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Price Volatility and Investor Behavior
in an Overlapping Generations Model
with Information Asymmetry

MASAHIRO WATANABE*

ABSTRACT

This paper studies an overlapping generations model with multiple securities and
heterogeneously informed agents. The model produces multiple equilibria, including
highly volatile equilibria that can exhibit strong or weak correlations between as-
set returns—even when asset supplies and future dividends are uncorrelated across
assets. Less informed agents rationally behave like trend-followers, while better in-
formed agents follow contrarian strategies. Trading volume has a hump-shaped re-
lation with information precision and is positively correlated with absolute price
changes. Finally, accurate information increases the volatility and correlation of stock
returns in the highly volatile, strongly correlated equilibrium.

THERE IS MOUNTING EVIDENCE of both trend-following and contrarian behavior
among various investor groups in recent empirical studies. Trend-followers buy
assets upon price appreciation and sell them upon depreciation, while contrar-
ians trade in the opposite way. Such trading behavior is found in both domes-
tic and international markets. Moreover, prices in these markets are found to
vary much more than the stocks’ fundamental values. Indeed in some markets,
prices exhibit common movements that are hard to explain by movements in
the fundamentals.!

*Masahiro Watanabe is at the Jones Graduate School of Management, Rice University.
This paper is based on Chapter 2 of my dissertation at Yale University and was previ-
ously circulated under the title “Rational Trend-followers and Contrarians in Excessively
Volatile, Correlated Markets.” A technical appendix is available on the author’s home page,
http://www.ruf rice.edu/watanabe/research/. I am grateful to my adviser, Matthew Spiegel, for help-
ful comments and encouragement. The guidance of Robert Stambaugh (the editor) and an anony-
mous referee substantially improved the paper. I also thank Arturo Bris, Zhiwu Chen, William
Goetzmann, Roger Ibbotson, Jonathan Ingersoll, Andrew Jeffrey, Hayne Leland (Blaise Pascal Con-
ference discussant), Harry Mamaysky, Barbara Ostdiek, Lasse Pedersen, Jiang Wang (AFA discus-
sant), Akiko Watanabe, participants at the 2003 AFA and the 2002 APFA/PACAP/FMA meetings,
participants at the Blaise Pascal International Conference on Financial Modeling, and seminar
participants at Boston College, Georgia Tech, Notre Dame, New York University, Rice, UC Irvine,
Washington-Seattle, Washington-St. Louis, Wisconsin-Madison, and Yale School of Management.
All remaining errors are mine.

! For evidence of trend-following and contrarian behavior in domestic markets, see, for example,
Bange (2000), Chordia, Roll, and Subrahmanyam (2002), and Goetzmann and Massa (2002, 2003).
International evidence is documented in Bohn and Tesar (1996), Brennan and Cao (1997), Choe,
Kho, and Stulz (1999), Froot, O’Connell, and Seasholes (2001), and Grinblatt and Keloharju (2000,
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230 The Journal of Finance

Several strands of the literature have tried to reconcile these empirical find-
ings with theory. Prominent among them are overlapping generations models.
Using a multiple-security model, Spiegel (1998) demonstrates the existence of
a highly volatile equilibrium in which small supply shocks produce dispropor-
tionately large price variances. Spiegel shows that this can occur in an economy
populated by overlapping generations of rational competitive agents. However,
his agents are homogeneously informed and hence there is no heterogeneity in
their trading patterns.

This paper builds on Spiegel’s (1998) work by incorporating heterogeneous in-
formation with possibly asymmetric information precision among agents. This
allows us to analyze differential trading behavior across various investor classes
documented in the empirical literature while maintaining the qualitative na-
ture of Spiegel’s (1998) primary conclusions on excess volatility. The model is
characterized by a multiple-security economy with overlapping generations of
heterogeneously informed agents. Risky claims (stocks) on a single consump-
tion good are traded in financial markets. A continuum of rational risk-averse
agents lives for two periods. Upon birth, the agents receive noisy private sig-
nals about one-period-ahead dividends. Based on their private signals, their
random endowments of the risky assets, and market prices, the agents make
their investment decisions. When old, they unwind their security positions, con-
sume, and die. The economy is then run by the next generation. Because stocks
are in random supply, their prices reveal future dividends only partially and
therefore serve as noisy public signals about the stocks’ fundamentals. Thus,
the model also belongs to the noisy rational expectations literature pioneered
by Hellwig (1980) and Diamond and Verrecchia (1981), and later developed
by Admati (1985) and others.? Our model can be considered an extension of
Spiegel’s (1998) model to a noisy rational expectations equilibrium framework,
or of Admati’s (1985) model to an overlapping generations economy.

As is often the case with an overlapping generations model, the model pro-
duces multiple equilibria. Specifically, as in Spiegel (1998) there potentially
exist 2K equilibria when K securities trade. These equilibria include highly
volatile equilibria that can exhibit strong or weak cross-sectional correlations
between changes in individual stock prices. Strikingly, this is true even when
asset supplies and future dividends are uncorrelated across assets. Other equi-
libria include a low volatility equilibrium in which the volatility and correla-
tion of price changes are of comparable magnitude to those of dividends. While
multiplicity of partially revealing equilibria is not uncommon in noisy rational

2001). Among the most cited evidence on excessive volatility are LeRoy and Porter (1981), Shiller
(1981a,b,1989b), and West (1988). Excess comovement is the primary subject of Barberis, Shleifer,
and Wurgler (2005), Morck, Yeung, and Yu (2000), Pindyck and Rotemberg (1990), and Shiller
(1989a), and is also found in the prices of closed-end funds (Lee, Shleifer, and Thaler (1991)),
closed-end country funds (Bodurtha, Kim, and Lee (1995)), and the S&P 500 component stocks
(Vijh (1994)).

2 For subsequent work, see, for example, Brown and Jennings (1989), Grundy and McNichols
(1989), Kim and Verrecchia (1991a,b), Brennan and Cao (1996, 1997), Cao (1999), Grundy and Kim
(2002), and Kodres and Pritsker (2002).
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Price Volatility and Investor Behavior 231

expectations equilibrium models, it is primarily due to self-fulfilling prophecies
of overlapping generations in our model, as we demonstrate the existence of
multiple equilibria even when agents have full or no information.

A partially revealing equilibrium allows us to analyze the effects that het-
erogeneous information has on prices and trades. We find that the volatility of
changes in individual stock prices increases with information quality in a high
volatility equilibrium, while it falls in a low volatility equilibrium. Similarly,
the cross-sectional correlation between price changes becomes stronger with
information quality in a high correlation equilibrium. This is true even when
all agents have the same degree of information precision and hence there is
no adverse selection problem. When there is information asymmetry among
agents, less informed agents tend to purchase securities upon price apprecia-
tion, while better informed agents sell them. That is, less informed investors
behave like trend-followers, while better informed investors follow profitable
contrarian strategies. The intuition here is similar to Brennan and Cao (1996,
1997) and Kim and Verrecchia (1991b). With poorer private information, less
informed agents rely more heavily on public price signals and therefore trade in
the same direction as price changes. Under the setting considered in this paper,
accurate average information weakens agents’ trend-following and contrarian
behavior since it alleviates information asymmetry.>

Under partial revelation, trading volume is strictly positive and has a hump-
shaped relation with average information accuracy. This arises because agents
are effectively homogeneously informed or uninformed in the two extreme cases
of full and no information; in these cases there is no informational motive to
trade, and the volume is lower than it is with partial information. In addition,
absolute trade flows are positively correlated with absolute price changes, con-
sistent with the empirical evidence in Karpoff (1987) and Gallant, Rossi, and
Tauchen (1992). The positive correlation weakens as private information be-
comes more precise on average. Of course, we are not the first to show these
results; for example, results similar to the hump-shaped relation between vol-
ume and information precision also hold in Blume, Easley, and O’Hara (1994,
Figure 1) and Holden and Subrahmanyam (2002, Proposition 1), and Wang
(1994, Section V) finds a positive relationship between volume and absolute
price changes. The current article complements these works by showing that
the results above can also occur in highly volatile, strongly correlated markets.
We demonstrate these points by calibrating the model with parameter values
estimated in the empirical literature. It is shown that for any level of infor-
mation accuracy, only very small supply shocks are necessary to produce the
observed levels of stock price volatility and correlation.

The key ingredients of the current model, namely, overlapping generations
and heterogeneous information, are two major workhorses in addressing ex-
cess volatility and investor behavior. Using an overlapping generations model,

3 The trend-following and contrarian behavior in this paper results from purely informational
motives and should be distinguished from such behavior due to behavioral motives discussed in
Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), De Long
et al. (1990b), and Hong and Stein (1999).
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232 The Journal of Finance

De Long et al. (1990a) show that unpredictability of noise traders’ erroneous
beliefs prevents rational arbitrageurs from stabilizing price variability.# Incor-
porating costly stock market participation in an overlapping generations model,
Orosel (1998) demonstrates the occurrence of “rational trend chasing” by way
of increased participation and return volatility. Neither of these papers, how-
ever, examines the effect of information on trades. In the information literature,
Campbell and Kyle (1993) show that the interaction between rational “smart
money” investors and exogenous noise traders can produce volatility levels that
are consistent with the data. Wang (1993) demonstrates that asymmetric infor-
mation, along with supply shocks, can increase price variability and that less
informed agents may rationally behave like price chasers. Such trend-following
behavior also occurs in the noisy rational expectations equilibrium models of
Brennan and Cao (1996, 1997) and Kim and Verrecchia (1991b). In a model
with multiple classes of investors who observe signals about either the payoff
or supply of an asset, Gennotte and Leland (1990) show how changes in supply,
caused by random liquidity trading and deterministic hedging plans, can dra-
matically affect market liquidity and price volatility. A distinguishing feature
of our model from those of these authors is that very small supply shocks can
dominate dividend shocks in equilibrium prices and become a major component
of the second moments of returns.’ In addition, none of the studies cited here
investigates comovement of asset prices.® Finally, to the best of my knowledge,
at least one paper incorporates both of the two key ingredients discussed in this
paragraph. Biais, Bossaerts, and Spatt (2006) analyze the properties of a noisy
rational expectations equilibrium with overlapping generations of informed and
uninformed investors. Their main objective is to examine the implications of
information asymmetry on asset pricing and investors’ portfolio decisions. In
contrast, our focus is on the analysis of the second moments of asset returns
and the trading behavior of heterogeneously informed agents. In this sense, the
current paper is complementary to theirs.

The paper is organized as follows. The next section develops the model, solves
for an equilibrium, and presents analytic results under full and no information.
Section IT examines the properties of partial-information equilibria and investi-
gates trading behavior of asymmetrically informed investors. The final section,
Section III, concludes and explores future agendas. The Appendix contains all
proofs.

4 Bhushan, Brown, and Mello (1997) demonstrate that myopia of traders is neither a necessary
nor a sufficient condition for prices to be noisy in a setting such as De Long et al. (1990a).

5 Coval (2000) also develops an asymmetric information model with random supply. Like our
partially revealing equilibrium, the model is numerically solved to produce multiple equilibria with
differential volatility levels. As he notes, however, “as many of the results are qualitatively similar
for the two equilibria, [he] focus[es] on the low volatility equilibrium” (Section 4.1, p. 16). In contrast,
the high and low volatility equilibria in the current model have opposing return characteristics,
and it is in the former that we are primarily interested.

