
Price Volatility and Investor Behavior in an Overlapping Generations Model with 
Information Asymmetry  

Author(s): Masahiro Watanabe 

Source: The Journal of Finance , Feb., 2008, Vol. 63, No. 1 (Feb., 2008), pp. 229-272  

Published by: Wiley for the American Finance Association 

Stable URL: https://www.jstor.org/stable/25094439

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

and Wiley  are collaborating with JSTOR to digitize, preserve and extend access to The Journal 
of Finance

This content downloaded from 
������������128.179.252.132 on Wed, 30 Mar 2022 14:45:08 UTC������������ 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/25094439


 THE JOURNAL OF FINANCE VOL. LXIII, NO. 1 FEBRUARY 2008

 Price Volatility and Investor Behavior
 in an Overlapping Generations Model

 with Information Asymmetry

 MASAHIRO WATANABE*

 ABSTRACT

 This paper studies an overlapping generations model with multiple securities and
 heterogeneously informed agents. The model produces multiple equilibria, including
 highly volatile equilibria that can exhibit strong or weak correlations between as
 set returns?even when asset supplies and future dividends are uncorrelated across
 assets. Less informed agents rationally behave like trend-followers, while better in
 formed agents follow contrarian strategies. Trading volume has a hump-shaped re
 lation with information precision and is positively correlated with absolute price
 changes. Finally, accurate information increases the volatility and correlation of stock
 returns in the highly volatile, strongly correlated equilibrium.

 There is mounting evidence of both trend-following and contrarian behavior
 among various investor groups in recent empirical studies. Trend-followers buy
 assets upon price appreciation and sell them upon depreciation, while contrar
 ians trade in the opposite way. Such trading behavior is found in both domes
 tic and international markets. Moreover, prices in these markets are found to
 vary much more than the stocks' fundamental values. Indeed in some markets,
 prices exhibit common movements that are hard to explain by movements in
 the fundamentals.1

 *Masahiro Watanabe is at the Jones Graduate School of Management, Rice University.
 This paper is based on Chapter 2 of my dissertation at Yale University and was previ
 ously circulated under the title "Rational Trend-followers and Contrarians in Excessively
 Volatile, Correlated Markets." A technical appendix is available on the author's home page,
 http://www.ruf.rice.edu/watanabe/research/. I am grateful to my adviser, Matthew Spiegel, for help
 ful comments and encouragement. The guidance of Robert Stambaugh (the editor) and an anony
 mous referee substantially improved the paper. I also thank Arturo Bris, Zhiwu Chen, William
 Goetzmann, Roger Ibbotson, Jonathan Ingersoll, Andrew Jeffrey, Hayne Leland (Blaise Pascal Con
 ference discussant), Harry Mamaysky, Barbara Ostdiek, Lasse Pedersen, Jiang Wang (AFA discus
 sant), Akiko Watanabe, participants at the 2003 AFA and the 2002 APFA/PACAP/FMA meetings,
 participants at the Blaise Pascal International Conference on Financial Modeling, and seminar
 participants at Boston College, Georgia Tech, Notre Dame, New York University, Rice, UC Irvine,
 Washington-Seattle, Washington-St. Louis, Wisconsin-Madison, and Yale School of Management.
 All remaining errors are mine.

 1 For evidence of trend-following and contrarian behavior in domestic markets, see, for example,
 Bange (2000), Chordia, Roll, and Subrahmanyam (2002), and Goetzmann and Massa (2002, 2003).
 International evidence is documented in Bohn and Tesar (1996), Brennan and Cao (1997), Choe,
 Kho, and Stulz (1999), Froot, O'Connell, and Seasholes (2001), and Grinblatt and Keloharju (2000,
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 Several strands of the literature have tried to reconcile these empirical find
 ings with theory. Prominent among them are overlapping generations models.
 Using a multiple-security model, Spiegel (1998) demonstrates the existence of
 a highly volatile equilibrium in which small supply shocks produce dispropor
 tionately large price variances. Spiegel shows that this can occur in an economy
 populated by overlapping generations of rational competitive agents. However,
 his agents are homogeneously informed and hence there is no heterogeneity in
 their trading patterns.

 This paper builds on Spiegel's (1998) work by incorporating heterogeneous in
 formation with possibly asymmetric information precision among agents. This
 allows us to analyze differential trading behavior across various investor classes
 documented in the empirical literature while maintaining the qualitative na
 ture of Spiegel's (1998) primary conclusions on excess volatility. The model is
 characterized by a multiple-security economy with overlapping generations of
 heterogeneously informed agents. Risky claims (stocks) on a single consump
 tion good are traded in financial markets. A continuum of rational risk-averse
 agents lives for two periods. Upon birth, the agents receive noisy private sig
 nals about one-period-ahead dividends. Based on their private signals, their
 random endowments of the risky assets, and market prices, the agents make
 their investment decisions. When old, they unwind their security positions, con
 sume, and die. The economy is then run by the next generation. Because stocks
 are in random supply, their prices reveal future dividends only partially and
 therefore serve as noisy public signals about the stocks' fundamentals. Thus,
 the model also belongs to the noisy rational expectations literature pioneered
 by Hellwig (1980) and Diamond and Verrecchia (1981), and later developed
 by Admati (1985) and others.2 Our model can be considered an extension of
 Spiegel's (1998) model to a noisy rational expectations equilibrium framework,
 or of Admati's (1985) model to an overlapping generations economy.
 As is often the case with an overlapping generations model, the model pro

 duces multiple equilibria. Specifically, as in Spiegel (1998) there potentially
 exist 2K equilibria when K securities trade. These equilibria include highly
 volatile equilibria that can exhibit strong or weak cross-sectional correlations
 between changes in individual stock prices. Strikingly, this is true even when
 asset supplies and future dividends are uncorrelated across assets. Other equi
 libria include a low volatility equilibrium in which the volatility and correla
 tion of price changes are of comparable magnitude to those of dividends. While
 multiplicity of partially revealing equilibria is not uncommon in noisy rational

 2001). Among the most cited evidence on excessive volatility are LeRoy and Porter (1981), Shiller
 (198la,b, 1989b), and West (1988). Excess comovement is the primary subject of Barberis, Shleifer,
 and Wurgler (2005), Morck, Yeung, and Yu (2000), Pindyck and Rotemberg (1990), and Shiller
 (1989a), and is also found in the prices of closed-end funds (Lee, Shleifer, and Thaler (1991)),
 closed-end country funds (Bodurtha, Kim, and Lee (1995)), and the S&P 500 component stocks
 (Vijh (1994)).

 2 For subsequent work, see, for example, Brown and Jennings (1989), Grundy and McNichols
 (1989), Kim and Verrecchia (1991a,b), Brennan and Cao (1996,1997), Cao (1999), Grundy and Kim
 (2002), and Kodres and Pritsker (2002).
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 Price Volatility and Investor Behavior 231

 expectations equilibrium models, it is primarily due to self-fulfilling prophecies
 of overlapping generations in our model, as we demonstrate the existence of
 multiple equilibria even when agents have full or no information.

 A partially revealing equilibrium allows us to analyze the effects that het
 erogeneous information has on prices and trades. We find that the volatility of
 changes in individual stock prices increases with information quality in a high
 volatility equilibrium, while it falls in a low volatility equilibrium. Similarly,
 the cross-sectional correlation between price changes becomes stronger with
 information quality in a high correlation equilibrium. This is true even when
 all agents have the same degree of information precision and hence there is
 no adverse selection problem. When there is information asymmetry among
 agents, less informed agents tend to purchase securities upon price apprecia
 tion, while better informed agents sell them. That is, less informed investors
 behave like trend-followers, while better informed investors follow profitable
 contrarian strategies. The intuition here is similar to Brennan and Cao (1996,
 1997) and Kim and Verrecchia (1991b). With poorer private information, less
 informed agents rely more heavily on public price signals and therefore trade in
 the same direction as price changes. Under the setting considered in this paper,
 accurate average information weakens agents' trend-following and contrarian
 behavior since it alleviates information asymmetry.3

 Under partial revelation, trading volume is strictly positive and has a hump
 shaped relation with average information accuracy. This arises because agents
 are effectively homogeneously informed or uninformed in the two extreme cases
 of full and no information; in these cases there is no informational motive to
 trade, and the volume is lower than it is with partial information. In addition,
 absolute trade flows are positively correlated with absolute price changes, con
 sistent with the empirical evidence in Karpoff (1987) and Gallant, Rossi, and
 Tauchen (1992). The positive correlation weakens as private information be
 comes more precise on average. Of course, we are not the first to show these
 results; for example, results similar to the hump-shaped relation between vol
 ume and information precision also hold in Blume, Easley, and O'Hara (1994,
 Figure 1) and Holden and Subrahmanyam (2002, Proposition 1), and Wang
 (1994, Section V) finds a positive relationship between volume and absolute
 price changes. The current article complements these works by showing that
 the results above can also occur in highly volatile, strongly correlated markets.

 We demonstrate these points by calibrating the model with parameter values
 estimated in the empirical literature. It is shown that for any level of infor
 mation accuracy, only very small supply shocks are necessary to produce the
 observed levels of stock price volatility and correlation.

 The key ingredients of the current model, namely, overlapping generations
 and heterogeneous information, are two major workhorses in addressing ex
 cess volatility and investor behavior. Using an overlapping generations model,

 3 The trend-following and contrarian behavior in this paper results from purely informational
 motives and should be distinguished from such behavior due to behavioral motives discussed in
 Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), De Long
 et al. (1990b), and Hong and Stein (1999).
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 De Long et al. (1990a) show that unpredictability of noise traders' erroneous
 beliefs prevents rational arbitrageurs from stabilizing price variability.4 Incor
 porating costly stock market participation in an overlapping generations model,
 Orosel (1998) demonstrates the occurrence of "rational trend chasing" by way
 of increased participation and return volatility. Neither of these papers, how
 ever, examines the effect of information on trades. In the information literature,
 Campbell and Kyle (1993) show that the interaction between rational "smart
 money" investors and exogenous noise traders can produce volatility levels that
 are consistent with the data. Wang (1993) demonstrates that asymmetric infor
 mation, along with supply shocks, can increase price variability and that less
 informed agents may rationally behave like price chasers. Such trend-following
 behavior also occurs in the noisy rational expectations equilibrium models of
 Brennan and Cao (1996, 1997) and Kim and Verrecchia (1991b). In a model
 with multiple classes of investors who observe signals about either the payoff
 or supply of an asset, Gennotte and Leland (1990) show how changes in supply,
 caused by random liquidity trading and deterministic hedging plans, can dra
 matically affect market liquidity and price volatility. A distinguishing feature
 of our model from those of these authors is that very small supply shocks can
 dominate dividend shocks in equilibrium prices and become a major component
 of the second moments of returns.5 In addition, none of the studies cited here
 investigates comovement of asset prices.6 Finally, to the best of my knowledge,
 at least one paper incorporates both of the two key ingredients discussed in this
 paragraph. Biais, Bossaerts, and Spatt (2006) analyze the properties of a noisy
 rational expectations equilibrium with overlapping generations of informed and
 uninformed investors. Their main objective is to examine the implications of
 information asymmetry on asset pricing and investors' portfolio decisions. In
 contrast, our focus is on the analysis of the second moments of asset returns
 and the trading behavior of heterogeneously informed agents. In this sense, the
 current paper is complementary to theirs.

 The paper is organized as follows. The next section develops the model, solves
 for an equilibrium, and presents analytic results under full and no information.
 Section II examines the properties of partial-information equilibria and investi
 gates trading behavior of asymmetrically informed investors. The final section,
 Section III, concludes and explores future agendas. The Appendix contains all
 proofs.

 4 Bhushan, Brown, and Mello (1997) demonstrate that myopia of traders is neither a necessary
 nor a sufficient condition for prices to be noisy in a setting such as De Long et al. (1990a).

 5 Coval (2000) also develops an asymmetric information model with random supply. Like our
 partially revealing equilibrium, the model is numerically solved to produce multiple equilibria with
 differential volatility levels. As he notes, however, "as many of the results are qualitatively similar
 for the two equilibria, [he] focus[es] on the low volatility equilibrium" (Section 4.1, p. 16). In contrast,
 the high and low volatility equilibria in the current model have opposing return characteristics,
 and it is in the former that we are primarily interested.

