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Do Dark Pools Harm Price Discovery?

Haoxiang Zhu
MIT Sloan School of Management

Dark pools are equity trading systems that do not publicly display orders. Dark pools
offer potential price improvements but do not guarantee execution. Informed traders tend
to trade in the same direction, crowd on the heavy side of the market, and face a higher
execution risk in the dark pool, relative to uninformed traders. Consequently, exchanges
are more attractive to informed traders, and dark pools are more attractive to uninformed
traders. Under certain conditions, adding a dark pool alongside an exchange concentrates
price-relevant information into the exchange and improves price discovery. Improved price
discovery coincides with reduced exchange liquidity. (JEL G12, G14, G18)

Dark pools are equity trading systems that do not publicly display orders. Some
dark pools passively match buyers and sellers at exchange prices, such as the
midpoint of the exchange bid and offer. Other dark pools execute orders by their
price and time priority. According to the Securities and Exchange Commission
(SEC 2010), as of September 2009, thirty-two dark pools in the United States
accounted for 7.9% of total equity trading volume. As of mid-2011, industry
estimates from the Tabb Group, a consultancy, and Rosenblatt Securities, a
broker, attribute about 12% of U.S. equity trading volume to dark pools. The
market shares of dark pools in Europe, Canada, and Asia are smaller but are
quickly growing (see Section 1 and International Organization of Securities
Commissions 2010).

Dark pools have raised regulatory concerns in that they may harm price
discovery. The European Commission (2010), for example, remarks that “[a]n
increased use of dark pools …raise[s] regulatory concerns as it may ultimately
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affect the quality of the price discovery mechanism on the ‘lit’ markets.”
The International Organization of Securities Commissions (2011) similarly
worries that “the development of dark pools and use of dark orders could
inhibit price discovery if orders that otherwise might have been publicly
displayed become dark.” According to a survey conducted by the CFA Institute
(2009), 71% of respondents believe that the operations of dark pools are
“somewhat” or “very” problematic for price discovery. The Securities and
Exchange Commission (2010), too, considers “the effect of undisplayed
liquidity on public price discovery” an important regulatory question. Speaking
of nondisplayed liquidity, SEC Commissioner Elisse Walter commented that
“[t]here could be some truth to the criticism that every share that is crossed
in the dark is a share that doesn’t assist the market in determining an accurate
price.”1

In this paper I investigate the impact of dark pools on price discovery.
Contrary to misgivings expressed by some regulators and market participants,
I find that under natural conditions adding a dark pool improves price
discovery.

My inquiry into dark pools builds on a model of strategic venue selection by
informed and liquidity traders. Informed traders hope to profit from proprietary
information regarding the value of the traded asset, whereas liquidity traders
wish to meet their idiosyncratic liquidity needs. Both types of traders optimally
choose between an exchange and a dark pool. The exchange displays a bid price
and an ask price and executes all submitted orders at the bid or the ask. The dark
pool uses exchange prices and match orders at the midpoint of the exchange
bid and ask. Unlike the exchange, the dark pool has no market makers through
which to absorb excess order flow and thus cannot guarantee execution. Sending
an order to the dark pool therefore involves a trade-off between potential price
improvement and the risk of no execution.

Execution risk in the dark pool drives my results. Because matching in
the dark pool depends on the availability of counterparties, some orders on
the “heavier” side of the market—the side with more orders—will fail to be
executed. These unexecuted orders may suffer costly delays. Because informed
orders are positively correlated with the value of the asset and therefore with
each other, informed orders are more likely to cluster on the heavy side of the
market and suffer lower execution probabilities in the dark pool. By contrast,
liquidity orders are less correlated with each other and less likely to cluster
on the heavy side of the market; thus, liquidity orders have higher execution
probabilities in the dark pool. This difference in execution risk pushes relatively
more informed traders into the exchange and relatively more uninformed traders
into the dark pool. Under natural conditions, this self-selection lowers the
noisiness of demand and supply on the exchange and improves price discovery.

1 “Speech by SEC Commissioner: Opening Remarks Regarding Dark Pools,” October 21, 2009.
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Moreover, the reporting of trading volume in dark pools further improves price
discovery above and beyond the self-selection mechanism.

This price-discovery effect of dark pools complements their “size discovery”
function, by which large institutional orders are executed without being
revealed to the broad market.2 This size-discovery benefit of dark trading has
been widely acknowledged by market participants and regulators, and today
only a handful of dark pools execute large orders (Securities and Exchange
Commission 2010; Ready 2012)

The potential improvement in price discovery by dark pools should be
balanced by a few other considerations. First, although dark pools tend
to improve price discovery on average, they may occasionally exacerbate
misleading inferences of the asset value, especially in the unlikely event that
liquidity traders push the net order flow far opposite of the informed traders.
Second, better price discovery need not coincide with higher liquidity. Indeed,
more informative orders tend to worsen adverse selection on the exchange,
leading to wider spreads and higher price impacts. Third, the longer the horizon
of private information, the less effective the dark pool is in improving price
discovery. Fourth, for analytical tractability I have abstracted from some of
the trading practices that are applied in dark pools, such as “pinging,”3 order
routing,4 “indication of interest” (IOI),5 and fair access.6 These practices may
well contribute to controversies surrounding dark pools. Moreover, insufficient
or inaccurate disclosure by dark pools of their operating mechanisms may
prevent investors from making informed decisions of order execution.7

2 Investors who reveal their trading intentions to the market may be subject to “predatory trading,” as modeled by
Brunnermeier and Pedersen (2005) and Carlin, Lobo, and Viswanathan (2007).

3 “Pinging” orders are marketable orders that seek to interact with displayed or nondisplayed liquidity. Pinging is
sometimes used to learn about the presence of large hidden orders.

4 Order routing means sending orders from venue to venue, typically by algorithms. For example, if a dark pool
cannot execute an order because there is no counterparty, the dark pool can route the order to another dark pool,
which may further route the order into the market.

5 An IOI is an electronic message that contains selected information (such as the ticker) about an order and is sent
by a trading venue (such as a dark pool or a broker) to a selected group of market participants to facilitate a match.
The Securities and Exchange Commission (2009) proposes to treat actionable IOIs—IOIs containing the symbol,
size, side, and price of an order—as quotes, which must be disseminated to the broad market immediately. Buti,
Rindi, and Werner (2011a) model a market in which selected traders are informed of the state of the dark pool.

6 A trading venue has fair access if it allows all broker-dealers to participate. Fair access involves the subtle trade-
off between excluding certain market participants and leaking information of institutional orders. In a speech
on April 19, 2010, SEC Deputy Director James Brigagliano observed that “some dark pools attempt to protect
institutional trading interest by raising access barrier to the sell-side or certain hedge funds.” Results from Boni,
Brown, and Leach (2012) indicate that the exclusion of short-term traders in a dark pool improves the execution
quality of institutional orders. Foster, Gervais, and Ramaswamy (2007) theoretically illustrate that setting a
volume threshold in the dark pool—that is, the dark pool executes orders only if trading interests on both sides of
the market reach that threshold—can sometimes prevent impatient traders or informed traders from participating
in the dark pool.

7 For example, in October 2011, SEC finds that Pipeline, a dark-pool operator that claimed to only allow
buyside firms to participate, had filled the majority of customer orders through its own trading affiliate
(see www.sec.gov/news/press/2011/2011-220.htm). In October 2012, the SEC charged eBX for failing
to protect confidential information of its subscribers (see www.sec.gov/news/press/2012/2012-204.htm).
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I do not claim that dark pools improve welfare. The welfare implications
of dark pools depend not only on the trade-off between price discovery and
liquidity, but also on how price discovery and liquidity affect production
decisions, asset allocation, and capital formation.8 Although a thorough model
nesting all these elements is outside the scope of this paper, the results of this
paper can naturally serve as a building block for future research on the welfare
implications of dark pools.

My theoretical results yield a number of empirical implications. For example,
the model predicts that a higher volatility increases informed participation in
dark pools, but can reduce dark-pool market share; and that the addition of a
dark pool tends to increase order informativeness, spreads, and price impacts
on exchanges. These predictions are broadly consistent with recent empirical
evidence, as I discuss in more detail in Section 4.

To the best of my knowledge, this paper is the first to show that adding a
dark pool can improve price discovery. My finding stands in contrast to that
of Ye (2011), who studies the venue choice of a large informed trader in the
Kyle (1985) framework and concludes that the addition of a dark pool harms
price discovery on the exchange. Ye (2011), however, assumes that only the
informed trader can freely select trading venues, whereas I allow both informed
and liquidity traders to select venues.

A couple of existing models of dark pools focus on questions other than price
discovery. Degryse, Van Achter, and Wuyts (2009) build a dynamic model of
a dark pool and analyze how various transparency requirements for dark-pool
orders affect traders’ behavior and welfare. Buti, Rindi, and Werner (2011a)
model the competition between an open limit order book and a dark pool, and
focus on the interaction between dark-pool trading and characteristics of the
limit order book, such as quote depths. Because these two papers do not model
asymmetric information regarding the asset value, their results and mine are
complementary.

Finally, my results complement those of Hendershott and Mendelson (2000)
(HM), who model the coexistence of a dealers’ market (similar to the exchange
in this paper) and a “crossing network” (similar to the dark pool in this paper).
HM have the important insight that traders in dark pools impose positive

In May 2013, the Financial Industry Regulatory Authority (FINRA) requested information from a
number of dark pools regarding their operation mechanisms and practice of handling customer orders
(see www.finra.org/Industry/Regulation/Guidance/TargetedExaminationLetters/P268091). In a survey of 64
institutional investors, Bennett, Colon, Feng, and Litwin (2010) find that on many occasions dark pools do not
disclose sufficient information of their operations to the customers. The International Organization of Securities
Commissions (2010) also observes that “[l]ack of information about the operations of dark pools and dark orders
may result in market participants making uninformed decisions regarding whether or how to trade within a dark
pool or using a dark order.”

8 For example, O’Hara (2003) argues that price discovery and liquidity have important implications for asset
prices. Bond, Edmans, and Goldstein (2012) survey the extensive literature on the effect of financial market
for the real economy; they point out that information revealed in financial markets helps managers make real
decisions, and this feedback effect can potentially explain many market phenomena that otherwise may seem
puzzling.
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(“liquidity-begets-liquidity”) and negative (“crowding out”) externalities on
each other. My focus on price discovery complements HM’s focus on liquidity
externality.

My model differs from HM’s in the behavior of exchange prices and informed
traders. Specifically, informed traders in HM’s model use a corner strategy:
either they all go to the exchange immediately, or they all try the dark pool
before the exchange. This behavior is a result of HM’s assumption that, if
informed traders fail to execute their orders in the dark pool, dealers are still
willing to execute the leftover orders at the original quotes.9 By contrast, in
my model, informed traders who fail to cross in the dark pool will face a new,
potentially worse price on the exchange. This distinction regarding price risk
is important for price discovery and generates evidently different empirical
predictions. First, HM predicts that depending on information horizon, all
informed traders only use one venue at a time; my model predicts that informed
traders (partially) use both venues regardless of information horizon. Second,
in HM, informed traders’ strategies are invariant to market conditions, such
as volatility; in my model informed traders’ strategies endogenously respond
to volatility and other market conditions. Third, HM predict that if private
information expires sooner, then informed traders use the exchange more, and
the exchange spread becomes narrower; I show that the opposite can happen
in my model. Finally, in HM the exchange spreads do not change after a dark
pool crosses, whereas in my model they do. These distinct predictions can be
tested empirically.

1. An Overview of Dark Pools

This section provides an overview of dark pools. I discuss why dark pools
exist, how they operate, and what distinguishes them from each other. For
concreteness, I tailor this discussion for the market structure and regulatory
framework in the United States. Dark pools in Europe, Canada, andAsia operate
similarly.