6 Qutside the two categories discussed here, Barberis and Shleifer (2003) and Barberis et al.
(2005) develop models of comovement. However, their focus is on the category and habitat views of
comovement, as opposed to the rational one considered in the current paper.
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Price Volatility and Investor Behavior 233

I. Overlapping Generations Model with Heterogeneous Information
A. Setup

The model extends Spiegel (1998) to a setting with heterogeneous informa-
tion. The economy is populated by a continuum of rational risk-averse agents
who consume a single good. There are K risky assets, called stocks, and a risk-
less bond available for trading in financial markets. Both types of securities pay
in units of the consumption good. The dividend and supply processes of stocks
follow random walks. At the beginning of period ¢, the stocks pay a vector of
stochastic dividends D, per share, where

Dt = Dt—l + 3. 1

The vector of dividend shocks, §;, is distributed multivariate normal with zero
mean and covariance matrix ¥;. Assuming zero mean is innocuous since we
are primarily interested in the second moments of observable quantities. The
s matrix and all other variance—covariance matrices to be introduced are as-
sumed positive definite unless otherwise noted.”

Per capita supply of stocks, V;, is stochastic and also follows a vector random
walk process®

N, =Ni_1+ . (2)

Again, the vector of unobservable supply shocks, #;, is distributed multivariate
normal with zero mean and covariance matrix ¥,.° The riskless bond pays r
units of the consumption good as interest at the beginning of each period. It
serves as numeraire for the economy and thus always sells for a price of unity.
The gross interest rate is denoted by R = 1 + r. For stock prices to be finite, we
require that r > 0.

Agents live for two periods while the economy goes on forever. In each period,
a new generation of agents is born. There is a continuum of agents with unit
mass, each of whom acts competitively taking prices as given. An agent, indexed
by i € [0, 1], possesses negative exponential utility with constant absolute risk
aversion (CARA) 6;. The agent comes endowed with units of the bond and a
personal share of supply shocks. The stock endowment is given by!°

fei = Te + e (3)

7We require positive definiteness for a partial-information equilibrium to be well defined. An
equilibrium can still exist when some covariance matrices are positive semidefinite, for example,
%5 = 0. We use such a sure-dividend example below to derive intuition about full-information
equilibria.

8 The model can be extended in a straightforward manner to accommodate mean-reverting div-
idend and supply processes, D, = apD,_; +3; and N, = axyN,_1 + 7, —1 < ap,ay < 1. For ease of
exposition, we focus on the random walk specification.

®The supply of risky assets can become random through a variety of mechanisms, such as
creation or destruction of the capital base in the economy and liquidity trading. For a discussion of
possibly different empirical implications among these mechanisms, see Spiegel (1999).

10 We do not specify the bond endowment since it does not affect the equilibrium in any way. See
footnote 15.
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234 The Journal of Finance

The noise component, {; ;, is unobservable, independent across agents, and dis-
tributed multivariate normal with zero mean and covariance matrix X,.!! This
ensures that per capita endowment equals per capita supply shocks, or that
Jf; fiei di = 7j; almost surely by the law of large numbers. The above formula-
tion implies that knowing his own endowment provides an agent with some
information about the aggregate supply shocks, which he takes into account in
making portfolio decisions.!?

The information structure is similar to that in Admati (1985). Upon birth,
agent i receives a vector of noisy private signals about the one-period-ahead
dividends,

2y = 0t41 + &

The vector of unobservable noises, & ;, is distributed multivariate normal with
zero mean and covariance matrix X, ;. The & ;’s are independent across agents,
implying that the agents are heterogeneously informed. Information accuracy,
however, can be either heterogeneous (X, ; # X, ;, 3, j) or homogeneous (X, ; =
¥, Vi). When private signals are infinitely noisy, they reveal no information
about the future dividends. This case corresponds to Spiegel’s (1998) model. At
the other extreme, when the ; ;’s have zero variance, private signals perfectly
reveal §;,1. In intermediate cases, the signals reveal only partial information
about future dividends. For convenience, we refer to these three cases as the no-,
full-, and partial-information models, respectively.!® We also refer to both of the
first two cases as homogeneous-information models, since in these cases agents
are homogeneously uninformed or informed. It is assumed that &;, 7, ¢ ;, and
&, Vi are mutually and serially independent.

After the stocks and the bond pay their owners at the beginning of period
t, trading takes place. As in Spiegel (1998), agents observe current prices (P
and dividends (D;), and the whole history of past prices, realized dividends,
and supply levels. In addition, they use private signals (Z;;) and individual
endowments (fj;,;) to make their portfolio decisions. As we show below, under
homogeneous information this implies that while agents do not observe current
supply (NV,), they can deduce it from market prices even though it is a priori
unknown. When old at the beginning of period ¢ + 1, they receive dividends from

111t is straightforward to extend the model to a setting with nonidentically distributed endow-
ment noises, that is, ,; ~ N(0, X, ;). For brevity, we make the i.i.d. assumption.

12 The information content of random endowments often is made null (Grundy and McNichols
(1989, p. 498)) or is ignored (Brown and Jennings (1989, footnote 3)) in a large or continuum-of-
agents economy. As Blume et al. (1994) discuss, however, the former approach produces infinite
trading volume in the period when the random endowments are introduced. Our setting avoids this
issue without ignoring the information content of endowments. For a finite-economy model that
explicitly considers this information, see Diamond and Verrecchia (1981). Gennotte and Leland
(1990) also introduce a class of competitive investors who observe a common signal about supply
shocks created by liquidity traders.

13 The corresponding equilibria are referenced analogously. We may also call the full- and partial-
information equilibria the fully and partially revealing equilibria, respectively, in accordance with
the terminology in the noisy rational expectations equilibrium literature.
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Price Volatility and Investor Behavior 235

their portfolios, unwind their security positions, consume, and die. The economy
is then run by the generation ¢ + 1 agents and the whole cycle repeats.1
The next subsection begins the analysis by solving for an equilibrium.

B. Equilibrium

We focus on a linear equilibrium in which the price function takes the general
form

P, = A1N;_1 + Agfiy + B1D; + Bbi1 +c, 4

where A;, Ag, By, and By are K-dimensional square matrices and ¢ is a K-
dimensional vector to be determined. We only look for a stationary equilibrium
in which these coefficients are time invariant. B

Let X;; be agent i’s stock holdings in period ¢. His future wealth, W, ;, is
then given by

Wi = X{,‘Qtﬂ +RW,;, (5)

Qi+1=Piy1+ Dy — RB,, (6)

where Q.1 is the vector of excess returns per share and W, ; is the agent’s exoge-
nously given endowment.! Notice that even under full information with perfect
knowledge about future dividends D, 1, future wealth still remains uncertain
because the one-period-ahead prices depend on yet unknown 8,5 and 7,1 given
the price conjecture in (4). Thus, the utility maximization problem is always
well defined. Since all stochastic variables are distributed multivariate normal,
Wt+1,,~ is (univariate) normally distributed. Let 7; ; = {Z; ;, 7., P,, D,, N,_1} de-
note agent i’s information set.'® By the property of negative exponential utility,
agent i’s optimization problem, maxy, E[— exp(—6; Wt+1,i) | ¢;]1, amounts to
maximizing the certainty equivalent of future wealth:

~ 91, ~
n}}axE (Wi | Fril — EVaI‘[WtH,i | Fe il @)

14 The terms “generation” and “period” are used interchangeably hereafter.

15To derive these expressions, let b,; denote agent i’s bond holdings. Then, W,,,;, = X ,T,i(f’tﬂ +
D)+ b:;R. His budget constraint is given by X hF P+ b,; = W, ;. Eliminating b,; from these two
equations gives the expressions in the text. The endowment W,; equals the value of the stock
endowment, 7;; P,, plus the number of endowed bonds. The bond endowment does not affect the
equilibrium stock holdings because it drops out from the first-order condition due to the CARA
utility assumption.

16 This is the full information set under partial revelation. In a full- or no-information model, the
information set is identical across agents, and some of its members shown here are redundant. We
keep the i subscript for notational consistency with the partial-information model. We also keep
the tilde above the variables for the same reason even when some quantities may be known.
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The first-order condition is given by
1 1, = ~
Xpi=Var Qe | F)E[Qrin | Fyl (8)
(3

The second-order condition for maximization is met if Var(@,,1 | F:,i) is positive
definite. As usual, the equilibrium condition is that per capita demand equals
per capita supply,

/Xmﬁzm. 9

Comparing both sides of this equation determines the price coefficients in (4).
The following theorem summarizes the result.

TuroreM 1 (Equilibrium): An equilibrium at the respective information level is
characterized by the following price function, Py, and the demand function X, ;:

(i) Fullinformation: A} = As = A, By = By = }I ,and ¢ = 0in equation (4).
Specifically,

- - 1=
Pt = ANt + ;Dt+1, (10)

where A is a symmetric negative-definite matrix that satisfies the
quadratic matrix equation

r 1

(ii) Noinformation (Spiegel (1998)): A1 = Ay = A, B = rlI , Bo =0,andc =
0 in equation (4). That is,

~ - 1~
Pt=ANt+;Dt, (12)

where A is a symmetric negative-definite matrix that satisfies the
quadratic matrix equation
r R?
AT, A+ §A +—5%=0. (13)
r

The demand function under full or no information is given by

I%l

X =Ny, (14)

>

14

where 0 is the harmonic mean of individual risk-aversion parameters,
6=(f07"di)y
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(iii) Partial information: Generally, A; # Ag, B; = }I # B, and ¢ =0 in
equation (4). In particular,

- - 1~ .
P, =A N1+ ;Dt + B, (15)

where & = 8,1 + By ' Agii; and Ay, Ay, and By are nonsingular matrices
that solve a system of nonlinear matrix equations given in the Appendix.
In addition, A, is symmetric and negative definite. The demand function
is linear in &, %.,, i, Dt, and N;_1.

Proof: The Appendix contains all proofs.

We first analyze the homogeneous-information equilibria for which closed-
form solutions are available. This provides useful insights into the analysis
of partial-information equilibria in Section II. Equation (10) says that prices
under full information are the present value of a perpetuity paying D, less
a discount due to supply pressure, AN;. Prices depend on one-period-ahead
dividends since the dividends are perfectly forecastable. The AN, term is a
“discount” if stocks are in positive supply since A is negative definite. The price
function (12) under no information takes a similar form, but the perpetuity con-
sists only of current dividends D, because agents have no information about
future dividends. Due to informational homogeneity, the demand function in
(14) merely reflects the market-making activity of competitive agents who sim-
ply accommodate supply shocks inversely with their risk aversion. The demand
function also implies that two-fund monetary separation holds under homoge-
neous information; each agent holds a combination of the market portfolio, V¢,
and the bond. As one might anticipate from the normality assumption and ho-
mogeneous expectations, a version of the Capital Asset Pricing Model (CAPM)
holds, with dividend shocks augmented by supply shocks.

The quadratic matrix equations (11) and (13) are easy to interpret: They are
simply the market-clearing conditions. To see this, substitute the first-order
condition (8) into equation (9) and rearrange to obtain

Var(Q 411 F1,)N: = E[Q:11 1 F:.:1/9, (16)

where we note that the conditional expectation and variance here are iden-
tical across agents. This expression says that the risk of holding stocks in
the left-hand side must be compensated by expected returns per unit average
risk aversion in the right-hand side. Given the price function (10), in a full-
information equilibrium the variance on the left-hand side is AZ,A + Z;/r2. In
ano-information equilibrium this is A¥,A + X;R?%/r?, that is, the lack of knowl-
edge about future dividends increases the dividend portion of the variance (the
second term) by a factor of R2 = (1 + r)2. The expected return on the right-hand
side is the “net return” on the price discount, —r AN,. Equating the coefficients
on N; yields the respective matrix equations.
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The A matrix, the sensitivity of prices to supply shocks, plays an important
role in determining equilibrium characteristics. It prescribes how the supply
shock of a stock affects its own price and, if nondiagonal, the prices of other
stocks as well. Since the A matrix is determined by a quadratic equation, one
may well expect the existence of multiple equilibria. The following corollary
shows that this is indeed the case.