 6 Outside the two categories discussed here, Barberis and Shleifer (2003) and Barberis et al.
 (2005) develop models of comovement. However, their focus is on the category and habitat views of
 comovement, as opposed to the rational one considered in the current paper.
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 Price Volatility and Investor Behavior 233

 I. Overlapping Generations Model with Heterogeneous Information
 A. Setup

 The model extends Spiegel (1998) to a setting with heterogeneous informa
 tion. The economy is populated by a continuum of rational risk-averse agents
 who consume a single good. There are K risky assets, called stocks, and a risk
 less bond available for trading in financial markets. Both types of securities pay
 in units of the consumption good. The dividend and supply processes of stocks
 follow random walks. At the beginning of period t, the stocks pay a vector of
 stochastic dividends Dt per share, where

 Dt= A-i + V (1)
 The vector of dividend shocks, 8t, is distributed multivariate normal with zero
 mean and covariance matrix E5. Assuming zero mean is innocuous since we
 are primarily interested in the second moments of observable quantities. The
 E5 matrix and all other variance-covariance matrices to be introduced are as
 sumed positive definite unless otherwise noted.7

 Per capita supply of stocks, Nt, is stochastic and also follows a vector random
 walk process8

 Nt=Nt_1 + rjt. (2)

 Again, the vector of unobservable supply shocks, r)t, is distributed multivariate
 normal with zero mean and covariance matrix E^.9 The riskless bond pays r
 units of the consumption good as interest at the beginning of each period. It
 serves as numeraire for the economy and thus always sells for a price of unity.
 The gross interest rate is denoted by R = 1 + r. For stock prices to be finite, we
 require that r > 0.

 Agents live for two periods while the economy goes on forever. In each period,
 a new generation of agents is born. There is a continuum of agents with unit
 mass, each of whom acts competitively taking prices as given. An agent, indexed
 by i e [0,1], possesses negative exponential utility with constant absolute risk
 aversion (CARA) ft. The agent comes endowed with units of the bond and a
 personal share of supply shocks. The stock endowment is given by10

 r)t,i = m + lt,i- (3)

 7 We require positive definiteness for a partial-information equilibrium to be well defined. An
 equilibrium can still exist when some covariance matrices are positive semidefinite, for example,
 Ea = 0. We use such a sure-dividend example below to derive intuition about full-information
 equilibria.

 8 The model can be extended in a straightforward manner to accommodate mean-reverting div
 idend and supply processes, Dt = aDDt_i + 8t and Nt = aNNt-i + fjtt ? 1 < a#, a^ < 1. For ease of
 exposition, we focus on the random walk specification.

 9 The supply of risky assets can become random through a variety of mechanisms, such as
 creation or destruction of the capital base in the economy and liquidity trading. For a discussion of
 possibly different empirical implications among these mechanisms, see Spiegel (1999).

 10 We do not specify the bond endowment since it does not affect the equilibrium in any way. See
 footnote 15.
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 The noise component, t;t,i, is unobservable, independent across agents, and dis
 tributed multivariate normal with zero mean and covariance matrix E^.11 This
 ensures that per capita endowment equals per capita supply shocks, or that
 f. f}ti di ? r)t almost surely by the law of large numbers. The above formula
 tion implies that knowing his own endowment provides an agent with some
 information about the aggregate supply shocks, which he takes into account in

 making portfolio decisions.12
 The information structure is similar to that in Admati (1985). Upon birth,

 agent i receives a vector of noisy private signals about the one-period-ahead
 dividends,

 Zt,i = ^+1 +?*,;.

 The vector of unobservable noises, st,i, is distributed multivariate normal with
 zero mean and covariance matrix ?e>;. The et/s are independent across agents,
 implying that the agents are heterogeneously informed. Information accuracy,
 however, can be either heterogeneous (2_?); =?- _*_e>7, 3iJ) or homogeneous (X_e>j =
 Ee, Vj). When private signals are infinitely noisy, they reveal no information
 about the future dividends. This case corresponds to Spiegel's (1998) model. At
 the other extreme, when the et/s have zero variance, private signals perfectly
 reveal 8t+i. In intermediate cases, the signals reveal only partial information
 about future dividends. For convenience, we refer to these three cases as the no-,
 full-, and partial-information models, respectively.13 We also refer to both of the
 first two cases as homogeneous-information models, since in these cases agents
 are homogeneously uninformed or informed. It is assumed that 8t, rjt, ltyi, and
 st,i Vi are mutually and serially independent.
 After the stocks and the bond pay their owners at the beginning of period

 t, trading takes place. As in Spiegel (1998), agents observe current prices iPt)
 and dividends iDt), and the whole history of past prices, realized dividends,
 and supply levels. In addition, they use private signals izt,i) and individual
 endowments irjt,i) to make their portfolio decisions. As we show below, under
 homogeneous information this implies that while agents do not observe current
 supply iNt), they can deduce it from market prices even though it is a priori
 unknown. When old at the beginning of period ? -f 1, they receive dividends from

 11 It is straightforward to extend the model to a setting with nonidentically distributed endow
 ment noises, that is, ltyi ~ N{0, E^). For brevity, we make the i.i.d. assumption.

 12 The information content of random endowments often is made null (Grundy and McNichols
 (1989, p. 498)) or is ignored (Brown and Jennings (1989, footnote 3)) in a large or continuum-of
 agents economy. As Blume et al. (1994) discuss, however, the former approach produces infinite
 trading volume in the period when the random endowments are introduced. Our setting avoids this
 issue without ignoring the information content of endowments. For a /mite-economy model that
 explicitly considers this information, see Diamond and Verrecchia (1981). Gennotte and Leland
 (1990) also introduce a class of competitive investors who observe a common signal about supply
 shocks created by liquidity traders.

 13 The corresponding equilibria are referenced analogously. We may also call the full- and partial
 information equilibria the fully and partially revealing equilibria, respectively, in accordance with
 the terminology in the noisy rational expectations equilibrium literature.
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 Price Volatility and Investor Behavior 235

 their portfolios, unwind their security positions, consume, and die. The economy
 is then run by the generation t + 1 agents and the whole cycle repeats.14

 The next subsection begins the analysis by solving for an equilibrium.

 B. Equilibrium
 We focus on a linear equilibrium in which the price function takes the general

 form

 Pt = AxNt-i + A2rH + BxDt + B2SM + c, (4)

 where A\, A<i, B\, and B<l are If-dimensional square matrices and c is a K
 dimensional vector to be determined. We only look for a stationary equilibrium
 in which these coefficients are time invariant.

 LetXtji be agent i's stock holdings in period t. His future wealth, Wt+i,t, is
 then given by

 Wt+i^XliQM + RWtj, (5)

 QM = PM + bM-RPt, (6)

 where Qt+i is the vector of excess returns per share and Wt,i is the agent's exoge
 nously given endowment.15 Notice that even under full information with perfect
 knowledge about future dividends Dt+i, future wealth still remains uncertain
 because the one-period-ahead prices depend on yet unknown 8t+2 and r)t+i given
 the price conjecture in (4). Thus, the utility maximization problem is always
 well defined. Since all stochastic variables are distributed multivariate normal,
 Wt+i,i is (univariate) normally distributed. Let Ttj = {zt,i, i)t,i, Pt, Dt, Nt-i] de
 note agent i's information set.16 By the property of negative exponential utility,
 agent i's optimization problem, maxjM E[? exp(?ftW^+i^) \Jrtyi], amounts to
 maximizing the certainty equivalent of future wealth:

 maxE [Wt+i,i I Ft,i\ ~ f Var[Wm,; | Tt,il (7)

 14 The terms "generation" and "period" are used interchangeably hereafter.
 15 To derive these expressions, let bt>i denote agent Vs bond holdings. Then, Wt+i,i = Xf^Pt+i H

 Dt+i) + btiR. His budget constraint is given by X]tiPt + btji = Wt>i. Eliminating btyi from these two
 equations gives the expressions in the text. The endowment Wt>i equals the value of the stock
 endowment, fj^Pt, plus the number of endowed bonds. The bond endowment does not affect the
 equilibrium stock holdings because it drops out from the first-order condition due to the CARA
 utility assumption.

 16 This is the full information set under partial revelation. In a full- or no-information model, the
 information set is identical across agents, and some of its members shown here are redundant. We
 keep the i subscript for notational consistency with the partial-information model. We also keep
 the tilde above the variables for the same reason even when some quantities may be known.

This content downloaded from 
������������128.179.252.132 on Wed, 30 Mar 2022 14:45:08 UTC������������ 

All use subject to https://about.jstor.org/terms



 236 The Journal of Finance

 The first-order condition is given by

 Xt,t = Ivar'^Qm I ^,;)E IQt+i I Tt& (8) &i

 The second-order condition for maximization is met if Var(Q^+i | JF^^) is positive
 definite. As usual, the equilibrium condition is that per capita demand equals
 per capita supply,

 jxttidi=Nt. (9)
 Comparing both sides of this equation determines the price coefficients in (4).
 The following theorem summarizes the result.

 Theorem 1 (Equilibrium): An equilibrium at the respective information level is
 characterized by the following price function, Pt, and the demand function Xtf

 (i) Full information: A\ = A% = A, B\ = B<i = ^1, and c = 0 in equation (4).
 Specifically,

 Pt = ANt + - A+1, (10) r

 where A is a symmetric negative-definite matrix that satisfies the
 quadratic matrix equation

 AE.A+Ja+^E5=0. (11) 0 rz

 (ii) No information (Spiegel (1998)): A\ ~ A2 = A, _Bi = ?1, B2 = 0, and c =
 0 in equation (4). That is,

 Pt=ANt + -Dt, (12) r

 where A is a symmetric negative-definite matrix that satisfies the
 quadratic matrix equation

 A^A+Ja+^-E^O. (13) 0 rz

 The demand function under full or no information is given by

 Xt)i = ~Nt, (14)

 where 0 is the harmonic mean of individual risk-aversion parameters,
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 Price Volatility and Investor Behavior 237

 (Hi) Partial information: Generally, A\j=-A2, B\ = jI^B2, and c = 0 in
 equation (4). In particular,

 Pt=A1Nt-i + -Dt + B2lt, (15) r

 where $=t = $t+i + B^xA2f\t andA\, A2, and B2 are nonsingular matrices
 that solve a system of nonlinear matrix equations given in the Appendix.
 In addition, Aiis symmetric and negative definite. The demand function
 is linear in \f> zt,i, rjt,i, Dt, and Nt-i>

 Proof: The Appendix contains all proofs.

 We first analyze the homogeneous-information equilibria for which closed
 form solutions are available. This provides useful insights into the analysis
 of partial-information equilibria in Section II. Equation (10) says that prices
 under full information are the present value of a perpetuity paying Dt+i less
 a discount due to supply pressure, ANt- Prices depend on one-period-ahead
 dividends since the dividends are perfectly forecastable. The ANt term is a
 "discount" if stocks are in positive supply since A is negative definite. The price
 function (12) under no information takes a similar form, but the perpetuity con
 sists only of current dividends Dt because agents have no information about
 future dividends. Due to informational homogeneity, the demand function in
 (14) merely reflects the market-making activity of competitive agents who sim
 ply accommodate supply shocks inversely with their risk aversion. The demand
 function also implies that two-fund monetary separation holds under homoge
 neous information; each agent holds a combination of the market portfolio, Nt,
 and the bond. As one might anticipate from the normality assumption and ho
 mogeneous expectations, a version of the Capital Asset Pricing Model (CAPM)
 holds, with dividend shocks augmented by supply shocks.
 The quadratic matrix equations (11) and (13) are easy to interpret: They are

 simply the market-clearing conditions. To see this, substitute the first-order
 condition (8) into equation (9) and rearrange to obtain

 Var(Qm | Tt,i)Nt = E [Qt+1 \ Ftti]/e, (16)

 where we note that the conditional expectation and variance here are iden
 tical across agents. This expression says that the risk of holding stocks in
 the left-hand side must be compensated by expected returns per unit average
 risk aversion in the right-hand side. Given the price function (10), in a full
 information equilibrium the variance on the left-hand side is A^E^A + Hs/r2. In
 a no-information equilibrium this is AE^ + E^i?2/^2, that is, the lack of knowl
 edge about future dividends increases the dividend portion of the variance (the
 second term) by a factor of R2 = (1 + r)2. The expected return on the right-hand
 side is the "net return" on the price discount, ?rANt. Equating the coefficients
 on Nt yields the respective matrix equations.
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 238 The Journal of Finance

 The A matrix, the sensitivity of prices to supply shocks, plays an important
 role in determining equilibrium characteristics. It prescribes how the supply
 shock of a stock affects its own price and, if nondiagonal, the prices of other
 stocks as well. Since the A matrix is determined by a quadratic equation, one

 may well expect the existence of multiple equilibria. The following corollary
 shows that this is indeed the case.