Before 2005, dark pools had low market share. Early dark pools were
primarily used by institutions to trade large blocks of shares without revealing
their intentions to the broad market, in order to avoid being front-run. A
watershed event for the U.S. equity market was the adoption in 2005 and
full implementation in 2007 of Regulation National Market System, or “Reg
NMS” (Securities and Exchange Commission 2005), which abolished rules

9 More specifically, HM model the cost of dark-pool execution as a fraction 1−δ of a trader’s gain from trade. In
their model, either all informed traders have δ =0 (with the probability γ ), or all informed traders have δ =1 (with
probability 1−γ ). In the former case (i.e., short-lived information), all informed traders immediately go to the
exchange by assumption; in the latter case (i.e., long-lived information), all informed traders go to the dark pool
because exchange prices do not change later. Put differently, by going to the dark pool, informed traders in HM
lose either none of their information advantage or all of their information advantage. In addition, the exchange
spread in HM is set once and does not change over time. In my model, informed traders choose their trading
venue in a more endogenous fashion, and exchanges prices change over time.
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Figure 1
U.S. equity trading volume and the market share of dark pools
The left axis plots the daily consolidated equity trading volume in the United States, estimated by Tabb Group.
The right axis plots the market shares of dark pools as a percentage of the total consolidated volume, estimated
by Tabb Group and Rosenblatt Securities.

that had protected the manual quotation systems of incumbent exchanges. In
doing so, Reg NMS encouraged newer and faster electronic trading centers
to compete with the incumbents. Since Reg NMS came into effect, a wide
variety of trading centers have been established. As of September 2009, the
United States had about 10 exchanges, 5 electronic communication networks
(ECNs), 32 dark pools, and over 200 broker-dealers (Securities and Exchange
Commission 2010). Exchanges and ECNs are referred to as transparent, or “lit,”
venues; dark pools and broker-dealer internalization are considered opaque, or
“dark,” venues. In Europe, the adoption in 2007 of the Markets in Financial
Instruments Directive (MiFID) similarly led to increased competition and a fast
expansion of equity trading centers.10

Figure 1 shows the consolidated volume of U.S. equity markets from July
2008 to June 2011, as well as the market share of dark pools during the same
periods, estimated by Tabb Group and Rosenblatt Securities. According to their
data, the market share of dark pools roughly doubled from about 6.5% in 2008
to about 12% in 2011, whereas consolidated equity volume dropped persistently
from about ten billion shares per day in 2008 to about seven billion shares per
day in 2011.Anotable exception to the decline in consolidated volume occurred
around the “Flash Crash” of May 2010.

Dark pools have gained market share for reasons that go beyond recent
regulations designed to encourage competition. Certain investors, such as
institutions, simply need nondisplayed venues to trade large blocks of shares
without alarming the broad market. This need has increased in recent years as

10 For example, according to the CFA Institute (2009), European equity markets had 92 regulated markets
(exchanges), 129 “multilateral trading facilities” (MTFs), and 13 “systematic internalizers” as of September
2010. For more discussion of MiFID and European equity market structure, see the European Commission
(2010).
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the order sizes and depths on exchanges have declined dramatically (Chordia,
Roll, and Subrahmanyam 2011). Further, dark pools attract investors by offering
potential price improvements relative to the best prevailing bid and offer
on exchanges. Finally, broker-dealers handling customer orders have strong
incentives to set up their own dark pools, where they can better match customer
orders internally and therefore save trading fees that would otherwise be paid
to exchanges and other trading centers.

An important commonality among dark pools is that they derive execution
prices from lit venues. For example, a typical, classical form of dark pools
matches customer orders at prices derived from lit venue, such as the midpoint
of the national best bid and offer (NBBO) or the volume-weighted average price
(VWAP). These dark pools are typically operated by “agency brokers” (broker-
dealers without proprietary order flows) and exchanges. Examples include ITG
Posit and Liquidnet (see also Ready 2012 for a discussion of these two dark
pools), as well as midpoint dark order types offered by NASDAQ, BATS,
and DirectEdge. By taking lit-venue prices as given, these dark pools do not
provide direct price discovery. The model of this paper is based on this trading
mechanism.11

In addition to those “midpoint” dark pools, a second group of dark pools can
provide limited price discovery. Mostly operated by large broker-dealers, these
dark pools are essentially continuous nondisplayed limit order books, where
the execution prices are bounded between the National Best Bid and Offer. Yet
a third group of dark pools operate as electronic market makers that accept or
reject customer orders at high speed. To preserve space, I delegate the discussion
of these dark pools, as well as additional institutional details of dark liquidity, to
the Online Appendix of this paper. Overviews of dark pools and nondisplayed
liquidity can also be found in Johnson (2010), Butler (2007), Carrie (2008),
Securities and Exchange Commission (2010), European Commission (2010),
CSA/IIROC (2009), and International Organization of Securities Commissions
(2011).

2. Modeling the Exchange and the Dark Pool

This section presents a two-period model of trading-venue selection. As
mentioned in Section 1, the dark pool modeled in this paper passively matches
orders at the midpoint of the exchange’s bid and ask. A glossary of key model
variables can be found in Appendix A. All proofs are provided in Appendix B.

2.1 Markets and traders
There are two trading periods, denoted by t =1,2. At the end of period 2,
an asset pays an uncertain dividend v that is equally likely to be +σ or −σ .

11 This type of dark pool is also the prototype of existing models, including Hendershott and Mendelson (2000),
Degryse, Van Achter, and Wuyts (2009), Ye (2011), and Buti, Rindi, and Werner (2011a).
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Thus, σ >0 is the volatility of the asset value. The asset value v is publicly
revealed at the beginning of period 2. (Longer-lived information is considered in
Section 3.2.) For example, this revelation of private information may represent
an earnings announcement.

Two trading venues operate in parallel: a lit exchange and a dark pool. The
exchange is open in periods 1 and 2. On the exchange, a risk-neutral market
maker sets competitive bid and ask prices. Market orders sent to the exchange
arrive simultaneously. Exchange buy orders are executed at the ask; exchange
sell orders are executed at the bid. After period-1 orders are executed, the
market maker announces the volume Vb of exchange buy orders and the volume
Vs of exchange sell orders. The market maker also announces the exchange
closing price P1, which is the expected asset value, conditional on Vb and
Vs . (In Section 3.1, the market maker also uses the dark pool trading volume
to calculate P1.) The closing price P1 is also the price at which the market
maker is willing to execute a marginal order at the end of period 1. A key
objective of this section is to analyze price discovery, that is, the informativeness
of these announcements, in particular P1, for the fundamental value v of the
asset.

The dark pool executes (or “crosses”) orders in period 1 and is closed in
period 2. Closing the dark pool in period 2 is without loss of generality because
once the dividend v is announced in period 2, exchange trading is costless. An
order submitted to the dark pool is not observable to anyone but the order
submitter. The execution price of dark pool trades is the midpoint of the
exchange bid and ask—also known simply as the “midpoint” or “midmarket”
price. In the dark pool, orders on the “heavier side”—the buyers’ side if
buy orders exceed sell orders, and the sellers’ side if sell orders exceed buy
orders—are randomly selected for matching with those on the “lighter” side.
For example, if the dark pool receives QB buy orders and QS <QB sell orders,
all of the same size, then QS of the QB buy orders are randomly selected,
equally likely, to be executed against the QS sell orders at the midmarket price.
Unmatched orders are returned to the order submitter at the end of period 1.
As described in Section 1, this midpoint execution method is common in dark
pools operated by agency brokers and exchanges.

For-profit traders and liquidity traders, all risk-neutral, arrive at the beginning
of period 1. There is an infinite set of infinitesimal traders of each type.
For-profit traders have a mass of μ̄>0 and can potentially trade one
unit of the asset per capita. (Trading one unit per capita simplifies the
exposition, and the equilibrium applies to any finite order size per capita,
with minor adjustment; see Lemma 1 below.) For-profit traders can acquire,
at a cost, perfect information about v, and thus become informed traders.
These information-acquisition costs are distributed across for-profit traders,
with a differentiable cumulative distribution function F : [0,∞)→ [0,1]. After
observing v, informed traders submit buy orders (in either venue) if v =+σ

and submit sell orders if v =−σ . For-profit traders who do not acquire the
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information do not trade. I let μI be the mass of informed traders; their signed
trading interest is therefore Y =sign(v)·μI .

Liquidity buyers and liquidity sellers arrive at the market separately (not
as netted). The mass Z+ of liquidity buy orders and the mass Z− of liquidity
sell orders are nonnegative, independent, and identically distributed on [0,∞)
with positive and finite density functions, and are infinitely divisible. Infinite
divisibility means that, for each integer n, the total liquidity buy orders Z+

can be viewed as the aggregate demand by n liquidity buyers, whose order
sizes are independently and identically distributed random variables. A similar
construction applies for the total liquidity sell orders Z−. Thus, we can interpret
a market with infinitely many liquidity traders as the “limiting case” of a market
withn liquidity buyers andn liquidity sellers asn→∞.12 In particular, because,
in the limit, each liquidity trader’s order size has zero mean and zero variance,
the conditional joint distribution of Z+ and Z−, given this liquidity trader’s
order size, is the same as the unconditional joint distribution of Z+ and Z−.13

I denote by 0.5μz the mean of Z+ (and Z−) and by 0.5σ 2
z the variance of Z+

(and Z−).
Liquidity traders incur delay costs if they do not complete their orders in

period 1. Specifically, for each liquidity trader i, the delay cost per unit of asset
per capita is:

ci =γiσ, (1)

where the multiplicative constants {γi} represent the “types” of liquidity traders
and have a twice-differentiable cumulative distribution function G : [0,�)→

12 More specifically, for each integer n, Z+ can be constructed as the sum of n independently and identically
distributed random variables {Z+

in
}. That is,

Z+ ∼
n∑

i=1

Z+
in.

Note that the distribution of Z+
in

depends on n. I assume that the variance of Z+
in

is finite. Similarly, there exist

n i.i.d. random variables Z−
in

such that

Z− ∼
n∑

i=1

Z−
in

.

In this setting, {Z+
in

} and {Z−
in

} can be viewed as the order sizes of n liquidity buyers and n liquidity sellers.

As n→∞, the mean and variance of Z+
in

and Z−
in

converge to zero, and liquidity buyers and sellers become
infinitesimal.

13 We denote the probability distribution of Z+ by � and show that, for each i, the conditional distribution of∑n
j=1Z+

jn
, given Z+

in
, converges to the prior distribution of Z+ as n→∞. That is, for all z>0, �(z|Z+

in
)→�(z)

as n→∞. By the independence of Z+
in

and {Z+
jn

}j �=i , this amounts to showing that Z+
in

converges to zero in

distribution. Indeed, for any z>0, using Markov’s inequality and the fact that E(Z+
in

) converges to zero as n→∞,
we have

P(Z+
in <z)=1−P(Z+

in ≥z)≥1− E(Z+
in

)

z
→1,as n→∞.

Similarly, the conditional distribution of Z−, given Z+
in

, converges in n to the prior distribution of Z−. The proof
for a liquidity seller’s inference is symmetric.
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[0,1], for some �∈ (1,∞]. A linear delay cost simplifies the analysis and
does not change my main result regarding price discovery. (An equilibrium
characterization under constant delay costs is available in an OnlineAppendix.)
This linear delay cost can come from margin constraint or unmodeled risk
aversion. In Brunnermeier and Pedersen (2009), for example, the required
margin on a trade is linearly increasing in the volatility of the asset. The delay
costs of informed traders, by contrast, stem from the loss of profitable trading
opportunities after v is revealed in period 2. (Clearly, if informed traders were
subject to additional delay costs, they would be even more likely to trade on
the exchange, strengthening my results.)

Finally, random variables v, Z+, Z−, and the costs of information-acquisition
and delay are all independent, and their probability distributions are common
knowledge. Realizations of Y , Z+ and Z− are unobservable, with the exception
that informed traders observe v, and hence know Y . Informed and liquidity
traders cannot post limit orders on the exchange; they can trade only with the
exchange market maker or by sending orders to the dark pool. Combining
limit order books with dark pools is analytically hard and is left for future
research.14,15 Further, both venues do not charge trading fees; this zero-fee
assumption is made for tractability. Analyzing endogenous trading fees, which
can potentially interact with the self-selection mechanism, is left for future
research.

Figure 2 illustrates the sequence of actions in the two-period model.

2.2 Equilibrium
An equilibrium consists of the quoting strategy of the exchange market maker,
the market participation strategies of for-profit traders, and the trading strategies
of informed and liquidity traders. In equilibrium, the competitive market
maker breaks even in expectation, and all traders maximize their expected
net profits.

Specifically, I let αe and αd be candidates for the equilibrium fractions of
liquidity traders who, in period 1, send orders to the exchange and to the dark
pool, respectively. The remainder, α0 =1−αe −αd , choose not to submit orders
in period 1 and delay trade until period 2. I let β be the period 1 fraction of
informed traders who send orders to the dark pool. The remaining fraction

14 Limit order books are hard to solve under asymmetric information. Most models of limit order books have pure
private values and do not have asymmetric information regarding the asset value. Papers taking this approach
include Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel (2005), Goettler, Parlour, and Rajan
(2005), Rosu (2009), and Buti, Rindi, Wen, and Werner (2011), among others. Chakravarty and Holden (1995),
Kaniel and Liu (2006), and Goettler, Parlour, and Rajan (2009) allow informed traders, but incorporating a dark
pool into their models is far from trivial. For a literature review of limit order books, see Parlour and Seppi
(2008).

15 Although limit order books also feature the trade-off between price improve and execution risk, limit order books
are typically transparent. To the extent that informed traders post limit orders, depths on limit order books may
reveal information. Dark pools do not reveal information through depth. Therefore, the trade-off faced by an
informed trader in a dark pool is different from the trade-off in an open limit order book.