CoroLLARY 1 (Solutions under homogeneous information): The analytic solu-
tions to the quadratic matrix equations (11) and (13) are both given in the form

F e sboaboret
A= -2+ 3, °CALCTE, 17

1
where T} is the unique symmetric positive-definite square root of ¥,, C and A
are the matrices of orthonormal eigenvectors and eigenvalues, respectively, of

rt oy lodo od
MF] = 4—5—51 — ’.—22,7 252" fOf' (11), or
(18)
r2 RZ 1 1
Myi=—1-2_3is,58 for (13),

492" 12

1
I is the identity matrix, and A% denotes a diagonal matrix obtained by taking
the square roots of the diagonal elements of A and changing their signs freely.

The A matrix is real-valued if and only if the corresponding M matrix above
is positive semidefinite. To have strictly multiple equilibria, we assume that
My, and hence My, are positive definite for the rest of the paper. This is likely
the case when, ceteris paribus, future cash flows are discounted enough (r is
high), agents are risk tolerant (9 is small), and the dividend- and supply-shock
variances are small (£, and Z; are “small” in some matrix norm). Each equilib-
rium corresponds to a different value of A}2.17 In total there are 2X equilibria
when K securities trade. Economically, the eigenvector matrix C controls the
cross-sectional dependency of supply shocks, and the signed square roots of the

eigenvalues in Ai/ 2 determine the price sensitivity to supply shocks.

C. Price Volatility and Correlation in Homogeneous-Information Equilibria

Using the equilibrium characterization obtained in the previous subsection,
we now study the volatility and correlation of changes in asset prices under
homogeneous information. From Theorem 1, the vector of price changes under
full information is given by!®

- ~ ~ 1.
APt = Pt - Pt——l = Ai]t + ;8t+1-

7 The sign =+ is used to signify nonuniqueness. o ~
18 Since the vector of cum-dividend price changes, P, + D, — P4, is ngnstationary due to the
random-walk assumption, we work with ex-dividend price changes, P, — P, ;.
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Thus, the variance of the price changes is
~ 1
‘wmﬂMm=AmA+ﬁm=—%A (19)

where we use the quadratic matrix equation (11) in the second equality. Simi-
larly, we can show that the variance of price changes in a no-information equi-
librium is given by'®

RZ-1

% (20)

Varni(AP,) = —-;_-A -

That is, under homogeneous information the variance of price changes is linear
in A, the price sensitivity to supply shocks. From equations (19) and (20), it is
easy to see that the volatility and correlation of price changes will differ across
equilibria corresponding to different values of A. We first establish the following
proposition about volatility, which is similar to Spiegel (1998, proposition 3):

ProposiTioNn 1 (Variance of price changes under homogeneous information):
Consider switching between two equilibria under full or no information by

1
changing the sign of any diagonal element of A} in (17). Switching the sign
from positive to negative increases the variance of the change in almost any
portfolio’s value.

Unlike volatility, the cross-sectional correlation between price changes is dif-
ficult to analyze without specifying the form of the underlying shock—covariance
matrices. If one has no prior knowledge about the securities in the economy, it
seems natural to assume that stocks are cross-sectionally symmetric in their
underlying shocks, as formalized below.

AssUMPTION 1 (Symmetric securities): There are K > 2 securities with cross-
sectionally identical dividend- and supply-shock variances as well as correla-
tions,

1 Ps ce Ds 1 o . O
T =02] P .1 , B, =o? Py 1

. ‘. . Ps . . . p,’

0s A Ds 1 Pn N O 1

Under this assumption, we can say much about the properties of the equi-
libria.2? As stated before, there exist 2K equilibria when K securities trade (if

¥ Note that the A matrix has different values in various the two equilibria and therefore we
cannot directly compare the two variance formulae. The variance levels in various equilibria with
differential information precisions will be analyzed below.

% In a continuous-time model, Driessen, Maenhout, and Vilkov (2005) also assume a single
instantaneous correlation between every pair of Wiener processes driving stock prices in their
main analysis on correlation risk.
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the M matrices in Corollary 1 are positive definite). In some of these equilib-

1
ria, stocks have asymmetric price properties depending on the choice of A2 in
Corollary 1, even though the distributions of the underlying shocks are symmet-
ric. Throughout the paper, however, we focus on the following four symmetric
equilibria:

ProposITION 2 (Properties of homogeneous-information equilibria): Under As-
sumption 1 and homogeneous information, there exist four symmetric equilibria
in which changes in individual stock prices exhibit identical variance, Var, and
identical correlation, Corr, between every pair of stocks with the following prop-
erties: As 02 — 0,

(i) (low volatility, low correlation) Var \, o2/r?, Corr — ps,
(ii) (high volatility, high correlation) Var /' oo, Corr — 1,
(iii) (high volatility, low correlation) Var /' oo, Corr — W‘fz)pn,
(iv) (high volatility, negative correlation) Var /' oo, Corr - —1/(K — 1).

The first equilibrium is a low volatility, low correlation equilibrium. As the
supply shocks become less volatile in this equilibrium, the common variance of
changes in individual stock prices decreases. This occurs as the second moments
of price changes become progressively dominated by dividend shocks; in the
limit, the variance and correlation of price changes converge to 052 /r? and p;,
respectively. These are the variance and correlation in a fixed-supply model: It
is straightforward to show that, if the supply in our model were fixed at some
constant N, with full information there would be a unique equilibrium with
prices P, =r~ 1D,i1 —r30%;N and hence Var(APt) = X;s/r2. A similar result
holds under no information with D, replaced by D;.

In contrast, the common variance of individual stocks’ price changes in the
second equilibrium diverges to infinity as the supply shock variances fall. More-
over, the prices become perfectly correlated in the limit. We therefore call this
equilibrium a high volatility, high correlation equilibrium. Strikingly, this oc-
curs regardless of ps and p,; that is, high correlation obtains even though all
the underlying shocks are uncorrelated or even negatively correlated. This is
in sharp contrast to existing multisecurity rational expectations models that
require some underlying correlation to produce equilibrium comovement (see,
for example, Kodres and Pritsker (2002, Proposition 2) and Admati (1985, Sec-
tion 5)). In the other two equilibria the common variance of individual stocks’
price changes also diverges to infinity, while the correlation approaches some
fixed number less than one. In one of these equilibria, the limiting correlation

ﬁﬁ}%—);- is close to zero if p, is small or K is large (a high volatility, low corre-

lation equilibrium). Its sign is the opposite of p,.2! The other equilibrium has
a limiting correlation —1/(K — 1) that is always negative and smaller than the

21 This is so because 1 + (K — 2)p, > 0 in equilibrium for all K > 1 and -1 < p, < 1. The claim
is immediate when p, > 0. When p, < 0, the positive definiteness of £, guarantees that [1 + (K —
1)p,lo? > 0 > p,02, where we note that the left-most term is an eigenvalue of I, (see the proof of
Proposition 2). Rearranging this inequality confirms the claim.
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limiting correlation of the third equilibrium (a high volatility, negative correla-
tion equilibrium).?? Since we do not usually observe strongly negative return
correlations in stock markets, the second and third equilibria seem empirically
relevant given evidence on excessive volatility.?3

The varying equilibrium properties correspond to different beliefs that agents
may have about the volatility of a set of mutual funds. Spiegel (1998) discusses
how equilibrium prices can be “excessively” volatile in his no-information model
even when stocks pay constant dividends. We extend his intuition and argue
that strong correlation can occur as well if investors form beliefs about the
price variability of portfolios rather than that of individual stocks. Assume that
there are two symmetric securities with constant dividends and independent
supply. Specifically, we set K = 2, 02 =0, and p; = p, = 0 in Assumption 1.
Since dividends are perfectly predictable, the full- and no-information models
(as well as the partial-information model) coincide. This is also seen from the
fact that setting ¥s = 0 in equations (11) and (13) yields an identical quadratic
matrix equation. Solving the equation, we obtain four (22) solutions for the A

matrix of the form?2*
M (101 A1 -1
a=5 (1 )5 (7)) &0

where A1 and Ay each can take one of two values, 0 or —r/ 90,)2. The price function
in (10) (or (12)) implies that the A matrix represents how supply shocks affect
prices and hence investors’ portfolio decisions. Alternatively, since the variance
of price changes is linear in —A (see equations (19) and (20)), it also repre-
sents agents’ beliefs about the covariance structure of stock returns. Consider
an economy in which investors believe that they can perfectly forecast future
prices. Since they regard stocks as riskless assets, they will voluntarily provide
perfectly elastic demand at prices %D, where D is the vector of sure dividends.
This corresponds to an equilibrium in which A; = A2 = 0, that is, A = 0. The zero
loading on supply implies that investors do not price nonfundamental shocks
(such as supply shocks) in this equilibrium.

However, if investors think that prices will be volatile, a different story
emerges. Since they no longer regard stocks as risk-free assets, they require
compensation for holding stocks. The larger the supply shocks, the higher the
risk they must bear. This makes them require more compensation in the form
of lower prices, which in turn implies that they will submit less elastic demand

2 To see this, compute TR == mm;% > 0.

23 Note that Spiegel (1998) focuses on the first (low volatility, low correlation) and third (high
volatility, low correlation) equilibria of his no-information model (see his Lemma 2 and calibration
in Section 2).

% Corollary 1 also holds when X; is zero, and hence positive semidefinite, as in this example. In
this case A can be zero and thus negative semidefinite. See also footnote 7. We also note that since
M is proportional to the identity matrix, any vector can serve as its eigenvector and therefore there
are infinite equilibria. In this pathological case, we restrict the eigenvectors to those given in the
proof of Proposition 2 in the Appendix.
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schedules, corresponding to the negative values of A; and/or A5. First, consider
the case in which Ay = —r /(90,,2 < 0 and Ag = 0. This produces a price function

- ro(1 1\ [Nu) 1
P=—— - -D
t 290712(1 1>(N2t)+r s

where N, and Ny, are the random supplies of the two stocks (N, = [Ny, N IT).
Since the two stock prices are identical up to the constant dividend vector, they
are perfectly correlated. Note that this occurs even though there is absolutely no
correlation between the underlying shocks. This represents a highly volatile,
strongly correlated equilibrium. If, instead, investors believe that A1 = Ay =

—r/(;'a,,2 <0,
- r(2 0\ [Nu) 1
P = —-—-———" ~ —D
t 290'72 (0 2) <N2t)+r

In this high volatility, low (zero) correlation equilibrium, the stock prices are un-
correlated and the two stock markets operate independently. Finally, the belief
thatA; =0and Ay = —r/ 90”2 < 0 produces a high volatility, negative correlation
equilibrium.

What are A, and Ay economically? They represent the variances of two un-
correlated mutual funds. These mutual funds are given by the eigenvectors of
A, x = %[1 1Tand xs = %[1 —1717, corresponding to the two eigenvalues, A1
and Ag, respectively. The x; vector is an “equal-share” portfolio, which captures
the movement in the aggregate stock market given the symmetry. The xs vec-
tor is a long-short portfolio in which the second stock is shorted to finance the
purchase of the first.25 The magnitude of A; and A, represents the variances
of changes in the two portfolio values because the variance of price changes is
linear in —A; for example, from equation (19) (or (20), with £; = 0), the variance
of the change in the value of portfolio x; is given by x](—rA/0)x1 = (r /8)(—A1).