 Corollary 1 (Solutions under homogeneous information): The analytic solu
 tions to the quadratic matrix equations (11) and (13) are both given in the form

 A=-^_3-1 + E-?CAicTS-i, (17)
 1

 where E,2 is the unique symmetric positive-definite square root of E^, C and A
 are the matrices of orthonormal eigenvectors and eigenvalues, respectively, of

 Mf/ee^/-1e|E5e| /or (11),or  W r (18)
 r2 R2 i

 MN7e__?/-? E|E5E| for (13),
 i

 / is the identity matrix, and A? denotes a diagonal matrix obtained by taking
 the square roots of the diagonal elements of A and changing their signs freely.

 The A matrix is real-valued if and only if the corresponding M matrix above
 is positive semidefinite. To have strictly multiple equilibria, we assume that

 Mjv/, and hence Mpi, are positive definite for the rest of the paper. This is likely
 the case when, ceteris paribus, future cash flows are discounted enough (r is
 high), agents are risk tolerant id is small), and the dividend- and supply-shock
 variances are small (E^ and E5 are "small" in some matrix norm). Each equilib
 rium corresponds to a different value of A?2.17 In total there are 2K equilibria
 when K securities trade. Economically, the eigenvector matrix C controls the
 cross-sectional dependency of supply shocks, and the signed square roots of the
 eigenvalues in A? 2 determine the price sensitivity to supply shocks.

 C Price Volatility and Correlation in Homogeneous-Information Equilibria

 Using the equilibrium characterization obtained in the previous subsection,
 we now study the volatility and correlation of changes in asset prices under
 homogeneous information. From Theorem 1, the vector of price changes under
 full information is given by18

 APt = Pt - _Vi = Ar)t + -8t+1. r

 17 The sign ? is used to signify nonuniqueness.
 18 Since the vector of cum-dividend price changes, Pt + Dt - Pt_lf is nonstationary due to the

 random-walk assumption, we work with ex-dividend price changes, Pt ? Pt_i.
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 Price Volatility and Investor Behavior 239

 Thus, the variance of the price changes is

 VarF/(AP,) = A^A + ? E3 = - Ja, (19) rz 0

 where we use the quadratic matrix equation (11) in the second equality. Simi
 larly, we can show that the variance of price changes in a no-information equi
 librium is given by19

 VarM(AP,) = - JA - ^-^E*. (20) 0 rz

 That is, under homogeneous information the variance of price changes is linear
 in A, the price sensitivity to supply shocks. From equations (19) and (20), it is
 easy to see that the volatility and correlation of price changes will differ across
 equilibria corresponding to different values of A. We first establish the following
 proposition about volatility, which is similar to Spiegel (1998, proposition 3):

 Proposition 1 (Variance of price changes under homogeneous information):
 Consider switching between two equilibria under full or no information by i

 changing the sign of any diagonal element of A? in (17). Switching the sign
 from positive to negative increases the variance of the change in almost any
 portfolio's value.

 Unlike volatility, the cross-sectional correlation between price changes is dif
 ficult to analyze without specifying the form of the underlying shock-covariance
 matrices. If one has no prior knowledge about the securities in the economy, it
 seems natural to assume that stocks are cross-sectionally symmetric in their
 underlying shocks, as formalized below.

 Assumption 1 (Symmetric securities): There are K > 2 securities with cross
 sectionally identical dividend- and supply-shock variances as well as correla
 tions,

 /I P8 '" Ps\ / 1 Prj '" Pr,\

 : ' .'*. ps : ' ." . Pn
 \P8 PS 1/ yprj ' Prj 1/

 Under this assumption, we can say much about the properties of the equi
 libria.20 As stated before, there exist 2K equilibria when K securities trade (if

 19 Note that the A matrix has different values in various the two equilibria and therefore we
 cannot directly compare the two variance formulae. The variance levels in various equilibria with
 differential information precisions will be analyzed below.

 20 In a continuous-time model, Driessen, Maenhout, and Vilkov (2005) also assume a single
 instantaneous correlation between every pair of Wiener processes driving stock prices in their

 main analysis on correlation risk.
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 the M matrices in Corollary 1 are positive definite). In some of these equilib i

 ria, stocks have asymmetric price properties depending on the choice of A ? in
 Corollary 1, even though the distributions of the underlying shocks are symmet
 ric. Throughout the paper, however, we focus on the following four symmetric
 equilibria:

 Proposition 2 (Properties of homogeneous-information equilibria): Under As
 sumption 1 and homogeneous information, there exist four symmetric equilibria
 in which changes in individual stock prices exhibit identical variance, Var, and
 identical correlation, Corr, between every pair of stocks with the following prop

 erties: As of ? 0,

 (i) (low volatility, low correlation) Var \ of/r2, Corr -> p8,
 (ii) (high volatility, high correlation) Var / oo, Corr -> 1,
 (Hi) (high volatility, low correlation) Var / oo, Corr ?> 1+(j^2) >
 (iv) (high volatility, negative correlation) Var / oo, Corr -> ? 1/iK ? 1).

 The first equilibrium is a low volatility, low correlation equilibrium. As the
 supply shocks become less volatile in this equilibrium, the common variance of
 changes in individual stock prices decreases. This occurs as the second moments
 of price changes become progressively dominated by dividend shocks; in the
 limit, the variance and correlation of price changes converge to of/r2 and p8y
 respectively. These are the variance and correlation in a fixed-supply model: It
 is straightforward to show that, if the supply in our model were fixed at some
 constant N, with full information there would be a unique equilibrium with
 prices Pt = r^Dt+i - r~30E5_V and hence Var(AP^) = E^/r2. A similar result
 holds under no information with Dt+i replaced by Dt.

 In contrast, the common variance of individual stocks' price changes in the
 second equilibrium diverges to infinity as the supply shock variances fall. More
 over, the prices become perfectly correlated in the limit. We therefore call this
 equilibrium a high volatility, high correlation equilibrium. Strikingly, this oc
 curs regardless of p8 and pv; that is, high correlation obtains even though all
 the underlying shocks are uncorrelated or even negatively correlated. This is
 in sharp contrast to existing multisecurity rational expectations models that
 require some underlying correlation to produce equilibrium comovement (see,
 for example, Kodres and Pritsker (2002, Proposition 2) and Admati (1985, Sec
 tion 5)). In the other two equilibria the common variance of individual stocks'
 price changes also diverges to infinity, while the correlation approaches some
 fixed number less than one. In one of these equilibria, the limiting correlation
 i+(jr-2) *s close to zero if p^ is small or K is large (a high volatility, low corre
 lation equilibrium). Its sign is the opposite of p^.21 The other equilibrium has
 a limiting correlation ?1/iK ? 1) that is always negative and smaller than the

 21 This is so because 1 + (K - 2)pn > 0 in equilibrium for all K > 1 and -1 < p^ < 1. The claim
 is immediate when p? > 0. When pn < 0, the positive definiteness of __? guarantees that [1 + (K -

 l)Pt}]tf > 0 > Pntf, where we note that the left-most term is an eigenvalue of 2^ (see the proof of
 Proposition 2). Rearranging this inequality confirms the claim.
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 limiting correlation of the third equilibrium (a high volatility, negative correla
 tion equilibrium).22 Since we do not usually observe strongly negative return
 correlations in stock markets, the second and third equilibria seem empirically
 relevant given evidence on excessive volatility.23

 The varying equilibrium properties correspond to different beliefs that agents
 may have about the volatility of a set of mutual funds. Spiegel (1998) discusses
 how equilibrium prices can be "excessively" volatile in his no-information model
 even when stocks pay constant dividends. We extend his intuition and argue
 that strong correlation can occur as well if investors form beliefs about the
 price variability of portfolios rather than that of individual stocks. Assume that
 there are two symmetric securities with constant dividends and independent
 supply. Specifically, we set K = 2, of = 0, and ps = A? = 0 in Assumption 1.
 Since dividends are perfectly predictable, the full- and no-information models
 (as well as the partial-information model) coincide. This is also seen from the
 fact that setting E^ = 0 in equations (11) and (13) yields an identical quadratic
 matrix equation. Solving the equation, we obtain four (22) solutions for the A
 matrix of the form24

 where A.i and X2 each can take one of two values, 0 or ?r/0o2. The price function
 in (10) (or (12)) implies that the A matrix represents how supply shocks affect
 prices and hence investors' portfolio decisions. Alternatively, since the variance
 of price changes is linear in ?A (see equations (19) and (20)), it also repre
 sents agents' beliefs about the covariance structure of stock returns. Consider
 an economy in which investors believe that they can perfectly forecast future
 prices. Since they regard stocks as riskless assets, they will voluntarily provide
 perfectly elastic demand at prices ^D, where D is the vector of sure dividends.
 This corresponds to an equilibrium in which X\ = X2 = 0, that is, A = 0. The zero
 loading on supply implies that investors do not price nonfundamental shocks
 (such as supply shocks) in this equilibrium.
 However, if investors think that prices will be volatile, a different story

 emerges. Since they no longer regard stocks as risk-free assets, they require
 compensation for holding stocks. The larger the supply shocks, the higher the
 risk they must bear. This makes them require more compensation in the form
 of lower prices, which in turn implies that they will submit less elastic demand

 22 To see this, compute ^K\Pr] ~ fh = mk-vZkk-d > ?
 23 Note that Spiegel (1998) focuses on the first (low volatility, low correlation) and third (high

 volatility, low correlation) equilibria of his no-information model (see his Lemma 2 and calibration
 in Section 2).

 24 Corollary 1 also holds when Hs is zero, and hence positive semidefinite, as in this example. In
 this case A can be zero and thus negative semidefinite. See also footnote 7. We also note that since

 M is proportional to the identity matrix, any vector can serve as its eigenvector and therefore there
 are infinite equilibria. In this pathological case, we restrict the eigenvectors to those given in the
 proof of Proposition 2 in the Appendix.
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 schedules, corresponding to the negative values of Xi and/or X2. First, consider

 the case in which X\ = ?r/Oof < 0 and X2 = 0. This produces a price function

 *--?(! i)(?H*
 where Nit and N2t are the random supplies of the two stocks iNt = [Nu, N2t]T).
 Since the two stock prices are identical up to the constant dividend vector, they
 are perfectly correlated. Note that this occurs even though there is absolutely no
 correlation between the underlying shocks. This represents a highly volatile,
 strongly correlated equilibrium. If, instead, investors believe that X\ = X2 =
 -r/0of < 0,

 *--*.(? s)(?H*
 In this high volatility, low (zero) correlation equilibrium, the stock prices are un
 correlated and the two stock markets operate independently. Finally, the belief

 that Xi = 0 and X2 = -r/Oof < 0 produces a high volatility, negative correlation
 equilibrium.
 What are Xi and X2 economically? They represent the variances of two un

 corrected mutual funds. These mutual funds are given by the eigenvectors of

 A, x\ = -jAl l]Tand*2 = -^[1 - 1]T, corresponding to the two eigenvalues, X\
 and X2, respectively. The x\ vector is an "equal-share" portfolio, which captures
 the movement in the aggregate stock market given the symmetry. The x2 vec
 tor is a long-short portfolio in which the second stock is shorted to finance the
 purchase of the first.25 The magnitude of A._ and X2 represents the variances
 of changes in the two portfolio values because the variance of price changes is
 linear in ?A; for example, from equation (19) (or (20), with E5 == 0), the variance
 of the change in the value of portfolio x\ is given by x\i?rA/6)x\ = ir/0)i?Xi).