756

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/27/3/747/1580317 by EPF Lausanne (Inactive) user on 12 D

ecem
ber 2023



[11:04 19/2/2014 RFS-hht078.tex] Page: 757 747–789

Do Dark Pools Harm Price Discovery?

Period 2Period 1| |

Traders select venue
or delay trade

Orders executed

Exchange announces
closing price Value announcedv

Remaining orders
executed on exchange

Value paidv

Figure 2
Time line of the two-period model.

1−β of informed traders trade on the exchange. (Obviously, informed traders
never delay their trades as they will have lost their informational advantage by
period 2.) Once the asset value v is revealed in period 2, all traders who have
not traded in period 1—including those who deferred trading and those who
failed to execute their orders in the dark pool—trade with the market maker at
the unique period 2 equilibrium price of v.

I first derive the equilibrium exchange bid and ask, assuming equilibrium
participation fractions (β,αd,αe). Because of symmetry and the fact that the
unconditional mean of v is zero, the midpoint of the market maker’s bid and
ask is zero. Therefore, the exchange ask is some S >0, and the exchange bid
is −S, where S is the exchange’s effective spread, the absolute difference
between the exchange transaction price and the midpoint. For simplicity, I
refer to S as the “exchange spread.” Given the participation fractions (β,αd,αe),
the mass of informed traders on the exchange is (1−β)μI , and the expected
mass of liquidity traders on the exchange is αeE(Z+ +Z−)=αeμz. The market
maker breaks even on average over both buy and sell orders,16 so the spread
satisfies

0=−(1−β)μI (σ −S)+αeμzS, (2)

which implies that

S =
(1−β)μI

(1−β)μI +αeμz

σ. (3)

The dark pool crosses orders at the midmarket price of zero.
Next, I derive the equilibrium mass μI of informed traders. Given the value σ

of information and the exchange spread S, the net profit of an informed trader
is σ −S. The information-acquisition cost of the marginal for-profit trader,
who is indifferent between paying or not paying for information, is also σ −S.
Because all for-profit traders with lower information-acquisition costs become

16 In this sense, my setting is different from that of Glosten and Milgrom (1985), where the market maker breaks
even in expectation on each buy order and each sell order. This modeling choice simplifies the analysis without
affecting the main intuition of the paper.
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informed, the mass of informed traders in equilibrium is μ̄F (σ −S), by the
exact law of large numbers (Sun 2006). We thus have

μI = μ̄F (σ −S)= μ̄F

(
αeμz

(1−β)μI +αeμz

σ

)
. (4)

For any fixed β ≥0 and αe >0, (4) has a unique solution μI ∈ (0,μ̄).
Finally, I turn to the equilibrium trading strategies. Without loss of generality,

I focus on the strategies of buyers. In the main solution step, I calculate the
expected payoffs of an informed buyer and a liquidity buyer, on the exchange
and in the dark pool. The equilibrium is then naturally determined by conditions
characterizing marginal traders who are indifferent between trading on the
exchange and in the dark pool.

Suppose that αd >0. Because informed buyers trade in the same direction,
they have the dark-pool crossing probability of

r− =E

[
min

(
1,

αdZ
−

αdZ+ +βμI

)]
, (5)

where the denominator and the numerator in the fraction above are the masses
of buyers and sellers in the dark pool, respectively. Liquidity buyers, on the
other hand, do not observe v. If informed traders are buyers, then liquidity
buyers have the crossing probability r− in the dark pool. If, however, informed
traders are sellers, then liquidity buyers have the crossing probability

r+ =E

[
min

(
1,

αdZ
− +βμI

αdZ+

)]
. (6)

Obviously, for all β >0, we have

1>r+ >r− >0. (7)

Because liquidity buyers assign equal probabilities to the two events {v =+σ }
and {v =−σ }, their dark pool crossing probability (r+ +r−)/2 is greater than
informed traders’ crossing probability r−. In other words, correlated informed
orders have a lower execution probability in the dark pool than do relatively
uncorrelated liquidity orders.

If the dark pool contains only liquidity orders (i.e., β =0), then any dark-pool
buy order has the execution probability

r̄ =E

[
min

(
1,

Z−

Z+

)]
. (8)

For our purposes, r̄ measures the degree to which liquidity orders are balanced.
Perfectly balanced liquidity orders correspond to r̄ =1. Further, as we see
shortly, in equilibrium αd >0 as long as σ >0. Thus, the denominator and the
numerator on the right-hand side of (5) and (6) are never zero on the equilibrium
path, and r−, r+, and r̄ are well defined.
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The expected profits of an informed buyer on the exchange and in the dark
pool are, respectively,

We =σ −S, (9)

Wd = r−σ. (10)

I denote by c the delay cost of a generic liquidity buyer per unit of asset
position. This buyer’s per-unit net payoffs of deferring trade, trading on the
exchange, and trading in the dark pool are, respectively,

X0(c)=−c, (11)

Xe =−S, (12)

Xd (c)=− r+ −r−

2
σ −c

(
1− r+ +r−

2

)
. (13)

The terms on the right-hand side of (13) are the liquidity trader’s adverse
selection cost and delay cost in the dark pool, respectively. For β >0, crossing
in the dark pool implies a positive adverse selection cost because execution is
more likely if a liquidity trader is on the side of the market opposite to that of
informed traders.17 For β =0, this adverse-selection cost is zero. For simplicity,
in the analysis below the net profits and delay costs of liquidity traders refer
to profits and costs per unit of asset, unless otherwise specified. (It is without
loss of generality to focus on the venue decision based on per-unit payoffs; see
Lemma 1 below.)

From (9) and (12), We −Xe =σ . For all delay cost c≤σ ,

Wd −Xd (c)=
r+ +r−

2
σ +c

(
1− r+ +r−

2

)
≤σ =We −Xe. (14)

That is, provided c≤σ , the dark pool is more attractive to liquidity traders than
to informed traders, relative to the exchange. In particular, (14) implies that a
liquidity trader with a delay cost of σ (or a type of γ =1) behaves in the same
way as an informed trader. In addition,

Xd (c)−X0(c)=− r+ −r−

2
σ +

r+ +r−

2
c. (15)

So a liquidity trader with a type of γ =(r+ −r−)/(r+ +r−) is indifferent between
deferring trade and trading in the dark pool.

17 For example, Sofianos and Xiang (2011) find that dark pools that have higher execution probabilities also have
slightly higher adverse selection (that is, they are more “toxic”). Næs and Odegaard (2006) provide anecdotal
evidence that filled orders in a dark pool are subject to short-term losses. Mittal (2008) and Saraiya and Mittal
(2009) emphasize that short-term adverse selection in dark pools can reduce execution quality of institutional
investors. Conrad, Johnson, and Wahal (2003), Brandes and Domowitz (2010), and Domowitz, Finkelshteyn,
and Yegerman (2009) examine execution costs in dark pools, although they do not explicitly measure the costs
of adverse selection.
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Before stating the equilibrium, we emphasize that we do not restrict traders
to send orders to only one venue; rather, it is an equilibrium outcome. This
result is formally stated in the following lemma.

Lemma 1. If a trader does not delay trades, then it is an equilibrium that he
sends his entire order to only one venue with probability one.

The intuition for Lemma 1 is simple. Because each trader has a mass of zero,
he has no impact on prices or execution probabilities. Therefore, each trader’s
optimal strategy is to send his entire order to one venue. (If two venues give
equal payoff to a trader, sending the entire order to one venue is also optimal.)
While this result relies on the assumption of finite order size per capita, a finite
order size is a standard assumption in existing models of dark pools, such as
Hendershott and Mendelson (2000), Degryse, Van Achter, and Wuyts (2009),
and Buti, Rindi, and Werner (2011a), as well as the classic model of Glosten
and Milgrom (1985) and extensions. A finite order size can also be viewed as
a substitute for (unmodeled) credit limit or capital constraint.18

We are now ready to characterize the equilibrium.

Proposition 1. There exists a unique threshold volatility σ̄ >0 such that:

(1) If σ ≤ σ̄ , then there exists an equilibrium (β =0,αd =α∗
d ,αe =1−α∗

d ),
where α∗

d ∈ (0,G(1)] and μ∗
I solve

G−1(αd )(1− r̄)=
μI

μI +(1−αd )μz

, (16)

μI = μ̄F

(
(1−αd )μz

μI +(1−αd )μz

σ

)
. (17)

(2) If and only if σ >σ̄ , there exists an equilibrium (β =β∗,αd =α∗
d ,αe =

1−G(1)), where β∗, α∗
d ∈ (0,G(1)], and μ∗

I solve

r− =1− (1−β)μI

(1−β)μI +(1−G(1))μz

, (18)

αd =G(1)−G

(
r+ −r−

r+ +r−

)
, (19)

μI = μ̄F

(
(1−G(1))μz

(1−β)μI +(1−G(1))μz

σ

)
. (20)

18 If an infinitesimal trader can trade an infinite number of shares per capita, then that trader can become “large”
and strictly prefer splitting his order to avoid “price impact” on the exchange. This size-discovery benefit of
dark pools is separate from the price-discovery focus of this paper, as we discussed in the introduction. So far,
I have not found a tractable model that combines price discovery and size discovery without making additional
restrictive assumptions. For example, Ye (2011) models both price discovery and price impact in the Kyle (1985)
framework, but he assumes exogenous venue choice of uninformed traders.
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The proof of Proposition 1 is provided in Appendix B, but we
outline its main intuition here. If the volatility σ is sufficiently low,
the exchange spread is low; thus, the price-improvement benefit of
the dark pool is lower than the cost of execution risk. In this case,
informed traders avoid the dark pool (i.e., β =0). The equilibrium is then
determined by the marginal liquidity trader who is indifferent between
trading on the exchange and trading in the dark pool, as well as by the
marginal for-profit trader who is indifferent about whether to acquire the
information.

If the volatility σ is sufficiently high, informed traders joint liquidity traders
in the dark pool to avoid the higher exchange spread. Thus, β ∈ (0,1). In this
case, the equilibrium is determined by three indifference conditions. First,
informed traders must be indifferent between trading in either venue, as shown
in (18). By (14), a liquidity trader with a delay cost of σ is also indifferent
between the two venues. Thus, α0 +αd =G(1) and αe =1−G(1). The second
indifference condition (19) then follows from (15). Here, the fraction α0 of
liquidity traders who delay trade must be strictly positive because informed
traders introduce adverse selection into the dark pool. The third condition (20)
says that the marginal for-profit trader is indifferent about whether to acquire
the information.

Similarly, we can characterize an equilibrium for a market structure in which
only the exchange is operating and the dark pool is absent. This exchange-only
equilibrium, stated below, may also be interpreted as one in which a dark pool
is open but no trader uses it.

Corollary 1. With only an exchange and no dark pool, there exists an
equilibrium in which β∗ =α∗

d =0, and μ∗
I and α∗

e ∈ (1−G(1),1) solve

μI

μI +αeμz

=G−1(1−αe) (21)

μI = μ̄F

(
αeμz

μI +αeμz

σ

)
. (22)

2.2.1 Equilibrium selection. The equilibria characterized in Proposition 1
need not be unique among all equilibria solving (16)–(17) and (18)–(20).
For example, under the condition σ ≤ σ̄ (derived from condition (B2) in
the Appendix), both sides of (16) strictly increase in αd . Similarly, both
sides of (19) strictly increase in αd , and both sides of (21) strictly decrease
in αe. Thus, given the absence of a single-crossing property, multiple
equilibria may arise due to coordination: although no single trader wishes to
unilaterally deviate, the collective deviation of a sufficient mass of traders may
move the equilibrium. For example, if a sufficiently large mass of liquidity
traders are “perturbed” and move from the exchange to the dark pool, this
movement may increase the exchange spread so much that those perturbed
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liquidity traders will stay in the dark pool.19 A different equilibrium may
emerge.20

I use stability as an equilibrium selection criterion, which allows me to
compute the comparative statics of the selected equilibria.Among the equilibria
characterized by Case 1 of Proposition 1, I select that with the smallest liquidity
participation α∗

d in the dark pool among those with the property that, as αd varies
in the neighborhood of α∗

d , the left-hand side of (16) crosses the right-hand
side from below.21 Under the conditions of Proposition 1, this equilibrium
exists and is robust to small perturbations.22 Moreover, selecting the stable
equilibrium with the smallest α∗

d provides a conservative estimate of the effect
of the dark pool.23 Once αd is determined in equilibrium, μI and β are uniquely
determined, too, as shown in the proof of Proposition 1.

Similarly, among equilibria characterized by Case 2 of Proposition 1,
I select the one with the smallest liquidity participation α∗

d in the dark
pool among those with the property that, as αd varies in the neighborhood
of α∗

d , the left-hand side of (19) crosses the right-hand side from below.
In a market without a dark pool (Corollary 1), I select the equilibrium
with the largest liquidity participation α∗

e on the exchange among those
with the property that, as αe varies in the neighborhood of α∗

e , the left-
hand side of (21) crosses the right-hand side from below. By the argument
given for Case 1 of Proposition 1, these selected equilibria exist and are
stable.

