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This paper studies a dynamic model of a financial market with N strategic agents. Agents
receive random stock endowments at each period and trade to share dividend risk. Endowments
are the only private information in the model. We find that agents trade slowly even when the
time between trades goes to 0. In fact, welfare loss due to strategic behaviour increases as the time
between trades decreases. In the limit when the time between trades goes to 0, welfare loss is of
order 1/N, and not 1/N? as in the static models of the double auctions literature, The model is
very tractable and closed-form solutions are obtained in a special case.

1. INTRODUCTION

Large traders, such as dealers, mutual funds, and pension funds, play an increasingly
important role in financial markets. These agents’ trades exceed the average daily volume
of many securities and, according to a number of empirical studies, have a significant
price impact.! Recent studies have also shown that large agents strategically reduce the
price impact of their trades by spreading them over several days.”> One explanation for
the price impact of large trades is that they reveal inside information. However, since large
traders do not outperform the market, the majority of their trades cannot be attributed to
such information.’

In this paper we study a dynamic model of a financial market with large agents who
trade to share risk. We address the following questions. First, what trading strategies do
large agents employ in order to minimize their price impact? Second, what influences
market liquidity? Third, how well does the market perform its basic function of matching
supply and demand, i.e. how small is the fraction of the gains from trade lost because of
strategic behaviour?

We consider a discrete-time, infinite-horizon economy with a consumption good and
two investment opportunities. The first is a riskless technology and the second is a risky
stock that pays a random dividend at each period. The only agents in the economy are N
infinitely-lived, risk-averse large traders. For simplicity, no trades are motivated by inside
information, ie. dividend information is public. Instead, agents receive random stock
endowments at each period, and trade to share dividend risk. Trades have a price impact
because there is a finite number of risk-averse agents. An agent’s endowment is private

1. See, for instance, Kraus and Stoll (1972), Holthausen, Leftwich and Mayers (1987, 1990), Hausman,
Lo and McKinlay (1992), Chan and Lakonishok (1993), and Keim and Madhavan (1996).

2. See, for instance, Chan and Lakonishok (1995) and Keim and Madhavan (1995, 1996, 1998).

3. For instance, the growth and growth and income funds in the 1994 Morningstar CD turn over 76-8%
of their portfolios every year. However, they underperform the market by 0-5%. See Chevalier and Ellison
(1998).
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220 REVIEW OF ECONOMIC STUDIES

information. Trade in the stock takes place at each period and is organized as a Walrasian
auction where agents submit demand functions.

Our assumptions fit particularly well inter-dealer markets, i.e. markets where dealers
trade to share the risk of the inventories they accumulate from their customers. Inter-
dealer markets are very active for government bonds, foreign exchange, and London Stock
Exchange and Nasdaq stocks.* Dealers are large and generally are the only participants
in these markets. Their endowments are the trades they receive from their customers, and
are private information. Finally, in many inter-dealer markets trade is centralized and
conducted through a limit-order book.

This paper is related to three different literatures: the market microstructure litera-
ture, the literature on durable goods monopoly, and the literature on double auctions.
The relation to the market microstructure literature is through the asset trading process.
Starting with Glosten and Milgrom (1985) and Kyle (1985), the market microstructure
literature has mainly focused on how inside information is revealed through the trading
process. The literature carefully models insiders’ strategic behaviour but takes as exogen-
ous the behaviour of agents who trade for reasons other than inside information.® This
paper focuses instead on the strategic behaviour of these agents. Our large traders are
similar to insiders to some extent, since they are trying to minimize price impact. However,
the “noise” traders, who are essential for trade in an insider model, are not present in our
model.

This paper is also closely related to the literature on durable goods monopoly.® Large
traders as well as durable goods monopolists delay trades in order to practice price dis-
crimination. In both cases there is a welfare loss due to delaying trades: in this paper
dividend risk is not optimally shared while in the durable goods monopoly literature
future gains are discounted. The main difference from most of this literature, where the
monopolist’s cost is public information, is that agents’ endowments are private
information.” Moreover, by assuming that private information is continuously generated
over time (since agents receive endowments at each period), this paper differs from
previous models with private information.®

Finally, this paper is related to the double auctions literature since it studies how
strategic behaviour and welfare loss depend on the size of the market. Most of this litera-
ture considers static models with risk-neutral agents who have 0-1 demands.’ Instead, we
consider a more realistic (in a financial market framework) dynamic model where agents
are risk-averse and have multi-unit demands.