D. Calibrating the Full-Information Model

This subsection examines whether our homogeneous-information models can
fit stock return volatilities observed in the data. Since Spiegel (1998) calibrates
his no-information model, we focus on the full-information model. We employ
the simplest multisecurity economy with two symmetric securities, K = 2 in
Assumption 1. The following example will be used throughout the rest of the
paper.

% Since prices are random, x; is neither equally nor value-weighted in “dollar” terms (in terms
of the units of the consumption good). Similarly, x, is generally not a zero-investment portfolio.
In the general case of asymmetric K > 2 securities without Assumption 1, we can still show that
the uncorrelated mutual fund with the maximal variance involves no short selling as long as price
changes between all stock pairs are positively correlated. This is an application of a mathematical
result known as the Perron-Frobenius theorem.
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ExampLE 1 (Two symmetric securities): There are two securities with cross-
sectionally identical dividend- and supply-shock variances

1 »p 1 »p
Es =O'52<'0(S f), 2,1 =G’12 (pn ln) (22)

The parameter values are taken from the empirical literature where possible.
Given the overlapping generations structure, estimates with a relatively low
frequency would be appropriate for the current model. Using 10-year time in-
tervals, Shiller (1981b) finds the volatilities of the aggregate dividend shock
and the aggregate price change at o5 ag, = 16.5 and oap agy = 69.4, respec-
tively. Henceforth, we denote aggregate quantities with subscript Agg to dis-
tinguish them from individual ones. We begin by constructing a benchmark
economy that fits Shiller’s estimates and evaluate how changes in parame-
ter values alter equilibrium properties. Toward this end, we follow Spiegel
(1998, Lemma 2) and assume that the aggregate supply N = %[1 1]" and
that the dividend shock correlation p; = 0. Setting the aggregate dividend-
shock volatility NTZ;N = 052’ Age> WE back out the individual dividend-shock
volatility to be o5 = 23.3. The interest rate is chosen somewhat arbitrarily at
5% per annum, or R = 1.05'°. We set the individual supply-shock volatility
o, = 4.99 x 1073, which generates Shiller’s (1981b) aggregate volatility level
in the analysis below on partial-information equilibria (see Section II.C). The
average risk-aversion parameter 0 is set at unity.?® Since one can show that
the volatility of the aggregate price change is a function of the product 9o,
(rather than 8 and o, separately) in a homogeneous-information equilibrium,
this implies that the value of o, above can alternatively be interpreted as that
of fo,. The choice of =, and X, is irrelevant in a homogeneous-information
equilibrium and is deferred until the analysis of a partial-information
equilibrium.

Figures 1 and 2 plot the volatility and correlation, respectively, of changes
in individual stock prices against p; and p,.2” In each figure Panel A
represents a low volatility, low correlation equilibrium, in which the divi-
dend shocks play a dominant role; note that the price change correlation
in Panel A of Figure 2 is almost identical to the dividend shock correla-
tion, p; (see the contour on the “ground”). This is consistent with Panel
A of Figure 1, where the volatility of price changes at all points is only
slightly higher than the fixed-supply limit, os/r = 37.1 (see Proposition 2
(1)). Observe that volatility in the other three equilibria can be several times
higher than in Panel A. As the middle expression in equation (19) im-
plies, this disparity in the variance of price changes across different equi-
libria is due to varying contributions of the supply shock variance. Panel B
represents a high volatility, high correlation equilibrium. The correlation in

26 Blume et al. (1994) and Wang (1994) also use a CARA parameter of one.

%"When p; = —p,, there are infinite equilibria since M is proportional to I, which admits any
vector as its eigenvector. On such points, we restrict the eigenvectors to x; and x, in the previous
subsection. Also see footnote 24.
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Panel A: Low volatility, low correlation Panel B: High volatility, high correlation
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Figure 1. Volatility of individual stocks’ price changes in a full information model
with two symmetric securities. The panels represent the following four equilibria: Panel A—
low volatility, low correlation; Panel B—high volatility, high correlation; Panel C—high volatil-
ity, low correlation; and Panel D—high volatility, negative correlation. Parameter values: T;5 =

23.32 (1 # , =, = 0.004992 Loy , and r = 5% per annum or 1.0510 — 1.
P 1 n o1

Panel B of Figure 2 is higher than 0.5 everywhere, including the origin. That
is, strikingly, a strongly correlated equilibrium exists even when there is abso-
lutely no underlying correlation. Panel C demonstrates the existence of a high
volatility, low correlation equilibrium. As seen by the correlation in Panel C
of Figure 2 being close to —p,, supply shocks are almost the sole determinant
of price characteristics in this equilibrium. Unless the two supply shocks are
unrealistically extremely correlated, price correlation will be weak. The last
panel depicts a high volatility, negative correlation equilibrium. The contours
in Panels B through D of Figure 1 show that the high volatility in the last
three equilibria is caused in large part by the supply shocks amplified by the A
matrix.

Do these equilibria exist if prices are only partially revealing? What are
the trading strategies of heterogeneously informed investors in such markets?
These are the questions we now turn to.

This content downloaded from
128.179.252.132 on Wed, 30 Mar 2022 14:45:08 UTC
All use subject to https://about.jstor.org/terms



Price Volatility and Investor Behavior 245

Panel A: Low volatility, low correlation Panel B: High volatility, high correlation
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Figure 2. Cross-sectional correlation between individual stocks’ price changes in a full
information model with two symmetric securities. The panels represent the following four
equilibria: Panel A—low volatility, low correlation; Panel B—high volatility, high correlation; Panel
C—high volatility, low correlation; and Panel D—high volatility, negative correlation. Parameter

values: T; = 23.32 (/1,5”{) , T, = 0.00499? (lljn";), and r = 5% per annum or 1.0510 — 1,

II. Partial-Information Equilibria
A. Equilibrium Characterization

More than a quarter century ago, in his seminal work on rational expec-
tations equilibrium, Grossman (1978, p. 94) noted that “theorems of [perfect
aggregation] are too strong to be true statements about the world.” Although
his main point was on the stability of an equilibrium when information is costly,
his remark also applies to our homogeneous-information equilibria. As seen in
the previous section, while these equilibria may explain the excessive volatility
and comovement observed in the data, they lead to implications that the empir-
ical literature has consistently rejected: (a version of) the CAPM and two-fund
monetary separation. This is where we call for a partial-information equilib-
rium. Information asymmetry implies that investors hold diverse portfolios of
risky assets. Since investors draw different mean-variance frontiers, although
each of them holds a tangency portfolio that is efficient up to their individual
information set, the market portfolio may not be efficient for any single investor.
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The price function under partial information includes components similar to
those under homogeneous information. The second term in equation (15) is a
perpetuity paying D;, and the first term is a discount from the fundamental
value due to supply pressure (recall that A, is negative definite). An important
difference from the case of homogeneous information is that the prices reveal
noisy information, &, about future dividends. Here, the supply shocks serve
as noises that prevent prices from fully revealing future dividends; knowing
D; and N;_,, agents can back out & = §;,1 + B; ! A7, from the prices, but not
its two components &;,1 and 7, separately. In this way, market prices serve as
noisy public signals. This is a standard feature of a noisy rational expectations
equilibrium.

Given market prices, private signals, and endowments, each agent updates
his posterior distribution of one-period-ahead dividends. Part (iii) of Theorem
1 states that agents’ demands are a linear function of these conditioning vari-
ables. Unfortunately, the system of nonlinear matrix equations characterizing
the equilibrium given in the Appendix does not admit an analytic solution. In
the following subsections, we rely on numerical methods to analyze the prop-
erties of partial-information equilibria.?®

B. Stock Price Volatility in a Single-Security Model

We start the calibration with a single-security model (K = 1) with no in-
formation asymmetry, £.; = 02 Vi. We set the dividend shock variance equal
to Shiller’s (1981b) aggregate estimate, 02 = ‘732, Agg- TO set the common pri-

vate signal-error variance 02, we borrow from Cho and Krishnan (2000). Using
S&P500 futures data, they estimate the average private signal-error volatil-
ity for Hellwig’s (1980) single-security model at 20.705 over a 7-week horizon,
with a dividend shock volatility of 5.495 (see their Table 2). Assuming serial
independence of the private signal errors over time, we set the base value
for o, at g.9 = 20.705 x 16.5/5.495 = 62.2. Since no estimate is available for
the variance of individual endowment noises, it is set somewhat arbitrarily at
E;/ 2= 42,}/ 2 throughout the rest of the calibration.?® The values of r and 8 are
retained from the previous section.

28 We only look for equilibria in which the coefficient matrices have spectral decompositions of
the form (A27) in the Appendix and reduce the system of nonlinear matrix equations to a system
of nonlinear scalar equations for eigenvalues similarly to (A28). Due to the lack of an analytic
solution, it is not easy to derive conditions for the existence of a partial-information equilibrium.
However, we see from Corollary 1 that when there exists a no-information equilibrium, there also
exists a full-information equilibrium. Therefore, it appears reasonable to conjecture that a sufficient
condition for the existence of a partial-information equilibrium is the existence of a no-information
equilibrium with X! = 0Vi and otherwise identical parameter values.

2 Although the endowment can also be a variable of potential interest, we do not explore its in-
formational role in this paper given our primary interest in the effect of diverse private information.
Trial computations indicate that with the parameter values provided here, setting the endowment
noise volatility to approximately four times the supply shock volatility or higher produces virtually
no difference in equilibrium quantities (except for increased trading volume), suggesting that its
informational role is negligible at such values.
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Figure 3. Volatility of the price change in a single-security model. The dashed line cor-
responds to Shiller’s (1981b) aggregate volatility estimate, 69.4. Point A gives this volatility
level under o, = 0,9 = 62.2. Parameter values: o5 = 16.5, E;/ 2 _ 4oy, and r = 5% per annum or

1.0510 — 1,

Figure 3 plots the volatility of the price change, o op, against the supply shock
volatility, o,.3° Five curves are shown in the figure. The left-most curve repre-
sents Spiegel’s (1998) no-information equilibrium. In this equilibrium agents
receive infinitely noisy (or simply no) private signals about future dividends.
As we go from the left to the right-hand side, agents’ private information be-
comes more accurate: The next three curves correspond to o, = 0,9 x 1, 0.5, and
0.25, respectively. The right-most curve is the other extreme with perfect in-
formation, or the full-information equilibrium. The three partial-information
equilibria reside between these two extreme cases. As we can see from the
figure, for a given combination of supply shock volatility and private signal-
error volatility, there are potentially two equilibria with differential levels of
price variability (except for the knife-edge case at the right edge of a curve
where these two equilibria coincide).?! In the low volatility equilibrium, a de-
crease in the supply shock volatility reduces the volatility of the price change,
while the reverse is true in the high volatility equilibrium. Clearly in the lat-
ter, price variability can be excessive relative to dividend variability, since
a very low supply-shock volatility can produce disproportionately high price
variability.

30The moment expressions necessary for plotting this and subsequent figures are available in
the technical appendix posted on the author’s home page.