2.2.2 Discussion. My modeling approach and results complement a few
branches of prior literature. First, in prior microstructure models with multiple
exchanges, informed traders and liquidity traders tend to cluster by time
(Admati and Pfleiderer 1988) or by location (Pagano 1989; Chowdhry
and Nanda 1991). As modeled in this paper, however, informed traders

19 In my model, a perturbation of a large mass of liquidity traders into the dark pool needs not increase the
execution probability in the dark pool. In Case 1 of Proposition 1, for example, if an extra fraction ε>0 of
liquidity traders are perturbed into the dark pool, the dark-pool execution probability stays the same, r̄ , because
there are infinitely many infinitesimal traders. In the model of Hendershott and Mendelson (2000), a larger
number of uninformed traders in the dark pool implies a higher execution probability because there are finitely
many traders.

20 One condition that guarantees the uniqueness of the equilibrium in Case 1 of Proposition 1 is that the distribution
function G of delay costs is linear. With a linear G, the condition (B2) in the Appendix is also necessary for the
existence of solutions to (16)–(17).

21 Selecting the stable equilibrium corresponding to the smallest α∗
d

is arbitrary but without loss of generality. As
long as the selected equilibrium is stable, comparative statics calculated later follow through.

22 If, for example, α∗
d

is perturbed to α∗
d

+ε for sufficiently small ε>0, then the marginal liquidity trader has a higher
cost in the dark pool than on the exchange, and therefore migrates out of the dark pool. Thus, αd is “pushed
back” to α∗

d
and the equilibrium is restored. There is a symmetric argument for a small downward perturbation

to α∗
d
−ε. By contrast, if there is an equilibrium in which, as αd varies, the left-hand side of (16) crosses the

right-hand side from above, this equilibrium would not be stable to local perturbations.

23 If another stable equilibria with a larger α∗
d

exists, using that equilibrium is likely to make my results stronger
by increasing the mass of liquidity traders in the dark pool.

762

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/27/3/747/1580317 by EPF Lausanne (Inactive) user on 12 D

ecem
ber 2023



[11:04 19/2/2014 RFS-hht078.tex] Page: 763 747–789

Do Dark Pools Harm Price Discovery?

endogenously cluster less with liquidity traders in the dark pool than on the
exchange because of different execution risks in the dark pool.24 Second, my
model relies on self-selection, rather than on nonanonymity, to separate, at
least partially, informed traders from liquidity traders. Models that rely on
nonanonymity (explicitly or implicitly) to filter informed traders include those
of Seppi (1990), Benveniste, Marcus, and Wilhelm (1992), Easley, Keifer,
and O’Hara (1996), Madhavan and Cheng (1997), Grammig, Schiereck, and
Theissen (2001), and Garfinkel and Nimalendran (2003), among others. Third,
my study of dark pools differs from existing papers on nondisplayed markets
that operate alone, such as Hendershott and Jones (2005), Bloomfield, O’Hara,
and Saar (2012), and Boulatov and George (2013).

2.3 Market characteristics and comparative statics
I now investigate properties of the equilibria characterized by Proposition 1.
Proposition 2 and Proposition 3 below aim to answer two questions:

(1) In a market with a dark pool and an exchange, how do market
characteristics vary with volatility σ?

(2) Given a fixed volatility σ , how does adding a dark pool affect market
behavior?

Proposition 2. In the equilibrium of Proposition 1:

(1) For σ ≤ σ̄ , the dark pool participation rate αd of liquidity traders, the
total mass μI of informed traders, and the scaled exchange spread S/σ

are strictly increasing in σ . The exchange participation rate αe =1−αd

of liquidity traders is strictly decreasing in σ . Moreover, αd , μI , and S

are continuous and differentiable in σ .

(2) For σ >σ̄ , all of μI , βμI , r+, and S/σ are strictly increasing in σ ,
whereas αd and r− are strictly decreasing in σ . Moreover, β, αd , μI , S,
r+, and r− are continuous and differentiable in σ .

In the equilibrium of Corollary 1, μI and S/σ are strictly increasing in σ ,
whereas αe is strictly decreasing in σ . Moreover, αe, μI , and S are continuous
and differentiable in σ .

Proposition 3. In the equilibria of Proposition 1 and Corollary 1:

(1) For σ ≤ σ̄ , adding a dark pool strictly reduces the exchange participation
rate αe of liquidity traders and the total mass μI of informed traders.
Adding a dark pool strictly increases the exchange spread S and the total
participation rate αe +αd of liquidity traders.

24 In a recent model by Guerrieri and Shimer (2012), investors trade multiple assets with different qualities, but
each type of asset only trades in one market; in my model, investors separate with a single asset by trading on
different venues.
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(2) For σ >σ̄ , adding a dark pool strictly reduces αe. Moreover, adding a
dark pool strictly increases the exchange spread S if and only if, in the
equilibrium of Proposition 1,

r− <1− μI

μI +(1−G(1−r−))μz

. (23)

It is sufficient (but not necessary) for (23) that

G′′(γ )≤0 for all 1− r̄ ≤γ ≤1 and F (c)→1 for all c>0. (24)

We now discuss the intuition and implications of Proposition 2 and
Proposition 3. Whereas the equilibria and comparative statics are characterized
analytically, the solutions of equilibrium variables are not in closed form. I
solve them numerically using the Matlab function fsolve.

2.3.1 Participation rates and exchange spread. The left-hand-side plot of
Figure 3 shows the equilibrium participation rates in the exchange and the dark
pool. For a small value of information, specifically if σ ≤ σ̄ , informed traders
trade exclusively on the exchange because the exchange spread is smaller than
the cost of execution risk in the dark pool.An increase in σ widens the exchange
spread, encouraging more liquidity traders to migrate into the dark pool. For
σ >σ̄ , informed traders use both venues. Because informed participation in the
dark pool introduces adverse selection, liquidity traders with low delay costs
migrate out of the dark pool, leading to a decline in their dark pool participation
rate αd .

We observe that informed dark pool participation rate β first increases in
volatility σ and then decreases. The intuition for this nonmonotonicity is as
follows.Ahigher value of informationσ encourages additional for-profit traders
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Figure 3
Participation rates and exchange spread
The left-hand side plot shows the equilibrium participation rates (β,αd ,αe) in a market with a dark pool. The
right-hand-side plot shows the scaled exchange spread S/σ . In both plots, the vertical dotted line indicates the
threshold volatility σ̄ at which the equilibrium of Proposition 1 changes from Case 1 to Case 2. Model parameters:
μz =60, σz =

√
60, μ̄=20, Z+ and Z− have Gamma distributions with mean 30 and variance 30, G(s)= s/2 for

s ∈ [0,2], and F (s)=1−e−s/2 for s ∈ [0,∞).
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to become informed. For a low β, the dark pool execution risk is relatively
low, and these additional informed traders prefer the dark pool, raising β. For
sufficiently high β, however, informed orders cluster on one side of the dark
pool and significantly reduce their execution probability. Thus, these additional
informed traders send orders to the exchange, reducing β. Nonetheless, the total
quantity βμI of informed traders in the dark pool is strictly increasing in σ .

The right-hand-side plot of Figure 3 shows the scaled exchange spread S/σ .
Because a higher value σ of information encourages more for-profit traders to
become informed, the scaled exchange spread S/σ increases in σ , whether or
not a dark pool is present. For σ ≤ σ̄ , adding a dark pool raises S/σ by diverting
some liquidity traders, but none of the informed traders, off the exchange. For
σ >σ̄ , adding a dark pool in this example also increases the scaled spread S/σ

because the dark pool diverts more liquidity traders than informed traders.

2.3.2 Dark pool market share. I now calculate the dark pool market share,
that is, the proportion of trading volume handled by the dark pool. The market
share of the dark pool is a direct empirical measure of dark pool activity.
I assume that once the dividend v is announced in period 2, informed traders
who have not yet traded leave the market, because they will not be able to
trade profitably. When calculating the exchange volume, I also include the
transactions of liquidity traders in period 2. Thus, the expected trading volumes
in the dark pool, on the exchange, and in both venues are, respectively,

Vd =βμI r
− +αdμz

r+ +r−

2
, (25)

Ve =(1−β)μI +αeμz +αdμz

(
1− r+ +r−

2

)
+α0μz, (26)

V =Ve +Vd =μz +μI (1−β +βr−). (27)

Figure 4 illustrates the equilibrium behavior of dark pool market share. The
left-hand plot shows that for sufficiently small volatility (σ ≤ σ̄ ), the dark pool
market share is increasing in the volatility σ . This is because in Case 1 of
Proposition 1, a higher volatility increases the dark pool volume but reduces
the exchange volume. As the volatility σ increases beyond σ̄ , however, the
exchange volume Ve can increase substantially, but the dark pool volume Vd

may only increase mildly or even decline. Thus, the dark-pool market share can
decrease in volatility σ for sufficiently large σ , creating a hump-shaped relation
between volatility and the dark pool market share. The model also generates a
similar relation between the scaled spread S/σ and the dark-pool market share
Vd/V , as shown on the right-hand plot of Figure 4.

2.4 Price discovery
Now I turn to price discovery, by which I mean the extent to which the period
1 announcements (P1,Vb,Vs) are informative of the fundamental asset value v.
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Figure 4
Expected trading volume on the exchange and in the dark pool
The left-hand plot shows the volume in the two venues and the market share of the dark pool. The right-hand plot
shows the dark pool market share as a function of the scaled spread S/σ . The vertical dotted line corresponds to
the threshold volatility σ̄ . Parameters are those of Figure 3.

Because the market maker observes the volume (Vb,Vs), the closing price
P1 is

P1 =E[v |Vb,Vs]. (28)

Because v is binomially distributed, its conditional distribution after period 1
trading is completely determined by its conditional expectation

E[v |P1,Vb,Vs]=E[E[v |Vb,Vs]|P1]=P1. (29)

That is, all period 1 public information that is relevant for the asset value v is
conveyed by the closing price P1. As we will make precise shortly, the “closer”
is P1 to v, the better is price discovery.

Clearly, P1 is uniquely determined by the log likelihood ratio

R1 = log
P(v =+σ |Vb,Vs )

P(v =−σ |Vb,Vs )
= log

φ
(
Z+ = 1

αe
[Vb −(1−β)μI ]

)
·φ
(
Z− = 1

αe
Vs

)
φ
(
Z+ = 1

αe
Vb

)
·φ
(
Z− = 1

αe
[Vs −(1−β)μI ]

) , (30)

where φ is the probability density function of Z+ and Z−. We have also used
the fact that the prior distribution P(v =+σ )=P(v =−σ )=0.5.

Given R1, the market maker sets the period 1 closing price

P1 =
eR1 −1

eR1 +1
σ. (31)

Without loss of generality, I condition on v =+σ and consider price
discovery to be unambiguously “improved” if the probability distribution of
R1 is “increased,” in the sense of first-order stochastic dominance. Complete
revelation of v =+σ corresponds to R1 =∞ almost surely.
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Using the log likelihood ratio R1, we can also calculate the scaled root-mean-
squared error (RMSE):√

E
[
(v−P1)2 |v =σ

]
σ

=

√
E

[
4

(eR1 +1)2
|v =σ

]
. (32)

Here, we scale the RMSE by σ to focus on the proportional pricing error, which
is always between 0 and 1, rather than dollar pricing error, which, as σ →∞,
can in principal become arbitrarily large.

In general, we need to know the functional form of the density φ(·) in
order to calculate R1, P1, and the scaled RMSE. To make the intuition more
explicit, and without loss of generality, I take an example in which the density
φ(·) is approximated by N (0.5μz,0.5σ 2

z ) when μz and σ 2
z are sufficiently

large.25 Substituting the normal density function into (30), we can approximate
R1 by

Rnormal
1 =

2(1−β)μI

α2
e σ

2
z

(Vb −Vs), (33)

which is the counterpart of R1 under the normal distribution. Given that v =+σ ,
Vb −Vs has a distribution close to that of N ((1−β)μI ,α

2
e σ

2
z ), so R1 has a

distribution close to that of

N
(

2

(
(1−β)μI

αeσz

)2

,4

(
(1−β)μI

αeσz

)2
)

∼N (
2I (β,αe)2,4I (β,αe)2

)
, (34)

where

I (β,αe)≡ (1−β)μI

αeσz

(35)

is the “signal-to-noise” ratio, which is the mass of informed orders on the
exchange (“signal”) divided by the standard deviation of the imbalance of
liquidity orders on the exchange (“noise”).

Clearly, I (β,αe) is increasing in the scaled exchange spread S/σ =
(1−β)μI /αe

(1−β)μI /αe+μz
. Combining this fact with Proposition 3, we can immediately

infer the effect of the dark pool on price discovery, measured by I (β,αe). In
addition, under the normal approximation, we can show analytically that a
higher signal-to-noise ratio I (β,αe) corresponds to a lower scaled RMSE. This
result is summarized by the following proposition.