Our results are the following. First, agents trade slowly even when the time between
trades, A, goes to 0, i.e. even when there are many trading opportunities. The increase in

4. In the foreign exchange market, inter-dealer trading is 80% of total volume (Lyons (1996)). In the
London Stock Exchange and the Nasdaq the numbers are 35% and 15% (Reiss and Werner (1995) and Gould
and Kleidon (1994)).

5. For surveys of the market microstructure literature, see Admati (1991) and O’Hara (1995). Admati and
Pfieiderer (1988) endogenize the behaviour of uninformed agents in a limited way. Bertsimas and Lo (1998)
study the behaviour of a large agent who may or may not be informed. However, they do not endogenize prices.

6. See, for instance, Stokey (1981), Bulow (1982), and Gul, Sonnenschein, and Wilson (1986).

7. Another difference is that this paper introduces risk aversion and a different trading mechanism. The
closest paper in that respect is DeMarzo and Bizer (1998) which allows for increasing marginal costs and a
similar trading mechanism.

8. Cramton (1984), Cho (1990), and Ausubel and Deneckere (1992) assume that the monopolist’s cost is
private information.

9. See, for instance Gresik and Satterthwaite (1989), Satterthwaite and Williams (1989), and Rustichini,
Satterthwaite and Williams (1994). Wilson (1986) considers a dynamic model with risk-neutral agents who have
0-1 demands.
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trading opportunities has a direct and an indirect effect on agents’ behaviour. To deter-
mine the direct effect, we assume that price impact stays constant. With more trading
opportunities, agents have more flexibility. They break their trades into many small trades
and, at the same time, complete their trades very quickly. Price impact increases, however,
since a trade signals many more trades in the same direction. The increase in price impact
induces agents to trade more slowly, which further increases price impact, and so on.
Agents trade slowly because of this indirect effect. Our result is contrary to the Coase
conjecture studied in the durable goods monopoly literature. To compare our result to
that literature, we study the case where agents’ endowments are public information. Con-
sistent with the Coase conjecture, agents trade very quickly as & goes to 0.

We next study the welfare loss due to strategic behaviour. Our second result is that
welfare loss increases as the time between trades, A, decreases. Therefore, welfare loss is
maximum in the limit when A goes to 0. Our result implies that in the presence of private
information, dynamic competitive and non-competitive models differ more than their
static counterparts.

We finally study how quickly the market becomes competitive, i.e. how quickly wel-
fare loss goes to 0, as the number of agents, N, grows, Our third result is that welfare loss
is of order 1/N? for a fixed 4, but of order 1/N in the limit when # goes to 0. Therefore,
in the presence of private information, dynamic non-competitive models become competi-
tive more slowly than their static counterparts. The 1/N? result was also obtained in the
static models of the double auctions literature.

A practical implication of our results is that a switch from a discrete call market to
a continuous market may reduce liquidity and not substantially increase welfare.'® Our
results also suggest that if dealers’ trades in the customer market are disclosed immedi-
ately, trading in the inter-dealer market will be more efficient.

The rest of the paper is structured as follows. In Section 2 we present the model. In
Section 3 we study the benchmark case where agents behave competitively and take prices
as given. In Sections 4 and 5 we assume that agents behave strategically. In Section 4 we
study the case where agents’ endowments are private information, and in Section 5 we
study the case where endowments are public information. Section 6 presents the welfare
analysis and Section 7 contains some concluding remarks. All proofs are in the appendix.

2. THE MODEL

Time is continuous and goes from 0 to co. Activity takes place at times [k, where /=
0,1,2,... and A>0. We refer to time /i as period /. There is a consumption good and
two investment opportunities. The first investment opportunity is a riskless technology
with a continuously compounded rate of return r. One unit of the consumption good
invested in this technology at period / — 1 returns ¢ units at period /. The second invest-
ment opportunity is a risky stock that pays a dividend &,/ at period /. We set dy = d and

d/: d/_1+6,'. (21)

The dividend shock &, is independent of &, for /£, i.e. dividends follow a random walk,
and is normal with mean 0 and variance 6”A. All agents learn &, at period /, i.e. dividend
information is public.