31 Again, due to the lack of an analytic solution, it is difficult to pin down the number of partially
revealing equilibria when they do exist. In the numerical methods, various starting values are
examined. In the specific examples used in this paper, we numerically find two equilibria when
K =1 (single-security model), and four equilibria when K = 2 (two-security model).
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The figure also depicts the effect of information. Holding the supply shock
volatility constant, as the private information becomes more accurate the
volatility of the price change falls in the low volatility equilibrium (as one goes
down along the vertical axis in the lower limbs of the curves), while it rises in
the high volatility equilibrium (as one goes up in the upper limbs). This effect is
stronger at higher levels of supply shock volatility. In fact, the following corol-
lary shows that a partial-information equilibrium (with multiple securities and
asymmetric information) converges to a full- or no-information equilibrium as
information becomes infinitely accurate (o, — 0) or noisy (o, — 00).

CoroLLARY 2 (Convergence of a partial-information equilibrium): A partial-
information equilibrium converges to a full-information equilibrium as =.; —
0Vi, or to a no-information equilibrium (when one exists) as Z;il — 0Vi.

This formally confirms that a partial-information equilibrium resides be-
tween the full- and no-information equilibria. Therefore, as o, — 0, the
volatility of price changes in a partial-information equilibrium reaches the
same limit as that in the corresponding homogeneous-information equilibrium
stated in Proposition 2: The volatility diverges to oo in a partially revealing
high volatility equilibrium, or converges to o;/r = 16.5/0.63 = 26.2 in a par-
tially revealing low volatility equilibrium. We can see this property in Figure 3.
The dashed line corresponds to Shiller’s (1981b) aggregate volatility estimate,
which is consistent with high rather than low volatility equilibria at all in-
formation levels. Point “A” represents the benchmark single-security economy
that gives his volatility estimate with a private signal-error volatility implied
by Cho and Krishnan (2000).

Figure 4 shows how price properties vary with the common private signal-
error volatility, o.. Point “A” is again our benchmark economy. The circles and
stars represent the high and low volatility equilibria, respectively. Panel A again
confirms the opposing effects of information on the price variability in the two
equilibria. Panel B plots the price sensitivity to the future dividend shock, Bs.
In both equilibria, the sensitivity increases with better information (moving us
to the left) and converges to the full-information value, 1/r = 1.59. This is the
familiar multiple from the perpetuity formula for a sure payoff (which appears
as the coefficient on D, in the full-information price formula (10)). The other
limit is zero, because when agents receive infinitely noisy private information,
there is no information for the price to aggregate in the first place; recall that
in Spiegel’s (1998) no-information model, the price function does not depend
on the future dividend shock, §;,; (see equation (12)). Panel C shows that the
absolute price sensitivity to the supply shock, |Ag|, behaves differently in the
two equilibria. Note that the absolute value is plotted here as A is a negative
number. The shapes of the curves resemble those in Panel A especially for
the upper one, confirming the role of the supply shock as the key determinant
of price variability in the high volatility equilibrium.

Let us now examine whether existing stories (not necessarily mutually ex-
clusive) can explain the opposing effects of information on volatility in the two
equilibria (see, for example, Wang (1993, 1994) and West (1988)):
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Figure 4. Price properties in a partial-information model with a single security. Panel A:
Volatility of the price change, oxp. Panel B: Price sensitivity to the future dividend shock, By. Panel
C: Absolute price sensitivity to the supply shock, |Ag|. The circles and stars represent high and low
volatility equilibria, respectively. Point A gives Shiller’s (1981b) aggregate volatility estimate, 69.4,

at op = 0y0 = 62.2. Parameter values: o5 = 16.5, o, = .00707, Ezl/2 = 40y, and r = 5% per annum
or 1.0510 — 1,
(i) (Diminishing price discount: Volatility |) First, accurate information

(ii)

(iii)

may reduce the price discount, as investors perceive less future uncer-
tainty and thus require a lower premium to hold risky assets. Under this
explanation, absolute price sensitivity to supply shocks will decline with
information precision, and so will volatility.

(Arbitrage trading: Volatility |) A second story suggests that trading
of rational informed investors should always stabilize price variability,
since such investors will take profitable positions whenever prices devi-
ate from fundamental values. These trades will tend to pull prices back
toward the “rational” values. Under this explanation, absolute loadings
on supply shocks should again decrease with information accuracy.
(Prices as aggregators of private information: Volatility |) In a noisy ra-
tional expectations framework, prices aggregate agents’ noisy private
signals. As private information becomes more accurate, prices will
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progressively reveal true dividends, and load more on dividend shocks
than supply shocks. If the decrease in absolute supply-shock loadings
outweighs the increase in dividend shock loadings, the volatility will
decline.

(iv) (Adverse selection: Volatility 1) When information asymmetry is severe,
informed trading might destabilize prices. In such a case, less informed
traders will face an adverse selection problem and require a larger price
discount to hold risky assets. This tends to make prices more sensitive
to supply shocks.

Our low volatility equilibrium is perfectly consistent with the first three sto-
ries; the absolute supply-shock sensitivity decreases with better information
(Panel C of Figure 4) while the dividend shock sensitivity rises (Panel B). Over-
all, the volatility of the price change falls (Panel A). However, the high volatility
equilibrium is hard to explain because the absolute supply-shock sensitivity in-
creases with information accuracy in Panel C.

The last story cannot explain the price behavior in our high volatility equi-
librium either, since the result holds regardless of the degree of information
asymmetry; recall that we have assumed that all investors are equally accu-
rately informed in this calibration exercise (X.; = 02Vi). The irrelevance of
information asymmetry is another distinctive feature of our model.?? For ex-
ample, price variability in Wang (1993, Figures 2 and 3), measured in terms
of the price innovation or the price level, can increase with the fraction of in-
formed investors. As he notes, however, the adverse selection problem plays
an important role in his model, as there is almost always a strictly positive
measure of uninformed investors.3? Thus, the cause of the volatile price in the
high volatility equilibrium must lie outside the traditional realm and is unique
to our model. We argue that it is the self-fulfilling prophecies of overlapping
generations supporting the amplified supply shock in the equilibrium price. In
a high volatility equilibrium under partial revelation, investors hold the belief
that a very small supply shock can produce a disproportionately large price
variance. (If there are multiple stocks, these beliefs represent the variances
of uncorrelated mutual funds in Section I.C.) By Corollary 2, an increase in
information accuracy moves us toward the full-information equilibrium, which
exhibits the most volatile price of all feasible equilibria for a given level of supply
shock.

32 Lambert, Leuz, and Verrecchia (2006) make a similar point in connection to the cost of capital.
They point out that it is the investors’ average information precision, not information asymmetry
per se, that affects a firm’s cost of capital in a model with perfect competition. Their focus is on the
first moment of returns, while we are primarily interested in the second moments.

33 This is also the approach taken in Biais et al. (2006). It would be suitable for their purpose to
examine how uninformed investors should structure their portfolios. Because an econometrician’s
information set is close to that of the uninformed investors, they are also able to test their model’s
implication empirically. In contrast, the way we introduce heterogeneous information, based on
Admati (1985), allows us to get rid of information asymmetry completely and analyze the pure
effect of common information precision if desired.
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Finally, with noisy private signals, it is interesting to ask whether the multi-
plicity of equilibria is due to heterogeneous information or overlapping genera-
tions. The primary answer to this question is “the latter” (coupled with supply
shocks), even though multiplicity is not uncommon in noisy rational expec-
tations equilibrium models.3* This is particularly evident from the fact that
multiple equilibria also exist under full or no information.

C. Price Volatility and Correlation with Multiple Risky Securities

In this subsection, we extend the analysis to the cross-sectional correlation
between changes in stock prices under partial revelation. For this purpose, we
examine a two-security benchmark economy with cross-sectionally independent
private signal errors. Equating the aggregate private signal-error variance to
Cho and Krishnan’s (2000) estimate yields £, = 88.0%1.

Panels A and B of Figure 5 plot the volatility and correlation, respectively, of
changes in individual stock prices against o,. The results are identical for both
securities because of symmetry. For a sufficiently low level of supply shock
volatility, the panels show that, again, there exist four equilibria with the
following properties:

(i) Equilibrium 1 (stars): low volatility, low (zero) correlation,

(i1) Equilibrium 2 (squares): high volatility, high correlation,
(iii) Equilibrium 3 (circles): high volatility, low (zero) correlation, and
(iv) Equilibrium 4 (crosses): high volatility, negative correlation.

In all the figures to follow, the same marker is used to represent a particular
equilibrium. Note that in Panels A and B, two equilibria, which differ across the
two panels, are superimposed on the middle curve. Panel A shows that in the
three high volatility equilibria the price variability increases with a decline in
supply shock volatility, while it falls in the low volatility equilibrium. In Panel
B, the two equilibria on the middle line (circles and stars) have zero correlation
between changes in stock prices. In these equilibria, the two security markets
operate independently. In contrast, in the two correlated equilibria (squares and
crosses), the magnitude of correlation increases dramatically with a decline in
supply shock volatility.

Since empirical studies may find positive dividend correlations, next we set
ps = 0.3, which implies that the individual dividend-shock volatility, o5, equals
20.5 given Shiller’s (1981b) aggregate figure. Other parameters are held un-
changed. The results are shown in Panels C and D of Figure 5. In Panel C,
we now see the four equilibria separately, three of which again exhibit higher
price variability with less supply-shock volatility. Panel D shows that the cor-
relation levels on the middle two curves are relatively weak. Throughout the
four panels in the figure, Points A and B produce Shiller’s (1981b) aggregate

34 Multiple partially revealing equilibria obtain, for example, in Grundy and McNichols (1989),
Brown and Jennings (1989, proof of Theorem 1), and Hirshleifer, Subrahmanyam, and Titman
(1994).
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Figure 5. Volatility and correlation in a partial-information model with two symmetric
securities. Panels A and C show the common volatility of individual stocks’ price changes. Pan-
els B and D plot the cross-sectional correlation between the two stocks’ price changes. Panels A
and B set the dividend shock correlation at ps = 0, while Panels C and D set it at ps = 0.3. The
markers represent the following equilibria: stars—low volatility, low correlation; squares—high
volatility, high correlation; circles—high volatility, low correlation; and crosses—high volatility,
negative correlation. Points A and B give Shiller’s (1981b) aggregate volatility estimate, 69.4. Pa-
rameter values: X5 = 052 (1 p“) with o5 = 23.3 in Panels A and B and o5 = 20.5 in Panels C and D,

ps 1
£y =02l £, = 88.021, £}* = 45;/%, and r = 5% per annum or 1.05' — 1.

volatility estimate in the high volatility, high correlation equilibrium and the
high volatility, low correlation equilibrium, respectively.

Several observations are worth noting. First, Points A and B achieve the
same aggregate volatility level at a common individual supply-shock volatility
despite the fact that individual stocks have lower price variability at Point A
than at Point B (Panels A and C). This arises because the higher correlation
at Point A (see Panels B and D) contributes to the aggregate volatility and
makes up the deficiency in individual stocks’ volatility. Second, comparing
Panels A and B to Panels C and D reveals that the common supply-shock
volatility at Points A and B is invariant to ps;. This property obtains since
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we keep the aggregate dividend-shock variance constant. Finally, using a no-
information model with cross-sectionally independent dividend and supply
shocks, Spiegel (1998, Lemma 2) shows that the magnitude of supply shock
variance necessary to reconcile a given level of aggregate price-change vari-
ance in a single-security model can be reduced by a factor of 1/K in a K-
security model. The numerical result indicates that the common supply-shock
volatility at Points A and B throughout the panels in Figure 5 is 4.99 x
10-3. This equals 1/+/2 times 7.07 x 1073, the supply shock volatility in the
single-security benchmark economy in Figure 3. Thus, we have numerically
shown that Spiegel’s claim also holds in our partial-information example. All
the above three points can be proved analytically in a full- or no-information
equilibrium.

We now analyze the effect of information on the properties of multisecurity
partial-information equilibria. We keep the same parameter values at Points
A and B in the independent dividend-shock example (o5 = 0) and change the
average volatility of private signal errors. Figure 6 shows how the properties
of individual stock prices vary with information precision. Panel A indicates
that the common volatility of changes in individual stock prices (o op) increases
with information quality in the three high volatility equilibria, while it de-
creases in the low volatility equilibrium. In Panel B, we see that the magnitude
of correlation between the two securities price changes (oap) becomes even
larger in the high and negative correlation equilibria (squares and crosses),
while it is invariant at zero in the other two equilibria. Panel C shows that a
security’s price sensitivity to its own future dividend shock (By(k, k), the £’th
diagonal element of By, £ = 1 or 2) increases with information quality in all
four of the equilibria and converges to the full-information value, 1/r. The other
limit is zero, the no-information value. Again, this is because prices serve as
aggregators of agents’ private information. In Panel D, a stock’s absolute price
sensitivity to its own supply shock (|Ax(%, k)|, the absolute value of the &’th di-
agonal element of Ay, £ = 1 or 2) rises with information accuracy in the high
volatility, low correlation equilibrium (circles), while it falls in the low volatil-
ity equilibrium (stars). Interestingly, the relation is not monotone in the other
two equilibria superimposed on the middle curve. Given the monotonicity of
the price change volatility in Panel A, this suggests that at a relatively high
level of information accuracy, the dividend shocks start contributing to the price
variability in the high and negative correlation equilibria.3?

35 The fact that two equilibria are superimposed in each of these four panels crucially depends
on the assumption of cross-sectionally independent dividend and supply shocks. In general cases
including p; # 0 and/or p, # 0, the following limiting values are useful: As o, — 0(o, - 00), the
volatility in Panel A converges to the square root of Varg; ;,s(Vary; i»¢) and the correlation in Panel
B to Corrgy ;ng(Corryging) in the proof of Proposition 2 in the Appendix. The Appendix shows how
to choose the pair of eigenvalues A, and A, for these formulae in each of the four equilibria. The
two limits of the price sensitivity to dividend shocks in Panel C do not depend on p; or p, (see
equations (10) and (12)). From equation (A32), a stock’s absolute price sensitivity to its own supply
shock in Panel D converges to the same form |1, + (K — 1)A;|/K in the two limits, with AT and A;
appropriately substituted.
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Figure 6. Price properties in a partial-information model with two symmetric securi-
ties. Panel A: Common volatility of individual stocks’ price changes, o op. Panel B: Cross-sectional
correlation between the two stocks’ price changes, pap. Panel C: A stock’s price sensitivity to its own
future dividend shock, B (%, k). Panel D: A stock’s absolute price sensitivity to its own supply shock,
|Ag(k, k)|. The markers represent the following equilibria: stars—low volatility, low correlation;
squares—high volatility, high correlation; circles—high volatility, low correlation; and crosses—
high volatility, negative correlation. Points A and B give Shiller’s (1981b) aggregate volatility esti-
mate, 69.4. Parameter values: 5 = 23.321, =, = 0.00499%], ¥, = 021, 251/2 = 42,}/2, and r = 5%
per annum or 1.0510 — 1.

D. Trading Behavior of Asymmetrically Informed Agents

The rest of the paper analyzes the trade of asymmetrically informed agents
under partial revelation. In the current model, there are three motives for
agents to trade: information asymmetry, random endowments, and taste (risk
aversion). We devise volume measures that capture the first motive and exam-
ine the properties of these measures.

Since each agent is infinitesimally small, we consider the trading behavior of
groups of agents. Divide the total mass of agents into J groups, each indexed by j
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with strictly positive measure, m/ > 0.3¢ Groups here can be considered various
investor classes. For example, they may represent individual and institutional
investors, or domestic and foreign investors in an international context. We
assume that the informational characteristic of each group is time invariant in
the sense that the average variance, £/, of private signal errors is the same
over two successive generations of each group j.37 Let All;; = AX,; —iit; be
the net demand change, or the net flow, over two successive generations of agent
i. Then, the net flows of group-j agents are

AT = / AT, ; di. (23)
iej

Following Brennan and Cao (1996, 1997), we define a measure of trading
behavior as the covariance between group-j net flows and price changes,
Cov(ATT], PT) where AP, = P, — P,_;. A positive diagonal element of this
covariance matrix implies that group-j agents as a whole tend to purchase the
corresponding security when its price has appreciated. That is, they behave like
trend-followers. Conversely, if the covariance is negative, they follow a contrar-
ian strategy, selling the security upon price appreciation. We now analyze this
covariance matrix numerically.

For brevity, we present the results for a single-security economy. Results
with two securities are available in the technical appendix posted on the au-
thor’s home page; an advantage of such a multisecurity model is that it allows a
richer cross-sectional information structure.3® We use the same parameter val-
ues corresponding to the single-security benchmark economy in Figure 3 and
vary the information precision. We assume that there are two groups of agents
(J = 2) with equal measure and common average risk aversion 6! =62 = 1.
This ensures that there is no trade motive due to difference in risk aversion.
To study the trading behavior of heterogeneously informed agents, we further
assume that the two groups are asymmetrically informed, with the first group
better informed on average about the stock than the second group. Specifi-
cally, we set £! = 0.502. Setting the aggregate average variance of the pri-
vazlte signal errors at £, = 02, this implies that the second group has ¥£2 >
0'

Figure 7 shows the correlation between the net flow of the first group and the
price change, p(ATl}, AP,). The correlation is negative in both equilibria. This

3 Henceforth, a superscript denotes a group.

37 The formulae for £/ and §/ below can be found in the proof of Theorem 1 in the Appendix.

38 For example, in an international context, domestic investors may be better informed about
the domestic market portfolio, but less informed about a foreign one (see, for example, Brennan
and Cao (1997)). A numerical analysis shows that in such a setting the domestic investors behave
like contrarians on the domestic market portfolio, but like trend-followers on the foreign market
portfolio. If one group is less informed about all securities than the other group, the analysis
indicates that the former acts as trend-followers of the market portfolio, buying all securities upon
price appreciation.
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Figure 7. Trading behavior of asymmetrically informed agents in a partial-information
model with a single security. There are two groups of agents. Group-1 agents are on average
better informed about the stock than group-2 agents in that £! = 0.562. The figure shows the
correlation between the net flow of group-1 agents, Al1}, and the price change, AP;. The circles
and stars represent the high and low volatility equilibria, respectively. Point A gives Shiller’s
(1981b) aggregate volatility estimate, 69.4, at o, = 0,9 = 62.2. Parameter values: o5 = 16.5, oy, =

0.00707, 23/2 = 4oy, and r = 5% per annum or 1.050 — 1.

implies that the better informed agents tend to sell the stock upon price appre-
ciation, behaving like contrarians. The magnitude of the correlation is larger
in the low volatility equilibrium (stars), because the price signal is relatively
more informative than it is in the high volatility equilibrium.

To understand how agents in the second group trade, consider the three trade
motives mentioned earlier. In group net flows, the effect of random endowments
is void since the aggregation in (23) washes away the noise in individual endow-
ments by the law of large numbers. Then, with common risk aversion, only infor-
mation asymmetry is responsible for differential trading behavior. By market
clearing, ATl} + A2 = 0. It follows that Cov(Afl}, AP,) = —~Cov(ATIZ, AP,)).
Thus, if one group acts as a contrarian, the other must behave like a trend-
follower, which in our case is the second group. Intuitively, since the price is
more informative to the less informed agents, they will rely on the public price
signal more than the better informed investors and will trade in the same di-
rection as price changes. Because p(AT1Z, AP;) = —p(AT1}, AP,), the graph for
the second group is exactly the mirror image of the first group’s and hence is
omitted.

From the figure, as agents in the economy become more informed on average
(moving us to the left), the contrarian behavior of the first group weakens and
so does the trend-following behavior of the second group. This is because the
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partially revealing equilibria converge to the corresponding full-information
equilibria with no information asymmetry (see Corollary 2).3°

The result on the trend-following behavior of less informed agents is sim-
ilar to the findings in Brennan and Cao (1996, 1997) and Wang (1993). The
current paper complements their work by demonstrating that such trading be-
havior can also occur in excessively volatile, possibly strongly correlated stock
markets.

E. Trading Volume under Partial Revelation

Asymmetric information leads to strictly positive trading volume. In this sub-
section, we consider two measures of volume, one representing aggregate flows
and the other reflecting individual trades. These two measures are motivated
by possible empirical applications; the former would be more relevant when
one works with aggregate trade data (e.g., Brennan and Cao (1997)), while the
latter may be suitable for individual account data.

The first volume measure we analyze is based on the net flows introduced
in the previous section. The per capita absolute net flow, U;, is the absolute
shares purchased (or, equivalently, sold) between groups,®

1L
p=5 0 1AM (24)

We call this measure the absolute flow. Since A1/ has zero mean, the expected
absolute flow, U, is given by

J .
U=E[U]=)_ \/ %diag(Var(Af[{)), (25)
j=1

where diag(-) returns a vector carrying the diagonal elements of its argument
matrix and ./- is the elementwise square-root operator.#! As noted earlier, with
common risk aversion this measure captures the trade motive due to asymmet-
ric information only, since endowment noises cancel out in aggregation.

3 In the other limit when the average information level becomes very noisy, the correlations in
Figure 7 seem to converge to certain nonzero values. This might appear counterintuitive since in
a no-information equilibrium, agents should be effectively homogeneously uninformed and there-
fore should not trade. This is due to the normalized nature of the correlation measure. Intuition
(correctly) suggests that expected absolute flows (to be introduced soon) and hence the standard
deviation of flows will tend to zero (see Panel A of Figure 8). Since correlation is covariance divided
by the relevant two standard deviations, both the numerator and the denominator of the correla-
tion formula converge to zero. The particular information structure employed here keeps the ratio
bounded away from zero.

40 The division by two corrects for the double counting of buys and sells.

“1 The expression follows from the well-known fact that, for a scalar normal random variable
% ~ N(0,0%), E|X| =/20%/n. This can easily be extended to a multivariate normal vector by
straightforward computation.
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Figure 8. Trading volume between asymmetrically informed agents in a partial-
information model with a single security. There are two groups of agents. Group-1 agents
are on average better informed about the stock than group-2 agents in that £} = 0.502. Panel A:
The expected absolute flow, U. Panel B: Expected volume, V. The circles and stars represent the
high and low volatility equilibria, respectively. Point A gives Shiller’s (1981b) aggregate volatility
estimate, 69.4, at 0, = 0,0 = 62.2. Parameter values: o5 = 16.5, ¢;, = 0.00707, E;/ - 40y, and r =

5% per annum or 1.0510 — 1.

The second measure of trading volume is the standard one that aggregates
individual absolute net flows, V; = % f; |AT1, ;|di. Expected volume, V, is given
by

V=E[V,]= f \/ é};diag(Var(Alzlt,i))di. (26)

Because the volume is measured (the absolute value is taken) before aggrega-
tion in V;, unlike the expected absolute flow, this measure will be nonzero due
to heterogeneous endowments even if all agents are equally risk averse and
have homogeneous information.