25 We can show this approximation as follows. Fix a small δ>0 such that m=μz/δ is an integer. By infinite
divisibility, Z+ can be represented as the sum

∑m
i=1Z+

im
, where {Z+

im
} are i.i.d. random variables with mean δ

and variance δσ2
z /μz . Fixing δ, the central limit theorem implies that the distribution of Z+ is approximately

normal when m is large, that is, when μz and σ2
z are large.
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Figure 5
Two measures of price discovery, as functions of volatility σ

The left-hand plot shows the signal-to-noise ratio, and the right-hand plot shows scaled RMSE. The true asset
value is v =σ , and other model parameters are those of Figure 3.

Proposition 4. Under the normal approximation of φ, in the equilibria of
Proposition 1 and Corollary 1:

(1) For σ ≤ σ̄ , adding a dark pool strictly increases the signal-to-noise
ratio I (β,αe) on the exchange and strictly decreases the scaled RMSE√

E
[
4(eR1 +1)−2 |v =σ

]
.

(2) For σ >σ̄ , if the condition specified in Case 2 of Proposition 3
holds, adding a dark pool strictly increases the signal-to-noise ratio
I (β,αe) on the exchange and strictly decreases the scaled RMSE√

E
[
4(eR1 +1)−2 |v =σ

]
.

Figure 5 plots the two measures of price discovery, signal-to-noise ratio and
scaled RMSE, as functions of σ , with and without a dark pool. We can see
that the addition of a dark pool raises the signal-to-noise ratio and reduces the
scaled RMSE. For a σ close to zero, few for-profit traders become informed. In
this case, the exchange order flow contains little information about v, and the
market maker’s pricing error is close to 100% of the volatility, regardless of
whether the dark pool is present. For a large σ , however, many for-profit traders
become informed, and the dark pool starts to concentrate informed traders on
the exchange. In this case, adding a dark pool significantly reduces the market
maker’s percent pricing error from 7.1% to 2.6%.

So far, we have used a single statistic (the signal-to-noise ratio or the scaled
RMSE) to capture the average effect of the dark pool for price discovery. The
realized exchange closing price P1, however, also incorporates the unexpected
order imbalance of the liquidity traders. My next step is to examine the
probability distribution of the realized log likelihood ratio, R1, and the realized
absolute pricing error scaled by σ :

|P1 −σ |
σ

=
2

|eR1 +1| . (36)
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Figure 6
Probability density functions of R1 and |P1 −σ |/σ , with and without a dark pool
The distributions are calculated by setting v = σ̄ and drawing 2×107 realizations of Z+ and Z−. The model
parameters are those of Figure 3.

This exercise would shed light on the following question: does the dark pool
improve price discovery path-by-path?

Figure 6 plots the probability density functions of R1 and |P1 −σ |/σ with
and without a dark pool. The value σ of information is set as the threshold
value σ̄ , so that β =0 in the equilibria with a dark pool as well as the equilibria
without a dark pool. We see that on average, the addition of a dark pool shifts the
probability density of R1 to the right and the probability density of |P1 −σ |/σ
to the left. Price discovery is thus improved in expectation, as we have seen in
Figure 5. Nonetheless, the dark pool also “fattens” the left tail of R1 and the right
tail of |P1 −σ |/σ , harming price discovery in the extreme and unlikely events
that R1 becomes sufficiently negative (or P1 becomes sufficiently close to −σ ).
This tail effect has a simple intuition. When the trading interests of liquidity
traders are sufficiently large and opposite in direction to the informed—such as
under a large liquidity shock—the exchange order flow gives the market maker
an incorrect inference regarding the trading direction of the informed traders.
Conditional on an incorrect inference, the larger is the signal-to-noise ratio,
the larger is the realized pricing error. Therefore, by increasing the signal-to-
noise ratio, the dark pool can harm price discovery in those tail events, while
improving price discovery in most cases and on average.

A natural next question is whether, on average, adding a dark pool always
improves price discovery. The answer is “not always,” as I illustrate through
an example. My objectives of constructing this example are twofold. First, the
example sharpens my theory by illustrating the limitations of the self-selection
mechanism. Second, I use this example to reiterate that my results should not
be taken as unqualified “favoring” of dark pools as a policy recommendation.
I put this example in the Online Appendix to preserve space, but let me outline
the intuition for the construction.

Recall that the key mechanism of my model is self-selection: once a dark
pool is introduced, under certain conditions liquidity traders migrate to the dark
pool more than informed do, improving price discovery on the exchange. If a
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dark pool were to harm price discovery, this self-selection mechanism needs to
be shut down or limited. A convenient way to limit self-selection is to assume
a discontinuous (e.g., binomial) distribution of delay costs of liquidity traders.
This discontinuity creates the possibility of a “corner solution,” in which one
type of liquidity traders is “stuck” on the exchange and the other type is “stuck”
in the dark pool (or delays trades). At a corner solution like this, introducing the
dark pool moves informed traders, but not liquidity traders, off the exchange
and harms price discovery.At a technical level, this construction is analogous to
“endogenizing” the key modeling assumption of Ye (2011) that liquidity traders
have exogenously assigned trading venues. That said, to the extent that several
recent empirical studies have found evidence consistent with the predictions
of my model (see Section 4), but not those of Ye (2011), the self-selection
mechanism of my model is relevant and important in reality.

3. Robustness

In this subsection I examine the robustness of my results in Section 2 in two
aspects: dark-pool volume reporting and information horizon.

3.1 Reporting dark pool volume
So far, the market maker does not use the dark-pool trading volume in
determining the closing price P1. In practice, dark pool volumes are reported
fairly quickly, if not always in real time.26 Suppressing the information
contained in dark pool trading volume clearly understates the benefit of the
dark pool for price discovery. The next result shows that the dark-pool volume,
combined with the exchange buy and sell volumes, can reveal almost all
information of informed traders. Intuitively, once the dark pool reports volume,
the market maker can infer three unknown variables (v, Z+, and Z−) from the
three observed volumes (exchange buy volume, exchange sell volume, and the
dark pool volume).

Proposition 5. Suppose that the dark pool reports its trading volume
immediately after period 1 trading. Then, there exists null sets (i.e., sets with
measures of zero) Cσ ∈R+ and Cz ∈R

2
+, such that if σ is not in Cσ and (Z+,Z−)

is not in Cz, the trading volumes on the exchange and the dark pool perfectly
reveal v.

3.2 Information horizon
So far, information in Section 2 is short term: it is revealed immediately in the
beginning of period 2. In this section, I study the effect of adding a dark pool
for price discovery if private information is long lived. To be conservative, I

26 In the United States, dark pools are required to report trades as soon as possible, but within 90 seconds; currently
more than 99% of trades are reported within 30 seconds (see Securities and Exchange Commission 2010). In
Canada, dark pool trades are reported in real time.
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assume that the dark pool does not report volume after period 1. Proposition 5
suggests that shutting down the dark pool volume is likely to understate my
results.

As in Section 2, the traded asset has the value v =σ or v =−σ with equal
probabilities, and there are two trading periods, t ∈{1,2}. The main difference
from Section 2 is that the private information about v can potentially live for
two periods. Specifically, v is announced at the beginning of period 2 with
probability π ∈ [0,1], and is announced at the end of period 2 (i.e., after period
2 trading) with probability 1−π . The precise timing of the announcement
is unknown to anyone, including the informed traders. The announcement
time is independent of all else in the model. We can interpret π as the
horizon of private information; the smaller is π , the longer is the information
horizon.

The possibility of long-term information enriches and complicates the
equilibrium analysis. The modeling choice of this section is to introduce
information horizon while keeping as many elements of Section 2 as possible.
To do this, I make the following assumptions:

Assumption 1.

(1) The dark pool does not report period 1 trading volume by the beginning
of period 2.

(2) The dark pool is closed in period 2, and traders who wish to trade in
period 2 send market orders to the exchange.

(3) In period 1, the exchange market maker determines in advance a period
2 trading fee S2 >0. In period 2, if no information is announced before
trading, the market maker executes all orders at the price P1 but charges
the fee S2 per share. If v is announced at the beginning of period 2, the
market maker executes all orders at the price v at no fee.

Clearly, Part 1 of Assumption 1 shuts down learning by dark-pool volume and
understates the effect of dark pools on price discovery. Although Parts 2 and 3
of Assumption 1 can appear restrictive, they isolate the effect of information
horizon in a simple way: conditional on π =1 (i.e., short-lived information), the
model of this section reduces to that in Section 2. The trading fee S2 charged
in period 2 is analogous to the spread S in period 1.

The other elements of the model, including the mass of informed traders, the
mass and direction of liquidity traders, and their costs of information acquisition
and delay, are the same as in Section 2. I also keep all endogenous variables of
Section 2, including the traders’ strategy variables (β,α0,αd,αd ), the period 1
exchange spread S, and the dark-pool crossing probabilities (r+,r−).

To characterize the equilibrium, I work backward in time. Given traders’
strategies, the market maker sets the fee S2 such that he breaks even in
expectation; that is, the total expected trading fee collected should be equal
to the expected adverse-selection cost. Because the mass of informed traders
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who fail to trade in the dark pool is βμI (1−r−), the expected adverse-selection
cost of the market maker in period 2 is

E
[
βμI (1−r−)(σ −P1)·Iv=+σ +βμI (1−r−)(σ +P1)·Iv=−σ

]
=βμI (1−r−)[0.5(σ −E[P1 |v =σ ])+0.5(σ +E[P1 |v =−σ ])]

=βμI (1−r−)(σ −E[P1 |v =σ ]), (37)

where the last equality follows by symmetry.
If v =σ , the expected mass of liquidity buyers who fail to cross in the dark

pool is

αdE

[
Z+

(
1−min

(
1,

αdZ
−

αdZ+ +βμI

))]
≡αdμ

−
z , (38)

and the expected mass of liquidity sellers who fail to cross in the dark
pool is

αdE

[
Z−
(

1−min

(
1,

αdZ
+ +βμI

αdZ−

))]
≡αdμ

+
z . (39)

Thus, if v =σ the total expected mass of liquidity traders who trade in
period 2 is

α0E[Z+ +Z−]+αdμ
−
z +αdμ

+
z =α0μz +αd (μ−

z +μ+
z ). (40)

A symmetric calculation shows that, if v =−σ , the expected mass of liquidity
traders in period 2 is also α0μz +αd (μ−

z +μ+
z ). Therefore, to break even in

expectation, the period 2 trading fee must be

S2 =
βμI (1−r−)

βμI (1−r−)+α0μz +αd (μ−
z +μ+

z )
(σ −E[P1 |v =σ ]). (41)

Again, the fee S2 is levied only if v is not announced at the beginning of
period 2.

We now turn to the profits of traders. Recall that a liquidity trader of type γ

has the delay cost of γ σ . Thus, the per-unit profits of this liquidity trader under
the three strategies are defined similarly as in Section 2:

Xe =−S, (42)

X0(γ )=−γ σ −(1−π )S2, (43)

Xd (γ )=− r+ −r−

2
σ −

(
1− r+ +r−

2

)
(γ σ +(1−π )S2). (44)

For exposition simplicity in this section, I let γd (resp. γ0) be the highest (i.e.,
most impatient) type of liquidity trader who sends orders to the dark pool (resp.
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delays trade) in period 1. By construction,

α0 =G(γ0), αd =G(γd )−G(γ0), αe =1−G(γd ). (45)

An informed buyer’s profits for sending the order to the exchange and to the
dark pool are, respectively,

We =σ −S, (46)

Wd = r−σ +(1−r−)(1−π )(σ −E[P1 |v =σ ]−S2). (47)

As in Section 2, it is without loss of generality to focus on the case of v =+σ .
The equilibrium with long-term information can be characterized in a similar

way as in Section 2. If β =0, then α0 =0. If β >0, then α0 can be zero or positive.
Intuitively, if β >0 and π <1, even a liquidity trader with a zero delay cost
would face a positive cost in period 2 (recall that X0(γ )=−γ σ −(1−π )S2).
This liquidity trader may prefer the dark pool to delaying trade. Thus, there are
three possible cases of equilibrium, as stated in the next proposition.

Proposition 6. In a market with an exchange and a dark pool, there are three
possible cases of equilibrium.

(1) An equilibrium that has β =0, αd >0 and α0 =0 is characterized by the
solution (α∗

e ,μ
∗
I ) to the following equations

μI

μI +αeμz

=(1− r̄)G−1(1−αe), (48)

μI = μ̄F

(
αeμz

μI +αeμz

σ

)
, (49)

subject to the incentive-compatibility condition We >Wd , i.e.,
αeμz

μI +αeμz

σ >r−σ +(1−r−)(1−π )(σ −E[P1 |v =σ ]). (50)

(2) An equilibrium that has β >0, αd >0 and α0 >0 is characterized by
the indifference conditions We =Wd , X0(γ0)=Xd (γ0), and Xd (γd )=Xe.
That is, the equilibrium is given by the solution (β∗,μ∗

I ,γ
∗
d ,γ ∗

0 ) to the
equations

αeμz

(1−β)μI +αeμz

σ = r−σ +(1−r−)(1−π )(σ −E[P1 |v =σ ]−S2),

(51)

μI = μ̄F

(
αeμz

(1−β)μI +αeμz

σ

)
, (52)

(1−β)μI

(1−β)μI +αeμz

σ =
r+ −r−

2
σ +

(
1− r+ +r−

2

)
(γdσ +(1−π )S2),

(53)

r+ −r−

r+ +r− σ =γ0σ +(1−π )S2. (54)
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(3) An equilibrium that has β >0, αd >0 and α0 =0 are characterized by
the solution (β∗,μ∗

I ,γ
∗
d ) to equations (51), (52) and (53), subject to the

incentive-compatibility condition

r+ −r−

r+ +r− σ < (1−π )S2. (55)

The equilibrium without the dark pool can be characterized in a similar way.
To conserve space I put it in Section B.8.

I now discuss some of the comparative statics with respect to the information
horizon π . Whereas the equilibrium is characterized analytically, the solutions
are solved numerically using the Matlab function fsolve. It is desirable to
prove the comparative statics in closed form, but the comparative statics of
Proposition 6 are not as tractable as those of Proposition 1, so I resort to
numerical illustrations. As in any numerical exercise, I cannot claim that the
results below apply to all parameter values. Nonetheless, these illustrations
reveal a number of interesting properties of informed trading and price
discovery, not all of which are obvious ex ante.

Figure 7 plots the mass of informed traders in the dark pool, βμI , the fraction
of liquidity traders on the exchange, αe, and the scaled exchange spread in
period 1, S/σ . (For the case with no dark pool, I plot the mass of informed
traders who delay trading.) This plot reveals two interesting patterns. First,
without a dark pool, informed traders send all orders to the exchange, regardless
of the information horizon. Liquidity traders’strategies and the exchange spread
are invariant to information horizon π as well. Intuitively, although information
may not be announced immediately, the competition among informed traders
will drive the price P1 close to v. Effectively, information will be revealed
by order flows, so all informed traders use the exchange immediately. This
intuition is consistent with the result of Holden and Subrahmanyam (1992) that
even long-term information can be revealed in a very short time by informed
traders who compete aggressively.
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Figure 7
Strategies as functions of information horizon π

Left: Mass of informed traders in the dark pool, βμI (if there is no dark pool, I plot the mass of informed traders
who delay trade). Middle: Fraction of liquidity traders on the exchange, αe . Right: Scaled exchange spread in
period 1, S/σ . In this plot, σ =exp(1), and other model parameters are the same as in Figure 3.
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Figure 8
Price-discovery measures as functions of information horizon π

The left-hand plot shows the signal-to-noise ratio, I (β,αe). The right-hand plot shows the scaled root-mean-

squared error,
√

E[(P1 −v)2 |v =σ ]/σ . In both plots, σ =exp(1), and other model parameters are the same as in
Figure 3.

The second observation from Figure 7 is that adding a dark pool encourages
informed traders and liquidity traders to move away from the exchange,
widening the spread. Somewhat surprisingly, the longer the information horizon
(i.e., the smaller is π ), the fewer informed traders who go to the dark pool. This
result may appear counterintuitive at first: why don’t informed traders use
the dark pool more for longer-lived information? The reason is the following.
The longer is the information horizon (i.e., a smaller π ), the less likely is the
market maker to set a zero spread in period 2. Anticipating a smaller decrease
in trading cost in period 2, and because of delay cost, more liquidity traders
use the exchange in period 1. Consequently, the exchange spread S/σ shrinks,
encouraging more informed traders to move from the dark pool to the exchange.
This result is opposite to that of Hendershott and Mendelson (2000), where
long-lived information implies that all informed traders use the dark pool, as
well as a higher exchange spread.27

As in Section 2, we use the signal-to-noise ratio, I (β,αe)= (1−β)μI/(αeμz),
and scaled root-mean-squared error (RMSE),

√
E[(P1 −v)2 |v =σ ]/σ , to

measure price discovery at the end of period 1. Figure 8 plots the two measures
as functions of π , with and without a dark pool. Without a dark pool, in
equilibrium all informed traders submit orders to the exchange in period 1, so
information horizon has no effect on the equilibrium outcome. With a dark pool,

27 See Proposition 11 of HM. The intuition of HM’s result is as follows. (For simplicity, let us drop dealers’
fixed costs and inventory costs in HM’s model.) In HM, a shorter information horizon implies that all informed
traders go to the exchange. Because traders generate liquidity externality in the dark pool (i.e., “liquidity begets
liquidity”), the more informed traders use the exchange, the lower is the dark pool volume, and the higher is
the exchange volume. Because the exchange prices are fixed over time, the exchange spread is proportional
to the ratio between the buy-less-sell exchange order imbalance, say BuyLessSell, and the total buy-plus-sell
exchange volume, say BuyP lusSell. The numerator BuyLessSell is fixed (the dark pool has no effect on total
order imbalance), and the denominator BuyP lusSell is higher if the exchange volume is higher, that is, if the
information is short-lived. Therefore, in HM, short lived information implies that all informed traders go to the
exchange and a narrower exchange spread, opposite of the pattern shown in Figure 7.
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Case 2 of Proposition 6 is obtained in equilibrium. Figure 8 demonstrates that
the signal-to-noise ratio is higher if the dark pool is present. This improvement,
however, is smaller if the information horizon is longer (i.e., if π is smaller).
Similarly, the scaled RMSE is lower if a dark pool is added; conditional on
having a dark pool, the RMSE is larger if the information horizon is longer
(i.e., if π is smaller).

A final observation is that information horizon relates to the frequency
at which the dark pool crosses orders. Although crossing frequency is not
explicitly modeled in this paper, intuition suggests that for a given information
horizon (e.g., a fixed π ), a dark pool that crosses orders less frequently poses
a higher execution risk for informed traders. That is, the lower the crossing
frequency, the more effective we expect the dark pool to be in improving price
discovery. This result is shown in an earlier version of the paper (using a slightly
different model) and is available upon request.

4. Empirical Implications

In this section I discuss the empirical implications of my model, both in light
of recent empirical evidence and in relation to the current policy debate on the
impacts of dark pools on price discovery and liquidity. In these predictions,
the degree of adverse selection (or volatility σ ), the addition of a dark pool,
or the horizon of information serve as the exogenous variation and thus
“cause” the effect being predicted. Whereas such causality naturally arises
from an equilibrium model, identifying it in the data is more difficult. To be
conservative, in the discussion below I adopt a “correlation” interpretation
of recent empirical evidence. This conservative interpretation is likely to
understate the results of those empirical studies and, whenever the empirical
evidence is consistent with my model, understate my results as well. For a
comparison of predictions from different theories of dark pools, including my
model and those discussed in the introduction, see Ready (2012).

Prediction 1. All else equal, if adverse selection (or volatility) is low, then a
higher adverse selection (or volatility) causes a higher dark pool market share.
If adverse selection (or volatility) is high, then a higher adverse selection (or
volatility) can cause a lower dark pool market share.

Prediction 1 follows from Proposition 2 (and Figure 4), where adverse
selection (or volatility) is defined as the parameter σ . In my model, the first
half of Prediction 1 applies when no informed traders use the dark pool, and
the second half of Prediction 1 applies when at least some informed traders use
the dark pool.

A robust finding in existing empirical papers is that dark pool market share
is lower when volatility is higher. For example, in a sample of two block-
crossing dark pools (Liquidnet and Posit), Ready (2012) finds that institutions
are less likely to route orders to dark pools for stocks that have a higher
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adverse selection (defined as the component of volatility not attributable to
public announcements). Using data from eleven dark pools, Buti, Rindi, and
Werner (2011b) find that for a given stock, dark pool market share is higher
on days with lower intraday volatility and lower absolute returns. Ye (2010)
find that his sample of eight dark pools have higher market shares for stocks
with lower volatility. To the extent that dark pools are used at least partially
by informed traders in practice, these empirical results are consistent with the
second half of Prediction 1.

Prediction 2. All else equal, a higher adverse selection (or volatility) causes
more informed orders in the dark pool.

Prediction 2 also follows from Proposition 2 (i.e., βμI is increasing in σ ) and
is consistent with recent evidence documented by Nimalendran and Ray (2013)
using data from an anonymous dark pool. They infer the trading direction of
each dark-pool transaction by comparing the execution price with the prevailing
market midpoint. A trading strategy that follows the directions of aggressive
dark-pool orders is profitable when spreads are wide but unprofitable when
spreads are narrow. To the extent that exchange spreads are proxy measures for
adverse selection, Prediction 2 is consistent with their results.

Prediction 3. All else equal, adding a dark pool alongside an exchange can
contemporaneously cause a higher order informativeness, wider spreads, and
higher price impacts of trades on the exchange.

Prediction 3 follows directly from Proposition 3 and Proposition 4, which
provide a sufficient condition for the prediction to hold. This prediction of my
model is driven by the endogenous venue choices of both informed and liquidity
traders, and is opposite to that of Ye (2011), who only allows informed traders
to choose a trading venue.

An explicit test of Prediction 3 is to compare market quality before and after
the introduction of a dark pool. In Canadian equity market, Foley, Malinova,
and Park (2013) exploit the introduction of “dark orders” on the Toronto
Stock Exchange, which was implemented in phases.28 Using a difference-in-
difference test, they find that the introduction of dark orders widened exchange
spreads. Prediction 3 is consistent with their results.

In U.S. and European equity markets, empirical studies typically use the
dark pool market share as a right-hand variable and examine its effect on
price discovery, liquidity, and other measures of market quality. Prediction 3
is consistent with Degryse, de Jong, and van Kervel (2011), Jiang, McInish,
and Upson (2011), Weaver (2011), Comerton-Forde and Putnins (2012), and

28 Dark orders are fully hidden orders on exchanges. In the sample of Foley, Malinova, and Park (2013), about
two-thirds of dark orders on the Toronto Stock Exchange were pegged at the market midpoint. The trading
mechanism of midpoint pegged orders is similar to that of midpoint dark pools.
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Nimalendran and Ray (2013). A generic result of all these studies is that higher
market shares of dark pools (or dark venues) are associated with higher spreads
and price impacts on exchanges. The first four studies document this result using
consolidated measures of dark trading in the United States (Jiang, McInish,
and Upson 2011; Weaver 2011), the Netherlands (Degryse, de Jong, and van
Kervel 2011), and Australia (Comerton-Forde and Putnins 2012). Nimalendran
and Ray (2013) use transaction-level data in an anonymous dark pool and find
that spreads and price impacts tend to increase after dark-pool transactions.

In addition, using data from BrokerTec, an electronic trading platform for
U.S. Treasury securities, Fleming and Nguyen (2013) find that transparent
orders are more informative than dark orders. (Resembling a dark pool,
BrokerTec’s dark trading mechanism, called “workup,” matches orders at the
transaction price of the last market order.) The evidence in Fleming and Nguyen
(2013) is also consistent with Prediction 3.

Not all empirical studies reach the same conclusion, however. For example,
Buti, Rindi, and Werner (2011b) find that higher dark pool trading activity tends
to be associated with lower spreads and lower return volatilities. O’Hara and
Ye (2011) also conclude that higher fragmentation of trading is associated with
faster execution, lower transaction costs, and more efficient prices.

A number of reasons may contribute to this disagreement. First, the studies
cited above use a wide variety of data samples, and completely correcting for
endogeneity is difficult. Second, the spread in my model is entirely driven by
asymmetric information regarding the asset value, whereas spreads in the data
can be partly driven by the level of competition and inventory cost. For example,
a higher competition among trading venues or a lower inventory cost may
simultaneously increase dark pool market share and reduce exchange spreads.
Third, and more subtly, a higher current adverse selection on the exchange can
improve price discovery so much that it reduces future spreads (hence the word
“contemporaneously” in Prediction 3). In sum, Prediction 3 can explain some
of the empirical evidence, but not all of it.

Prediction 4. All else equal, a shorter horizon of private information can
cause a more aggressive use of dark pools by informed traders, as well as
a wider exchange spread. The shorter is the information horizon, the more
effective is the dark pool in improving price discovery on the exchange.