 D. Calibrating the Full-Information Model

 This subsection examines whether our homogeneous-information models can
 fit stock return volatilities observed in the data. Since Spiegel (1998) calibrates
 his no-information model, we focus on the full-information model. We employ
 the simplest multisecurity economy with two symmetric securities, K = 2 in
 Assumption 1. The following example will be used throughout the rest of the
 paper.

 25 Since prices are random, x\ is neither equally nor value-weighted in "dollar" terms (in terms
 of the units of the consumption good). Similarly, x2 is generally not a zero-investment portfolio.
 In the general case of asymmetric K > 2 securities without Assumption 1, we can still show that
 the uncorrelated mutual fund with the maximal variance involves no short selling as long as price
 changes between all stock pairs are positively correlated. This is an application of a mathematical
 result known as the Perron-Frobenius theorem.
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 Example 1 (Two symmetric securities): There are two securities with cross
 sectionally identical dividend- and supply-shock variances

 w(i ?). *,=<;, ?)
 The parameter values are taken from the empirical literature where possible.

 Given the overlapping generations structure, estimates with a relatively low
 frequency would be appropriate for the current model. Using 10-year time in
 tervals, Shiller (1981b) finds the volatilities of the aggregate dividend shock
 and the aggregate price change at o8yAgg ? 16.5 and o^p^Agg ? 69.4, respec
 tively. Henceforth, we denote aggregate quantities with subscript Agg to dis
 tinguish them from individual ones. We begin by constructing a benchmark
 economy that fits Shiller's estimates and evaluate how changes in parame
 ter values alter equilibrium properties. Toward this end, we follow Spiegel
 (1998, Lemma 2) and assume that the aggregate supply N = |[1 1]T and
 that the dividend shock correlation p8 = 0. Setting the aggregate dividend
 shock volatility NTy?sN = o2 . , we back out the individual dividend-shock
 volatility to be os = 23.3. The interest rate is chosen somewhat arbitrarily at
 5% per annum, or R = 1.0510. We set the individual supply-shock volatility
 0^ = 4.99 x 10~3, which generates Shiller's (1981b) aggregate volatility level
 in the analysis below on partial-information equilibria (see Section II.C). The
 average risk-aversion parameter 0 is set at unity.26 Since one can show that
 the volatility of the aggregate price change is a function of the product 0ov
 (rather than 6 and ov separately) in a homogeneous-information equilibrium,
 this implies that the value of ov above can alternatively be interpreted as that
 of Oorj. The choice of Ee and E^ is irrelevant in a homogeneous-information
 equilibrium and is deferred until the analysis of a partial-information
 equilibrium.

 Figures 1 and 2 plot the volatility and correlation, respectively, of changes
 in individual stock prices against ps and p^.27 In each figure Panel A
 represents a low volatility, low correlation equilibrium, in which the divi
 dend shocks play a dominant role; note that the price change correlation
 in Panel A of Figure 2 is almost identical to the dividend shock correla
 tion, p8 (see the contour on the "ground"). This is consistent with Panel
 A of Figure 1, where the volatility of price changes at all points is only
 slightly higher than the fixed-supply limit, os/r = 37.1 (see Proposition 2
 (i)). Observe that volatility in the other three equilibria can be several times
 higher than in Panel A. As the middle expression in equation (19) im
 plies, this disparity in the variance of price changes across different equi
 libria is due to varying contributions of the supply shock variance. Panel B
 represents a high volatility, high correlation equilibrium. The correlation in

 26 Blume et al. (1994) and Wang (1994) also use a CARA parameter of one.
 27 When ps = -pn, there are infinite equilibria since M is proportional to J, which admits any

 vector as its eigenvector. On such points, we restrict the eigenvectors to Xi and x2 in the previous
 subsection. Also see footnote 24.
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 Panel A: Low volatility, low correlation Panel B: High volatility, high correlation

 55 y "" ... '": V .. 300y '" .. '] .

 Supply-shock -1 -1 Dividend-shock Supply-shock -1 -1 Dividend-shock
 correlation, p^ correlation, pg correlation, p^ correlation, pg

 Panel C: High volatility, low correlation Panel D: High volatility, negative correlation

 Supply-shock -1 -1 Dividend-shock Supply-shock -1 -1 Dividend-shock
 correlation, p^ correlation, pg correlation, p^ correlation, pg

 Figure 1. Volatility of individual stocks' price changes in a full information model
 with two symmetric securities. The panels represent the following four equilibria: Panel A?
 low volatility, low correlation; Panel B?high volatility, high correlation; Panel C?high volatil
 ity, low correlation; and Panel D?high volatility, negative correlation. Parameter values: Ea =

 23.32 ( \s pj>), E,, = 0.004992 ( J pj), and r = 5% per annum or 1.0510 - 1.

 Panel B of Figure 2 is higher than 0.5 everywhere, including the origin. That
 is, strikingly, a strongly correlated equilibrium exists even when there is abso
 lutely no underlying correlation. Panel C demonstrates the existence of a high
 volatility, low correlation equilibrium. As seen by the correlation in Panel C
 of Figure 2 being close to ? p^, supply shocks are almost the sole determinant
 of price characteristics in this equilibrium. Unless the two supply shocks are
 unrealistically extremely correlated, price correlation will be weak. The last
 panel depicts a high volatility, negative correlation equilibrium. The contours
 in Panels B through D of Figure 1 show that the high volatility in the last
 three equilibria is caused in large part by the supply shocks amplified by the A
 matrix.

 Do these equilibria exist if prices are only partially revealing? What are
 the trading strategies of heterogeneously informed investors in such markets?
 These are the questions we now turn to.
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 Panel A: Low volatility, low correlation Panel B: High volatility, high correlation

 Supply-shock -1 -1 Dividend-shock Supply-shock -1 -1 Dividend-shock
 correlation, p_ correlation, pg correlation, p_ correlation, pg

 Panel C: High volatility, low correlation Panel D: High volatility, negative correlation

 Iy'-'" . "'":' .. -0.2y '" .. "":' .

 Supply-shock -1 -1 Dividend-shock Supply-shock -1 -1 Dividend-shock
 correlation, p_ correlation, pg correlation, p_ correlation, pg

 Figure 2. Cross-sectional correlation between individual stocks' price changes in a full
 information model with two symmetric securities. The panels represent the following four
 equilibria: Panel A?low volatility, low correlation; Panel B?high volatility, high correlation; Panel
 C?high volatility, low correlation; and Panel D?high volatility, negative correlation. Parameter

 values: E5 = 23.32 (^) , __? = 0.004992 (J p\\ and r = 5% per annum or 1.0510 - 1.

 II. Partial-Information Equilibria

 A. Equilibrium Characterization

 More than a quarter century ago, in his seminal work on rational expec
 tations equilibrium, Grossman (1978, p. 94) noted that "theorems of [perfect
 aggregation] are too strong to be true statements about the world." Although
 his main point was on the stability of an equilibrium when information is costly,
 his remark also applies to our homogeneous-information equilibria. As seen in
 the previous section, while these equilibria may explain the excessive volatility
 and comovement observed in the data, they lead to implications that the empir
 ical literature has consistently rejected: (a version of) the CAPM and two-fund

 monetary separation. This is where we call for a partial-information equilib
 rium. Information asymmetry implies that investors hold diverse portfolios of
 risky assets. Since investors draw different mean-variance frontiers, although
 each of them holds a tangency portfolio that is efficient up to their individual
 information set, the market portfolio may not be efficient for any single investor.
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 The price function under partial information includes components similar to
 those under homogeneous information. The second term in equation (15) is a
 perpetuity paying Dt, and the first term is a discount from the fundamental
 value due to supply pressure (recall that Ai is negative definite). An important
 difference from the case of homogeneous information is that the prices reveal
 noisy information, lt, about future dividends. Here, the supply shocks serve
 as noises that prevent prices from fully revealing future dividends; knowing
 Dt and Nt-i, agents can back out %t = 8t+i + B^xA2r]t from the prices, but not
 its two components 8t+i and rjt separately. In this way, market prices serve as
 noisy public signals. This is a standard feature of a noisy rational expectations
 equilibrium.

 Given market prices, private signals, and endowments, each agent updates
 his posterior distribution of one-period-ahead dividends. Part (hi) of Theorem
 1 states that agents' demands are a linear function of these conditioning vari
 ables. Unfortunately, the system of nonlinear matrix equations characterizing
 the equilibrium given in the Appendix does not admit an analytic solution. In
 the following subsections, we rely on numerical methods to analyze the prop
 erties of partial-information equilibria.28

 B. Stock Price Volatility in a Single-Security Model

 We start the calibration with a single-security model iK = 1) with no in
 formation asymmetry, ?e,; = of Vi. We set the dividend shock variance equal
 to Shiller's (1981b) aggregate estimate, of = crfAgg. To set the common pri
 vate signal-error variance of, we borrow from Cho and Krishnan (2000). Using
 S&P500 futures data, they estimate the average private signal-error volatil
 ity for Hellwig's (1980) single-security model at 20.705 over a 7-week horizon,

 with a dividend shock volatility of 5.495 (see their Table 2). Assuming serial
 independence of the private signal errors over time, we set the base value
 for os at oeo = 20.705 x 16.5/5.495 = 62.2. Since no estimate is available for
 the variance of individual endowment noises, it is set somewhat arbitrarily at
 ?*/2 = 4?*/2 throughout the rest of the calibration.29 The values of r and 0 are
 retained from the previous section.

 28 We only look for equilibria in which the coefficient matrices have spectral decompositions of
 the form (A27) in the Appendix and reduce the system of nonlinear matrix equations to a system
 of nonlinear scalar equations for eigenvalues similarly to (A28). Due to the lack of an analytic
 solution, it is not easy to derive conditions for the existence of a partial-information equilibrium.
 However, we see from Corollary 1 that when there exists a no-information equilibrium, there also
 exists a full-information equilibrium. Therefore, it appears reasonable to conjecture that a sufficient
 condition for the existence of a partial-information equilibrium is the existence of a no-information
 equilibrium with E"-1 = 0 Vt and otherwise identical parameter values.

 29 Although the endowment can also be a variable of potential interest, we do not explore its in
 formational role in this paper given our primary interest in the effect of diverse private information.
 Trial computations indicate that with the parameter values provided here, setting the endowment
 noise volatility to approximately four times the supply shock volatility or higher produces virtually
 no difference in equilibrium quantities (except for increased trading volume), suggesting that its
 informational role is negligible at such values.
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 11Q/k I-;-1
 \\ * No information

 c0\\ o % = a?o 1
 100\\ N&\ e e0

 V\\\\ A ae = ae0 ?'25
 \\ \\\v 0 Full information

 6 7 8 9 10 11 12
 Supply-shock volatility, a x 10"3

 Figure 3. Volatility of the price change in a single-security model. The dashed line cor
 responds to Shiller's (1981b) aggregate volatility estimate, 69.4. Point A gives this volatility
 level under a? = g?q = 62.2. Parameter values: as = 16.5, __L' = 4ton, and r = 5% per annum or
 1.0510 - 1.

 Figure 3 plots the volatility of the price change, oAp, against the supply shock
 volatility, o^.30 Five curves are shown in the figure. The left-most curve repre
 sents Spiegel's (1998) no-information equilibrium. In this equilibrium agents
 receive infinitely noisy (or simply no) private signals about future dividends.
 As we go from the left to the right-hand side, agents' private information be
 comes more accurate: The next three curves correspond to oe ? oEo x 1, 0.5, and
 0.25, respectively. The right-most curve is the other extreme with perfect in
 formation, or the full-information equilibrium. The three partial-information
 equilibria reside between these two extreme cases. As we can see from the
 figure, for a given combination of supply shock volatility and private signal
 error volatility, there are potentially two equilibria with differential levels of
 price variability (except for the knife-edge case at the right edge of a curve
 where these two equilibria coincide).31 In the low volatility equilibrium, a de
 crease in the supply shock volatility reduces the volatility of the price change,
 while the reverse is true in the high volatility equilibrium. Clearly in the lat
 ter, price variability can be excessive relative to dividend variability, since
 a very low supply-shock volatility can produce disproportionately high price
 variability.

 30 The moment expressions necessary for plotting this and subsequent figures are available in
 the technical appendix posted on the author's home page.

 31 Again, due to the lack of an analytic solution, it is difficult to pin down the number of partially
 revealing equilibria when they do exist. In the numerical methods, various starting values are
 examined. In the specific examples used in this paper, we numerically find two equilibria when

 K = 1 (single-security model), and four equilibria when K ? 2 (two-security model).
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 The figure also depicts the effect of information. Holding the supply shock
 volatility constant, as the private information becomes more accurate the
 volatility of the price change falls in the low volatility equilibrium (as one goes
 down along the vertical axis in the lower limbs of the curves), while it rises in
 the high volatility equilibrium (as one goes up in the upper limbs). This effect is
 stronger at higher levels of supply shock volatility. In fact, the following corol
 lary shows that a partial-information equilibrium (with multiple securities and
 asymmetric information) converges to a full- or no-information equilibrium as
 information becomes infinitely accurate ioe - 0) or noisy ioE - oo).

 Corollary 2 (Convergence of a partial-information equilibrium): A partial
 information equilibrium converges to a full-information equilibrium as Eej; ->
 0 Vi, or to a no-information equilibrium (when one exists) as E~* ?> OVi.

 This formally confirms that a partial-information equilibrium resides be
 tween the full- and no-information equilibria. Therefore, as o^ -> 0, the
 volatility of price changes in a partial-information equilibrium reaches the
 same limit as that in the corresponding homogeneous-information equilibrium
 stated in Proposition 2: The volatility diverges to oo in a partially revealing
 high volatility equilibrium, or converges to o8/r = 16.5/0.63 = 26.2 in a par
 tially revealing low volatility equilibrium. We can see this property in Figure 3.
 The dashed line corresponds to Shiller's (1981b) aggregate volatility estimate,
 which is consistent with high rather than low volatility equilibria at all in
 formation levels. Point "A" represents the benchmark single-security economy
 that gives his volatility estimate with a private signal-error volatility implied
 by Cho and Krishnan (2000).

 Figure 4 shows how price properties vary with the common private signal
 error volatility, oe. Point "A" is again our benchmark economy. The circles and
 stars represent the high and low volatility equilibria, respectively. Panel A again
 confirms the opposing effects of information on the price variability in the two
 equilibria. Panel B plots the price sensitivity to the future dividend shock, B2.
 In both equilibria, the sensitivity increases with better information (moving us
 to the left) and converges to the full-information value, IIr = 1.59. This is the
 familiar multiple from the perpetuity formula for a sure payoff (which appears
 as the coefficient on Dt+\ in the full-information price formula (10)). The other
 limit is zero, because when agents receive infinitely noisy private information,
 there is no information for the price to aggregate in the first place; recall that
 in Spiegel's (1998) no-information model, the price function does not depend
 on the future dividend shock, lt+i (see equation (12)). Panel C shows that the
 absolute price sensitivity to the supply shock, IA2I, behaves differently in the
 two equilibria. Note that the absolute value is plotted here as A2 is a negative
 number. The shapes of the curves resemble those in Panel A especially for
 the upper one, confirming the role of the supply shock as the key determinant
 of price variability in the high volatility equilibrium.

 Let us now examine whether existing stories (not necessarily mutually ex
 clusive) can explain the opposing effects of information on volatility in the two
 equilibria (see, for example, Wang (1993, 1994) and West (1988)):
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 Panel A: Volatility Panel B: Price sensitivity to dividend shocks
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 Panel C: Absolute price sensitivity to supply shocks
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 Figure 4. Price properties in a partial-information model with a single security. Panel A:
 Volatility of the price change, aAp. Panel B: Price sensitivity to the future dividend shock, B^. Panel
 C: Absolute price sensitivity to the supply shock, IA2I. The circles and stars represent high and low
 volatility equilibria, respectively. Point A gives Shiller's (1981b) aggregate volatility estimate, 69.4,
 at aB = _re0 == 62.2. Parameter values: a? = 16.5, on = .00707, nJ == 4or^, and r ? 5% per annum
 or 1.0510 - 1.

 (i) (Diminishing price discount: Volatility |) First, accurate information
 may reduce the price discount, as investors perceive less future uncer
 tainty and thus require a lower premium to hold risky assets. Under this
 explanation, absolute price sensitivity to supply shocks will decline with
 information precision, and so will volatility.

 (ii) (Arbitrage trading: Volatility \) A second story suggests that trading
 of rational informed investors should always stabilize price variability,
 since such investors will take profitable positions whenever prices devi
 ate from fundamental values. These trades will tend to pull prices back
 toward the "rational" values. Under this explanation, absolute loadings
 on supply shocks should again decrease with information accuracy.

 (iii) (Prices as aggregators of private information: Volatility |) In a noisy ra
 tional expectations framework, prices aggregate agents' noisy private
 signals. As private information becomes more accurate, prices will
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 progressively reveal true dividends, and load more on dividend shocks
 than supply shocks. If the decrease in absolute supply-shock loadings
 outweighs the increase in dividend shock loadings, the volatility will
 decline.

 (iv) (Adverse selection: Volatility t) When information asymmetry is severe,
 informed trading might destabilize prices. In such a case, less informed
 traders will face an adverse selection problem and require a larger price
 discount to hold risky assets. This tends to make prices more sensitive
 to supply shocks.

 Our low volatility equilibrium is perfectly consistent with the first three sto
 ries; the absolute supply-shock sensitivity decreases with better information
 (Panel C of Figure 4) while the dividend shock sensitivity rises (Panel B). Over
 all, the volatility of the price change falls (Panel A). However, the high volatility
 equilibrium is hard to explain because the absolute supply-shock sensitivity in
 creases with information accuracy in Panel C.

 The last story cannot explain the price behavior in our high volatility equi
 librium either, since the result holds regardless of the degree of information
 asymmetry; recall that we have assumed that all investors are equally accu
 rately informed in this calibration exercise (?e>; == crfVi). The irrelevance of
 information asymmetry is another distinctive feature of our model.32 For ex
 ample, price variability in Wang (1993, Figures 2 and 3), measured in terms
 of the price innovation or the price level, can increase with the fraction of in
 formed investors. As he notes, however, the adverse selection problem plays
 an important role in his model, as there is almost always a strictly positive
 measure of uninformed investors.33 Thus, the cause of the volatile price in the
 high volatility equilibrium must lie outside the traditional realm and is unique
 to our model. We argue that it is the self-fulfilling prophecies of overlapping
 generations supporting the amplified supply shock in the equilibrium price. In
 a high volatility equilibrium under partial revelation, investors hold the belief
 that a very small supply shock can produce a disproportionately large price
 variance. (If there are multiple stocks, these beliefs represent the variances
 of uncorrelated mutual funds in Section I.C.) By Corollary 2, an increase in
 information accuracy moves us toward the full-information equilibrium, which
 exhibits the most volatile price of all feasible equilibria for a given level of supply
 shock.

 32 Lambert, Leuz, and Verrecchia (2006) make a similar point in connection to the cost of capital.
 They point out that it is the investors' average information precision, not information asymmetry
 per se, that affects a firm's cost of capital in a model with perfect competition. Their focus is on the
 first moment of returns, while we are primarily interested in the second moments.

 33 This is also the approach taken in Biais et al. (2006). It would be suitable for their purpose to
 examine how uninformed investors should structure their portfolios. Because an econometrician's
 information set is close to that of the uninformed investors, they are also able to test their model's
 implication empirically. In contrast, the way we introduce heterogeneous information, based on

 Admati (1985), allows us to get rid of information asymmetry completely and analyze the pure
 effect of common information precision if desired.
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 Finally, with noisy private signals, it is interesting to ask whether the multi
 plicity of equilibria is due to heterogeneous information or overlapping genera
 tions. The primary answer to this question is "the latter" (coupled with supply
 shocks), even though multiplicity is not uncommon in noisy rational expec
 tations equilibrium models.34 This is particularly evident from the fact that
 multiple equilibria also exist under full or no information.

 C Price Volatility and Correlation with Multiple Risky Securities

 In this subsection, we extend the analysis to the cross-sectional correlation
 between changes in stock prices under partial revelation. For this purpose, we
 examine a two-security benchmark economy with cross-sectionally independent
 private signal errors. Equating the aggregate private signal-error variance to
 Cho and Krishnan's (2000) estimate yields % = 88.02/.

 Panels A and B of Figure 5 plot the volatility and correlation, respectively, of
 changes in individual stock prices against ov. The results are identical for both
 securities because of symmetry. For a sufficiently low level of supply shock
 volatility, the panels show that, again, there exist four equilibria with the
 following properties:

 (i) Equilibrium 1 (stars): low volatility, low (zero) correlation,
 (ii) Equilibrium 2 (squares): high volatility, high correlation,
 (iii) Equilibrium 3 (circles): high volatility, low (zero) correlation, and
 (iv) Equilibrium 4 (crosses): high volatility, negative correlation.

 In all the figures to follow, the same marker is used to represent a particular
 equilibrium. Note that in Panels A and B, two equilibria, which differ across the
 two panels, are superimposed on the middle curve. Panel A shows that in the
 three high volatility equilibria the price variability increases with a decline in
 supply shock volatility, while it falls in the low volatility equilibrium. In Panel
 B, the two equilibria on the middle line (circles and stars) have zero correlation
 between changes in stock prices. In these equilibria, the two security markets
 operate independently. In contrast, in the two correlated equilibria (squares and
 crosses), the magnitude of correlation increases dramatically with a decline in
 supply shock volatility.

 Since empirical studies may find positive dividend correlations, next we set
 p8 = 0.3, which implies that the individual dividend-shock volatility, o8, equals
 20.5 given Shiller's (1981b) aggregate figure. Other parameters are held un
 changed. The results are shown in Panels C and D of Figure 5. In Panel C,
 we now see the four equilibria separately, three of which again exhibit higher
 price variability with less supply-shock volatility. Panel D shows that the cor
 relation levels on the middle two curves are relatively weak. Throughout the
 four panels in the figure, Points A and B produce Shiller's (1981b) aggregate

 34 Multiple partially revealing equilibria obtain, for example, in Grundy and McNichols (1989),
 Brown and Jennings (1989, proof of Theorem 1), and Hirshleifer, Subrahmanyam, and Titman
 (1994).
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 Figure 5. Volatility and correlation in a partial-information model with two symmetric
 securities. Panels A and C show the common volatility of individual stocks' price changes. Pan
 els B and D plot the cross-sectional correlation between the two stocks' price changes. Panels A
 and B set the dividend shock correlation at ps = 0, while Panels C and D set it at ps ~ 0.3. The
 markers represent the following equilibria: stars?low volatility, low correlation; squares?high
 volatility, high correlation; circles?high volatility, low correlation; and crosses?high volatility,
 negative correlation. Points A and B give Shiller's (1981b) aggregate volatility estimate, 69.4. Pa

 rameter values: ?s = of ( * p\ J with as = 23.3 in Panels A and B and a8 = 20.5 in Panels C and D,

 ^ = o%I, % = 88.02/, ?*/2 = 4?*/2, and r = 5% per annum or 1.0510 - 1.

 volatility estimate in the high volatility high correlation equilibrium and the
 high volatility, low correlation equilibrium, respectively.

 Several observations are worth noting. First, Points A and B achieve the
 same aggregate volatility level at a common individual supply-shock volatility
 despite the fact that individual stocks have lower price variability at Point A
 than at Point B (Panels A and C). This arises because the higher correlation
 at Point A (see Panels B and D) contributes to the aggregate volatility and
 makes up the deficiency in individual stocks' volatility. Second, comparing
 Panels A and B to Panels C and D reveals that the common supply-shock
 volatility at Points A and B is invariant to p$. This property obtains since
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 we keep the aggregate dividend-shock variance constant. Finally, using a no
 information model with cross-sectionally independent dividend and supply
 shocks, Spiegel (1998, Lemma 2) shows that the magnitude of supply shock
 variance necessary to reconcile a given level of aggregate price-change vari
 ance in a single-security model can be reduced by a factor of UK in a in
 security model. The numerical result indicates that the common supply-shock
 volatility at Points A and B throughout the panels in Figure 5 is 4.99 x
 10"3. This equals l/\/2 times 7.07 x 10-3, the supply shock volatility in the
 single-security benchmark economy in Figure 3. Thus, we have numerically
 shown that Spiegel's claim also holds in our partial-information example. All
 the above three points can be proved analytically in a full- or no-information
 equilibrium.
 We now analyze the effect of information on the properties of multisecurity

 partial-information equilibria. We keep the same parameter values at Points
 A and B in the independent dividend-shock example ip8 ? 0) and change the
 average volatility of private signal errors. Figure 6 shows how the properties
 of individual stock prices vary with information precision. Panel A indicates
 that the common volatility of changes in individual stock prices ioAp) increases
 with information quality in the three high volatility equilibria, while it de
 creases in the low volatility equilibrium. In Panel B, we see that the magnitude
 of correlation between the two securities price changes ip&p) becomes even
 larger in the high and negative correlation equilibria (squares and crosses),

 while it is invariant at zero in the other two equilibria. Panel C shows that a
 security's price sensitivity to its own future dividend shock iB2ik, k), the &'th
 diagonal element of B2, k = 1 or 2) increases with information quality in all
 four of the equilibria and converges to the full-information value, 1/r. The other
 limit is zero, the no-information value. Again, this is because prices serve as
 aggregators of agents' private information. In Panel D, a stock's absolute price
 sensitivity to its own supply shock i\A2ik, k)\, the absolute value of the &'th di
 agonal element of A2, k = 1 or 2) rises with information accuracy in the high
 volatility, low correlation equilibrium (circles), while it falls in the low volatil
 ity equilibrium (stars). Interestingly, the relation is not monotone in the other
 two equilibria superimposed on the middle curve. Given the monotonicity of
 the price change volatility in Panel A, this suggests that at a relatively high
 level of information accuracy, the dividend shocks start contributing to the price
 variability in the high and negative correlation equilibria.35

 35 The fact that two equilibria are superimposed in each of these four panels crucially depends
 on the assumption of cross-sectionally independent dividend and supply shocks. In general cases
 including ps ?- 0 and/or pn 7- 0, the following limiting values are useful: As a? -> 0(ae -> 00), the
 volatility in Panel A converges to the square root of VarWiin_(Variv/>m_) and the correlation in Panel
 B to CorrFIjind(CoTrNI>ind) in the proof of Proposition 2 in the Appendix. The Appendix shows how
 to choose the pair of eigenvalues kx and k2 for these formulae in each of the four equilibria. The
 two limits of the price sensitivity to dividend shocks in Panel C do not depend on ps or pn (see
 equations (10) and (12)). From equation (A32), a stock's absolute price sensitivity to its own supply
 shock in Panel D converges to the same form \kx + (K - l)k2\/K in the two limits, with A.f and k%
 appropriately substituted.
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 Figure 6. Price properties in a partial-information model with two symmetric securi
 ties. Panel A: Common volatility of individual stocks' price changes, crAp. Panel B: Cross-sectional
 correlation between the two stocks' price changes, pAp. Panel C: A stock's price sensitivity to its own
 future dividend shock, B2(k, k). Panel D: A stock's absolute price sensitivity to its own supply shock,
 \A2(k,k)\. The markers represent the following equilibria: stars?low volatility, low correlation;
 squares?high volatility, high correlation; circles?high volatility low correlation; and crosses?
 high volatility, negative correlation. Points A and B give Shiller's (1981b) aggregate volatility esti

 mate, 69.4. Parameter values: E5 = 23.32/, E, = 0.004992/, Ee = of I, ?*/2 = 4?*/2, and r = 5%
 per annum or 1.0510 ? 1.

 D. Trading Behavior of Asymmetrically Informed Agents

 The rest of the paper analyzes the trade of asymmetrically informed agents
 under partial revelation. In the current model, there are three motives for
 agents to trade: information asymmetry, random endowments, and taste (risk
 aversion). We devise volume measures that capture the first motive and exam
 ine the properties of these measures.
 Since each agent is infinitesimally small, we consider the trading behavior of

 groups of agents. Divide the total mass of agents into J groups, each indexed byj
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 with strictly positive measure, m1 > 0.36 Groups here can be considered various
 investor classes. For example, they may represent individual and institutional
 investors, or domestic and foreign investors in an international context. We
 assume that the informational characteristic of each group is time invariant in
 the sense that the average variance, X)/, of private signal errors is the same
 over two successive generations of each group j37 Let Al\; = AXt,i ? r)t,i be
 the net demand change, or the net flow, over two successive generations of agent
 i. Then, the net flows of group-j agents are

 Aft/ = f Afltii di. (23) Jiej

 Following Brennan and Cao (1996, 1997), we define a measure of trading
 behavior as the covariance between group-y net flows and price changes,
 Cov(Aft/, AP/), where APt == Pt - Pt-\. A positive diagonal element of this
 covariance matrix implies that group-j agents as a whole tend to purchase the
 corresponding security when its price has appreciated. That is, they behave like
 trend-followers. Conversely, if the covariance is negative, they follow a contrar
 ian strategy, selling the security upon price appreciation. We now analyze this
 covariance matrix numerically.

 For brevity, we present the results for a single-security economy. Results
 with two securities are available in the technical appendix posted on the au
 thor's home page; an advantage of such a multisecurity model is that it allows a
 richer cross-sectional information structure.38 We use the same parameter val
 ues corresponding to the single-security benchmark economy in Figure 3 and
 vary the information precision. We assume that there are two groups of agents
 iJ = 2) with equal measure and common average risk aversion 01 = 02 = 1.
 This ensures that there is no trade motive due to difference in risk aversion.
 To study the trading behavior of heterogeneously informed agents, we further
 assume that the two groups are asymmetrically informed, with the first group
 better informed on average about the stock than the second group. Specifi
 cally, we set ?* = 0.5of. Setting the aggregate average variance of the pri
 vate signal errors at Ee = of, this implies that the second group has 5_f >

 Figure 7 shows the correlation between the net flow of the first group and the
 price change, piATlj, APt). The correlation is negative in both equilibria. This

 36 Henceforth, a superscript denotes a group.
 37 The formulae for E/ and 0j below can be found in the proof of Theorem 1 in the Appendix.
 38 For example, in an international context, domestic investors may be better informed about

 the domestic market portfolio, but less informed about a foreign one (see, for example, Brennan
 and Cao (1997)). A numerical analysis shows that in such a setting the domestic investors behave
 like contrarians on the domestic market portfolio, but like trend-followers on the foreign market
 portfolio. If one group is less informed about all securities than the other group, the analysis
 indicates that the former acts as trend-followers of the market portfolio, buying all securities upon
 price appreciation.
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 Figure 7. Trading behavior of asymmetrically informed agents in a partial-information
 model with a single security. There are two groups of agents. Group-1 agents are on average
 better informed about the stock than group-2 agents in that X!* = 0.5cre2. The figure shows the
 correlation between the net flow of group-1 agents, Aft*, and the price change, APt. The circles
 and stars represent the high and low volatility equilibria, respectively. Point A gives Shiller's
 (1981b) aggregate volatility estimate, 69.4, at ae = aso = 62.2. Parameter values: as ? 16.5, an =

 0.00707, ?*/2 = 4arj, and r = 5% per annum or 1.0510 - 1.

 implies that the better informed agents tend to sell the stock upon price appre
 ciation, behaving like contrarians. The magnitude of the correlation is larger
 in the low volatility equilibrium (stars), because the price signal is relatively
 more informative than it is in the high volatility equilibrium.
 To understand how agents in the second group trade, consider the three trade

 motives mentioned earlier. In group net flows, the effect of random endowments
 is void since the aggregation in (23) washes away the noise in individual endow
 ments by the law of large numbers. Then, with common risk aversion, only infor
 mation asymmetry is responsible for differential trading behavior. By market
 clearing, ATlj + Aft^ = 0. It follows that CovCAftJ, APt) = -CoviAU2, APt).
 Thus, if one group acts as a contrarian, the other must behave like a trend
 follower, which in our case is the second group. Intuitively, since the price is
 more informative to the less informed agents, they will rely on the public price
 signal more than the better informed investors and will trade in the same di
 rection as price changes. Because piATlf, APt) = ?piATlj, APt), the graph for
 the second group is exactly the mirror image of the first group's and hence is
 omitted.

 From the figure, as agents in the economy become more informed on average
 (moving us to the left), the contrarian behavior of the first group weakens and
 so does the trend-following behavior of the second group. This is because the
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 partially revealing equilibria converge to the corresponding full-information
 equilibria with no information asymmetry (see Corollary 2).39

 The result on the trend-following behavior of less informed agents is sim
 ilar to the findings in Brennan and Cao (1996, 1997) and Wang (1993). The
 current paper complements their work by demonstrating that such trading be
 havior can also occur in excessively volatile, possibly strongly correlated stock
 markets.

 E. Trading Volume under Partial Revelation

 Asymmetric information leads to strictly positive trading volume. In this sub
 section, we consider two measures of volume, one representing aggregate flows
 and the other reflecting individual trades. These two measures are motivated
 by possible empirical applications; the former would be more relevant when
 one works with aggregate trade data (e.g., Brennan and Cao (1997)), while the
 latter may be suitable for individual account data.

 The first volume measure we analyze is based on the net flows introduced
 in the previous section. The per capita absolute net flow, Ut, is the absolute
 shares purchased (or, equivalently, sold) between groups,40

 1 J
 Ut^-J^\AUJt\. (24)

 ;=i

 We call this measure the absolute flow. Since Aft/ has zero mean, the expected
 absolute flow, U, is given by

 U ee E [Ut] = J^ y^diag(Var(Aft/)), (25) j=i

 where diag(-) returns a vector carrying the diagonal elements of its argument
 matrix and ^ is the elementwise square-root operator.41 As noted earlier, with
 common risk aversion this measure captures the trade motive due to asymmet
 ric information only, since endowment noises cancel out in aggregation.

 39 In the other limit when the average information level becomes very noisy, the correlations in
 Figure 7 seem to converge to certain nonzero values. This might appear counterintuitive since in
 a no-information equilibrium, agents should be effectively homogeneously uninformed and there
 fore should not trade. This is due to the normalized nature of the correlation measure. Intuition
 (correctly) suggests that expected absolute flows (to be introduced soon) and hence the standard
 deviation of flows will tend to zero (see Panel A of Figure 8). Since correlation is covariance divided
 by the relevant two standard deviations, both the numerator and the denominator of the correla
 tion formula converge to zero. The particular information structure employed here keeps the ratio
 bounded away from zero.

 40 The division by two corrects for the double counting of buys and sells.
 41 The expression follows from the well-known fact that, for a scalar normal random variable

 x ~ N(0,a2), E\x\ = y/2o2/Tc. This can easily be extended to a multivariate normal vector by
 straightforward computation.
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 Figure 8. Trading volume between asymmetrically informed agents in a partial
 information model with a single security. There are two groups of agents. Group-1 agents
 are on average better informed about the stock than group-2 agents in that E* = 0.5<rg2. Panel A:
 The expected absolute flow, U. Panel B: Expected volume, V. The circles and stars represent the
 high and low volatility equilibria, respectively. Point A gives Shiller's (1981b) aggregate volatility

 estimate, 69.4, at a? = aEo = 62.2. Parameter values: as = 16.5, an = 0.00707, E^ = 4aT}9 and r =
 5% per annum or 1.0510 ? 1.

 The second measure of trading volume is the standard one that aggregates
 individual absolute net flows, Vt = \Jt \AI\t i\di. Expected volume, V, is given
 by

 V = E[Vi] = j^~&iagiVariAf[u))di. (26)
 Because the volume is measured (the absolute value is taken) before aggrega
 tion in Vt, unlike the expected absolute flow, this measure will be nonzero due
 to heterogeneous endowments even if all agents are equally risk averse and
 have homogeneous information.

 Figure 8 shows the two volume measures in the high (circles) and low (stars)
 volatility equilibria. Both of them have a hump-shaped relation with infor
 mation accuracy.42 Intuitively, under full information, all agents are perfectly
 informed, and there is no information-based trade. In the other extreme case
 of no information, agents are homogeneously uninformed, and again there is
 no trade due to information asymmetry. At intermediate levels of information
 accuracy, strictly nonnil trade will arise. Again, Point A represents the bench

 mark economy that produces Shiller's (1981b) aggregate volatility level with
 Cho and Krishnan's (2000) estimate of aggregate private signal-error variance.

 42 Computing trading volume requires the specification of private signal-error variance for each
 individual agent. We have set it at the average level of the group that the agent belongs to. As
 j? -> 0 or oo, expected trading volume approaches the limit, E?1/2/a/27T, where we recall that we
 have set Ef1/2 == 4Ej/2.
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 Its location implies that improving information quality at Point A will raise
 trading volume.

 F Relation between Absolute Flows and Absolute Price Changes
 Another measure of interest is the correlation between absolute flows and

 absolute price changes. As the next proposition states, with two groups we can
 explicitly sign the correlation regardless of the number of securities, K, and the
 distribution of the risk-aversion parameter across agents, 0j. In particular, the
 correlation is always nonnegative. Define pUyi = CorriAUjin), APtU)), the cor
 relation between stock ra's net flow for the first group and stock Z's price change
 (which equals -Corr(Aft^(n), APtU)), the negative of the same correlation for
 the second group).

 Proposition 3 (Correlation between absolute flows and absolute price changes):
 When there are two groups (J = 2), the absolute flow of stock n is nonnega
 tively correlated with the absolute price change of any stock I, 1 < n, I < K. The
 correlation increases in pnj and is given by

 CorriUtin), \APtH)\) = ?^ Ul - p2nl + pn,i arcsinp^ - lj > 0. (27)
 The equality holds if and only if pnj = 0.

 Karpoff (1987) and Gallant et al. (1992) document that high trading volume
 tends to be associated with large absolute returns. The above proposition im
 plies that such findings are the other side of investors' trend-following and
 contrarian behavior. To see this, note that pnyn (setting I = n) is proportional
 to the n'th diagonal element of Cov(Aft1, APt) = ?Cov(Aft^, APt), our measure
 of trading behavior analyzed in Section II.D. Thus, if one of the two investor
 groups behaves like trend-followers, the other will act as contrarians on a se
 curity ipn,n 7- 0) if and only if its absolute flow is strictly positively correlated

 with its absolute price change (Corr(?^(/i), \APtin)\) > 0).43
 Figure 9 shows the correlation between the absolute flow and the absolute

 price change in the single-security economy introduced earlier.44 As Propo
 sition 3 asserts, the correlation is positive in both equilibria, meaning that
 high volatility tends to be associated with large trades in either direction.
 The positive correlation diminishes with information accuracy as the economy
 approaches full revelation.

 43 This statement is general and we do not require information asymmetry here. In general, a
 group can act as trend-followers or contrarians (pran 7- 0) for two reasons: information asymmetry
 and risk aversion. These are two of the three trade motives remaining in group net flows An/ after
 aggregation.

 44 Again, a two-security example is available in the technical appendix posted on the author's
 home page.
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 Figure 9. Correlation between the absolute flow, Ut, and the absolute price change,
 | A Pt |, in a partial-information model with a single security. There are two groups of agents.
 Group-1 agents are on average better informed about the stock than group-2 agents in that E* =
 0.5cr?2. The circles and stars represent the high and low volatility equilibria, respectively. Point A
 gives Shiller's (1981b) aggregate volatility estimate, 69.4, at as ? a?o = 62.2. Parameter values:
 as = 16.5, Orj = 0.00707, ?*/2 = 4^, and r = 5% per annum or 1.0510 - 1.

 III. Conclusion

 Empirical studies document that various investor classes follow trend
 chasing and contrarian strategies in both domestic and international markets.
 Many of these markets are found to exhibit excess volatility and, in some cases,
 strong comovements in asset returns. This paper is an attempt to explain these
 seemingly anomalous phenomena from a fully rational perspective. Using an
 overlapping generations model with information asymmetry and random asset
 supply, we first show that asset prices can be highly volatile relative to dividend
 variability. The model produces multiple equilibria that can exhibit strong or
 weak correlations between asset returns, even when asset supplies and future
 dividends are cross-sectionally uncorrelated. As is common in noisy rational
 expectations equilibrium models, prices serve as noisy public signals about fu
 ture dividends because they aggregate agents' private signals. This leads to
 heterogeneous trading behavior across asymmetrically informed agents. Since
 less informed agents rely on price signals more than better informed agents,
 the former trade in the same direction as price changes and behave like trend
 followers, while the latter act as contrarians. In addition, trading volume has a
 hump-shaped relation with the average level of information precision, because
 agents are effectively homogeneously informed or uninformed at extreme lev
 els of information precision. Moreover, a security's absolute trade flow is posi
 tively correlated with its absolute price change in a market with trend-followers
 and contrarians. Accurate average information increases the volatility and
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 correlation of changes in stock prices in the highly volatile, strongly correlated
 equilibrium.

 As this paper is a first investigation into the intersection of the overlap
 ping generations literature and the noisy rational expectations equilibrium
 literature, there remain several interesting directions to explore. First, welfare
 issues are not addressed in the current paper. It can be shown that our partial
 information equilibrium with asymmetric information precision is not Pareto
 efficient (see a relevant discussion in Brennan and Cao (1996)). In such a case,
 social welfare can be improved by introducing additional trading sessions or
 by introducing derivative securities (Brennan and Cao (1996, 1997) and Cao
 (1999)). Extending this work to look at these two mechanisms may be worth
 pursuing, as the real world has clearly implemented both of them.

 Second, this study does not consider the dynamics of market prices and
 agents' trades. Information is necessarily short-lived in the current model.
 Endowing agents with longer lives would allow for analysis of long-lived in
 formation, which can have a richer impact on price and trade dynamics. It
 would also provide for a more natural interpretation of trading strategies
 and volume, which are currently defined over two successive generations of
 agents.

 Third, the existence of multiple equilibria naturally raises the question of
 stability. Using a rational expectations model with random supply, Gennotte
 and Leland (1990) demonstrate that crashes can occur with relatively little
 selling. In their model, supply of a single risky asset rises as its price falls due
 to investors' hedging activity. Since the excess demand function can be back
 ward bending, a small change in information signals can cause discontinuity
 in equilibrium. This is not the case in the full- and no-information equilibria
 of the current model. A stock's price sensitivity to its own supply shock will
 always be negative in these equilibria and hence the demand function will
 always be downward sloping. However, due to the lack of a closed-form solu
 tion, additional assumptions may be necessary to establish the stability of our
 partial-information equilibria.

 Finally, related to the issue of stability and welfare are the following ques
 tions: Why do prices in the real world remain highly volatile and, in some cases,
 strongly correlated? Do people really not prefer less volatile markets? Why
 do regulators' efforts to stabilize prices, such as the circuit breaker rule and
 market makers' smooth-quoting requirement, sometimes fail to work? It may
 be the case that once an equilibrium has been reached, it is hard to upset, even
 though it may not be Pareto optimal. Examples of such suboptimal but stable
 equilibria can be found in everyday life. A classic one is the prevalence of the
 standard QWERTY keyboard over the more efficient Dvorak keyboard (David
 (1985)).45

 45 Other examples include metric systems (the U.S. vs. the International Systems of Units),
 personal computers (PC vs. Mac), operating systems (Windows, Mac OS, UNIX, Linux), currency
 systems (various currencies and the introduction of the euro), and various electronic-device formats
 (DVD - R vs. DVD + R, VHS vs. Beta, etc.). Some standards are more prevalent and stable than
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 Appendix: Proofs
 Proof of Theorem 1: Since showing sufficiency is straightforward, we derive

 only the necessary conditions.
 (a) Full-information equilibrium. Guess that A\ = A2 == A and B\=B2 = B,

 and write the price function in (4) as Pt ? ANt + BDt+i + c. Then the excess re
 turn function in (6) is Qt+i = At)t+\ + B8t+2 + A+i - rPt. With full information
 i$t+l ft,i),

 VariQt+1\Tt,i) = A^A1 + BE5ST = S,

 E[Qt+1\Tt}i] = Dt+1-rPt. (Al)

 Thus, the optimal demand function in (8) is given by Xtyi = ^S^KA+i ? rPt).
 The market-clearing condition in (9) can then be written as

 jjS-1iDt+1-rPt)di = Nt.
 Comparing the coefficients on both sides of the equation gives iS_1(?rA) =
 I, / ? rB = 0, and c = 0. Rearranging the first condition and substituting
 equation (Al) for S with B = ?1, we obtain -|A = A^A7 + D^/r2. Since the
 right-hand side of this last equation is symmetric and positive definite, A is
 symmetric and negative definite. Dropping the transposition superscript gives
 the quadratic matrix equation for A in the theorem. Then using these conditions
 for the price coefficients, the demand function above reduces to

 Xt<i = ?-S-\-rANt) = tfjt. Vi Vi

 (b) No-information equilibrium. This case is similar to the full-information
 equilibrium above and hence is omitted. Also see Spiegel (1998).
 (c) Partial-information equilibrium. Using the assumed price function (4), we
 can write the excess return function (6) in terms of independent variables in
 the information set Tt,i'

 Qt+1 = (AxA~l - I)B2lt + A2fiM + G8t+1 + B28t+2 + Dt - rPt, (A2)
 where

 Ht = <Wi + Frit,

 F = B~XA2, (A3)
 G^Bi + 7-AiF"1, (A4)

 and we have assumed the nonsingularity of A2 and B2. From normal updat
 ing theory, the conditional variance and mean of future dividends given Ft,i
 are

 others, and some are almost extinct. See Besen and Farrell (1994) and Katz and Shapiro (1994) for
 more on this subject.
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 Var-^+il^) = E,"1 + (-?Tr1(s,~1 + ^r1)^"1 + Kj s ^r1- <A5)

 B[Xt+i|^M] = E,-[(F,T)-1E-1P-1|( + ??>~M

 + (FT)-1Ef-1F-1^,i] = A?,i, (A6)
 where _ _

 0_,i = Ht - Ffltj = <Wl - Ftt,i

 represents the signals about future dividends inferred from the individual en
 dowment and the price signals. From (A2), and noting that 8t+2, fjt+i ? Tt,i,

 Var(?m|.FM) = A2^Al + G^G1 + B2V8BT2 = St, (A7)

 E [Qt+i\ft,i] = (A^-1 - I)B2lt + GHtti + Dt - rPt s mM. (A8)

 The demand function in (8) is Xt,i = ^S._1m^j. Then the market-clearing con
 dition (9) is

 f\s71mt>idi=Nt. (A9) Ji fy

 Define average measures S, E, and Ee by

 (?S)-i = jiOiSd^di, (A10)

 iOS^Gt ee jiOiSi^GVi di, (All)

 i:;1 = IT1 - E'1 - (F1)"1^"1 + e-1)*-1. (A12)
 Comparing the coefficients in both sides of (A9) yields the following nonlinear
 system of matrix equations:

 (i) Coefficients on Dt: J^OiSiTHl - rBx)di = 0, or

 ?i = -I. (A13) r

 (ii) Coefficients on Nt-i:

 jiOiSir\-rA1)di = I, (A14)
 or

 Ai = --OS. (A15) r
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 From this equation, A\ is symmetric negative definite since Si, and hence
 S, are symmetric positive definite,

 (iii) Coefficients on 8t+\\ Canceling the noise terms in zt t and </>t t, and using
 (A5),

 fiOiSir^A^-1 - I)B2 + GUifa1 - S,-1) - rB2] di = 0. (A16)
 Using the definitions in (A3) and (All), we obtain

 (eSr^AiF"1 - B2 + G - GEE"1 - rB2] = 0. (A17)
 Here, by equations (A4) and (A13), we have

 A1F~1 + G = -I. (A18) r

 Substituting equation (A18) into (A17) and solving for B2, it follows that

 B2 = -I-^Gt^\ (A19) r R

 Note that there are other equivalent expressions.
 (iv) Coefficients on r)t: Similarly,

 jiOiSiT^iA^-1 - I)B2F
 + GUtiF^-^^F^F - rA2] di = I, (A20)

 or

 A1-A2-h GtiF1)-1!:-1 -rA2=0S = -rAx,

 where we use equations (A3) and (A15). Solving for A2, we obtain

 A2 = Ai + -^GiXF1)-1^-1. (A21)
 (v) The constant terms: It is easy to see that c = 0.