Figure 8 shows the two volume measures in the high (circles) and low (stars)
volatility equilibria. Both of them have a hump-shaped relation with infor-
mation accuracy.*? Intuitively, under full information, all agents are perfectly
informed, and there is no information-based trade. In the other extreme case
of no information, agents are homogeneously uninformed, and again there is
no trade due to information asymmetry. At intermediate levels of information
accuracy, strictly nonnil trade will arise. Again, Point A represents the bench-
mark economy that produces Shiller’s (1981b) aggregate volatility level with
Cho and Krishnan’s (2000) estimate of aggregate private signal-error variance.

42 Computing trading volume requires the specification of private signal-error variance for each
individual agent. We have set it at the average level of the group that the agent belongs to. As
o, — 0 or oo, expected trading volume approaches the limit, E;/ %27, where we recall that we

have set ZZ/Z =4%)2.
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Its location implies that improving information quality at Point A will raise
trading volume.

F. Relation between Absolute Flows and Absolute Price Changes

Another measure of interest is the correlation between absolute flows and
absolute price changes. As the next proposition states, with two groups we can
explicitly sign the correlation regardless of the number of securities, K, and the
distribution of the risk-aversion parameter across agents, 6;. In particular, the
correlation is always nonnegative. Define p,; = Corr(AI1}(n), AP;(1)), the cor-
relation between stock n’s net flow for the first group and stock I’s price change
(which equals —Corr(A[12(n), AP;(1)), the negative of the same correlation for
the second group).

ProrosrTioN 3 (Correlation between absolute flows and absolute price changes):
When there are two groups (J = 2), the absolute flow of stock n is nonnega-
tively correlated with the absolute price change of any stock l, 1 <n,l < K. The
correlation increases in p,; and is given by

. - 2 .
Corr(U;(n), |AP(1)]) = P I:,/l - pf’l + pn, arcsin p,; — 1] > 0. 27

The equality holds if and only if p,; = 0.

Karpoff (1987) and Gallant et al. (1992) document that high trading volume
tends to be associated with large absolute returns. The above proposition im-
plies that such findings are the other side of investors’ trend-following and
contrarian behavior. To see this, note that p,, (setting [ = n) is proportional
to the n’th diagonal element of Cov(ATIl}, AP,) = —~Cov(AT12, AP;), our measure
of trading behavior analyzed in Section II.D. Thus, if one of the two investor
groups behaves like trend-followers, the other will act as contrarians on a se-
curity (o5, # 0) if and only if its absolute flow is strictly positively correlated
with its absolute price change (Corr(U,(n), |AP,(n)|) > 0).43

Figure 9 shows the correlation between the absolute flow and the absolute
price change in the single-security economy introduced earlier.** As Propo-
sition 3 asserts, the correlation is positive in both equilibria, meaning that
high volatility tends to be associated with large trades in either direction.
The positive correlation diminishes with information accuracy as the economy
approaches full revelation.

3 This statement is general and we do not require information asymmetry here. In general, a
group can act as trend-followers or contrarians (p,, # 0) for two reasons: information asymmetry
and risk aversion. These are two of the three trade motives remaining in group net flows AT/ after
aggregation.

44 Again, a two-security example is available in the technical appendix posted on the author’s
home page.
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Figure 9. Correlation between the absolute flow, U,, and the absolute price change,
|AP,|, in a partial-information model with a single security. There are two groups of agents.
Group-1 agents are on average better informed about the stock than group-2 agents in that %! =
0.502. The circles and stars represent the high and low volatility equilibria, respectively. Point A
gives Shiller’s (1981b) aggregate volatility estimate, 69.4, at o, = 0,9 = 62.2. Parameter values:

o3 = 16.5, o, = 0.00707, £/ = 40,, and r = 5% per annum or 1.05'° — 1.

II1. Conclusion

Empirical studies document that various investor classes follow trend-
chasing and contrarian strategies in both domestic and international markets.
Many of these markets are found to exhibit excess volatility and, in some cases,
strong comovements in asset returns. This paper is an attempt to explain these
seemingly anomalous phenomena from a fully rational perspective. Using an
overlapping generations model with information asymmetry and random asset
supply, we first show that asset prices can be highly volatile relative to dividend
variability. The model produces multiple equilibria that can exhibit strong or
weak correlations between asset returns, even when asset supplies and future
dividends are cross-sectionally uncorrelated. As is common in noisy rational
expectations equilibrium models, prices serve as noisy public signals about fu-
ture dividends because they aggregate agents’ private signals. This leads to
heterogeneous trading behavior across asymmetrically informed agents. Since
less informed agents rely on price signals more than better informed agents,
the former trade in the same direction as price changes and behave like trend-
followers, while the latter act as contrarians. In addition, trading volume has a
hump-shaped relation with the average level of information precision, because
agents are effectively homogeneously informed or uninformed at extreme lev-
els of information precision. Moreover, a security’s absolute trade flow is posi-
tively correlated with its absolute price change in a market with trend-followers
and contrarians. Accurate average information increases the volatility and
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correlation of changes in stock prices in the highly volatile, strongly correlated
equilibrium.

As this paper is a first investigation into the intersection of the overlap-
ping generations literature and the noisy rational expectations equilibrium
literature, there remain several interesting directions to explore. First, welfare
issues are not addressed in the current paper. It can be shown that our partial-
information equilibrium with asymmetric information precision is not Pareto
efficient (see a relevant discussion in Brennan and Cao (1996)). In such a case,
social welfare can be improved by introducing additional trading sessions or
by introducing derivative securities (Brennan and Cao (1996, 1997) and Cao
(1999)). Extending this work to look at these two mechanisms may be worth
pursuing, as the real world has clearly implemented both of them.

Second, this study does not consider the dynamics of market prices and
agents’ trades. Information is necessarily short-lived in the current model.
Endowing agents with longer lives would allow for analysis of long-lived in-
formation, which can have a richer impact on price and trade dynamics. It
would also provide for a more natural interpretation of trading strategies
and volume, which are currently defined over two successive generations of
agents.

Third, the existence of multiple equilibria naturally raises the question of
stability. Using a rational expectations model with random supply, Gennotte
and Leland (1990) demonstrate that crashes can occur with relatively little
selling. In their model, supply of a single risky asset rises as its price falls due
to investors’ hedging activity. Since the excess demand function can be back-
ward bending, a small change in information signals can cause discontinuity
in equilibrium. This is not the case in the full- and no-information equilibria
of the current model. A stock’s price sensitivity to its own supply shock will
always be negative in these equilibria and hence the demand function will
always be downward sloping. However, due to the lack of a closed-form solu-
tion, additional assumptions may be necessary to establish the stability of our
partial-information equilibria.

Finally, related to the issue of stability and welfare are the following ques-
tions: Why do prices in the real world remain highly volatile and, in some cases,
strongly correlated? Do people really not prefer less volatile markets? Why
do regulators’ efforts to stabilize prices, such as the circuit breaker rule and
market makers’ smooth-quoting requirement, sometimes fail to work? It may
be the case that once an equilibrium has been reached, it is hard to upset, even
though it may not be Pareto optimal. Examples of such suboptimal but stable
equilibria can be found in everyday life. A classic one is the prevalence of the
standard QWERTY keyboard over the more efficient Dvorak keyboard (David
(1985)).45

4 Other examples include metric systems (the U.S. vs. the International Systems of Units),
personal computers (PC vs. Mac), operating systems (Windows, Mac OS, UNIX, Linux), currency
systems (various currencies and the introduction of the euro), and various electronic-device formats
(DVD — R vs. DVD + R, VHS vs. Beta, etc.). Some standards are more prevalent and stable than
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Appendix: Proofs

Proof of Theorem 1: Since showing sufficiency is straightforward, we derive
only the necessary conditions.

(a) Full-information equilibrium. Guess that A; = As = A and B, = B; =B,
and write the price function in (4) as P, = AN, +B Dt+1 + ¢. Then the excess re-
turn function in (6) is Qt+1 = A#s41 + B8; 19 + Dy 41 — r P,. With full information
(3t+1 € ]:t,l)

Var(Q;41|%:;) = AX,AT + BS;BT = S,
E[Qt"'ll}.-t,i] = Dt+1 - rPt. (Al)

Thus, the optimal demand function in (8) is given by X, = %S ‘1(Dt+1 —rb).
The market-clearing condition in (9) can then be written as

f%s—l(bm —rP)di=N,.

Comparing the coefficients on both sides of the equation gives %S Y-rA) =
I, I -rB=0, and ¢ = 0. Rearranging the first condition and substituting
equation (A1) for S with B = 11, we obtain —;A = AX, A" + X;/r2. Since the
right-hand side of this last equation is symmetric and positive definite, A is
symmetric and negative definite. Dropping the transposition superscript gives
the quadratic matrix equation for A in the theorem. Then using these conditions
for the price coefficients, the demand function above reduces to

cD|®|

X:i= —S Y- rANt)—

(b) No-information equilibrium. This case is similar to the full-information
equilibrium above and hence is omitted. Also see Spiegel (1998).

(c) Partial-information equilibrium. Using the assumed price function (4), we
can write the excess return function (6) in terms of independent variables in
the information set 7; ;:

Qi1 = (A1A;" — I)Bok + Agfie1 + G8i41 + Boyyo + Dy — 1B, (A2)
where
& =8;41+ Fi,
F = B;'A,, (A3)
G=B,+1-AF, (A4)

and we have assumed the nonsingularity of A; and By. From normal updat-
ing theory, the conditional variance and mean of future dividends given F; ;
are

others, and some are almost extinct. See Besen and Farrell (1994) and Katz and Shapiro (1994) for
more on this subject.
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Var '@l F) = T+ (EDTHE +E)F 42 =271, (AB)
E[§,4115,] = Si[(FDZ F + 72,

+(FDIEF ] = g, (A6)

where - - . . -
Gri=&—Fipi=641—Fi;

represents the signals about future dividends inferred from the individual en-
dowment and the price signals. From (A2), and noting that §; ., fis+1 ¢ 2.,

Var(Q,+1|]-},,-) = A22,,A§ + GEiGT + B2ZaBg = Si, (A7)

E [Qt+1|-7:t,i] = (A1A2—1 —I)By§; + Giag,i + D, —rp = my;. (A8)

The demand function in (8) is X;; = 6,—1iSi“ lmt,i. Then the market-clearing con-
dition (9) is

1 -
i ES;lmt’idi = Nt. (Ag)
12 2

Define average measures S, £, and £, by

@S) ! = / @S di, (A10)
@8)1GE = /(eiSi)‘lGEidi, (A11)
El=E - -(FD) N+ L (A12)

Comparing the coefficients in both sides of (A9) yields the following nonlinear
system of matrix equations:

(i) Coefficients on D;: [:6:8)7*(I —rBy)di =0, or

Bi=11 (A13)
(ii) Coefficients on N,_;:
[ 6:S) N —rADdi =1, (A14)
or l
A= —;E. (A15)
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From this equation, A; is symmetric negative definite since S;, and hence
S, are symmetric positive definite.