10. Economides and Schwartz (1995) suggest this as one of the reasons why the NYSE should incorporate
a call market into its continuous trading system.
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There are N infinitely-lived agents. Agent i consumes c¢; ;4 at period /. His utility over
consumption is exponential with coefficient of absolute risk-aversion o and discount rate

B, ie.
—h 3" exp(—ac;, — Blk). 2.2)

Agent i is endowed with M units of the consumption good and e shares of the stock at
period 0. At period /, /21, he is endowed with &, shares of the stock and

h
~d,

i1
1-e '

—rh

units of the consumption good. The consumption good endowment is the negative of the
present value of expected dividends, d,4/(1 —e™™), times the stock endowment, £,;."" The
stock endowment, €,;, is independent of &, for i#i” or [#/’, independent of &,, and
normal with mean 0 and variance o2k We generally assume that &, is private information
to agent { and is revealed to him at period /. In Section 5 we study the public information
case where all agents learn ¢;, at period /.

Trade in the stock takes place at each period / 2 1. The trading mechanism is a Walra-
sian auction as in Kyle (1989). Agents submit demands that are continuous functions of
the price p;. The market-clearing price is then found and all trades take place at this price.
If there are many market-clearing prices, the price with minimum absolute value is selected
(if there are ties, the positive price is selected). If there is no market-clearing price, there
is either positive excess demand at all prices or negative excess demand at all prices, since
demands are continuous. In the former case the price is 00 and all buyers receive negatively
mfinite uatility, while in the latter case the price is —c0 and all sellers receive negatively
infinite utility.

The sequence of events at period / is as follows. First, agents receive their endowments
and learn the dividend shock, &;. Next, trade takes place. Then, the stock pays the divi-
dend, d;h, and finally agents consume ¢, s. We denote by M, and e;,; the units of the
consumption good and shares of the stock that agent i holds at period /, after trade takes
place and before the dividend is paid. We allow M, and e;, to negative, interpreting them
as short positions. We denote by x;,(p,) the demand of agent / at period /. We only make
explicit the dependence of x;,(p;) on the period / price, p,. However, x;,(p;) can depend
on all other information available to agent i at period [, i.e. 8 for I’S1, p, for I’ <, g;
for /=, and, in the public information case, €;, for j#i and /'S /.

3. THE COMPETITIVE CASE

In this section we study the benchmark case where agents behave competitively and take
prices as given. We first define candidate demands and deduce market-clearing prices. We
then provide conditions for demands to be optimal given the prices.

11. We introduce the consumption good endowment for tractability. With this endowment, the risk rep-
resented by the stock endowment is independent of the dividend level. The model without the consumption good
endowment is somewhat more complicated but produces the same results. The consumption good endowment
is consistent with the inter-dealer market interpretation of the model. If a dealer receives a positive endowment
shock, i.e. buys stock from a customer, he pays the customer in return,
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3.1. Candidate demands and prices
The demand of agent 7 at period / is
Xi(p1) = Ady— Bp;—ale, ;-1 + €.4)- (3.1

Demand, x;,(p,), is a linear function of the dividend, d,, the price, p;, and agent i’s stock
holdings before trade at period /. Stock holdings are the sum of stock holdings after trade
at period /-1, ¢;;_,, and of the stock endowment at period /, £,;,. The parameters 4, B,
and a are determined in Section 3.2. The market-clearing condition,

zf\— 1 xi.[(pl) = 07 (32)
and the definition of x;,(p;) imply that the price at period / is

A a zfv: e+ Ey)
pr= *d[—— — .

B B N -3

The price, p;, i1s a hnear function of the dividend, d,, and of average stock holdings,
va: eyt €.1)/N.
The stock holdings of agent i after trade at period / are

e = (e +€)+x.(pr), 3.4)

i.e. are the sum of stock holdings before trade, e,,_;+¢;,, and of the trade, x.;(p)).
(p: now denotes the market-clearing price, (3.3)). To determine x;,(p;), we plug p; back in
the demand (3.1) and get

Zivf‘l (ej,/— 1 + 8_/',1)

N (e + el.z)>. (3.5)

xi(pr) = a(

Equations (3.4) and (3.5) imply that

Z;VZ e+ €5)
~ .

ey=(1—-a)e, - +&,)+a (3.6)
Stock holdings after trade are a weighted average of stock holdings before trade and
average stock holdings. Trade thus reduces the dispersion in stock holdings. The param-
eter a measures the speed at which disperse stock holdings become identical, and dividend
risk is optimally shared. In Section 3.2 we show that « is equal to 1. In the competitive
case stock holdings become identical after one trading round.

3.2. