely
powerful axiom, that cuts in many ways. Two of the most important
are:

(1) It is a restriction on how good or bad a particular prize can be. For
suppose there was a super-good prize z°, so good that any positive
probability of getting it made the corresponding ect better than some
. act f. Then, so long as there is some g with f > g, this axiom would
. fail. Similarly, this rules out super-bad prizes. So this axiom serves as
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the Archimedean axiom, when it comes time to get utility functions,
(But see problem 5.)

(2) It is a restriction on how small a difference there can be between
two acts f and ¢ and still have f > g. Suppose that z = {$1,$0}.
Let g(s) = 0 for every state s and let f(s) = 0 except on an “im-
possible event” ~ say f(s) = $1 for the state s where I flip a coin,
it rises to a height of ten feet, stops, then rises to a height of twenty
feet, and there breaks out in a chorus of “Dixie.” Presumably you
cannot partition all the states of the world into finitely many events,
each less likely than the one described, so that by the axiom f ~ g.
The difference between f and g is too small to have f » g. Again
the sense of the axiom is Archimedean, and it will wind up playing
the role of the fine and tight assumptions in the part of the overall
development that has to do with probability theory.

THE SAVAGE DEVELOPMENT

The first step in the theoretical development is to obtain proba-
bilities from preferences. It seems natural to say that Totrep believes
that a is more likely than b if whenever z >y, f=zonaandf =y
on a,and ¢ =z on b and g =y on b°, it follows that f > g. That
is, Totrep thinks that a is more likely than b if he would rather take
his chances on getting a good prize if a and a bad one if a® than
on getting the same good prize if b and the same bad one on b°.
Formally, define

Definition (9.11). For a and b in A, say that a is more likely than b
according to Totrep, written a>b, if for all z and y from Z such
that z > y, if f and g are defined by

_fz fors€a _Jz forseb
f(s)—{y for s¢a and g(s)_{y fors¢gbd

then f > g.

By Axiom (9.8), it doesn’t matter which z and y are used to
define f and g - whatever answer we get for one we will get for all.
In other words, in the definition we could have used “for some z and
y...” instead of “for all ...,” and so long as the axiom holds, the
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definition doesn’t change. Also, according to Axiom (9.2) there exists
at least one pair z and y that can be used to make the comparison.

Proposition (9.12). If Axioms (9.1,2,3,7 and 8) hold, then the binary
relation > as defined above is a qualitative probability.

The proof is fairly easy, so I'll only show one part: If and = bNd =0,
then a>b iff aUd>bU d. Suppose that a, b, and d are as above.
Take z > y and let f,g, f' and ¢' be defined as follows:

f= 9= fl= g =
On a\\ b: z y T y
On anNb: x z z x
On b\ a: Yy z Y z
On d: Yy Y T T
On (aUbUd)°: y y y y

By definition of > and by Axiom (9.8), a>=b iff f > g, and a U
d-bud iff f' > g'. So we need to show that f = g iff f' = ¢'.

But f=f"and g=g¢' on d°,and f =g(=y) and f' = ¢'(=z)
on d so that f > g iff f' = g' follows from Axiom (9.3).

Proposition (9.13). If in addition Axiom (9.10) holds, then the qualita-
tive probability > satisfies Axiom (8.8), so by Theorem (8.10), there
exists a probability measure p on (S, A) such that

(a) a>b iff p(a) > p(b), and

(b) for all a C S and r € [0,1], there exists a subset b of A such that
p(b) = rp(a).

Moreover, this p is unique.

Verifying that Axiom (8.8) is implied by (9.10) in this context is triv-
ial, -

Before passing on to the rest of the Savage theory, a comment
about the philosophy that underlies the above is called for. In the last
chapter, we had Totrep making pairwise comparisons between events,
telling us when he thought one was more likely than the other. Prob-
ability was a quantification of this “more likely than” binary relation.
Here, in contrast, “more likely than” judgments wre implicit judg-
ments, made by making preference judgments between various “win-

- lose” acts. Most adherents to the subjectivist or personalist school of
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probability would argue that the second procedure is philosophically
correct — “more likely than” judgments make sense only as part of
a choice process - they should arise (only) from preferences among
actions.

Having obtained probability, we turn to utility. Assume that
the Axioms (9.1,2,3,7,8, and 10) hold, so that p is given by the last
proposition.

For f € F, define a probability measure ps on Z (on the algebra
of all of the subsets of Z) by, for Y C Z,

ps(Y)=p({s € S: f(s) eY}).

That is, ps(Y') is simply the probability that the outcome falls in Y,
if action” f is taken. (Notation freaks will doubtless be overjoyed to
learn that a mathematician would write this definition py = po f71.)

Act f is called a simple act if p; is a simple probability. Write
F, for the set of all’simple acts. The first step in the expected utility
story is to get an expected utility representation for > on F,. This
is done in two steps. First:

Proposition (9.14). Suppose f and g are two simple acts such that
Pf=pg. Then f~g.

That is, we have to begin by proving the implicit “Axiom Zero” for von
Neumann-Morgenstern utility — that all that matters is the probability
distribution over the prizes and not the particular states in which
particular prizes are received. This really is something to prove here -
indeed, without Axiom (9.7) this proposition wouldn’t stand a chance
of being true.

This is not an trivial thing to prove. In Fishburn (1970), for
example, it takes about two pages, with two intermediate lemmas.
(It is Theorem 14.3 in Fishburn, if you'd like to have a look.) I won’t
bore you with the details here. But to illustrate how complicated
things are, let me do the very first siep (which does give some insight
into how the proof runs):

Suppose there is some z and two acts f and g such that ps({z}) =
po({z}) = 1. That is, both f and g give prize z with probability
one. Note well, this doesn’t mean that f and g are the same — only
that they differ on (at most) a set of probability zero. The question
is: Does this imply that f ~z ~ g, thus f ~ g¢?
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Yes. Suppose conversely that f # z. Also, consider the case
where there exists a y such that z > y. (The other case is done
symmetrically.) Then
(a) Let a = {s: f(s) #z}. Since f % z, a is not null.

(b) By Axiom (9.7), if f' =z on a° and f' =y on a then z > f'.
(c) By Axiom (9.10), S can be partitioned into finitely many sets
a,...,an such that for each k¥ = 1,...,n, if ¢* = z on (ax)° and
¢* = y on ai, then g* = f’. By the definition of *, this implies
that a > ax for each k, or p(a) > p(ax) for each k.

(d) But p(a) = 0 by assumption, and Y ;_, p(ax) = 1. Contradic-
tion.

See, nothing comes easy. It really does take two pages to establish
this Axiom Zero.

Proposition (9.14) says that we can use > to define a binary re-
lation >=* on the set of all simple probability measures on Z, denoted
Q,. How? If ¢ € Q,, then judicious use of part (b) of Proposition
(9.13) allows me to construct an act f € F, such that ¢ = py. So
for ¢ and ¢' from @Q,, letting f and f' be such that ¢ = py and
¢ =py, 1 can define

g>*qiff>f.
Proposition (9.14) assures me that it doesn’t matter which f and f' I
take to satisfy py = ¢ and py = ¢', hence >* is well defined (doesn’t
depend on the choice of f and f').

: Proposition (9.15). The binary relation > so defined satisfies the three

mixture space axioms, so there exists a function u : X — R such that

© for ¢ and ¢' from @,

(9.16) g>°q iff Zq(z)u(z) > Z ¢'(2)u(z2),
or, equivalently, for f and g from Fj,
(9.17) frgiff Z pr(2)u(z) > Z pg(2)u(z).

z€SUPP(py) zesupp(py)

Moreover, this u is unique up to a positive affine transformation.

Another two page proof. Good luck if you want to give it a try. It
1sn’t impossible. Just tedious. If you do attempt it, note well how
Axiom (9.3) is what gives the substitution axiom.
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If Z were a finite set, or we were content with looking only at
simple acts, we’d be done. But if we want to go whole hog, the
last remaining step is extend Proposition (9.15) from simple acts to
general ones. To do so requires a general definition of the integral,
That is, for f € F,, “expected utility” is defined quite easily as

Y. ez = Y p({s: f(s) = z}u(2).

z€supp(ry) z€supp(ry)

The question is, how do we extend this definition of expected utility
to non-simple acts? I ducked this question back in Chapter 5, and
now is no time to stop ducking. See one of the standard reference
books if you wish. I will say that this generalization can be done,
-and in a manner that agrees with standard methods of integration
(Riemann, Riemann-Stieltjes, Lebesque). And then, with Axiom 9.9
finally added into the stew, we obtain the classic result:

Theorem (9.16). Axioms (9.1,2,3,7,8,9 and 10) are sufficient for the
following conclusions:

(a) = as defined above is a qualitative probability, and there exists
a unique probability measure p on A such that a > b iff p(a) > p(b).
(b) For all a € A and r € [0, 1], there exists a subset b of a such that
p(8) = rp(a).

(c) For p given above, there is a bounded utility function u: X — R
such that f > g iff E[u(f(s));p] > El[u(g(s));p], where these are
expected utilities, suitably defined.

Moreover, this u is unique up to a positive affine transformation.

PROBLEMS

(1) Prove Lemma (9.5).

(2) Finish the proof of Proposition (9.12).

(3) Consider a problem in the Savage formulation with Z = [0, 100},

S = {s1, 82}, and F = {all functions from S to Z}. Define a binary
relation >~ on F' by

f = gif f(s1) + [f(s2)]? > g(s1) + [9(s2)]%.
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Of the seven Savage axioms, which does > obey? Provide proofs for
those it does obey and counterexamples for thosé it doesn’t.

(4) Suppose f > g given A, f > g given B, and AN B = 0. Prove
directly from the sevén Savage axioms that f > g given AU B. (By
prove directly I mean: Don’t use the representation theorem.) What
happens if I omit the premise that AN B = §.

(5) In the von Neumann-Morgenstern theory, the Archimedean Axiom
read: If p > ¢ > r, then there exist a,b € (0,1) such that ap + (1 —
a)r > q > bp+ (1 —b)r. We claimed above that part of the role of
Axiom (9.10) was to give us the Archimedean Axiom. But if you look
at Axiom (9.10), you'll see something quite different — there are two
“lotteries” and a consequence and not three lotteries, and the whole
thing is stated differently. Let us specialize in the von Neumann-
Morgenstern theory to the case of an arbitrary set of prizes Z and Ps
~ the space of simple probability distributions on Z. Then what would
- seem directly analogous to Axiom (9.10) in that specific setting would
_ be the statement: For all p = ¢ and z € Z, there are a,b € (0,1)
such that ap + (1 —a)é, > ¢ and p > bg + (1 — b)s,. Suppose we
replaced the Archimedean Axiom in that setting with the statement
just given. Would the conclusion (that is, Theorem (5.15) on page
58) still be true? If so, give a procf. If not, give a counterexample.

* (6) In the brief commentary following Axiom (9.9), it was claimed
. that the role played by this axiom is the same as the role played by
- the sure thing principle back in Chapter 5. Hence, if Z was a finite
. set, we should be able to dispense with Axiom (9.9). Is this correct?
- If Z is finite, do the other axioms imply Axiom (9.9)? The answer
+ must be yes given the results we have given above, but I would like a
' direct proof of this fact.
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Conditional Preference,
Conditional Probability,
and Contingent Choice

This very short chapter continues in development of Savage’s the-
ory of choice under uncertainty — the point is to investigate what this
theory has to say if anything about the well-known procedure of “tak-
ing actions contingent upon new information”.

CONDITIONAL PREFERENCE AND
CONDITIONAL PROBABILITY

Throughout this chapter, the setup will be exactly as in last
chapter. There will be: a set of states of the world S, with A the

i algebra of all subsets of S; a set Z of consequences — to keep things

simple I'll assume Z is finite; from these the set F' of acts is formed,
the set of all functions from S into Z; and Totrep’s preferences among
acts, given by >, which is assumed to satisfy the Savage axioms. This
gives us p, Totrep’s subjective probability measure over S, and u,
Totrep’s utility function on Z. Note that because Z is finite, all acts
are simple acts. For f € F, I'll write ps to denote the probability on
Z that is induced by p and f. Then if we let E[u(f(s));p] stand for
L. Ps(2)u(z), the representation is

1 (10.0) f > giff E[u(f(s));p] > E[u(g(s)); pl-

Now recall that in the Savage theory we defined conditional pref-
» trence by f > g given a if f' > g’ where f = f', g = ¢’ on a and
f'=g¢' on a®. Axiom (9.3) told us that this is well-defined; it doesn’t
matter what f' and ¢’ are on a€, so long as they are the same. I'll
write f >, g for f = g given a.

139
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Proposition (10.2). Suppose a is not null (so that p(a) > 0). Define,
tor bC S,

2) = p(and)
(10.3) p(ble) = OB
Then p(‘]a) is a probability measure on (S, A), and
(10.4) f >a g iff E[u(f(s)); p(la)] > Elu(g(s)); p(:|a))-

Moreover, >, obeys the seven Savage axioms, so that p(-|a) is the
unique probability measure and u is the unique-up-to-a-positive-affine-
transformation utility function for which represents >, in the sense

of (10.4).

Before proving this proposition, let me be a little clearer about (10.4).
By E[u(f(s));p(:|a)], I mean (recalling that Z is finite)

S u(En(ls  £(s) = 2Hla) = Lu(a P L =210

Abusing notation, I will write ps(z|a) for p({s : f(s) = z}|a). Then
(10.4) is

(10.5). f>agiff Z u(2)pys(zla) > Zu(z)pg(zla).

Proof. (Actually a sketch — lots of details are left out.) That p(-|a) is
a probability on A is left as an exercise. Given f and g, let f' and
g' be given as in the definition of conditional preference. Then

fragiff £ g i > u(@)pp(z) > Y u(2)py(2) iff

> u@p(an {f'(s) = z}) + p(a® N {f'(s) = 2})] >

z

Y u(2)lp(an{g'(s) = z}) + p(a° N {g'(s) = 2})]

z

iff ) u(z)p(an {f'(s) = 2}) > ) u(x)p(an{g'(s) = 2})
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' (since f' =g¢' on af, thus p(a®N {f'(s) = 2}) = p(a® N {g'(s) = z})
for all z)

iff Y u(z)p(an{f(s) =z}) > ) u(z)p(an {g(s) = z})

(since f = f' and g =¢' on a)

. plan{f(s)=2z}) plan{g(s) = z})
iff }: u(z) o(a) > Z u(z) oa)

(since p(a) > 0)
iff ) u(2)ps(zla) > ) u(2)pg(zla),

which is just (10.5), or (10.4) rewritten.

As to the seven axioms, (9.1,3,7,8 and 9) follow directly from the
representation (10.4), (9.2) is a consequence of a being non-null, and
(9.10) follows from the representation (10.4) combined with the facts
that S can be “finely-partitioned” and u is bounded. (This last is
especially devoid of necessary details.)

Thus the uniqueness result claimed in the proposition follows
from the uniqueness result in the Savage representation.

Conditional preference clearly gives rise to conditional likelihood.
Let z > y and, for b and d subsets of S, write b>d given a, or
b>-qd,if f>,9,where f=zo0onb, f=yonb®, g==z on d, and
g =y on d°. It should be clear that b>,d iff bNa>dn a, so, for
non-null a,

bs, d iff p(bla) > p(d|a).

CHOOSING AN ACTION CONTINGENT UPON
NEW INFORMATION

All of the above is preparatory for the following story. Totrep is
faced with a Savage style decision problem, and he has at his disposal
a finite (for simplicity) number of conceivable actions {f1,... fn}.
He has formulated his problem in the Savage setup — there are spaces
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Z of prizes (finite), S of states, and F' of acts, with fi € F for
k =1,...,n. His preferences over all acts are given by >, which obeys
the seven Savage axioms, and his preferences are thus represented by
some given p and u.

The change in the story is as follows. Totrep needn’t choose an
act from {fi,..., fn} until after he receives some information about
which state prevails. This information comes in the form of a fi-
nite partition of S, into {aj,...,an}. Specifically, Totrep will learn
whether the true state is in a; or aj or ... or a,, prior to choosing
an action. The question is: How should he choose, contingent on the
information he receives? For simplicity, we will assume that each q;
is non-null.

Note that for the first time, we are confronted with a problem
that has a dynamic element, in that Totrep isn’t choosing until after
he gets this information. I don’t want to get into this subject too
deeply just yet, so I'll revert. to the following modification that turns
this into a static choice problem: Totrep actually won’t make the
choice of f;, because he is going on vacation. Instead his agent will
make the choice for him. That is, his agent will learn which cell q;
of the partition pertains and based on this will choose an fi. Totrep
is able to leave detailed instructions for the agent, instructions of the
form: If you learn that a; is the cell that contains the state, then take
action fr — this sort of thing for each j = 1,...,m. Now the question
is — what instructions should Totrep leave his agent?

For concreteness, suppose m =3 and n = 5. You will have no
problem seeing how to generalize this, and the notation for the general
case is too gruesome to bother with. A typical list of instructions in
this specific case is:

If a;, then choose f3;if az, then choose f,; and if a3, choose f3.

If the true state is s, these instructions give the result f(s) where
f(s) is f3(s) for s in a; or az and f(s) is fa(s) if s is in ag. Let
me denote this particular action f by f3.3.

In this setting, there are 125 such sets of instructions that Totrep
could leave for his agent, where each set of instructions is equivalent
to taking an action fggsk», for k, k' and k" equal to some element of
{1,...,5}. The interpretation is that fir i+ agrees with fx on an
with fi on ay, and with fi» on aj.

Now for a planted axiom. We suppose that Totrep will select
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instructions according to whichever of the fyix» he thinks is best in
terms of his preferences »>. That is, we are assuming that Totrep’s
preferences over instruction sets is induced from his preferences over
the acts that the instruction sets induce, according to the induce-
ment scheme just outlined. (You should be asking yourself: Is this
a good description of how individuals act? Is this a good normative
prescription for how to choose among instructions to leave with one’s
agent?) '

Whatever you think of this planted axiom, it allows me to say
which set of instructions Totrep will leave by answering: Which frg
has highest expected utility for Totrep?

And I have no trouble with this question. Recall that we assume
that a;, ag, and a3 are all non-null. Then

(10.6) Elu(f(krx(5)); p] = p(ar) E[u(fe(s)); p(*la1)]+

p(az) E{u(fi(s)); p(-la2)] + p(as) E[u( i (s)); p(:|as)]-

You shouldn’t take my word for it; verify this equation using the
definition of conditional probability introduced above.

Once you've checked that I'm correct about this, we’re done. To
maximize E[u(ferir(s));p):

for k, take that ¢ that maximizes E[u(f;(s));p(:|a1)],

for k', take that ¢ that maximizes E[u(fi(s));p(-laz)],
for k', take that ¢ that maximizes E[u(fi(s));p(|as)].

7

Paraphrasing this for the general case of a finite partition: For each
possible piece of information a;, find which act f; maximizes con-
ditional expected utility, using the conditional probability measure
p(:|aj), and leave instructions to take that act if it is learned that a;
pertains.

Now what if Totrep isn’t going on vacation, but instead will make
the choices himself, once he receives the information?. Thinking of
this as descriptive theory, how will he act in that situation? Or as
normative theory, how should he act? It is a principle of most of
choice theory that Totrep should or will act exactly according to the
instructions he would leave for an agent, because dynamic choice is
the same as the static choice of a strategy. Now as descriptive theory,
this is a fairly bold assertion — and when we get to Chapter 13, we will
see a way to formalize dynamic choice so that this assertion can be
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subjected to test. But what about this as normative theory? Should
Totrep act in this fashion? A

As normative theory there isn’t really an issue here. Totrep
should wait until he gets the information, consult his preferences at
that point, and act accordingly. To create a real issue, let me com-
plicate the story one level further. Suppose that Totrep must choose
today either to implement an act from a set {fi,..., fm}, or to wait
for the information and then implement an action from a different set
of acts {f{,..., fr}. The idea is that by waiting for the information,
Totrep’s available choices will change. Now there is a real issue for
todays choice: In deciding whether to choose an act today or to wait
for the information, should Totrep compare his best act (in terms of
expected utility) from the first set with the ex ante expected utility
from his best strategy of choosing an act contingent on the informa-
tion, where the latter is computed in fashion analogous to what we
did above? That is, should Totrep view the set of acts that he has
available at the outset as being the first set joined together with all the
“strategic acts” that can be created from the anticipated information -
and the second set of acts?

Savage, and most normative decision theory, asserts that the an-
swer is that this is obviously the correct thing to do. Dynamic choice,
it is maintained, amounts to the static choice of an ex ante optimal
strategy, using ex ante expected utility computed as illustrated above.
Is this right? Do you find this compelling normatively? Before com-
mitting yourself irrevocably to an affirmative answer, wait for Chapter
13.

PROBLEMS

(1) Prove that p(-|a) given by (10.3) for non-null a is a probability
on A.

(2) Provide the details for the assertion in the proof of Proposition
(10.2) that the seven Savage axioms hold for conditional preference.

(3) Verify equation (10.6).
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Independence,
Exchangeability, and
de Finetti’'s Theorem

This is another chapter on refinements of the Savage theory. The
subject here is de Finetti’s theorem, which is, in my opinion, the fun-
damental theorem of statistical inference — the theorem that from a
subjectivist point of view makes sense out of most statistical proce-
dures. In the course of discussing this theorem and what it pertains
to, I'm going to expose you to a very informal and opinionated survey
of philosophies of probability. Actually, what I'll do is get in some
cheap shots at philosophies other than the subjectivist. You should,
if you have any sense at all, agree with me that these other philoso-
phies deserve the treatment they’re about to get, but you ought to
read a less biased account of them than you’ll get here before coming
to this conclusion.

SOME BEDTIME READING

Consider an ordinary thumbtack which is to be thrown into the
air in the center of a large, smooth wooden floor, say the basketball
floor of Madison Square Garden. It can come to rest in one of two
ways, called “heads” and “tails”, as depicted in figure 11.1.

This experiment will be repeated a great many times, and great
care will be taken to make sure that subsequent trials are as identical
as possible. As a seeker of wisdom, your narrator is going to ask a
number of people the following question:

“What is the probability that there are seven heads in the first
ten flips?” It will be up to the people questioned to make whatever
sense they can out of this question. If and when they have problems
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with that question, I may resort to other, simpler questions.

The first person I meet is the Comte d’Alembert, an 18th century
French philosopher and mathematician, who will represent the Clas-
sical School of probability. When I put my question to the Comte, he
looks at me a little sadly and says:

“Ah, I have no way of telling. There are eleven possible outcomes
in your experiment (0 heads, 1, ..., 10), and if I thought that they
were equally likely, I would say that the probability of each is 1/11.
In doing this, I would be applying the principle of insufficient reason,
which says that if I have no reason to suspect that one outcome is
more likely than another, then by reasons of symmetry the outcomes
are equally likely, and equally likely probabilities may be ascribed to
them.

“But I see no reason to apply the principle herc - it seems to
me to be much less likely that there will be 10 heads than, say, 6.
I once made a mistake like this [Narrator’s note: See Savage (1972,
page 65)], but Bernoulli’s arguments have convinced me that there is
no symmetry here.”

“Well,” I reply, “If it is the lack of symmetry between ten heads
and six that bothers you, what would you say is the probability of
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heads on the first toss?”

“Again monsieur, I am unable to answer. This tack, she is not
a symmetrical object, so I cannot conclude that heads is as likely as
tails, and thus that the probability of each is 1/2. If she were a well
balanced coin... But this tack..., no..., it is impossible to say.”

The next person I put the question to is Dwight, who describes
himself as an unreconstructed “frequentist.” Dwight is wearing a white
shirt with one of those plastic pocket protectors for holding pencils,
pens, etc., and he has a calculator strapped to his belt. When I ask
my question, I offer to answer any clarifying questions that he might
have, but he cuts me off and crisply announces:

“These are independent and identical Bernoulli trials (each re-
sults in one of two distinct outcomes), so the number of heads in 10
trials has a Binomial distribution. That is,

|
(11.1) P(7 heads out of 10) = % (1-p)3,

where p is the probability of a head on any given trial.”
“And what,” I ask, “is p?”

“I just told you — p is the probability of a head on any given
trial. Perhaps you want to know how we can get an actual number
for p? [I nod.] Well, suppose I define random variables

n =

1 if heads on toss #n
0 if tails on toss #n

Thexr x1 + ...+ X will be the number of heads in the first n tosses.
Now one of the most important results in mathematical probability
theory is the Strong Law of Large Numbers which, specm.hzed to this
situation, says that

lim X1+-~-+Xn _

n—oo n

That is, the observed long run frequency of heads is exactly the prob-
ability of heads on any single toss.

“If you really need a number, we should go to Madison Square
Garden and toss the tack a few thousand times. That won’t get p
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exactly, but it will give us a pretty good idea what it is. And I know
some really nifty statistical procedures that will tell us how much
confidence we can have in the observed number — tell me how much
confidence is necessary and how accurately you want to know p and
I can tell you how many times to toss the tack.”

Dwight begins to reach for his calculator and a handbook of sta-
tistical tables, but this doesn’t seem to me to be what I had in mind,
so I try one more question. “Would you be willing to enter into the
following gamble, Dwight: You get $100 if there are seven heads out
of ten, and you pay $5 if not?” '

“Hmm,” responds Dwight, “I can’t answer that question until I
have a good idea what p is. Can I borrow the tack — and do you know
if Madison Square Garden is free right now?”

“No, you misunderstand — I want to know whether you’d take
the bet right now.” ‘

“That comes down to guessing the value of p and so is not a
subject amenable to scientific analysis. Probability theory has to do
with objective, long run frequencies — haven’t you listened to a thing
I've said?” With that, Dwight stomps off to a corner of the room and
begins making plans to construct confidence intervals for me just as
soon as I see the light and lend him the thumbtack. He is present for
the next conversation, and several times he breaks into uncontrollable
laughter as he overhears various comments.

I next meet a Bayesian statistician named Ralph, who seems
pleasant enough but has the weary look of a compromiser. I show
him a transcript of the conversation with Dwight, and then ask him
my opening question.

Ralph cleans his glasses, sighs, and then begins: “First; let me
say that I agree with much of what Dwight said. Suppose we did
toss the tack, say 20,000 times, and we observed 11,489 hcads. Then
I would estimate p = .57445 and calculate the probability for seven
heads in the next ten tosses according to Dwight’s formula (11.1) with
this value of p.

“Now if you asked me for the probability of seven heads out
of ten without any information (essentially, if you ask me the last
question you asked Dwight), then I would represent my uncertainty
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concerning the true value of p through a prior probability. [Ralph
actually manages to italicize this phrase in his spoken conversation.]
For the sake of discussion, let’s suppose that this prior distribution
has a continuous density f(p) on [0,1]. [I look somewhat confused,
so Ralph elaborates:] This means that I think the probability that
the true value of p lies in some interval [a,b] C [0,1] is f: f(p)dp.
Then I would calculate the probability of seven heads out of ten as
being

1ol ., 3 £(0\g
(112 R TCEOONS
As you can see, this is a (continuous) weighted average of Binomial
probabilities, where the weighting is done according to the prior dis-
tribution for p. Dwight’s formula (11.1) is a special case of (11.2) - it
is (11.2) where the prior is concentrated on a single point. So (11.2)
is just a generalization of (11.1).”

I have to admit that this is the sort of answer I had hoped to get,
but I remember Dwight’s remark that this question was not amenable
to scientific analysis. I ask Ralph how he responds to that.

“Well, I suppose you could say that if you wanted to.” Ralph
cleans his glasses again and glances over his shoulder at Dwight, who
is hysterical at this point. “The difference between Dwight and me is
that in situations like this, I interpret probability as a quantification
of personal uncertainty. I’'m willing to extend the usage of probabil-
ity theory into areas where Dwight chooses to make no probabilistic
statements at all. But I'd like to emphasize that we are primarily
in agreement — I will update my prior distribution on p as sample
evidence becomes available (using Bayes’ rule of course) and, as the
sample size becomes large, my updated or posterior distribution will
approach a degenerate distribution concentrated at the empirically ob-
served fraction of heads. There is a very famous theorem in Bayesian
statistics which proves that this is so, unless I have a very unusual
prior to start with. By the way, I've got some really swell proce-
dures for Bayesian updating on conjugate prior distributions if you’re
interested.”

I tell Ralph that I am interested, so as not to hurt his feelings,
but that I don’t have the time. I go back to Dwight, who is wiping
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the tears from his eyes caused by his laughter, and I ask him whether
he’d care to comment on Ralph’s Bayesian prior procedure.

“I’d love to. Ralph is a nice fellow, but he’s out of his mind. The
probability of heads on any one toss is a number p, not the result
of some random experiment. This prior distribution — what does it
mean? Suppose foj f(p)dp = 1/3 — that is, Ralph says that there is
‘probability’ 1/3 that the bias of the tack is between zero and one-
half. By this does he mean that if we tested a whole lot of similar
tacks, one-third of them would have bias between zero and one-half?
I don’t think he does, but that is the closest I can come to attaching
any meaning to his statement. Look, the bias of the tack is either
between zero and one-half or it isn’t, and the ‘probability’ of this is
therefore either zero or one. If Ralph can tell me what experiment or
random event he has in mind for this prior distribution, maybe I'll be
able to make some sense out of his statement. But it had better be
that this random event, whatever it is, can be-repeated independently
lots of times, so f(p) can be gotten by frequency counts. Of course,
Ralph will probably say that he then has a prior on the results of this
experiment, with an infinite regress resulting, so I'm not hopeful he
can do it.”

Ralph reiterates, “I hear what Dwight says, and I can only re-
peat my earlier statement. The difference between him and me is
that I’'m willing to use probability to quantify subjective or personal
uncertainty and he isn’t. And my prior is an example of that.”

I turn back to Dwight, expecting a reply, but he’s again laughing
uncontrollably. So I move on to my fourth and final subject — Totrep.
Totrep modestly admits to possessing complete faith in the Savage
axioms, which he uses whenever he has a decision problem involving
uncertainty. He is the personification of all that is good in the world,
and I trust him immediately. [Narrator’s note: I may possibly be
accused of exercising personal bias in describing various actors in this
drama. Compare my description of Totrep with that given by J. M.
Harrison in the original version of this drama: “Totrep’s. arrogance
is exceeded only by his lack of worldly knowledge.”] I show Totrep
transcripts of all my previous conversations and ask him to comment.

“This is a very interesting problem,” he begins, “and I must
(modestly) admit that I know all the answers, including the answers
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to questions you haven’t yet thought to ask. You certainly are lucky
to have me around to guide you.

“First off, let me formulate this as a Savage style problem: It will
be sufficient for our purposes to take

Z = {$100,$0,$ — 5},

although Z could be enlarged if you have other questions. Next, for
S take

S = ﬁ{h,t}.

My notation may confuse you [I nod] — what I have in mind is that
S is the set of all sequences of the form s = (hthtthh...), where
s = (hthtthh...) means heads on flip one, tails on two, heads, tails,
tails, heads, heads, etc. Let x,(s) =1 if the nth component of s is
an h, and x,(s) =0 if the nth component of s isa t. Then x, isa
function with domain § - this is what I call a random variable (and
Dwight would surely agree with my definition).

“Now it is evident (if you haven’t been asleep through the last few
chapters of this book) what F is — the set of all gambles based on the
results of tack tosses with prizesin Z. I have preferences among such
acts/gambles, given by the binary relation >, and I (upon reflection)
decide that I want > to obey the Savage axioms. In consequence, I
get a personal probability measure p on all subsets of S — and note
well, p(a) > p(b) if and only if I prefer a gamble which gives prize
$100 if a and $0 if a° to one which gives $100 if b and $0 if b°.
When I say that I assess probability p(a) for some event a, you know
exactly what I mean, since this number is uniquely determined by my
personal preferences on S. (You ought to go ask Dwight, Ralph and
the Comte what the term ‘probability’ means to them. But wait a bit
~ let me finish my story.)

“Your original question is: ‘What do I assess for p(x;+...+Xx10 =
7)?’ I could tell you the number, but I don’t think that I will, at least
not now. This number represents a personal, subjective assessment
of mine, and that is all. There may well be other Totreps around,
who believe just as strongly in the seven axioms, but who come up
with different numbers, just as there are Totreps around who like
apples more than I do, and oranges less. [Narrator’s note: See the
final comment at the end of this chapter.] Instead of telling you my
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assessment, I'd prefer to tell you how I arrived at that assessment,
because I thmk that this will help you come up with an assessment
of your own.

“First, with regard to that bozo Dwight, let me say that I happen
to assess

pP(x1=1)=p(xa=1)=... = p(x10 = 1) = .55.

That is, the probability of heads on any one flip is .55, but I don’t
agree with his formula (11.1), that

10!
pxi+...+x0=T7)= ﬁ(.55)7(.45)3.

Dwight said that he got his formula because the trials were indepen-
dent. Well, I know what independence means. Two events a and b
are independent with respect to the probability measure p if,

p(anb) = p(a)p(bd).

Assuming that these are non-null events, an equivalent, somewhat
more transparent way of saying this is that either p(a|b) = p(a) or
p(bla) = p(b) - if one of these three equations holds, they all do. Take
p(alb) = p(a) — this means that if someone gives me the information
that the true state of the world is in the event b, I don’t change my
assessment of how likely a is. That is, I don’t think that there is any
information in the statement that ‘b prevails’ concerning the likeli-
hood of a. I hate to be pedantic, but let me stress that independence
is a subjective property — I might not assess two events as indepen-
dent that another Totrep would — it all depends on the probability
measure p, and thus, indirectly, on the individual’s subjective pref-
erences. Now are successive tack tosses independent? I don’t assess
them as being so. If I did, I would say that

P(Xx1001 = 1) = p(x1001 = 1|1 head in first 1000 tosses)

= p(X1001 = 1/999 heads in first 1000 tosses).

But I certainly don’t believe this — the first probability is .55 as I told
you before, the second is pretty damn close to zero, and the third
is close to one. There’s a lot of information in the first 1000 tosses
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about the 1001st, and I certainly wouldn’t ignore that info or say it
is of no use in assessing the probability of heads on the 1001st toss.
Maybe Dwight means ‘independence’ in some other sense than the
one above, or maybe he means to say that the tosses are independent
with respect to some ‘ideal’ probability measure ¢, but I'm sure not
interested in ‘ideal’ probability measures, and I assume you’re not
either, if you want to use this to help make a choice among lotteries.

“Dwight also mentioned the strong law of large numbers - saying
that it showed that

nli_’m(;o(xl +...4xn)/n=p(x1=1).

That is, the limiting empirically observed frequency of heads will equal
the probability of heads on any single trial. He might believe this is
true, but I sure don’t — I'd be very surprised to find the empirically
observed frequency of heads settling down at .55 exactly. If you look
up the strong law in a math book, you’ll see why I think that Dwight is
wrong about this. The strong law when specialized to this context says
something like: If {xn} is a sequence of zero-one random variables
that are independent and identically distributed with respect to a
probability measure ¢, then

g({s € §: lim (x1(s) +...+ xn(s))/n=q0x1 =1)}) = 1.

(There is a technical requirement needed to prove this — ¢ must be
o-additive on a certain sub-o-algebra of A — but let me ignore this
technicality.) In words, any Totrep who assesses these tack flips as
independent and indentically distributed would assess probability one
to the event that the long run frequency of heads will approach that
Totrep’s assessment of the probability of heads on any single toss.
That is a remarkable consequence of independence, but since I don’t
assess the tack tosses as independent, and I don’t think you do either,
it is also remarkably useless.

“I have one more comment to make about Dwight, but let me
turn now to what Ralph had to say. Rather surprisingly (to me at
least), Ralph has gotten the mechanics right, although he doesn’t
seem to know why they are right. My question for him is the same as
Dwight’s — what is this prior distribution a distribution for? Ralph
said something like, ‘It’s the distribution of the probability of heads
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cn any one toss,’ but that’s silly - thg probability of heads on any togg
is .55 — there is nothing random about that.

“T don’t think that Ralph can answer this question, but I sure
can. We've already discussed why I don’t assess successive tack flips
as independent. But I do think that the sequence of tack flips has a
property that is nearly as powerful as independence, called exchange-
ability or symmetric dependence. For example, I think that

p(x1=1,x2=0,xa=1,xa=1)=p(xs=1,xa=0,x2=1,x1 = 1).

Notice that what I've done here is to keep the same ‘outcomes’ (heads,
tails, heads, heads) but I've permuted the indices of the random
variables. More generally if {k;,ks,...,k,} is any permutation of
{1,2,...,n} for any n, then my assessment for the joint distribution
of the random vectors (X1, X2, ---5Xn) a0d (X&,sXkss- - » Xk ) are the
same. This is a hard property to wrap your head around at first, but
I think that if you think about it, you’ll come to view it ‘as quite
intuitive in this context, and you’ll want your subjective probability
distribution to have this property.

“Now for the punchline: There is a very famous theorem, known
as de Finetti’s theorem, which can be specialized to this context as
follows:

If {x1,X2,---} is an exchangeable sequence of zero-one random vari-
ables (that is, with respect to a probability measure p), then

(a) p({s € S : limp_oo(x1(s) + ...+ Xxn(s))/n exists}) =1, and

(b) letting a(s) be the limit of (x1(s) + ... + xn(s))/n for those s
for which this limit exists,

P(xs -1 Xn = ) = B[l —sra(a)™(1 = ()" i)

This is, despite appearances, quite transparent. Part (a) says that if
I assess the sequence as being exchangeable, then I assess probability
one that there will be a limiting empirical frequency for the frequency
of heads. Of course, I’'m not sure a priori what that limiting empirical
- frequency will be - it is a random variable a(s). Since it is random,
it has a cumulative distribution function (it takes on values in the
interval [0, 1], remember). Let me define

F(v)=p({s € S: a(s) < 7}) for y € [0, 1].
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That is, F'(y) is the probability that I assess that the limiting empir-
ical frequency will be 4 or less. Then part (b) says that to compute
things like p(x1 + ...+ x10 = 7), I do just what Ralph told me to do
(using the distribution function F instead of the density function f)

' 10!
P+ a0 =) = [ 1= dF ).

If F has a continuous density, then it is exactly Ralph’s formula
(11.2). (There is one technicality I ought to mention — to prove this
result, I require that p is o-additive on the same sub-o-algebra as
is required for the strong law. But don’t worry too much about that
- if I took the time to explain the whole thing to you, you wouldn’t
find the assumption too hard to swallow.)

“Now to answer the question that I posed for Ralph. His prior
distribution is my assessment for the distribution of the limiting em-
pirical frequency of heads, where I assess that such a limit will be
observed because I assess successive tosses to be exchangeable. That
‘because’ is quite important — what legitimizes Ralph’s formula and
the procedure is the qualitative property of exchangeability. In fact,
the theorem has a converse —if I didn’t view the sequence as exchange-
able, then I can’t use Ralph’s formula - the theorem is an ‘if and only
if’ result.

“As a practical matter, then I'm going to do just what Ralph
says to do, with one step added in front:

(1) I decide that I assess the sequence as being exchangeable.

(2) T subjectively assess the probability distribution for the limiting
empirical frequency, or what Ralph calls his prior.

(3) I compute things like p(x; + ...+ x10 = 7) using the formula -
note that

plxn=1) = / ydF(y) = Eo(s); pl;

this is how I got the .55 I told you about earlier.

“I feel like I'm beginning to bore you [I nod], but I have a few
more points to make. The first is: Why am I assessing the distribution
for the limiting empirical frequency and then using the formula to
compute other assessments, rather than trying to make a few direct
assessments such as p(x; + ...+ x10 = 7)? After all, they are both
judgment calls on my part. The reason is simple — I find it easier to
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do the former than the latter - if I found the latter easier I would do
that. The point of this theory — going from the qualitative judgment
in step 1 to the formula — is that it allows me to make an assessment
that I find relatively easy (an assessment for F') that can then be used
to make assessments I find more difficult, such as the assessment of
p(x1+ ...+ x10 =7). But ‘easier’ and ‘more difficult’ are subjective
things — you should do whatever you find easiest.

“Second, remember Ralph saying that as he obtained more sam-
ple evidence, his prior distribution would collapse to a distribution
* degenerate at the observed frequency of heads? Well, the sort of thing
he’s describing is the computation of a simple conditional probability,
such as

1000

p({s€S:a(s) <y} |{s€S: Z x;(8)/1000 = .567}).
1=1

~ You can do this quite easily, noting that

p{s€S:a(s)<yand an(s) =m}) =
j=1

Amﬂ (1-B)"""dF(B).

If you do this computaticn for any reasonable prior F' (roughly, ones
that put positive mass in neighborhoods of .567), you’ll see that his
statement was correct.

“Third, part (b) in de Finetti’s theorem can be restated: Condi-
tional on the value of a(s) being v, the random variables x1, x2,.--
are independent and identically distributed, with p(xn, = 1l|a(s) =
v4) = v. If you're worried about me conditioning on a null event,
imagine that a(s) has a discrete distribution with mass at y. Even
if this isn’t the case, the statement I've written makes mathematical
sense, although it’s a little hard to explain this precisely unless you
know a lot more mathematics than I think you do. So maybe when
Dwight said that the flips were independent, what he meant was that
they are conditionally independent given the value of (s). But I
don’t think he meant this, quite. In order to assign probabilities to
the outcomes of a random event, Dwight requires that the event or
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experiment be repeatable — then the probability of an outcome is just
the long run frequency of that outcome. And Dwight is never will-
ing to make any numerical statement about a particular repeatable
experiment until he has a goodly amount of frequency data. That’s
why he calls himself a frequentist. On the other hand, I am willing
to quantify any subjective uncertainty in my mind with probabili-
ties, whether this is the repeatable kind of uncertainty or not. My
probability assessment for the limiting empirical frequency is a good
example of this, although I can give a starker example. Consider the
probability that New York is closer to the North Pole than is, say,
Madrid. Dwight presumably would say — it’s either zero or one, by
which I assume he means that New York is either closer or it isn’t.
But the same thing is true if I pull a coin out of my pocket and flip it.
Either it will come up heads or it will be tails. It will be one or the
other, so (by Dwight’s logic) shouldn’t the probability be either zero
or one? I only understand probability as quantification of personal
uncertainty, as part of a representation of my preferences. I really
have a lot of trouble in understanding how Dwight can differentiate
between the coin flip and the New York/Madrid question.”

[Narrator’s note: A round of applause for the cast, please.]

DE FINETTI'S THEOREM

In the above discussion, Totrep described de Finetti’s theorem in
the simple case of Bernoulli (zero-one) random variables. Here is a
more general version of the theorem:

The setup is a state space S with A the algebra of all subsets
of S and p a probability measure on A. You may presume that
this p arises from a preference relation > among acts (based on S),
although this interpretation is not necessary for what follows. If you
liked the story of Totrep, Social Scientist, expressing “more likely
than” judgments, that is also consistent with what follows.

Also given is a sequence of random variables — function Z,, : § —
R. (Technical aside: Let A* be the o-algebra of S generated by all
sets of the form {s : Z,(s) < z,...,2,(s) < z,} for all finite n,
where 21,...,2z, € R. The theorem requires that p be o-additive on
A*)



158 Chapter 11

Definition (11.3). The sequence {Z,} is said to be exchangesble if the
joint distribution of (Zy,..., Z,) is the same as that of (Zy,,..., Zy,),
for all n and permutations {kj,...,kn} of {1,...,n}. Put another
way: Let Fy(21,...,25) be the joint cumulative distribution function
of the random vector (Z,,...,Z,). That is,

Fn(zla---azn) =P(zl <z1y...,2n Szn)-

Then {Z,} is exchangeable if, for all n, F, is a symmetric function
. of its n arguments.

Next, for n = 1,2,... and z € R, define {n(2,"): S — R and
én(z,'): S — R by

_ 1 if Zn(s) <z,
(n(2,8) = {0 if Zn(s) > z,

and

€n(z,8) = %ZC;(z,s).
i=1

In words, €,(z,s) is the fraction of the first n observations that fall
at or below level z, if the state of the world is s. So if we graphed
€.(z, 8) as a function of z (for a particular s), we’d have the empirical
frequency function for the first n observations.

Theorem (11.4). The sequence {Z,} is exchangeable if and only if:
(a) There exists a function £ : R x § — [0,1] such that for each s,
€(-,s) is a distribution function, and

p({s € S: lim €,(z,s) = &(z, s) for continuity points of £(-,s)}) = 1.
n—oo

(b) Fu(z1,...,20) = E[€(21,5) - £(22,8) + ... - &(zn, 8); P].

This looks much more complicated than it really is. It can be
- paraphrased: If (and only if) you assess that {Z,} is exchangeable,
~ then when you form the empirical frequency functions &,(-,s), with
probability one they will converge to some (random) limit distribution
function £(-,s). And (this is a rather rough paraphrase of part (b)) if
you condition on this limit distribution function, the {Z,} sequence
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is a sequence of independent and identically distributed random vari-
ables with distribution function {(:, s). Very roughly put — exchange-
ability is the same as “independent and identically distributed with an
a priori unknown distribution function”, a distribution function that
will emerge from the frequency distribution of an infinite sequence of
observations.

The original reference for de Finetti’s theorem is “La Prevision
...,” Ann. Inst. Henri Poincaré. A translation into English can be
found in the book of readings edited by Kyburg and Smokler (1964).
Substantial generalizations can be found in Hewitt and Savage (1956).,
A slightly weaker version of the theorem is proven by Loeve in his book
in probability theory (page 365). Also, Feller gives a partial proof for
the simple Bernoulli case in his Introduction to Probabilty Theory, Vol.
II, p. 229. Feller also discusses an important technical caveat — it
is necessary that the sequence {Z,} is infinite for the theorem to be
true. Any/all of these references will show that this is a very deep
theorem, and one that requires much mathematical sophistication to
prove. It turns out that, for the Bernoulli case, there is an incredibly
“slick” proof using the convergence theorem for backward martingales
— this proof can be found in Chapter 9 of Chung (1974).

DE FINETTI'S THEOREM AS THE
FUNDAMENTAL THEOREM OF (MOST) STATISTICS

Much (perhaps most) of statistics comes down to “sampling from
a population with unknown distribution function,” where typically a
large numbers assumption is used to justify the view that the sam-
ples are i.i.d. with the unknown distribution. Taking a subjectivist
view of probability, de Finetti’s theorem can be seen as providing
the qualitative justification for such a point of view — if you (the
statistician) assess ex ante that the samples are exchangeable (and
coming from a large population), then and only then is it legitimate
to view the samples as “independent and identically distributed with
unknown distribution function.” What separates classical statistics
from Bayesian statistics is that Bayesian statistics considers the dis-
tribution of the unknown distribution function — this is the Bayesian
prior distribution.

In classical statistics, this distribution is generally swept under
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the rug — sometimes it is implicitly assumed to be completely diffuse,
as in MLE point estimation — other times it is ignored entirely; only
conditional probability statements are made, as in confidence interva]
construction. This is not entirely unreasonable - if we're looking for
statements based on a certain set of data that all Totreps can agree
upon, and if all Totreps assess that exchangeability is appropriate
in a certain context, then the sorts of conditional probability state-
ments that fill texts on classical statistics are statements that would
be unanimously held. (I believe that most controversies in statistics
concerning misspecification of models, etc., can be reduced to argu-
ments about whether a certain exchangeability assumption is indeed
valid. However I am not much of an empiricist, and you should take
this opinion with a grain or two of salt.) It would, after all, be hard
to get unanimous subjective assessments on the prior, and it wouldn’t
do (would it?) to fill scholarly journals with probabilistic statements
that are mixtures of the author’s subjective prior and data that have
been collected. In any case, if one makes this sort of interpretation
of classical statistics, then de Finetti’s theorem and the qualitative
property of exchangeability become fundamental to the subject; it is,
once we agree on the right specification, what all Totreps agree upon.
(But see the final section of this chapter.)

BAYESIAN INFERENCE AND DE FINETTI'S THEOREM
AS NORMATIVE DECISION TOOLS

The normative usefulness of de Finetti’s theorem is so apparent
that even MBA students buy it without blinking. Situations where
exchangeability is a natural assumption abound — quality control and
marketing surveys are obvious examples. A typical story is that you
aren’t sure about the reliability of a piece of equipment, or what
proportion of your clientele will purchase a certain good — and the data
that you have are naturally assessed as being independent conditional
on an unknown parameter — that is, exchangeable plus, where the
plus is a parametric specification of the unknown distribution. Then
the representation in de Finetti’s theorem, together with your prior
assessment on the parameter value and the data, give you sufficient
joint probabilities with which to calculate the appropriate conditional
probability distribution of the parameter, conditional on the data.

N
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Since Bayes’ formula is used in constructing these conditionals, the
rubric Bayesian inference is often employed to describe this process.
All this is somewhere between obvious (I hope) and boring (I fear),
so let us look at a more interesting application.

Suppose that you were building a nuclear power plant, the safety
of which is dependent on a certain device working. You assess proba-
bility 103 that this device will fail in a one year period. These odds
aren’t safe enough given the consequences of failure by the device, but
you can install these devices in parallel so that all must fail if there’s
to be trouble. Moreover, parallel installation is such that the failure
of one doesn’t effect the others in any way that would cause the others
to fail. So if you put, say, four of these devices in parallel, you get
that the probability that all four fail within a year is

p(#1 fails) - p(#2 fails) - p(#3 fails) - p(#4 fails) = (107%)* = 10712

Right? No, this is wrong.

It is wrong on two related counts. First, while the failure of one
of the devices may not directly cause the others to fail, the reason
that the first one failed may also be a reason that the others fail.
For example, if there is a fire at the plant which causes the first
system to burn, the same fire may well consume one or more of the
other systems. If such causes of failure as this exist, then we can’t
assume that failure of the four systems is independent, as we did in
the calculation.

But suppose that there are no “joint causes” such as fire. Even
then the analysis just done may be wrong. When we assess probability
.001 that one of these systems will fail, we are making an assessment.
But we should admit the possibility that we are miscalibrated. Put
another way, if you are told that the first three of the four systems
failed within a year, that might well cause you do doubt the initial .001
assessment, and it might lead you to revise upwards the conditional
probability that the fourth system did/will fail. Now there is a sense
in which this is just the same sort of thing as fire as a joint cause
of failure — one suspects, if the first three systems do fail in a year,
that there has been some design flaw or some overlooked factor in the
plant that the system can’t cope with. And, of course, this design
flaw or this overlooked factor will then have an effect on the fourth
system. But however we put it, the problem remains - failure of
the four systems are not events that we are likely to assess as being
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independent, especially given the sparse data we are apt to have op
how such devices perform in the field, and the calculation above doeg
not give the joint probability that all four fail.

So how should we proceed in this sort of problem? While in-
dependence isn’t a very reasonable assumption, exchangeability may
well be. If the systems are identical, one would expect the probability
distribution for the joint distribution of their failure to be symmetric,
and it would be symmetric no matter how many systems there were.
Then just as in a marketing survey or a quality control problem, which
is what-this is, in a sense, we can analyze the problem by assessing a
prior on the “limiting proportion of systems that fail within the year”
(which should have expectation .001). And then, if this distribution
is given by F : [0,1] — [0,1], calculate the chance of all four failing

1 4
as [, vY*F(dy).

For more on this sort of application of de Finetti’s theorem, see
problem 2 and Harrison (1981).

UNANIMOUS PRIORS

In two places above, we referred to the fact that different Totreps
might have different prior probability distributions over a given set of
states of nature, even if both obey the Savage axioms. From the per-
spective of the axioms alone, it seems no more reasonable to suppose
that there is some single correct prior than it is to assume that there is
some single “correct” set of tastes over consequences. Nonetheless, it
is widely held by economic theorists that there is a difference between
probability assessments and tastes, and that two Totreps, given ac-
cess to the same information and training, ought to come to the same
conclusions as to the likelihoods of states. In other words, priors will
be unanimously held by Totreps, although differences of opinion over
the likelihood of certain states can arise between two Totreps if they
have had access to different pieces of information. This point of view
is often referred to as the Harsanyi Doctrine, after John Harsanyi,
one of its strongest proponents. This book concerns single person
choice theory and so the Harsanyi Doctrine and its many wonder-
ful consequences are not really fit subjects for us. However I didn’t
want casually to lead you too far astray in terms of received doctrine
(however strange I find that particular doctrine).
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PROBLEMS

(1) Consider the Savage setup described by Totrep in this chapter.
Suppose I tell you that: : .

(a) I view successive tack tosses as being exchangeable,
(b) I assess p(x; =1) = .3,
(c) I assess p(x1 + x2 + x3 =2) =.195, and

(d) I assess probability one that the bias of the tack is one of .1 or .3
or .5 — that is p(a(s) = .1) + p(e(s) = .3) + p(afs) = .5) = 1.

Then what do I assess for p(x; + ...+ x10 =3)7

(2) In practical books on Decision Analysis, you will sometimes find
something called a “calibration function.” The idea is that, when a
decision maker is making probability assessments, he or she might
express poorly the assessments made. More specifically, we imagine
that we look at a long stream of assessments made by this individual,
all of which are (for simplicity) of the either-or outcome type. Very
specifically, we imagine that we ask the individual a long series of
questions of the following type:

“Which factor was the cause of more deaths in the US in 19767 (a)
Heart attacks. (b) Accidents in the home.”

The individual is told to say which outcome he or she thinks is more
likely, and what he or she judges to be the chances of the more likely
outcome, rounded, for simplicity, to the nearest .1. We group together
all of those in which the individual says there is a chance of .7 of one
outcome, and (suppose) we find that the.predicted-to-be-more-likely
outcome is in fact correct in 80 percent of these cases. Looking at
the group where the decision maker assesses probability .8, (suppose)
we find that he or she is right 90 percent of the time. And so on.
The individual we are describing is then said to be underconfident in
his or her judgment, since the odds this person expresses understates
the degree of confidence that he or she should have in what he or
she knows. And so, the practical book goes on to say, if you are this
decision maker, you should be bolder in your assessments. Or if you
rely on assessments by this decision maker, you should “recalibrate”
any assessment this decision maker makes.
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(A variation on this is to ask the decision maker a question such as:

“How far is it from New York to Tokyo in statute miles? Instead of
giving a point estimate, give a range such that there is, in your judg-
ment, a 25 percent chance that the distance is less than your smaller
number, and a 25 percent chance that the distance is greater than
your larger number. In other worlds, give me the ‘interquartile’ range
of your probability assessment for this subjectively random variable.”

And then, if the individual’s range actually contains the answer, say,
70 percent of the time, you know the individual is too conservative,

etc.)

Is it possible that a given Totrep, whose assessments obey all the
laws of probability theory in a Savage setting, would be consistently
“miscalibrated”, in the sense that every event to which Totrep assesses
.7 chance actually has a .8 chance of being correct, etc.? (The answer
is no — the real question is: Why not?) And since the answer is no,
what could possibly be the theoretical basis for all this blather in
practical books on Decision Analysis?
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Normative Uses
of These Models
on Subproblems

The story that motivates this chapter is the following. You (or
Totrep) have to make a decision involving uncertainty. You are won-
dering whether it is appropriate to make this decision using the ex-
pected utility model — should you assess probability and a utility
function and then compute expected utility? In other words, do the
Savage or von Neumann-Morgenstern axioms apply?

What complicates this question is that there are other things go-
ing on in your life — there are other decisions to be made, other sources
of uncertainty, etc. To apply one of these models, you have to make
a choice: You can “do it right,” by applying the model to the global
decision problem that you face, or you can apply the expected utility
model “locally” to the immediate problem that you face, abstracting
away from the other considerations, sources of uncertainty, etc. I will
assume (big assumption) that you are willing to sign off on applying
the axioms globally — in the larger context the axioms do make sense
to you. The question is, do the axioms also make sense locally? If the
answer to this question is not yes, then we may be in trouble in terms
of the usefulness of these models — if every time I want to use these
models to choose among some gambles I must reconsider all decisions
that I might be called upon to make sometime during my lifetime,
then perhaps I had better forget these models as a practical tool of
analysis. '

This is a very complex issue, in part because it is so vague. The
way in which I'll proceed is to show a few of the problems you can
encounter in trying to apply these models locally, in one simple and
concrete setting. In order to get things moving, I'll be making a few
simplifying assumptions:

165
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(1) All probabilities are cbjective. Thus we will be asking whether
the von Neumann-Morgenstern (hereafter, NM) axioms apply.

(2) In the global problem, you are willing to buy the NM axioms -
you maximize expected utility. Moreover, you have tastes that don’t
change with time or anything else of that sort — in a dynamic choice
problem you'’re willing to regard the problem as static choice of a best
strategy, per our discussion at the end of Chapter 10. I'll never be
explicit about this in this chapter, but if you’re observant, you’ll see
that I'm implicitly invoking this assumption all over the place. We'll
take up this matter explicitly in the next chapter.

(3) One of the commonest misuses of this methodology is to use it in
circumstances where it is hard to build an adequate model — because
of any sort of emotional involvement on the part of the decision maker,
for example. This is a critical issue in deciding whether to apply the
methodology, but I am unable to say anything formal about it. So I'll
leave this issue aloiie — for purposes of this chapter, we’ll have enough
to do to consider those things that we can formalize.

THE BASIC PROBLEM

We'll look at three variations on the following general theme.
Consider a Totrep who lives for two periods, ¢t = 1,2. Totrep con-
sumes dollar bills in each of these periods — denote the amounts of his
consumption by ¢; and c,, respectively. Totrep has a friendly banker
who is willing to borrow and/or lend to Totrep at a per period interest
rate of r, which, for simplicity, I'll take to be zero. Bankruptcy is not
permitted in this society, and Totrep cannot and will not take any
action that might leave himself bankrupt.

Totrep comes endowed with initial wealth w.

Totrep will have two sources of income. The first is a combination
of income from labor and return from all the investments that he has
previously made. This income may be random and will be received at
date t = 2. The amount of this income will typically be denoted by
y. Totrep may have some discretion as to the probability distribution
of this income.

Totrep’s other source of income is an extra investment or specula-
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tion that he is able to undertake. Imagine that Totrep’s stock broker
has just called him wanting to know if Totrep is willing to engage in
a hitherto unforeseen venture. The amount of this extra payoff will

be denoted by =z.

Issues concerning the time at which Totrep learns about the res-
olution of any uncertainty that pertains will be a large part of this
story: We leave the specification of this to the particular cases we’ll
examine.

The question is: Under what circumstances can Totrep apply the
NM model to make decisions concerning the second income source
z? That is, imagine that Totrep’s broker has offered him a choice of
several extra speculations. When can Totrep abstract away from all
his other problems (his other investments, his consumption decision)
and use an NM model to choose among the extra speculations?

We shall assume that Totrep believes in the NM axioms applied
to consumption pairs (cj,c2) — that is, he wishes to take actions
overall that will lead him to maximize the expectation of a strictly
increasing function U(c;,cz). This, we shall see, induces preferences
over the possible second source gambles, and the question being asked
is: When do these induced preferences satisfy the NM axioms on their
own?

VARIATION #1:
STATISTICAL DEPENDENCE BETWEEN z AND y

Consider the following simplification of the above story. Totrep
has no discretion as to the distribution of y. Totrep learns nothing
about y until after he chooses ¢;. The payment z is made in period
1, and the amount of the payment is known before ¢; must be chosen.

Let p denote the probability distribution function of z, and
¢(-|z) denote the conditional probability distribution function of y
given z. That is, we allow the two sources of income to be statisti-
cally dependent.

Then Totrep’s expected utility will be

Zp(x)n}gx{Z Ulen,w+ z — e + y)g(ylx)]-

A lot needs to be said about this expression. Note first that the
maximization is pulled outside the second summation — this is because
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Totrep has to choose ¢; before learning what y will be. (What would
it look like if ¢, were chosen after learning what y is?) Second,
consumption in period 2 is the expression w + x — ¢; +y — this is the
sum of what is left over in savings, if w + z exceeds ¢;, or is owed to
the banker, if w+z falls short of ¢, , added to the amount of income .
(If the interest rate r were nonzero, we’d write (1+7)(w+z —c;)+y
for ¢5.) We should add bankruptcy constraints to the maximization
problem; ¢; must be chosen so that w4z —¢; + y is greater or equal
than zero with probability one. I'll never write this constraint in, but
it will always be implicit in what I say. ,

Does this define (or induce) preferences over simple probability
distributions p? And if so, are these preferences NM? That is, do
they satisfy the NM axioms? It seems as if these questions can be
answered affirmatively: If I define a function F' on the space of simple
probability distributions p on R by

(121)  F(p)=)_ p(l‘)rri?-x[z U(er,w+ 2z —c1 +y)g(ylz)),

then surely Totrep prefers p to p’ if and only if F(p) > F(p'). And it
is apparent that F(p) satisfies F(ap+(1—a)p’) = aF(p)+(1—a)F(p'),
so by the mixture space theorem, Totrep’s preferences over probability
distributions on z satisfy the NM axioms.

But I've slipped one over on you here, if you bought my argu-
ment, that is. Presumably, changing from p to p’ may change the
conditional distribution of y given z. Put another way, it can be
that there are two gambles over = with the same marginal distribu-
tion p, but one is statistically independent of ¥ while the second is
perfectly correlated with y. If I choose the first, I get a different over-
all expected utility than if I choose the second. This manifests itself
in expression (12.1) as follows: Changing from one gamble on z to
another may change not only the marginal distribution p but also the
conditional distributions g(:|z).

So it is nonsense to ask whether preferences over lotteries on z are
NM. Just knowing the marginal distribution on z - the things that
NM theory takes as the primitive objects of choice — is not enough
to tell you how good or bad is the lottery. You need to know the
joint distribution of z and y. There is no way to consider separately
preference over gambles on z,....

... unless you make some simplifying assumption concerning the
statistical relation between z and y, such as that they are always
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independent. That is, suppose Totrep’s broker calls with some possi-
ble gambles that are all independent of Totrep’s income from various
sources. Then letting ¢ be the marginal distribution of y, (12.1)
simplifies to .

(12.2) F(p)=)_p() HELX[Z Uer,w+z — e1 +y)g(y)].

In this case the logic employed above is legitimate — Totrep prefers
one gamble p on z to a second p' iff F(p) > F(p'), and since F(ap+
(1 —a)p') = aF(p) + (1 — a)F(p'), these preferences are NM. Indeed,
a NM utility function u on z is easily seen to be

12.3) u(z) = mc?x[z U(er,w+z — c; + y)a(y)).

The general topic of which this is an example has the rubric “the
utility function for wealth” in the finance/economics literature. The
analysis extends to multiple periods — the general result is: Pref-
erences for lotteries affecting current wealth are NM if the gambles
resolve immediately (see below) and if the gambles are independent of
other income sources and (when appropriate) future investment /income
opportunities. A good textbook in financial market theory will tell
you all about this.

This leaves open one very important question — what do you do
(if anything) when there is statistical dependence between z and y?
You'’ll need to know more than just the distribution of z — at worst
you’ll need to know the entire joint distribution of £ and y. Some
analysis is possible that doesn’t go quite so far, by assuming that all
distributions are jointly Normal, say, it will be enough to know the
means, variances, and covariances of z and y. I won’t go into this
subject in any detail here, but if you're interested, any treatment of
the Capital Asset Pricing Model in finance will get you started along
the proper development of such a theory.

VARIATION #2: DISCRETION AS TO y

Suppose we change the story just told a little bit, by assum-
ing that Totrep has some discretion as to the distribution of y. The
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choices of z that are offered are independent of all the possible choices
of y (so the problems raised in the previous section are not at issue),”
but now Totrep can, upon choosing a distribution of z, simultane-
ously “change” the distribution of y. Let us suppose that Totrep has
available a finite set {g1,...,¢i,...,qr} of possible distributions of y
from which he can choose. Let us also suppose that the choice of i
must be made prior to the date at which the outcome of z is known.
Then the value to Totrep of a distribution p on z is given by the
function F' defined as

(124) F(p) = mex(Y ple) maxl 3" Uler,w+2 = 1 + n)asul)

That is, Totrep prefers p to p’' iff F(p) > F(p'). Do preferences so
defined on the p’s always satisfy the NM axioms (or do they ever
do so)? Since it is easy to see that in general, F(ap + (1 —a)p’) #
aF(p) + (1 — a)F(p'), it is not obvious that the answer is yes. In
fact the answer in general will be no. I leave it to you to find an
example. Note, however, that if the choice of 7 needn’t be made until
after Totrep learns the outcome z, then the value of a p is given by

F defined by

(125)  F(p) =) p(x)maxmax[} Uler,w +2 = e +y)ai(y)]]

This does satisfy F(ap + (1 —a)p') = aF(p) + (1 — a)F(p') (proof?),
so that in this case preferences for lotteries on = are NM. (What is
the appropriate utility function?)

A slight variation on the above is as follows. Suppose that the
outcome of y is learned prior to the decision about c;, but the de-
cision about p and ¢; must be made simultaneously. What is the
appropriate function F' that gives the value to Totrep of a probabil-
ity distribution p on z in this case? It is

(12.6) F(p) = max Zp(?)[z gi(y)[maxU(ey,w +2 — e +y)]}

Again examples can be produced to show that if we define induced
preferences on p’s in the natural fashion: p > p' iff F(p) > F ('),
then > will not in general satisfy the NM axioms. This corresponds
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to the following story: Totrep is simultaneously considering a number
of different investments, all of which are statistically independent of
each other. In the above setting, he is considering two — one with
payoff = and the other with payoff y. He would like to “decouple”
these decisions and consider each one separately — what we have above
says that he cannot do this and hope to use an NM analysis on them
separately. If he wants to use an NM analysis, he must look at the
whole package.

There is one case where he can safely consider them separately
using NM analyses and then pick the best out of each group. A nec-
essary and sufficient condition for this to be legit is that the induced
utility function for wealth, defined by (12.3), has constant absolute
risk aversion. I leave it to you to prove this statement.

VARIATION #3:
TEMPORAL RESOLUTION OF UNCERTAINTY

In the last section, whether preferences were NM or not depended
on whether the choice of ¢; can be before or after the uncertainty
concerning z resolved. That was one example of the general problem
of temporal resolution of uncertainty. Here is another.

So far we've looked at cases where the outcome z was known
before ¢, had to be chosen. Now we’ll relax that assumption. To keep
matters simple, assume that y is the constant zero — z represents
all of Totrep’s income in addition to his endowment w — and z is
received in period two instead of in one.

Now consider the following: Suppose z gives Totrep either $20,000
or $10,000, each with probability 1/2. Think of = as being determined
by a coin flip. We want Totrep to compare this with, say, $13K for
sure. If Totrep had NM preferences over gambles in z, he’d be able
to get out his utility function u (presumably different from the one
defined in (12.3), because we’ve changed the setup) and he'd compare
u(13K) with (u(20K) + u(10K))/2. Will this work?

Would this work for you? If you are a student, think of the prizes
as representing all the income you'll receive from next September 1 for
the year following, out of which you'll need to pay your all expenses
except for tuition. You will be barred from taking a job, and if you
have a working spouse, he/she will be forced to stop working. You can,
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however, carry over savings from this year and this coming summer.
Would you prefer the gamble or the sure thing? If you aren’t a student,
pretend that you are.

As you ponder this question, keep in mind the following added
complication (although it was really there all the time). I haven't
told you yet whether I'll flip the coin today or next September 1,
and I haven’t told you when you will learn the outcome of the coin
flip. Suppose you had a choice between the following four “gambles”:
(a) the sure $13K; (b) the risky gamble, with the coin flipped next
1 September at which point you learn the outcome; (c) the risky
gamble, with the coin flipped today and you told the outcome next
September 1; (d) the risky gamble, with the coin flipped today and
you told the outcome today. I'm not sure how you’ll compare (a)
with (b), (c), and (d), but I'm fairly sure that you'll tell me that (d)
is better than (b) and (c), which in turn are just as good as each
. other. This is because the information concerning how much you will
be given might be valuable in planning this year’s expenses — if you
know you're going to get $29K, you can blow your savings account
on an immediate trip to Hawaii — if it will be $10K, you’ll try to save
more. Since it is the information that is of value to you in planning
your interim expenditures, (b) and (c) are the same thing. And since
(d) gives you this information sooner, it is better than the other two.

However the gambles in (b), (¢) and (d) have the same marginal
distribution viewed as probability distributions on z. So if you had
NM preferences over gambles on z, you'd rate all three as the same.
Manifestly, you don’t have NM preferences over gambles in z; you
aren’t even indifferent between two versions of the “same” gamble as
represented by a probability distribution.

How can we see this in Totrep’s problem? If he chooses the $13K
for sure, he gets utility

(12.7) maxU(c;,w — ¢; + 13K).

If he chooses the gamble and the coin is flipped after ¢; must be
chosen, which is the case in gambles (b) and (c), then he gets

(12.8) nlax[U (c1,w — c1 + 20K) 42, Uler,w = &1 +10K),

And if he takes the gamble, the coin is flipped today, and he learns
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the outcome before ¢; must be chosen, which is (d), he gets

| maxe, U(c1,w — 1 + 20K) + max.: U(ej, w — ¢} + 10K)]

(12.9) 5

It is easy to see that the quantity in (12.9) is at least as large as the
quantity in (12.8) (do it), and except for very strange functions for U
(given the interpretation), (12.9) strictly exceeds (12.8).

Just knowing the marginal distribution p of z is not enough to
tell how much Totrep likes the gamble in z. We also need to know
when Totrep will learn the outcome — before or after ¢; must be
chosen. And the pattern of resolution of uncertainty needn’t be one of
the two simple ones discussed above, where either everything resolves
before c¢; is chosen, or everything resolves afterwards. It is possible
to have partial resolutions of uncertainty prior to the ¢; decision — for
example, imagine that the $20K/$10K lottery is to be determined by
the roll of a die — if the die comes out with one, two or three spots up,
then the payoff will be $20K, but $10K will result from four, five or six
spots up. Suppose the die is going to be rolled before the c¢; decision
will be made, but all Totrep is told is whether the number of spots
up was an even or an odd number — after Totrep chooses ¢; the exact
number of spots is revealed to him. In this case, what replaces (12.8)
and (12.9)? Totrep will (generally) like this partial resolution more
than having to wait for any resolution and less than getting complete
resolution immediately.

To describe Totrep’s induced preferences on lotteries in z in this
story, I need to know not only the marginal distribution of z (that
is, p) but also the pattern of the resolution of uncertainty vis a vis
the date when ¢; must be chosen. So Totrep’s preferences for gam-
bles on r could not possibly be NM - the objects of choice in that
theory, marginal distributions, aren’t rich enough to capture all that
is essential to Totrep’s preferences . _

. unless we make a simplifying assumption, such as all uncer-
tainty resolves prior to the choice of ¢,, or all uncertainty resolves af-
ter. If we restrict attention to either of these cases, then the marginal
distribution p of z tell us everything else we need to know, and we
can ask whether Totrep’s preferences are NM.

Case 1. If all uncertainty resolves prior to the choice of c;, then
Totrep’s preferences over gambles p are given by the function F' de-
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fined by
F(p) =} p(z)lmaxU(e;,w = c+z)).

That is, p is better than p' for Totrep iff F(p) > F(p'). It is easy to
see that in this case F(ap + (1 — a)p') = aF(p) + (1 — a)F(p'), and
so preferences are NM with utility function u given by

u(z) = maxU(ey,w — ¢+ z).

Case 2. If all uncertainty reselves after the choice of ¢;, then Totrep’s
preferences over gambles p are given by the function F defined by

F(p) = max() | p(z)U(e1,w = ¢+ 2)).

It is not hard to produce examples where F(ap+(1—a)p') # aF(p)+
(1 - a)F(p'), but this is not enough to conclude that Totrep’s prefer-
ences over p’s are not NM — we need an example where no monotone
transformation G of F satisfies G(ap + (1 — a)p') = aG(p) + (1 -
a)G(p'). (Why is this necessary and sufficient?)

It is not hard to produce examples where this is so. Suppose, for
example that U(cy,c2) = In(cy) + In(cz). Let w = 0. Consider the
gambles p and p’, where p gives prizes 1 and 2, each with probabil-
ity 1/2, and p' gives .6 and 6.702, each with probability 1/2. You
can show that F(p) = —.8004, with corresponding ¢; = .6096. And
F(p') = —.8004, with corresponding ¢; = .3957. Thus Totrep is in-
different between p and p'. If his preferences obeyed the NM axioms,
he would have to be indifferent between each of these and their con-
vex combination (p +p’)/2. (Why?) But it’s easy to see that Totrep
strictly prefers both p and p' to (p +p')/2. (Why?) Totrep cannot
have NM preferences.

In general, induced preferences depend on the pattern of res-
olution of uncertainty when in the larger model/context there are
decisions to be made that are not included in the model of the sub-
problem. Only when all uncertainty resolves before any decisions must
be made are you guaranteed that the induced preferences will be NM.

Any number of questions can be taken up at this point. For
example:
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(a) Fixing the date of resolution of uncertainty at some date after a
decision must be made, are there circumstances where induced pref-
erences obey the NM axioms?

(b) Can anything be said about preferences of “lotteries” where the
date of resolution of uncertainty can vary? To do this, a necessary
first step is to find some way to encode the pattern of resolution of
uncertainty mathematically. If the answer to the first question is
yes, does the NM expected utility structure have any role to play in
representing such preferences?

(c) If an NM model is not exactly appropriate, how bad an approx-
imation do you get by using one anyway? (This question could be
asked of any of the problems discussed in this chapter.)

The papers that originally discussed temporal resolution of un-
certainty are Dreze and Modigliani (1972), Mossin (1969), and Spence
and Zeckhauser (1972). You will get a shot at some of the an-
swers in the problems, but in case you get stuck, Kreps and Porteus
(1978,1979) should be consulted.

SUMMARY

This chapter has surveyed some of the major problems encoun-
tered in applying the models of choice under uncertainty that we’ve
previously developed to applications where, for reasons of tractability,
not all of Totrep’s important decisions are considered. When there is
correlation between the gambles over which Totrep is optimizing and
other uncertainty left out of the application, when other decisions are
being made simultaneously to those in the application, or when the
uncertainty of the gambles being optimized over resolves at dates in
the future (after important decisions left out must be taken), then
use of the standard models is very suspect and often quite wrong.
We have seen these conclusions for the von Neumann-Morgenstern
model. Similar conclusions can be obtained in settings appropriate
for the Savage model. Since this includes just about every impor-
tant economic/social decision making context that you are likely to
encounter, there is obviously a need for care in application.
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PROBLEMS

(1) Show that preferences defined on (simple) probability distributions
according to the index F(p) defined in (12.4) will not satisfy the NM
axioms in general. Show that those given by the index F(p) in (12.5)
will satisfy the axioms, and give the appropriate utility function.

(2) For preferences defined by the index F(p) defined by (12.6), show
that a necessary and sufficient condition for those preferences to sat-
isfy the NM axioms is that the induced utility function on wealth given
by (12.3) has constant absolute risk aversion. For which U(cy, ¢3) will
this be true?

(3) Show that the quantity in (12.9) is always at least as large as the
quantity in (12.8). For what functions U(cy, ¢;) will (12.8) always be
equal to (12.9)7

(4) Provide the details of the argumeats and calculations for the ex-
ample with log utility on page 174.

(5) In this problem, we look at a very simple version of the difficulty
arising with temporal resolution of uncertainty. Consider an individ-
ual with the following choice problem. He must select an action a
from a finite set of feasible actions A = {a,,...,any}. He must also
select a lottery/probability distribution on a finite set of outcomes
Z = {z1,...,2n}. What makes this a problem concerning tempo-
ral resolution of uncertainty is that the individual must choose the
action at the same time that the probability distribution is chosen,
before the uncertainty in that probability distribution resolves. Let
P denote the set of all probability distributions on Z. We suppose
that there is a function V : Z x A — R such that the individual’s
preferences on P X A are given by

N N
(12.9) (p,a)> (P, @) iff > p(za)V(2n,a) > Y P'(20)V(2n, ).

n=1 n=1

Assume that for n =1,...,N, V(2n,a,) > V(zp,ap) for all m #n.
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Define a new binary relation > on P by

N . N
p>piff max ;p(z,‘)V(z;., a) > max nZﬂp'(z,.)V(z,,,a).

It is natural to interpret > as the individual’s induced preference
for lotteries, assuming that whatever lottery he chooses, he simulta-
neously takes the best action for that lottery. We are interested in
whether > satisfies the von-Neumann-Morgenstern axioms — that is,
whether there exists a function u : Z — R such that

N N
(12.10) p>-p iff Zp(zn)u(zn) > Zp'(zn)u(z,,).
n=1

n=1

(a) Show that in general, no such function U will exist. [Hint: Sup-
pose V(z1,a;) = V(z2,az) and think about the lottery which gives
z; with probability 1/2 and z; with probability 1/2.]

(b) Show that a sufficient condition for there to exist such a function
u is that

(12.11) V(z,a) = f(a) + g(a)h(z),

where g(a) > 0 for every a.

The last part of the problem is to show that (12.11) is not just suf-
ficient — it is also necessary. Do this in the following three steps.
On any step, you may assume the previous ones even if you haven't
proven them.

(c) Let ém denote the probability distribution with probability one
attached to z,,. Then show that for any p € P and é,,, there exists
a > 0 such that for all <

N
max 3 [Bp(zn) + (1 = A6 (20)]V (20, )

n=]1

N
= 3 [8p(za) + (1 = BYom(z)IV (21, tm)-
n=1 .
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That is, a,, is optimal for all distributions p which are “close” tq
8m. [Hint: Use the assumption given immediately after (12.9). It
isn’t necessary to assume that u exists as in (12.10) for this step.)

(d) Show that if u exists as in (12.10), then for m =1,...,N

N N
p>piff Zp(zn)V(zn,am) > ZP'(zn)V(z,,,am).

n=1 n=1 )

[Hint: The words “substitution axiom” should appear prominently in
your solution.] '

(e) Show that if u exists as in (12.10), then V' has the form (12.11).
[Hint: The words “uniqueness result” should appear prominently in
your solution.]

(If this hasn’t exhausted you, see if you can relate this back to the
problem of our Totrep choosing consumption in a two period problem,
where first period consumption has to be chosen before uncertainty
pertaining to second period income resolves.)

(6) Suppose that Totrep faces some uncertainty about a prize he will
receive from a finite set Z. This uncertainty resolves in (possibly) two
stages — at date ¢ = 1 there may be partial resolution of uncertainty,
and at date ¢ = 2, any remaining uncertainty will resolve. Formally,
we let P be the space of all probability distributions on Z, and we let
II be the space of all simple probability distributions on P. Elements
7w € II are called “two stage temporal lotteries”, where the idez is
that for # € II, Totrep learns at date ¢t = 1 the outcome of ,
which is a “one stage temporal lottery” p € P, which then resolves
at t = 2, giving a prize in Z. Note that, as elements of II, a 50-50
gamble with prizes, say, z and 2’, which resolves entirely at ¢ = 1
is a different animal from a gamble with the same prizes and the
same probabilities that resolves at time ¢ = 2. Specifically, the first
is a mixture of two degenerate elements of P, while the second is
a degenerate distribution in II which gives (with probability one) a
nondegenerate element of P. Moreover; each of these is distinct from:
Roll a die, with prize z is the die has one, two or three spots up, and
2! for four, five or six. Tell Totrep whether the die came up with an
even or an odd number of spots at date ¢ = 1, and tell Totrep the
actual outcome at date t = 2.
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Assume that Totrep has preferences over II given by .

As you will recognize, II is a mixture space in the usual fashion, so it
makes mathematical sense to assume the three mixture space axioms
for »>.

Now consider > restricted to those elements of II that are degenerate
lotteries (giving prizes in P with certainty). Specifically, define a
binary relation »~2 on P by

p =% piff 6, > 6p,

where 6, is the degenerate lottery (in II) that gives p € P with
certainty. Since »2 is a binary relation on P, and P is marifestly
a mixture space, it makes mathematical sense to assume that >2
satisfies the three mixture space axioms on P.

Finish the following representation theorem: For a binary relation >
on II, define =2 on P as above. Then > satisfies the three mixture
space axioms on Il and =2 satisfies the three mixture space axioms
on P if and only if....
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Dynamic Choice Theory
and the
Choice of Opportunity Sets

Near the end of Chapter 10, we introduced the standard manner
of handling dynamic choice problems, namely to reduce them to a
static choice of strategy. In this chapter, I will propose an alternative.
It is easiest to begin with a specific and concrete choice problem;
philosophical musings about the general problem of dynamic choice
will come after you have seen the specifics.

BASIC SETUP

As a budding Totrep, you are faced with a complex decision today
at lunchtime. You must decide what to have for lunch, and at the same
time you must decide where to make reservations for tonight’s dinner.
There are several restaurants at which you might dine tonight — you
know them all well, and you are certain of the menu of meals that they
serve and the prices of the meals. For the sake of concreteness, let us
suppose that there are four restaurants at which you might dine, with
the following menus:

Menu #1: {steak, pasta},
Menu #2: {chicken, fish},
Menu #3: {chicken},
Menu #4: {fish, pasta}.

This means: At restaurant #2 chicken and fish are served, etc. To
simplify matters, we assume that similarly titled meals at different
restaurants are the same — same quality, same price, etc.

For lunch, you can have either veal or tuna-fish.

181
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You are on a strict expense account budget that makes it impos-
sible to have both veal for lunch and steak for supper, but any other
combination is possible.

Then in terms of the objects of immediate choice, you have at
the moment eight possible choices. (I'll abbreviate all meals by their
first letters).

(v, {p}), (v, {c, F}), (v, {c}), (v, { £, P}),
(t {s,p}), (t, {c, I, (1, {<D), (&, { £, P}).

Note that I've represented each of the eight objects as a pair — lunch,
the opportunity set for dinner. Note how veal and menu #1 results
in (v,{p}) and not (v, {s,p}) — if you have veal, steak is out of your
opportunity set.

How do we handle this choice problem? The methodology of
Chapter 2 suggests that we look at a binary relation > representing
your preferences among the eight possible meal-menu pairs, and we
assume that you choose a »-best pair. That’s not much help. If
there was some uncertainty floating around - say, you aren’t sure
about the menu at one or more of the restaurants — then all the
things we've discussed since Chapter 4 might apply. My point is:
as a choice problem of the sort we’ve been discussing, this complex
situation fits nicely, assuming that these meal-menu pairs are the basic
items of choice. But presumably that isn’t how you would look at
this problem. You might think ahead to what you’ll want to (or
will) choose at the restaurant in each case, and use that to figure out
how good is each menu. That is, you might use the structure in this
problem and the fact that this is one choice in an ongoing sequence
of choices, resulting in a history of meals, in order to decide what
to do now. Put descriptively, if I'm trying to describe your behavior
today, I might do well to consider what these sorts of considerations
will imply about your choices today. If I assume just a modicum of
rationality on your part, I can assume that you will select according
to some preference relation on meal-menu pairs. But I may be able to
narrow down the possible preference relations that you might employ
if I consider this as part of an ongoing dynamic choice problem.