 The coefficient matrices A\, A2, and B2 are a solution to the system of non
 linear matrix equations (A15), (A19), and (A21), with F, G, S, and E de
 fined in (A3), (A4), (A10), and (All). Finally, using equations (A6) and (15), we
 may rewrite equation (A8) as mtfi = co,t + Ci,if* + C2,iZt,i + C^t,i + Q,;A +
 CsjNt-i for some constant matrices Ci,;, ..., C^i and vector Co,;. That is, given
 the normality assumption, the demand function is linear in the conditioning
 variables. In comparing the coefficients on f)t in step (iv) above, we have started

 with / jS^C^t di F = I. This implies that F, and hence A2 and B2, must be
 nonsingular in equilibrium as assumed.
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 The group average measures, 0J, SJ, E-7, and Eg, in Section II.D are defined
 analogously as the aggregate average measures:

 (g7)-i = _L f Q-^di, (A22)
 >J Jiej

 (^^)-i^_L/> iQiSi^di, (A23)
 mJ Ji j

 (SJS'^GtJ ee? f iOiSO^G^di, (A24) mJ Ji j

 (?/)_1 ee iZiy1 - E,"1 - (F^-^E-1 + E-1)^-1. Q.E.D. (A25)

 Proof of Corollary 1: Denote a symmetric positive-definite square root of

 E^ by E^2 such that (E,2 )2 = E^. Start with the quadratic matrix equation (11) i

 under full information. Pre- and post-multiply E,2 to obtain

 y2 + _iy + 4E!E*E! = 0> 0 rA
 i i

 where Y = E^2AE^2. Completing the square, we obtain (Y + t^I)2 = Mfi,
 where Mpi is given by equation (18). Solving for Y and then for A yields

 A = -^S-1 + E,-iAf)J?S-i, (A26)
 1

 where M|/? is a square root, not necessary positive definite, of Mpi. The whole i ii

 set of MpI? is given by MpI? = CA?CT, where C is the matrix of orthonormal
 i

 eigenvectors of Mpi and A? is a diagonal matrix containing signed square roots
 of the corresponding eigenvalues X?,... ,Xk, that is, a matrix with elements
 ?^JXl, ?y/X2,..., ?\/Xk on the main diagonal with their signs freely chosen. It
 can be shown that the set of solutions in (A26) is unchanged if we take a square
 root of E^ that is not positive definite in the very first step. It is straightforward
 to show that the solution under no information is given by replacing Mfi with
 Mm- This completes the proof. Q.E.D.

 Proof of Proposition 1: Denote a portfolio by x, whose elements represent the
 number of shares held. From equation (19), the variance of changes in portfolio
 value under homogeneous information is given by

 *TVar(AP,)x = - JxT_4* = ^ ( ^x1Ti~1x - xTE^CAicTE^x ), 0 0 \20 J
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 where we have substituted the solution for the A matrix in (17). The first term in

 the parentheses does not depend on the choice of equilibrium. Write CTE^2 x =
 i K

 y. Then the second term is y T A^y = ?z=1(? Vkyf), where yi is the /th element
 oiy and Xi is the Zth diagonal element of A. As one switches the sign on any y/X~i
 from positive to negative, this quantity decreases and therefore the portfolio
 variance increases unless yi = 0. Q.E.D.

 Proof of Proposition 2:
 (a) Full-information equilibrium. Under Assumption 1, it is straightforward

 to confirm that the If eigenvectors of E5 and E^ are given by x\ = [1,..., 1]T/VK
 and

 xm= -=[1,...,1, -im-1), 0,...,0]T, 2<m<K. y/im ? \)m v-v-' v-v-' *-v-'
 m ? 1 ones wi'th position K ?m zeros

 The corresponding eigenvalues for E5 are given by X8i = of [1 + iK ? l)p8] for
 jci and X8m = af (1 ? p8) for xm, 2 < m < K, and similarly for E^. Collect the
 eigenvectors in C = [xi,... ,xr] and the corresponding eigenvalues in diag
 onal matrices A8 and A^. Then the spectral decomposition of E5 and E^
 can be written as E5 = CA8CT, E^ = CA^CT. While it is possible to pro
 ceed with the general solution for the A matrix in Corollary 1, we ex
 ploit the symmetry assumption here. Guess that A also has the spectral
 decomposition

 K

 A = CAACT = J2 *-mXmxl9 (A27) m=l

 where Aa is a diagonal matrix with eigenvalue Xm on its ra'th main diagonal.
 Then the quadratic matrix equation (11) under full information is given as

 c\avA2a + r-=AA + ^A*lcT = 0. (A28)
 Since C is nonsingular, this is equivalent to equating the terms inside the square
 bracket to zero. Because all the matrices involved are diagonal matrices of
 eigenvalues, this amounts to solving the following quadratic scalar problem for
 each eigenvalue:

 r 1
 Xr,mX2m + -=Xm + ? X8m = 0, m = l,...,K. (A29)

 For m = 1, the two solutions to equation (A29) are

 -re-1 ? Jr2~0-2 - 4r-2ofof[l + iK - l)p,][l + iK - l)p8]

 *--2^1+V-lW-<? <A30)
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 as long as E5 and E^ are both positive definite. For m = 2,..., K,

 -r^1 ? Jr20-2 - 4r~2o2o2il - pv)H - p8)

 ^=X? =- 2.|d-ft)-<?- <A31)
 We focus on the case in which X2 = A3 = ... = A#. As we will see below, this
 corresponds to symmetric equilibria. Decompose the spectral decomposition of
 A in (A27) into two parts, one representing the equal-share portfolio im = 1)
 and another representing the long-short portfolios im > 2). It can be verified
 that

 (1 1 1\ (K-l -1 -1 \

 a=4 i i ' s ^ -i K-i , ; (A32) A : . *. : A ; . . -

 \i i/ V -i -i #-V
 From equation (A32) it is clear that changing the sign of one or more Am, m > 2,
 will produce an asymmetric equilibrium with cross-sectional variation in vari
 ance and correlation (unless all the signs are changed). Recall from (19) that
 Var Fii APt) = ? | A. Thus, the variance of any individual stock's price change is

 __ r X1-riK-l)X2
 VarF/,md = --=-g-> 0.

 The cross-sectional covariance between changes in any two stocks' prices is

 r Xi - X2
 ^ovFi,ind = - = ?jr?

 and therefore the correlation is

 A.i ? X2

 Note that as of -? 0: A~ -> -oo, A+ -> -r~30of[l + iK - l)p8], X~ - -oo, and
 A? -> ? r~30ofil ? p8). The four equilibria are characterized by the following
 sets of eigenvalues:

 (i) (low volatility, low correlation) (Ai, X2,..., Xk) = iX?, X%,..., Aj),
 (ii) (high volatility, high correlation) (Ai, A2,..., XK) = (A-i, Aj,..., A+),
 (iii) (high volatility, low correlation) (Ai, X2,..., A#) = (A~, A~,..., A"), and
 (iv) (high volatility, negative correlation) (Ai, A2,..., Xk) = ixf, X% ,...,

 A").

 Considering the limit of Varpi,ind and Corrpi,tnd in each equilibrium gives the
 result in the proposition.
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 (b) No-information equilibrium. The eigenvalue problem in (A29) is replaced
 with

 r R2
 Mi + ?Xrn + -^2**m =0, m = 1, . . . , K. (A33)

 Note that the only difference is the constant term. For m = 1, the solutions to
 equation (A33) are

 -r^1 ? Jr2e~2 - 4R2r~2ofo2[l + iK - l)p,][l + iK - l)p8]

 * -^i+oc-iw-* ?' (A34)
 and for m = 2,..., K, the solutions are

 -rd-1 ? 7r20~2 - 4R*r-*<rf<rKl - p?)(l - ps)

 *-*--"-2^1^- <?- <A3?
 By the formula (20) for the variance of price changes in a no-information equi
 librium, we have the following expressions for the moments of individual stocks'
 price changes:

 r X1+iK-l)X2 R2-l 2
 VarM,ind =-^-r~2~?h > '

 n r Ai-X2 i?2-l 2 ^OVMjnd = ?= ' -T?-o-?8 PS, e K rz
 C0Y]SfI,ind Corr'Ni,ind = ^7
 vZXNI,ind

 It is straightforward to verify that the limits of Varw,ind and Command as of -> 0
 are identical to those under full information in all four equilibria. Q.E.D.

 Proof of Corollary 2:
 (a) Convergence to the full-information equilibrium. When E^ ? 0 V/, the

 conditional dividend-shock variance VarC^+il^i^) = E* -> 0 because private
 signals perfectly reveal future dividends. Thus, from equation (A7), the con
 ditional variance of excess returns VaYiQt+i\Ft,i) = Sj -> A2E^Ag + B2Y,8Bl.
 By the definitions in (A10) and (All), the average measures S and E con
 verge to the same limit as St and E;, respectively, due to information homo
 geneity. Assuming G and F are finite, equations (A19) and (A21) then im
 ply that B2 -+ \l and A2-+ A\. Using these limits, equation (A15) converges
 to Ai -> -^eiAiTirjAl + E5/r2]. This is the full-information quadratic matrix
 equation in (11). Finally, by definition, F -> rAi and G-+ I with Bi = ?/. Since
 Ai is finite when the quadratic matrix equation has a real solution, so are F
 and G, as assumed.

 (b) Convergence to the no-information equilibrium. Similar to the full
 information case. When E ~] -> 0 Vi, private signals reveal no information about
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 future dividends. While investors do have information about the aggregate sup
 ply shocks inferred from their own endowments, this information has no value
 because the investors can infer the realized aggregate supply shocks anyway
 from their own demands in equilibrium; recall that even in Spiegel's (1998) no
 information model, the equilibrium demand (14) is proportional to Nt. There
 fore, Var(<5m|JFM) = E; -> E5 = E. Then equation (A5) implies that F'1 -> 0.
 Assuming that A2 is finite, the definition of F then requires that B2 -> 0. So,
 from equation (A7), Var(Qm|.FM) = St -> A2E^A^ + GE5GT = S. Further as
 suming that Ai is finite, by definition G -> iRIr) I with __?i = jl. Then, by
 equation (A21), A2 -> A?. Applying these limits to equation (A15), we have
 Ai -> ? ^?[AiE^A^ 4- iR2/r2)ll8]. This is the no-information quadratic matrix
 equation in (13). Finally, both Ai and A2 are indeed finite in the limit when the
 quadratic matrix equation has a real solution. Q.E.D.

 Proof of Proposition 3: When there are two groups of agents (J = 2),
 market-clearing implies that net trades occur strictly between them, that is,
 \ATl}\ = |Af_2|. Thus, Ut = i\Afl}\ + \AU2\ )/2 = \Afl}\ = \AU2\. The quan
 tity of interest is Corr(|Af_*(n)|, |AP*(Z)|), where we have used Ut = |Af_* |.
 Observe that the two variables inside the absolute value operators are nor
 mally distributed, and the correlation can be calculated from the relevant
 noncentral moment; it is known that when x and y are bivariate standard
 normal variables with correlation p, E\xy\ = 2(^/1 ? p2 + p arcsinp)/7r (see,
 for example, Johnson and Kotz (1972)). Substituting this into the relation
 Cov(|x|,|yl) = E|3cy| - E|*|E| j> | with E|x|E|_y| = 2/n and dividing both sides
 by yVar(|x|)Var(|y|) = (tt - 2)/n gives equation (27) in the main text. Next,
 using the fact that

 d arcsin p 1

 one can rewrite equation (27) as

 Corr(|A_\V)|, \APtH)\) =- f "'' arcsinpdp > 0 7T -2 Jo

 for ? 1 < pnj < 1. The equality holds if and only if pnj = 0. Q.E.D.
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