(iii) Coefficients on §;,1: Canceling the noise terms in Z +; and ¢, ;, and using
(A5),

f 6:S)(A1A' —I)Be + GZi (! — 5571 —rBy]di = 0. (A16)
Using the definitions in (A3) and (A11), we obtain

6S)[A1F ' - By + G - GEX; ! —rBy] = 0. (A17)

Here, by equations (A4) and (A13), we have

R
AF'+G= —IL (A18)
Substituting equation (A18) into (A17) and solving for Bs, it follows that
1 |

Note that there are other equivalent expressions.
(iv) Coefficients on #;: Similarly,

f 6:5)[(A14;* — DB,F

+GE(F) IS IFIF —rAs)di =1, (A20)

or
A1~ A+ GEF) I3 —rAy =608 = —rA,,

where we use equations (A3) and (A15). Solving for As, we obtain
A = Ay + %Gi(FT)‘l):n‘l. (A21)

(v) The constant terms: It is easy to see that ¢ = 0.

The coefficient matrices A;, Az, and B; are a solution to the system of non-
linear matrix equations (A15), (A19), and (A21), with F, G, S, and I de-
fined in (A3), (A4), (A10), and (A11). Finally, using equations (A6) and (15), we
may rewrite equation (A8) as m;; = co,; +C1, i€& +Co%1i + Csidri + Cy:D; +
Cs,;N;_; for some constant matrices C1, ..., Cs, and vector co,;. That is, given
the normality assumption, the demand function is linear in the conditioning
variables. In comparing the coefficients on #; in step (iv) above, we have started
with fl e—liSi“ 1C1,,~ di - F = I. This implies that F, and hence Ay and By, must be
nonsingular in equilibrium as assumed.
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The group average measures, 87, S J , £/, and £/, in Section IL.D are defined
analogously as the aggregate average measures:

@)= El'f / 071 di, (A22)
iej
@81 = % f 6:S)71di, (A23)
iej
@ 8)'GEI = %/ (0:5)7'Gxdi, (A24)
EHN T =E)T -5 - FY N+ 27 F L QED. (A25)

Proof of Corollary 1: Denote a symmetric positive-definite square root of
1 1
T, by £? such that (£7)? = ¥,. Start with the quadratic matrix equation (11)

1
under full information. Pre- and post-multiply £; to obtain
r 1_1 1
Y2+ Y + 5555, =0,

where Y = ZI,,%AE,?1 . Completing the square, we obtain (Y + wl ¥ =Mprq,
where Mpy is given by equation (18). Solving for Y and then for A yields

1
A=-Zri e Ml st (A26)

1
where M7, is a square root, not necessary positive definite, of Mz;. The whole
i 1 1
set of M7, is givenby M}, = CALC", where C is the matrix of orthonormal

eigenvectors of Mgy and Ai is a diagonal matrix containing signed square roots
of the corresponding eigenvalues A, ..., Ag, that is, a matrix with elements
+/A1, £4/As,..., £+/Ak on the main diagonal with their signs freely chosen. It
can be shown that the set of solutions in (A26) is unchanged if we take a square
root of T, that is not positive definite in the very first step. It is straightforward
to show that the solution under no information is given by replacing Mz; with
My;. This completes the proof. Q.E.D.

Proof of Proposition 1: Denote a portfolio by x, whose elements represent the
number of shares held. From equation (19), the variance of changes in portfolio
value under homogeneous information is given by

x"Var(AP)x = ——xTAx = = <%x o lx —x"E, oAl C'Tzn_éx) )
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where we have substituted the solution for the A matrix in (17). The first term in
1
the parentheses does not depend on the choice of equilibrium. Write C*%, 2x =

1
y.Then the second term is yTAZy = ZlK: (VA y2), where y; is the Ith element
of y and 1; is the /th diagonal element of A. As one switches the sign on any /A;
from positive to negative, this quantity decreases and therefore the portfolio
variance increases unless y; = 0. Q.E.D.

Proof of Proposition 2:

(a) Full-information equilibrium. Under Assumption 1, it is straightforward
to confirm that the K eigenvectors of 5 and ¥, are givenby x; =[1, ..., 1]%/ vK
and

1

—1,...,1, —(m — 1), 0,...,0", 2<m<K.
/(m _ l)m N — —— —— e’
m —1ones m’th position K — m zeros

X =

The corresponding eigenvalues for ¥; are given by As; = 02[1 + (K — 1)ps] for
x1 and Asy = 02(1 — p;) for x,, 2 <m < K, and similarly for ¥,. Collect the
eigenvectors in C = [x1,...,xx] and the corresponding eigenvalues in diag-
onal matrices A; and A,. Then the spectral decomposition of £; and %,
can be written as ¥; = CAs;C”, z, =CA,,CT. While it is possible to pro-
ceed with the general solution for the A matrix in Corollary 1, we ex-
ploit the symmetry assumption here. Guess that A also has the spectral
decomposition

K
A =CAxCT = Z AmXmXy (A27)

m=1

where A4 is a diagonal matrix with eigenvalue A,, on its m’th main diagonal.
Then the quadratic matrix equation (11) under full information is given as

1
C[A,,AZA + ;:AA + r—zA,;]CT =0. (A28)

Since C is nonsingular, this is equivalent to equating the terms inside the square
bracket to zero. Because all the matrices involved are diagonal matrices of
eigenvalues, this amounts to solving the following quadratic scalar problem for
each eigenvalue:

1
Aqufn+%km+r—2xam=0, m=1,...,K. (A29)

For m = 1, the two solutions to equation (A29) are

. —ro-1+ /r26-2 — 4r—2a§a,,2[1 + (K — 1)p,l[1 + (K — 1)ps] 0 A30
M= 20201 + (K — Doy <0 (430
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as long as ;5 and X, are both positive definite. Form =2, ..., K,

L L, TotErier- 4r-2622(1 — p, X1 — ps)
Ay =2 = 0. A31

We focus on the case in which A3 = A3 = ... = Ag. As we will see below, this
corresponds to symmetric equilibria. Decompose the spectral decomposition of
A in (A27) into two parts, one representing the equal-share portfolio (m = 1)
and another representing the long-short portfolios (m > 2). It can be verified
that

1 1 .- 1 K-1 -1 ... -1
Ml o1 : | -1 K-1 "-. :
A_f L K : 1| (432
) O | -1 -1 K-1

From equation (A32) it is clear that changing the sign of one or more A,,, m > 2,
will produce an asymmetric equilibrium with cross-sectional variation in vari-
ance and correlation (unless all the signs are changed). Recall from (19) that
Varp(AP,) = —%A. Thus, the variance of any individual stock’s price change
18

r A+ (E - Dairg

VarFI,i,,d = ——0_- . K > 0.

The cross-sectional covariance between changes in any two stocks’ prices is

Covrying = A
FI,md - é K
and therefore the correlation is
Corrgy jng = Ao
Flind = 5T+ (K — Dag’

Note that as 62 — 0: A7 - —o00, A] — —r=3002[1 + (K — 1)ps], A; — —oc, and
As = —r73602(1 — ps). The four equilibria are characterized by the following
sets of eigenvalues:

(i) (low volatility, low correlation) (A1, Az, ..., Ax) = (AT, A5, ..., AJ),
(i) (high volatility, high correlation) (A1, Az, ..., Ax) = (AT, A5, ..., A)),
(iii) (high volatility, low correlation) (A1, Ao, ..., Ax) = (A, Ay,...,A5), and
(iv) (high volatility, negative correlation) (A1, As,...,Ax) = (O P
Ay).

Considering the limit of Varzy ;,q and Corrgy ;ng in each equilibrium gives the
result in the proposition.
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(b) No-information equilibrium. The eigenvalue problem in (A29) is replaced
with
2

R
A + %Am +hm=0, m=1,... K. (A33)

Note that the only difference is the constant term. For m = 1, the solutions to
equation (A33) are

—ré-l+ /r26-2 — 4R2r‘2052cr,,2[1 + (K — 1)p, (1 + (K — 1)ps]

A=
L 2021+ (K — 1)p,] <0 (A34)

and for m = 2, ..., K, the solutions are

-rét+ \/r29‘2 —4R%r-20202(1 — p,)X(1 — p5)
202(1 - p,)

AE = af = <0. (A35)

By the formula (20) for the variance of price changes in a no-information equi-
librium, we have the following expressions for the moments of individual stocks’
price changes:

r M+E-Diy R:-1,

Varnging = =5 - 7 =0 >0,
r A —AXig RZ2_1 9
Covni,ind = 5 K T T 0P
C Covnr,ind
OITNIind = o———-
Varyy,ing

It is straightforward to verify that the limits of Varay ing and Corray ing as o2 — 0
are identical to those under full information in all four equilibria. Q.E.D.

Proof of Corollary 2:

(a) Convergence to the full-information equilibrium. When ¥,; — 0Vi, the
conditional dividend-shock variance Var(§;.1|%;;) = ¥; — 0 because private
signals perfectly reveal future dividends. Thus, from equation (A7), the con-
ditional variance of excess returns Var(Q:41|%:,;) = S; - As%,A} + Bo%sBj].
By the definitions in (A10) and (All), the average measures S and ¥ con-
verge to the same limit as S; and X;, respectively, due to information homo-
geneity. Assuming G and F are finite, equations (A19) and (A21) then im-
ply that B; — %I and Ay — A;. Using these limits, equation (A15) converges
to A; — —rlé[Al 2,Al + £;5/r?]. This is the full-information quadratic matrix
equation in (11). Finally, by definition, F — rA; and G — I with B; = %I . Since
A is finite when the quadratic matrix equation has a real solution, so are F
and G, as assumed.

(b) Convergence to the no-information equilibrium. Similar to the full-
information case. When E;il — 0Vi, private signals reveal no information about

=
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future dividends. While investors do have information about the aggregate sup-
ply shocks inferred from their own endowments, this information has no value
because the investors can infer the realized aggregate supply shocks anyway
from their own demands in equilibrium; recall that even in Spiegel’s (1998) no-
information model, the equilibrium demand (14) is proportional to N;. There-
fore, Var(§;,1|%;;) = ¥; — s = £. Then equation (A5) implies that F~! — 0.
Assuming that A; is finite, the definition of F' then requires that B; — 0. So,
from equation (A7), Var(Qt+1|.7-'t,,-) =8; > A%, AT+ GG = S. Further as-
suming that A, is finite, by definition G — (R/r) I with B, = ;1—1 . Then, by
equation (A21), As — A;. Applying these limits to equation (A15), we have
A; > —16[A;%,A] + (R%/r?)x;]. This is the no-information quadratic matrix
equation in (13). Finally, both A; and A; are indeed finite in the limit when the
quadratic matrix equation has a real solution. Q.E.D.

Proof of Proposition 3: When there are two groups of agents (J = 2),
market-clearing implies that net trades occur strictly between them, that is,
|ATT}| = |ATI2|. Thus, U, = (JATT}| + |ATT?|)/2 = |AT1}| = |ATI?|. The quan-
tity of interest is Corr(|ATl(n)|, |AP;(1)]), where we have used U, = |ATT}.
Observe that the two variables inside the absolute value operators are nor-
mally distributed, and the correlation can be calculated from the relevant
noncentral moment; it is known that when % and y are bivariate standard
normal variables with correlation p, E|Xy| = 2(/1 — p% + p arcsin p)/7 (see,
for example, Johnson and Kotz (1972)). Substituting this into the relation
Cov(|%|,|7|) = E|%y| — E|%|E|y| with E|%|E|¥| = 2/7 and dividing both sides
by /Var(|%|)Var(|y|) = (w — 2)/7 gives equation (27) in the main text. Next,
using the fact that

darcsinp 1

ap /1= p2
one can rewrite equation (27) as

- Pn,l
Corr(|ATT}(n)|, |AP,Q))) = ,r_2§/ arcsinpdp >0
- 0

for —1 < p,; < 1. The equality holds if and only if p,; = 0. QE.D.
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