The formal problem that we’ll consider generalizes just a bit the
situation above. There will be a finite set X of consumption bun-
dles for today, and another finite set Y will represent the possible
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consumption bundles for tomorrow (or tonight). Typical elements of
X will be denoted by z,z’, etc. and of Y by y,y’, etc. The collec-
tion of “opportunity sets of tomorrow’s consumption,” the set of all
nonempty subsets of Y, will be denoted by A, with typical elements
a,a’, etc. Today, Totrep is choosing among pairs from X X A, or pairs
of the form: a consumption bundle for today, an opportunity set from
which consumption tomorrow will be chosen.

Totrep will be presumed to have preferences over the space X x A,
given by a preference relation >. We are interested in what can be
said about this preference relation — what restrictions on it are natural
for a rational Totrep.

We shall be interested in the relation » only (except insofar as
other relations are helpful in characterizing it). A set of questions
related to the ones that we shall ask would concern not only Totrep’s
preferences/choice behavior today (on X x A) but also his preferences
tomorrow (on Y'). But for the time being we shall not be concerned
explicitly with second period preferences/choice behavior. Thus the
subject for now is more properly termed “preference for opportunity
sets from dynamic choice considerations” instead of dynamic choice
theory.

THE STANDARD MODEL

From a normative perspective, the natural solution to the restau-
rant problem calls for a little bit of introspection. You could conceiv-
ably wind up with one of the following eight combinations of meals:

(v, ), (v,p), (v, 0),(2,3), (¢, p), (2, ¢), (¢, f) )

(I haven't deleted (v,s) from this list, because I don’t want feasibil-
ity constraints to impinge at this stage.) So you should first decide
how you feel about these eight possible meal-meal pairs. Let me sup-
pose that your underlying preferences for these eight are given by a
preference relation > defined as

(v,8) = (v,¢) = (¢,8) ~ (v, f) = (¢,¢) ~ (t,p) = (v,p) > (¢, f)-

Then in comparing, say (v, {c, f}) vs. (¢, {s,p}), it seems natural
to say that the first meal-menu pair is better, as the best meal-meal
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combination (in terms of ) “in” the first meal-menu pair is (v,c),
which is > -better than the »-best meal-meal pair (namely (t,s)) in
the second meal-menu pair. Following this logic, the relation = above
induces the following relation on the eight available pairs of meals and
menus:

(v,{e, F1) ~ (0, {e}) = (&, {,2}) ~ (v, (£, P}) >
(t,{es f1) ~ (&, {e}) ~ (&, {£,2}) = (v, {p}).

This introspective-normative approach is derived from the following
logic. All the decision maker cares about is the final result — the
pair of meals (z,y) that is consumed. So the decision maker should
decide how he feels about these simplest/most basic items. Having
decided on basic preferences over pairs of meals, the decision maker
should set out now to do whatever is necessary to obtain the best
pair among those available. In the example, this would be to choose
either (v, {c, f}) or (v,{c}) over the other six meal-menu pairs (to
be followed with the choice of chicken later).

This is sometimes called the strategic or dynamic programming
approach. “Strategic” refers to the implicit principle that today’s
choice ought to be one step in the implementation of the best overall
strategy for dynamic choice. Of course, this is what lies behind the
discussion at the end of Chapter 10 concerning the selection of a best
strategy. As we observed then, this is the approach championed by
most of the “classics” — see for example Savage (1972, p.15ff.)

In the general context of X, Y, A, etc. this would be formalized
as follows:

Take as primitive a preference relation as = on X xY, and define
a binary relation > on X x A from > by

(13.1) (z,a) > (z',a") if for all y' € a’ there exists y € a such that
(z,9) > (z',¢').

Proposition (13.2). For an arbitrary preference relation > on X x Y,
> defined on X x A by (13.1) is a preference relation.

A complementary descriptive approach to the normative approach
above would be to say that a binary relation > on X x A is strate-
gically rational if there exists some preference relation > on X x Y
such that (13.1) holds with the “if” replaced by an “iff”.
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That is, we observe (through choices and/or questionnaire data)
the binary relation >, and we seek to explain/model > by the thought
process implicit in (13 1). If we can do this — if we can produce a >
that rationalizes > in this sense, then we say that > is strategically
rational.

Of course, not every binary relation > on X X A is strategically
rational. Proposition (13.2) makes obvious one necessary condition:
> will have to be a preference relation. But this is not sufficient.
Consider, for example, an individual who says (in part) that

(t,{s}) > (t, {s,P}).

This will be impossible to rationalize as in (12.1). (Why?) Or suppose
we found an individual who said that

(¢, {c, f}) > (t, {s}) > (t, {c}) > (&, {f}).
This will also be impossible to explain as in (13.1) (Why?)

Proposition (13.3). A binary relation > on X x A is strategically
rational if and only if it is a preference relation and it satisfies

{13.4) (z,a) = (z,d') implies (z,a) ~ (z,a U d').

I leave the proofs of this proposition and the one previous as exercises.

The term strategically rational is certainly value-laden — it sounds
as if any behavior > not satisfying this property would have to be
crazy. But do you think that this is so? Can you imagine any circum-
stances where you would want to express preferences as in, say, the
two examples above? Let me give each one a try in turn.

CHANGING TASTES AND SOPHISTICATED CHOICE

The Totrep who expressed the preferences (¢,{s}) = (¢, {s,p})
explains: “I’m on a diet and am terribly weak-willed. If I make reser-
vations at the restaurant {s,p}, I know what will happen — I'll see
pasta on the menu and cl:oose it, thereby breaking my diet. Better
to avoid the temptation, hence my strict preference for (t,{s}) over

(t,{s,p}).”
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This Totrep continues: “I know that when I get to the restaurant
of my choice, my behavior will be governed by a preference relation
>% over Y, where the meal z that I had for lunch may impact on
my preferences. So when I look right now at a pair (z,a), I know
that I'm really looking at the result (z,y) where y is the =2 -best
item in a. (What if ** rates two meals in a as being equally good?
That’s a good question. Since this is just meant to be an introduction
to this subject, let me assume that this never happens - each >% ig
antisymmetric.) I'll write (z,cz(a)) for the pair (a:,y) such that y is
=7 -best in a.

“Right now I have preferences over pairs (z,y) glven by a pref-
erence relation > on X x Y. So, being a sophisticated fellow, if I've
got a choice between (z,a) and (z',a’), I think ahead to the even-
tual outcomes (z,c,(a)) and (z',c,+(a’')) that will ensue and compare
those two. I say

(13.5) (z,a) > (z',a") iff (z,c.(a)) > (z',cxi(a')').

“Note that if right now I think (¢,s) > (¢,p), yet I know that
p>'s, then it makes sense (follows (13.5)) for me to prefer strictly
(t,{s}) to (¢, {s,p}), which I do.”

In the literature, this is called the changing tastes with sophis-
ticated choice model. The main characteristics of choice according
to this model are (a) an individual may act to constrain his/her fu-
ture opportunities, in order not to have the opportunity to make a
bad choice later on, so that (b) an individual may take an imme-
diate action that appears suboptimal from the point of view of the
dynamic programming/strategic approach in order to control his/her
later preferences. The truly classic reference in the literature to this
sort of consideration is found in the Odyssey, where Odysseus lashes
himself to the mast (constrains his later options) in order to hear the
Sirens’ song.

From a theoretical point of view, an interesting question is: Which
binary relations > on A x X can be modelled in the above fashion?
The answer to this question is neither pleasant nor intuitive — if you
are up to a challenge, give it a shot. (I don’t believe that the answer
is published anywhere.)

This model of changing tastes appears first in the economics lit-
erature, as far as I know, in Strotz (1955). Since then there has been
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some of development of the theoretical model, and some work on appli-
cations, to things like forced savings programs and Christmas Clubs,
the optimal amount of an addictive drug to take, and so on. There has
also been some dispute as to whether any change from the standard
model] (13.1) is really necessary - see Stigler and Becker (1977) (only
the title is in Latin). Of course, preferences defined on X x A using
(13.5) will in general not be describable using the standard model,
since preferences using the standard model will never strictly prefer
a smaller opportunity set to one larger. Hence this dispute must be
about whether the model is necessary for specific applications.

PREFERENCE FOR FLEXIBILITY

Our second Totrep expresses the following preferences (among

others)

(t {e, fP) > (&, {s}) > (& {e}) > (&, {f})-
Note that (13.2) is violated so that no rationalization by (13.1) is
possible. This particular Totrep explains:

“Always supposing that I have tuna for lunch, I can’t be sure
what I'll want to have when dinner-time rolls around. I can think
of three possibilities: (i) Steak most preferred, chicken second, fish
third; (ii) chicken first, then steak and then fish; (iii) fish first, then
steak, and then chicken. So if I take the menu {f}, I'll get my first
choice one third of the time and my third choice two thirds of the
time. The menu {c} will get me one first place, one second and one
third. The menu {s} will get me one first and two seconds. And
the menu {c, f} will get me two firsts and a second. I think that
the three ‘future preference profiles’ above are equally likely, hence I
express the preferences given above.”

This explanation by Totrep suggests the following representation:
There is a (for simplicity) finite set of “states of Totrep’s preferences”
S, which will determine how Totrep ranks meal-pairs. Formally, there

is a function
u: XxYxS—=R

where u(z,y,s) is the “utility” attached to the pair of meals (z,y)
in the state s. Totrep will learn the true state s tonight/tomorrow
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— so if he consumes z for lunch and has menu a available, in state s
he’ll net the utility

max u(z,y, s).

y€a

Totrep thinks that the probability of state s occuring is p(s) and he
is an “expected utility maximizer” - so an index of the meal-menu
pair (z,a) is

> _p(s)maxu(z,y, s)].

3€S
We remarked in Chapter 4 (and again in Chapter 7) that when utility
is state dependent, probabilities over states are meaningless — these
probabilities can be absorbed into the function u. Thus we make the
following definition:

A binary relation > on X x A can be rationalized by an uncertainty-
about-future-tastes model if there exist a finite set S and a function
u: X xY xS — R such that

] AN 1 !
(13.6) (z,a) > (z',a") iff g?gu(z,y,s) > Z;ngx u(z',y', s).

In this definition, notice that the states s have no particular
physical meaning. In particular, S, like u, is derived from preferences.

What binary relations > on X x A fit this definition? One
obvious necessary condition is that > is a preference relation. (Why
is this obviously necessary?) A second necessary condition is that

(13.7) if a D a', then for all z,(z,a) > (z,d’).

That is, a bigger menu (in terms of set inclusion) is as good as a
smaller one. (Contrast this with the sorts of preferences discussed
in the preceding section on changing tastes.) Condition (13.7) can be
termed preference for flexibility — Totrep seeks (at least weakly) to keep
options open.

A third necessary condition is that, for all a',

(13.8) if a D @' and (z,a) ~ (z,a’), then (z,aUd") ~ (z,a’' Ua").

The idea here is that if a D o' and (z,a) ~ (z,a'), then the added
flexibility that results from having @ instead of a’ is worthless. So if
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both a and @' are enlarged together (by tacking a' onto each), the
added flexibility of a U a” over a’ U a" is also worthless.

Proposition (13.9). A binary relation > on X x A can be rationalized
as in (13.6) if and only if > is a preference relation and satisfies (13.7)
and (13.8).

That is, the three necessary conditions are also sufficient. This is a
fairly nice result (but in just a moment you will see why I’'m prejudiced
in its favor). Properties (13.7) and (13.8) are fairly intuitive, and the
proposition says that any preference relation satisfying them can be
modelled in a way that bears the interpretation of uncertainty about
future tastes.

The property “preference for flexibility” (13.7) was proposed as
a reasonable replacement for (13.4) in Koopmans (1964). In this arti-
cle, Koopmans suggests the uncertainty-about-future-tastes represen-
tation, but he did not make any formal connections between the two.
The representation has been used in a number of economic contexts,
notably in Goldman (1974), where liquidity demand for money is de-
rived from uncertainty about future tastes. The proposition above is
proved, and this general subject is further discussed and developed in

Kreps (1979).

DISCUSSION

It is patent that dynamic choice is of crucial importance in many
important economic (and other) decisions. Consider the selection of
any capital asset or savings instrument, or decisions concerning edu-
cation and jobs; any decision where the individual is making a choice
that has an “opportunity set” component to it. The standard models
of these choices, at least in the economics literature, have used the
general methodology outlined at the end of Chapter 10 — the indi-
vidual has a lifetime utility function (or overall preferences), solves
a complicated dynamic programming problem to find out what the
value of any asset/education/etc. will be, and chooses accordingly.
In other words, dynamic choice is treated as nothing more than the
choice of an optimal strategy.

As a descriptive model, this doesn’t seem adequate. It is hard
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to find anyone who would maintain that individuals, in these sorts
of choice situations, don’t sometimes act to constrain their own later
options, or sometimes act to preserve later options for no apparent
reason, or do many other things that the standard model misses.
But it is equally hard, if not harder, to find any formal, mathematical
development of dynamic choice that encompasses such considerations.
The reason for this is simple: Formal choice theory has not dealt well
at all with models of dynamic choice beyond the standard “dynamic
choice equals static choice of a strategy.” I hope that the preceding
discussion, incomplete and rudimentary as it is, indicates that this
needn’t be so and that, in particular, a way to proceed is to study
formally the static choice of opportunity sets, and then (something
we haven’t done) to knit together sensibly those static choices into a
truly dynamic framework.

PROBLEMS
(1) Prove Propositions (13.2) and (13.3).

(2) Prove that the representation (13.6) implies properties (13.7) and
(13.8). If you are up to a challenge, prove that if > is a preference
relation satisfying (13.7) and (13.8) (and X and Y are finite sets!),
then a representation of the form (13.6) holds.