Prediction 4 follows from Section 3.2 and is based on numerical calculations.
As discussed in Section 3.2, the first part of Prediction 4 may appear surprising,
but it is perfectly consistent with the equilibrium behavior of traders. A shorter
information horizon makes delay more appealing for liquidity traders, driving
up exchange spread; therefore, informed traders would use the dark pools more
aggressively in order to save on the spread. This prediction is opposite to that of
Hendershott and Mendelson (2000), where a shorter information horizon means
that all informed traders send orders to the exchange immediately, and that the
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exchange spread becomes narrower. This distinction can be tested empirically.
To the best of my knowledge, Prediction 4 has not been tested in the data.29

5. Concluding Remarks

Dark pools have become an important part of equity market structure. This
paper provides a model of dark-pool trading and their effects on price discovery
and liquidity. I show that under natural conditions the addition of a dark pool
concentrates informed traders on the exchange and improves price discovery.
The reporting of dark-pool volume further improves price discovery beyond the
self-selection mechanism. The results of this paper challenge the conventional
wisdom that dark trading is by definition harmful for price discovery. Rather,
through a self-selection mechanism, adding a dark pool can improve price
discovery on the exchange.

The effect of dark pools on price discovery should be balanced by a
few observations. First, improved price discovery on the exchange coincides
with reduced exchange liquidity, leading to ambiguous welfare implications.
Second, some specifications of the delay costs can prevent liquidity traders from
freely moving between the two venues, limiting the self-selection mechanism.
Third, the effect of the dark pool for price discovery can become weaker the
longer is information horizon. Fourth, although the dark pool can improve price
discovery on average, it can harm price discovery in some rare realizations of
uninformed order imbalance.

That said, evidence from several recent empirical studies reveals that the
self-selection mechanism of this paper is relevant and important in reality. The
evidence includes that (1) dark-pool market shares decrease in volatility, (2)
trades in dark venues are less informative than those in lit venues, and (3) a
higher dark pool market share is associated with a higher spread and a higher
price impact on the exchange. These empirical patterns are consistent with
my main result that dark pools tend to attract relatively uninformed orders
and, through this self-selection mechanism, improve price discovery on the
exchange.

Appendix

A. List of Model Variables

This appendix summarizes key variables used in Sections 2 and 3.2.

29 One possible proxy for information horizon is the time distance between trading and some scheduled news
announcement, such as earnings. In this context, a corollary of Prediction 4 would be: as a news announcement
becomes more imminent, exchange spread widens, and informed participation in dark pools increases. Here,
informed trading can be measured by the extent to which inferred dark-pool trading ahead of a news announcement
is in the same direction as the unexpected part of news announcement.
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Variable Description

Variables introduced in Section 2
v, σ Asset value v is either +σ or −σ , for σ >0
μ̄, μI Total masses of for-profit traders and informed traders
F Cumulative distribution function (c.d.f.) of information-acquisition cost
Y Signed informed trading interests: Y =sign(v)·μI

Z+, Z−, φ Liquidity buy quantity Z+ and liquidity sell quantity Z− have p.d.f. φ

μz , σ2
z Total mean and variance of liquidity trading interests Z+ +Z−

c, γ , G Delay cost of a liquidity trader is c=σγ per unit of asset, and γ has c.d.f. G

αe , αd , α0 Fractions of liquidity traders who trade on the exchange, trade in the dark pool, and defer
trading, respectively

β Fraction of informed traders who trade in the dark pool
S Exchange (effective) spread; bid is −S and ask is S

r̄ Dark pool crossing probability if no informed traders go to the dark pool
r−, r+ Dark pool crossing probabilities conditional on informed traders being on the same and

opposite side, respectively
σ̄ Maximum volatility for which informed traders avoid the dark pool
μ̂I (σ ) Knife-edge mass of informed traders, defined by (B1)
We , Wd Expected profits of an informed buyer on the exchange and in the dark pool
X0(c), Xe , Xd (c) Per-unit payoff of a liquidity buyer with a delay cost of c who defers trading, trades on

the exchange, and trades in the dark pool, respectively

R1 Period-1 log likelihood ratio of {v =+σ } versus {v =−σ }
P1 Period-1 closing price on the exchange
I (β,αe) Signal-to-noise ratio of period-1 exchange order flow
RMSE Root mean squared error
Vb , Vs Period-1 realized buy volume and sell volume on the exchange, respectively
Vd , Ve , V Expected volumes in the dark pool, on the exchange, and both, respectively

Variables introduced in Section 3.2
S2 Period-2 trading cost, if v is not announced at the beginning of period 2
γ0, γd The marginal types of liquidity traders. γ0 =G−1(α0), γd =G−1(1−αe).

B. Proofs and Details

B.1 Proof of Lemma 1
Recall that we have assumed that each infinitesimal trader can only execute a finite number of
shares per capita. Without loss of generality, we consider an informed trader who can trade up
to M units of shares, where M ∈ (0,∞). (In the main model section, M =1.) Since this trader is
infinitesimal, his maximum order mass—the product of order size per capita and his mass—is
M×0=0. Therefore, this informed trader has no effect for the exchange price or the dark-pool
execution probability. Suppose that he sends Me shares to the exchange and Md =M−Md shares
to the dark pool. His profit is then MeWe +MdWd , where We and Wd do not depend on the split
(Me,Md ). Clearly, if We >Wd , the optimal strategy is to set Me =M; if Wd >Wd , the optimal
strategy is to set Md =M . If, however, We =Wd , then it is still optimal for the informed trader to
set either Me =M or Md =M , although splitting is also optimal.

B.2 Proof of Proposition 1
I define μ̂I : [0,∞)→ [0,μ̄] by

μ̂I (s)= μ̄F

(
(1−G(1))μz

μ̂I (s)+(1−G(1))μz

s

)
. (B1)

Given the value σ of information, μ̂I (σ ) is the unique “knife-edge” mass of informed traders with
the property that all informed traders and a fraction 1−G(1) of liquidity traders send orders to the
exchange.

To prove the proposition, I show that a Case 1 equilibrium exists if

r̄ ≤1− μ̂I (σ )

μ̂I (σ )+(1−G(1))μz

, (B2)
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and that a Case 2 equilibrium exists if and only if

r̄ >1− μ̂I (σ )

μ̂I (σ )+(1−G(1))μz

. (B3)

Then I show that the condition (B2) is equivalent to σ ≤ σ̄ for some σ̄ , and that the condition (B3)
is equivalent to σ >σ̄ .

Clearly, β <1; otherwise, the exchange spread would be zero and informed traders would deviate
to trade on the exchange. Thus, in equilibrium either β =0 or 0<β <1.

We first look for an equilibrium in which β =0. By (15), α0 =0 and αe =1−αd . The indifference
condition of the marginal liquidity trader is given by (16). For notational simplicity, we write the
left-hand side of (16) as −X̃d (αd ) and the right-hand side as −X̃e(αd ). For each αd , μI is uniquely
determined by (17). We have

−X̃d (0)=0<−X̃e(0),

−X̃d (G(1))=1− r̄ ≥ μ̂I (σ )

μ̂I (σ )+(1−G(1))μz

=−X̃e(G(1)),

where the second inequality follows from (B2), (17), and (B1). So there exists a solution α∗
d ∈

(0,G(1)] that satisfies (16).
Now we look for an equilibrium in which β >0, that is, informed traders are indifferent between

the exchange and the dark pool. What remains to be shown is that the incentive-compatibility
conditions (18)–(20) have a solution. For simplicity, we write the left-hand side of (18) as W̃d (β)
and the right-hand side of (18) as W̃e(β). For each β ≥0, μI is unique determined by (20) and is
increasing in β. Under condition (B3) and for each αd >0,

W̃d (0)= r̄ >1− μ̂I (σ )

μ̂I (σ )+(1−G(1))μz

=W̃e(0),

W̃d (1)= r− <1=W̃e(1),

where the first inequality follows from (B2), (17), and (B1). So there exists a solution β∗ ∈ (0,1) to
(18), as a function of αd . Because μI increases in β, we see that W̃ ′

d (β)<0 and W̃ ′
e(β)>0, holding

αd fixed. Thus, the solution β∗ to (18) is unique for each αd .
Moreover, (18) implies that in equilibrium r− is bounded away from 0. So there exists some

r0 >0 such that r− >r0. So for sufficiently small αd >0,

G(1)−G

(
r+ −r−

r+ +r−

)
>G(1)−G

(
1−r0

1+r0

)
>αd.

So there exists a solution α∗
d ∈ (0,G(1)] to (19). The equilibria characterized by (18)–(20) thus

exist. To show that (B3) is necessary for the existence of equilibria in which β >0, suppose for
contradiction that (B3) does not hold. Then, for all αd and β >0, W̃e(β)>W̃e(0)≥W̃d (0)>W̃d (β),
which implies that all informed traders wish to deviate to the exchange, contradicting β >0.

Finally, by (B1), increasing the value σ of information raises the knife-edge mass μ̂(σ ) of
informed traders, which in turn tightens the condition (B2) under which informed traders avoid
the dark pool. Thus, there exists some unique volatility threshold σ̄ at which (B2) holds with an
equality. That is, the equilibrium in Case 1 exists if σ ≤ σ̄ , and the equilibrium in Case 2 exists if
σ >σ̄ .

B.3 Proof of Proposition 2
Because β, αd , αe , μ, S, r+ and r− are implicitly defined by differentiable functions in each case
of Proposition 1, they are continuous and differentiable in σ in each of the two intervals [0,σ̄ ] and
(σ̄ ,∞). At the volatility threshold σ = σ̄ , differentiability refers to right-differentiability in Case 1
of Proposition 1, and left-differentiability in Case 2.

781

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/27/3/747/1580317 by EPF Lausanne (Inactive) user on 12 D

ecem
ber 2023



[11:04 19/2/2014 RFS-hht078.tex] Page: 782 747–789

The Review of Financial Studies / v 27 n 3 2014

Have a dark pool and σ ≤ σ̄ For σ ≤ σ̄ , β =0. Total differentiation of (16)–(17) with respect to
σ yields[

dG−1(αd )

dαd

(1− r̄)− ∂(S/σ )

∂αd

]
︸ ︷︷ ︸

>0

dαd

dσ
− ∂(S/σ )

∂μI︸ ︷︷ ︸
>0

dμI

dσ
=0, (B4)

[
1−μ̄F ′(σ −S)

∂ (σ −S)

∂μI

]
︸ ︷︷ ︸

>0

dμI

dσ
= μ̄F ′(σ −S)

∂(σ −S)

∂αd︸ ︷︷ ︸
<0

dαd

dσ
+μ̄F ′(σ −S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

, (B5)

where the first term of (B4) is positive because of equilibrium selection. If dαd/dσ ≤0 at, say,
some σ0, then (B5) implies that dμI /dσ >0 at σ0. But then (B4) cannot hold. Thus, dαd/dσ >0,
dμI /dσ >0, and d(S/σ )/dσ >0, by (16).

Have a dark pool and σ >σ̄ Now suppose that σ >σ̄ . I denote by r+′
and r−′

the derivatives of
r+ and r− with respect to βμI /αd . We have r+′

>0 and r−′
<0. Total differentiation of (18)–(20)

with respect to σ yields(
r−′ 1

αd

− ∂(1−S/σ )

∂(βμI )

)
︸ ︷︷ ︸

<0

d(βμI )

dσ
=

∂(1−S/σ )

∂μI︸ ︷︷ ︸
<0

dμI

dσ
+r−′ βμI

α2
d︸ ︷︷ ︸

<0

dαd

dσ
, (B6)

[
1−G′

(
r+ −r−

r+ +r−

)
2(r+′

r− −r−′
r+)

(r+ +r−)2

βμI

α2
d

]
︸ ︷︷ ︸

>0

dαd

dσ
=−G′

(
r+ −r−

r+ +r−

)
2(r+′

r− −r−′
r+)

(r+ +r−)2

1

αd︸ ︷︷ ︸
>0

d(βμI )

dσ
,

(B7)[
1−μ̄F ′(σ −S)σ

∂(1−S/σ )

∂μI

]
︸ ︷︷ ︸

>0

dμI

dσ
= μ̄F ′(σ −S)σ

∂(1−S/σ )

∂(βμI )︸ ︷︷ ︸
>0

d(βμI )

dσ
+μ̄F ′(σ −S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

,

(B8)

where the first term of (B7) is positive because of equilibrium selection.
We can show that dαd/dσ cannot switch signs in [σ̄ ,∞). To see why, suppose otherwise, and

dαd/dσ switches signs at some σ0. By continuity, at σ0, dαd/dσ =0. But (B7) and (B6) imply
that d(βμI )/dσ =0=dμI /dσ at σ0 as well, which contradicts (B8). Thus, dαd/dσ cannot switch
signs in [σ̄ ,∞); nor can it be zero.

At σ = σ̄ , β =0 and dβ/dσ ≥0. Then, by (B7),

d(βμI )

dσ

∣∣∣
σ=σ̄

=μI

dβ

dσ

∣∣∣
σ=σ̄

≥0
⇒ dαd

dσ

∣∣∣
σ=σ̄

≤0.