(3) If you are really up to a challenge, consider the obvious multiperiod
analogue of (13.6). Take, say, a three meal formulation, where X is a
finite set of possible breakfasts, Y is a finite set of possible lunches,
and Z is a finite set of possible dinners. Let A be the set of all
nonempty subsets of Z, and let B be the set of all nonempty subsets
of Y x A. Totrep’s choice in the morning is some (z,b) € X x B.
The representation sought is that there exist finite sets S and T and
a function U : X XY x Z x S x T such that the index of a pair (z,b)
is given by
max Z max U(z,y, 2,1, s).

ses(y?a)eb tET z€a -

Can you find “nice” properties of a binary relation > on X x B that
are necessary and sufficient for this sort of representation?
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The Experimental Evidence

The models of choice that we have developed are meant to serve
both as normative guides for decision making and as descriptive mod-
els of how individuals choose. Whether they are really suitable norma-
tively is a matter for the individual decision maker to decide; knowing
some of the limitations in theory (from Chapter 12), you are in a rel-
atively good position to decide whether, in a particular situation, you
want your choice behavior to conform to one of these models. In this
final chapter, I want to touch briefly on evidence concerning the use
of these models for descriptive purposes.

In descriptive applications, these models are used to describe
the behavior of individuals within a larger context of a market or
some other organization. The analyst asks what will be the overall
outcomes within the market/organization if individuals act according
to one of these models. This manner of application presupposes that
these models do a goed job of describing individual behavior. So it
is natural to test that hypothesis experimentally and/or emprically. I
want to introduce some of the more damning experimental evidence,
damning in the sense that the models tend to be disconfirmed in
certain systematic ways.

This is an enormous subject, and I am not going to do more than
give the briefest of introductions to it. Machina (1987, forthcoming)
are the places to go if you find your curiosity aroused by this.

To begin, I should say how the experimental evidence is collected.
The typical methodology is to ask individuals from a subject popu-
lation how they would choose in a number of binary choice settings.
That is, one asks the subjects a long list of questions like: Would
you rather have (a) $1000 for sure or (b) a .9 probability chance of
getting $2000 and a .1 chance of getting $0? Now the subjects are
not really getting their preferred gambles; this is all pretend. And,
indeed, this is often a point of criticism of these studies; critics will
say that the subjects, since it is pretend, don’t take the exercise seri-

191
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ously. A variation on this criticism is that the subjects typically used,
college students, are not very important economically. Even if college
students don’t conform to the classic models, this criticism goes, im-
portant economic decision makers do, and that is what is important
to the application of these models in economics. (In the case of some
experiments of this sort, the experimenter is very well supported fi-
nancially, and then the subject may get, say, one of the choices made,
randomly selected. There are reasons why this procedure isn’t quite
kosher, however; see Karni and Saffra (1987).)

This is not the place to get into such criticisms of (theze) experi-
mental methods in economics. The reader must decide how troubling
is the evidence I’'m about to cite, a decision that I hope will be made
only after consuming more than the very quick skim of the evidence
that follows.

THE ALLAIS PARADOX

. The first and most famous violation of the standard models of
choice under uncertainty is due to Allais (1953). Allais’ basic exper-
imental result has be replicated many, many times, in many forms,
and I will report here on the particular experimental results of Kah-
neman and Tversky (1979). Among the questions asked of subject
were the following two. (I am modifying the questions of Kahneman
and Tversky by changing the monetary units for purposes of presen-
tation; their article should be consulted for the exact details of their
results.) First, choose between the two gambles A and B with objec-
tive uncertainty depicted in figure 14.1. Then choose between the two
gambles C and D depicted in figure 14.2. If you have never seen this
stuff before, it might be instructive to ask yourself: How would you
yourself choose in each of these two situations?

In the first choice situation, Kahneman and Tversky observe that
82% choose the gamble B. While in the second situation, 83% choose
C. This means that at least 65% of their subjects choose B in the
first case and C in the second. But this pair of choices is inconsistent
with the von Neumann-Morgenstern model of expected utility. If u
is the individual’s von Neumann-Morgenstern utility function, a pref-
erence for B over A means that 4(2400) > .33u(2500) + .66u(2400) +
.01u(0), or .34u(2400) > .33u(2500) + .01u(0). Similarly, a choice of
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C over D means that .33u(2500) + .67u(0) > .34u(2400) + .66u(0), or
.33u(2500) +.01u(0) > .34u(2400). These two inequalities can hardly
be consistent.

You can view this result as a violation of the substitution axiom.
According to the substitution axiom, a preference for B over A implies
a preference for $2400 for sure over $2500 with probability 33/34 and
$0 with probability 1/34. (Why?) Indeed, I would imagine that
most people would express precisely this preference. But then the
substitution axiom applied to this would say that .3482400 + .666, >
.34(33/3462500+1/3460)+.666p, which is precisely the reverse of what

was seen in the C vs. D comparison.

In the case of this particular pair of choices, Kahneman and T'ver-
sky explain what is happening as a “certainty effect” wherein individ-
uals tend to put more weight on what is certain when comparing with
events that are viewed as being very likely, but not completely certain.
Tn other words, B is better than A because in B there is no chance of
not getting a prize (of getting $0); the one-in-a hundred chance in A
is too great a risk to take. But when you compare C with D, there
is a substantial chance of getting $0 in either case, and the slightly
worse odds in C are more than compensated for by the greater prize
that may be won.

Kahneman and Tversky go on to demonstrate a number of other
violations of the substitution axiom. For example, they ask subjects
to choose between A and B in figure 12.3 and between C and D in
figure 12.4. They find that 86% take B over A, and 73% take C over
D. So at least 59% of the subjects must simultaneously prefer B to
A and C to D, which of course is inconsistent with the substitution
axiom. (Why?) They explain this as a “possibility” effect — people
tend to treat all small but still positive chances of a prize as being
similar. That is, in figure 12.3, you are giving up a substantial amount
of probability to double the size of the prize you might win. While in
figure 12.4, you'll only win if you are lucky in either case, so why not
win a prize twice as large?

What does one do with preferences of these sorts? A lot of the re-
cent literature has gone into devising variations and adaptations of the
expected utility model which will accomodate such choices. (Indeed,
Kahneman and Tversky themselves propose one variation, although
it varies from the classic model on a number of other dimensions as
well.) Machina (1987, forthcoming) should be consulted for a survey.
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THE ELLSBERG PARADOX

In the previous sets of choices, probabilities were given exoge-
nously; it was the von Neumann-Morgenstern model of choice under
uncertainty that was at issue. Problems of a different sort arise ex-
perimentally when there is subjective uncertainty. The seminal paper
in this vein is Ellsberg (1961). \

One variation on the Ellsberg paradox runs as follows. I have
an urn with 300 balls in it. Some of the balls are red, some blue,
and some yellow. All the balls are the same size and weight, and
they are not distinguished in any was except in color. I am willing
to tell you that precisely 100 of the balls are red. I am unwilling to
say how many are blue and how many yellow, except that, of course,
the total number of blue and yellow is 200. I will reach into this urn
without looking and draw out one of the balls at random. I want to
know your preferences between gambles based on the outcome of this
random event. In all these gambles, you will either win $1000 or you
will win nothing,.

First, would you prefer (A) to get $1000 if the ball drawn out
is red and zero if it is blue or yellow, or (B) to get $1000 if the ball
drawn out is blue and zero if red or yellow?

Second, would you prefer (C) to get $1000 if the ball drawn out
is blue or yellow and zero if it is red, or (D) to get $1000 if the ball
drawn out is red or yellow and zero if it is blue?

Many respondents (perhaps you) prefer A to B and C to D. The
explanation for such a pair of preferences is that in A, you know the
odds are 1/3 of winning the prize. In B, you are unsure of the odds.
In C, you know the odds are 2/3 of winning, while in D, you are
unsure of the odds. Now in B and D, the odds “average” 1/3 and
2/3, respectively. But the odds are ambiguous. So it feels better
to take the gambles with the known odds, given that those with the
ambiguous odds are not substantially better “on average.” You might
even try to say (if you have these preferences) that “risk aversion”
explains your choices, where you are averse to the risk of not knowing
the odds precisely.

Of course, such a pair of preferences is inconsistent with the
Anscombe-Aumann and Savage models. Those modsls hold that you
should assess probabilities for the subjectively uncertain events, prob-
abilities that add up to one, and then choose whichever gamble gives
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the highest subjective expected utility. In this case, it seems most
natural to assess probability 1/3 to the event that the ball drawn is
red, and to assess that the events “a blue ball is drawn” and “a yellow
ball is drawn” are equally likely. (The Comte d’Alembert from Chap-
ter 11 would certainly agree to this.) This, in turn, implies (if you
conform to the models) that each event has probability 1/3, and you
are indifferent between A and B and betweeen C and D. But whatever
probabilities you assess for the three events, if you strictly prefer A to
B, then you must strictly prefer D to C, since the winning event in C
is the complement of the winning event in A, and the winning event .
in D is the complement of the winning event in B.

Still, many individuals do prefer A to B and C to D, on Just the
sort of grounds given above — they averse to gambling when the odds
are ambiguous.. There has been rather less work done on trying to
modify the standard models to accomodate this, but two recent and
very intriguing approaches to this are Segal (1987) and Schmeidler
(1988).

FRAMING EFFECTS

To illustrate this class of problems with the classic models, I
take an example from Tversky and Kahneman (1981). Answer the
following question; then take a two minute break, and answer the one
following that:

Imagine that the U.S. is preparing for the outbreak of an
unusual Asian disease, which is expected to kill 600 people.
Two alternative programs to combat the disease have been
proposed. Assume that the exact scientific esitmate of the
consequences of the program are as follows:

If program A is adopted, 200 people will be saved.

If program B is adopted, there is 2/3 probability that no
one will be saved, and 1/3 probability that 600 people will
be saved.

Take the two-minute break now.

Imagine that the U.S. is preparing for the outbreak of an
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unusual Asian disease, which is expected to kill 600 people.
Two alternative programs to combat the disease have been
proposed. Assume that the exact scientific esitmate of the
consequences of the program are as follows:

If program C is adopted, 400 people will die with certainty.

If program D is adopted, there is 2/3 probability that 600
people will die, and 1/3 probability that no one will die.

When Tversky and Kahneman posed these questions to a group
of subjects, 72% of the subjects chose A over B, and 78% chose D
over C. Hence at least 50% chose A over B and D over C. But if you
look, you’ll see that A is identical to C and B is identical to D.

It is entirely possible that the subjects of this experiment didn’t
take the time to think this through. After all, there is no way that you
can convince the subjects to such an experiment that their choices are
really going to matter. But if we take these results (and others like
them) at face value, we see a phenomenon of enormous consequence
to the models discussed in this book: The way in which a decision
problem is framed or posed can effect the choices made by decision
makers. Tversky and Kahneman would say that the problem in this
case is that individuals tend to think of decisions in terms of deviations
from the status quo, where the framing of the question can establish
the status quo. So that in the first question, by talking about how
many people will be saved, we've framed the question so that the
unlucky 600 are dead, and we are bringing them back to life - in that
case, better to save some people for sure. In the second question, the
frame is such that they are still with us, and your decision sends some
to their death. Hence D is preferred; do you really want to send 400
people to their death with no hope of cure?

There are a number of different demonstrations of how framing
matters to decision makers; some further examples are given in Kah-
neman and Tversky (1979), for example, and Machina (1987, forth-
coming) gives many further references.

One can take the position that framing, per se, doesn’t pose an
enormous problem for descriptive applications of choice theory, insofar
as, in building the model, one incorporates into the model the frame
that faces the decision maker. But the models that are typical of the
literature are not very good at paying attention to framing issues, so
the evidence that framing matters is, at least, troublesome to most
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applications of the theory.

SUMMARY

This has been the briefest of introductions to some of the cat-
egories of experimental evidence concerning the descriptive validity
of the models developed in this book. In fact, we have left out en-
tire other categories of problems, such as problems with transitivity or
with the notion that choice is stable through time or doesn’t depend on
“unchosen, hence irrelevant alternatives.” There is experimental (and
empirical) evidence that individuals are very poor intuitive statisti-
cians — they see patterns in data that aren’t there, and they sometimes
overprocess the data that they do have. And faced with complex deci-
sion problems, people use heuristic procedures which sometimes bias
their.choices in ways that the standard models don’t capture. (We dis-
cussed one facet of this in Chapter 13, concerning choice in dynamic
choice settings.)

These data provide a continuing challenge to the theorist, a chal-
lenge to develop and adapt the standard models so that they are more
descriptive of what we see. It will be interesting to see what will be
in a course on choice theory in ten or twenty years time.

PROBLEMS

(1) Show directly that the preferences expressed in the Ellsberg para-
dox violate of Savage’s Axiom (9.3). Can you produce one (or more)
axioms in the Anscombe-Aumann setting which are violated by the
Ellsberg paradox preferences?

(2) Kahneman and Tversky (1979) gives the following example of a
violation of the von Neumann-Morgenstern expected utility model.

Ninety-five subjects were asked:

“Suppose you consider the possibility of insuring some property against
damage, e.g., fire or theft. After examining the risks and the pre-
mium, you find that you have no clear preference between the options
of purchasing insurance or leaving the property uninsured.
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“It is then called to your attention that the insurance company offers
a new program called probabilistic insurance. In this program you pay
half of the regular premium. In case of damage, there is a 50 percent
chance that you pay the other half of the premium and the insurance
company covers all the losses; and there is a 50 percent chance that
you get back your insurance payment and suffer all the losses...

“Recall that the premium is such that you find this insurance is barely
worth its cost.

“Under these circumstances, would you purchase probabilistic insur-
ance?”

And 80 percent of the subjects said that they wouldn’t. Ignore the
time value of money. (Because the insurance company gets the pre-
mium now, or half now and half later, the interest that the premium
might earn can be consequential. I want you to ignore such affects. To
do this, you could assume that if the insurance company does insure
you, the second half of the premium must be increased to account for
the interest the company has foregone. While if they do not, when
they return the first half premium, they must return it with the inter-
est it has earned. But it is easiest simply to ignore these complications
altogether.) The question is: Does this provide a violation of the von
Neumann-Morgenstern model, if we assume (as is typical) that all
expected utility maximizers are risk neutral or risk averse? Is some-
one who definitely turns down probabilistic insurance in preference
to full insurance or none, between which he is indifferent, exhibiting
behavior that is inconsistent with the model, with risk neutrality or
aversion a maintained hypothesis? Show first that the answer is yes.
Then reconsider some of the discussion of Chapter 12, and show that
the answer is no.
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