Because dαd/dσ cannot be zero, it must be strictly negative for all σ ∈ [σ̄ ,∞). By (B7)–(B8), for
all σ ∈ [σ̄ ,∞), βμI and μI are both strictly increasing in σ . Then, (18) implies that

d(S/σ )

dσ
=− dr−

dσ
=−r−′ d

dσ

(
βμI

αd

)
>0.

The spread itself, S =σ ·(S/σ ), obviously increases in σ as well. Finally,

dr+

dσ
= r+′ d

dσ

(
βμI

αd

)
>0,

dr−

dσ
= r−′ d

dσ

(
βμI

αd

)
<0.
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No dark pool The comparative statics for Corollary 1 are similar to that for the first case of
Proposition 1 and are omitted.

B.4 Proof of Proposition 3
Have a dark pool and σ ≤ σ̄ For σ ≤ σ̄ , adding a dark pool is equivalent to increasing r̄ . Total
differentiation of (16)–(17) with respect to r̄ yields[

(1− r̄)
∂G−1(αd )

∂αd

− ∂(S/σ )

∂αd

]
︸ ︷︷ ︸

>0

dαd

dr̄
=G−1(αd )+

∂(S/σ )

∂μI︸ ︷︷ ︸
>0

dμI

dr̄
, (B9)

[
1−μ̄F ′(σ −S)

∂

∂μI

(σ −S)

]
︸ ︷︷ ︸

>0

dμI

dr̄
= μ̄F ′(σ −S)

∂(σ −S)

∂αd︸ ︷︷ ︸
<0

dαd

dr̄
, (B10)

where the first term on the left-hand side of (B9) is positive because of the equilibrium selection.
If dαd/dr̄ ≤0 at any σ0, then (B10) implies that dμI /dr̄ ≥0 at σ0. But that contradicts (B9). Thus,
dαd/dr̄ >0 and dμI /dr̄ <0. Adding a dark pool, which is equivalent to an increase in r̄ , raises αd

and reduces αe =1−αd . The total participation rate of liquidity traders in either the dark pool or
the exchange is αd +αe =1, higher than a market without a dark pool. Moreover, by (17), a lower
μI implies a wider spread S on the exchange.

Have a dark pool and σ >σ̄ Now suppose that σ >σ̄ . In a market with a dark pool, αe =1−G(1),
a constant. Substituting it into (21) and we have

μI

μI +(1−G(1))μz

<1.

So the equilibrium αe without a dark pool resides in the interval (1−G(1),1). That is, adding a
dark pool reduces αe .

Moreover, adding a dark pool increases the exchange spread if and only if αe in the equilibrium
of Corollary 1 is larger than (1−G(1))/(1−β), where β >0 is determined in Proposition 1. By the
equilibrium selection rule and by (18),

αe >
1−G(1)

1−β
⇐⇒G−1

(
1− 1−G(1)

1−β

)
>

μI

μI +μz(1−G(1))/(1−β)
=1−r−, (B11)

where the μI is given by

μI = μ̄F

(
(1−G(1))μz

(1−β)μI +(1−G(1))μz

)
.

We rearrange (B11) and obtain

β <
G(1)−G(1−r−)

1−G(1−r−)
.

On the other hand, because the left-hand side of (18) is decreasing in β and the right-hand side is
increasing in β, the above condition is equivalent to (23).

As F (c)→1 for all c>0, (20) implies that μI → μ̄, a constant. Holding μI = μ̄ fixed, we now
show that if G′′(1−r−)≤0, then (23) holds for all r− ∈ [0,r̄]. At r− = r̄ , we have σ = σ̄ and (23)
holds by the definition of σ̄ . At r− =0, (23) also holds trivially. Take the first and second derivatives
of the right-hand side of (23) with respect to r− and we obtain

d[rhs(23)]

dr− =
μ̄μzG

′(1−r−)

[μ̄+(1−G(1−r−))μz]2
>0,

d2[rhs(23)]

d(r−)2
= μ̄μz

G′′(1−r−)[μ̄+(1−G(1−r−))μz]−2μz[G′(1−r−)]2

[μ̄+(1−G(1−r−))μz]3
<0.

Thus, the right-hand side of (23) is concave and (23) holds for all r− ∈ [0,r̄].
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B.5 Proof of Proposition 4
We first show that, under the normal approximation, a higher signal-to-noise ratio I (β,αe)

corresponds to a lower scaled RMSE
√

E
[
4(eR1 +1)−2 |v =σ

]
. We denote by Y the standard

normal random variable with mean zero and variance one. Conditional on v =σ , R1 has the same
distribution as 2I 2 +2IY . For simplicity, in the calculation below I write I (β,αe) as I and write
R1 as R. Direct calculation yields:

d

dI
E

[
1

(exp(R)+1)2

]
=E

[
−2
(

exp
(

2I 2 +2IY
)

+1
)−3 · d

dI

{
exp

(
2I 2 +2IY

)
+1
}]

=E

[
−2exp

(
2I 2 +2IY

)·(4I +2Y )(
exp

(
2I 2 +2IY

)
+1
)3

]
=E

[
−2exp

(
2I 2 +2IY

)·(2I + 1
I

(
2I 2 +2IY

))
(
exp

(
2I 2 +2IY

)
+1
)3

]

=E

[(−4I − 2
I
R
)
exp(R)

(exp(R)+1)3

]
=
∫

R

(−4I − 2
I
R
)
exp(R)

(exp(R)+1)3

(
1√

2π4I 2
exp

(
−
(
R−2I 2

)
4I 2

))
dR

=
exp

(−I 2
)

√
2π4I 2

∫
R

(−4I − 2
I
R
)
exp

(
2R− R2

4I2

)
(exp(R)+1)3

dR

<
exp

(−I 2
)

√
2π4I 2

∫
R

(− 2
I
R
)
exp

(
2R− R2

4I2

)
(exp(R)+1)3

dR

=− 2

I

exp
(−I 2

)
√

2π4I 2

⎡
⎣∫ 0

−∞

Rexp
(

2R− R2

4I2

)
(exp(R)+1)3

dR+
∫ ∞

0

Rexp
(

2R− R2

4I2

)
(exp(R)+1)3

dR

⎤
⎦

=− 2

I

exp
(−I 2

)
√

2π4I 2

⎡
⎣∫ ∞

0

−Rexp
(
−2R− R2

4I2

)
(exp(−R)+1)3

dR+
∫ ∞

0

Rexp
(

2R− R2

4I2

)
(exp(R)+1)3

dR

⎤
⎦

=− 2

I

exp
(−I 2

)
√

2π4I 2

∫ ∞

0

[
exp(2R)

(exp(R)+1)3
− exp(−2R)

(exp(−R)+1)3

]
︸ ︷︷ ︸

>0

Rexp

(
− R2

4I 2

)
dR

< 0.

Thus, if adding the dark pool increases I , it also decreases the scaled RMSE.
Under the normal approximation, the discussion proceeding Proposition 4 establishes that

I (β,αe) is increasing in S/σ (since both are increasing in (1−β)μI /αe). The effect of adding
a dark pool for signal-to-noise ratio follows directly from Proposition 3. The effect of adding a
dark pool for scaled RMSE follows from the above calculation.

B.6 Proof of Proposition 5
The proof strategy is to show that, conditional on the exchange trading volumes Vb and Vs , the
dark pool trading volume cannot be equal between the two events {v =+σ } and {v =−σ }, unless σ

and (Vb,Vs ) are in some null sets (i.e. sets with measure zero).
Conditional on v =σ , the market maker infers that Vb =αeZ

+ +(1−β)μI and Vs =αeZ
−, from

which the market maker calculates Z+ and Z−. The single-counted dark pool trading volume,
min(αdZ+ +βμI ,αdZ−), reduces to

Ṽd (v =+σ )=
1

αe

min(αdVb +μI (αeβ−αd (1−β)),αdVs ). (B12)
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Conversely, conditional on v =−σ , a similar calculation implies that the single-counted dark pool
trading volume is

Ṽd (v =−σ )=
1

αe

min(αdVb,αdVs +μI (αeβ−αd (1−β))). (B13)

For the two possible dark pool volumes Ṽd (v =+σ ) and Ṽd (v =−σ ) to be equal, there are
two cases: (i) Vb =Vs , or (ii) μI (αeβ−αd (1−β))=0. The first case implies that Z≡Z+ −Z− =

± (1−β)μI
αe

, which, ex ante, happens with probability zero because the distribution of Z has no
point mass. For the second case, if 0<σ ≤ σ̄ , then β =0 and μI (αeβ−αd (1−β))<0; if σ >σ̄ ,
then Proposition 2 implies that αd/αe is decreasing in σ , which means that the equation αd/αe =
β/(1−β), implicit in σ , can only have a finite number of roots. Thus, Ṽd (v =+σ )= Ṽd (v =−σ )
only if σ and (Z+,Z−) are in some null sets. Outside those null sets, Ṽd (v =+σ ) �= Ṽd (v =−σ ), and
the market maker can perfectly infer v. This completes the proof.

B.7 Proof of Proposition 6

There are three possible cases. If β =0, then the dark pool has no adverse selection. Liquidity
traders who have sufficiently small delay-cost type γ will use the dark pool, implying αd >0 and
α0 =0. If β >0, then αd >0; otherwise, informed traders would not use the dark pool as they are on
the same side. There are two cases for β >0, depending on γ0 =0 or γ0 >0. As before and without
the loss of generality, the proof is written for informed buyers.

Case 1. β =0,αd >0,α0 =0. The marginal liquidity trader, who has type γd , must be indifferent
between the dark pool and the exchange. This indifference condition is given by (48). The marginal
for-profit trader who is indifference between buying information or not is characterized by (49).
To be consistent with the initial conjecture of β =0, (50) says that informed traders’ profit on the
exchange, σ −S = αeμz

μI +αeμz
σ , must be higher than their profit in the dark pool, r−σ +(1−r−)(1−π )

(σ −E[P1 |v =σ ]). Note that given β =0, S2 =0.
Case 2. β >0,αd >0,α0 >0. In this case, there are three indifference conditions and one

equation for the marginal for-profit trader. (51) is the indifference condition of a marginal informed
buyer who is indifferent between the exchange and the dark pool. (53) is the indifference condition
of a marginal liquidity trader (with type γd ) who is indifferent between the exchange and the
dark pool. (54) is the indifference condition of a marginal liquidity trader (with type γ0) who is
indifferent between the dark pool and delaying trade. In all three equations, note that a trading fee
S2 is charged if v is not announced at the beginning of period 2, which happens with probability
1−π . Finally, (52) is the indifference condition of the marginal for-profit trader who is indifferent
between buying information or not.

Case 3. β >0,αd >0,α0 =0. Under long-lived information, the expected period-2 trading cost is

no longer zero, but (1−π )S2. If (1−π )S2 > r+−r−
r++r− σ , then a liquidity trader with type 0 (no delay

cost) would prefer the dark pool to delaying trade. This incentive condition is exactly (55). As
before, the indifference conditions of the marginal informed trader, the marginal for-profit trader,
and the marginal liquidity trader are given by (51), (52), and (53), respectively.

B.8 Equilibrium for long-lived information and exchange only

In this appendix we characterize the equilibrium when information is potentially long-lived and
when there is only an exchange. Without the dark pool, αd =0 by construction. I denote by β0

the fraction of informed traders who delay trading in period 1; the remaining fraction 1−β0 of
informed traders send orders to the exchange immediately. Note that without a dark pool and under
long-term information, it might be possible for informed traders to delay trading. The equilibrium
characterization is very similar to that of Proposition 6, so the proof is omitted.
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Corollary 2. In a market with only an exchange but no dark pool, there are potentially three
cases of equilibrium.

(1) An equilibrium that has β0 =0 and α0 >0 is characterized by the solution (α∗
e ,μ∗

I ) to the
equations

μI

μI +αeμz

=G−1(1−αe), (B14)

μI = μ̄F

(
αeμz

μI +αeμz

σ

)
, (B15)

subject to the incentive-compatibility condition

αeμz

μI +αeμz

σ > (1−π )(σ −E[P1 |v =σ ]). (B16)

(2) An equilibrium that has β0 >0 and α0 >0 is characterized by the indifference conditions
Wd =We and X0(γ0)=Xe . That is, the equilibrium is given by the solution (β∗,μ∗

I ,γ
∗
0 ) to

the equations

αeμz

(1−β0)μI +αeμz

σ =(1−π )(σ −E[P1 |v =σ ]−S2), (B17)

μI = μ̄F

(
αeμz

(1−β)μI +αeμz

σ

)
, (B18)

(1−β0)μI

(1−β0)μI +αeμz

σ =γ0σ +(1−π )S2, (B19)

(3) An equilibrium that has β0 >0 and α0 =0 is characterized by solutions (β∗
0 ,μ∗

I ) to equations
(B17) and (B18), subject to the incentive condition

(1−β0)μI

(1−β0)μI +μz

σ < (1−π )S2. (B20)
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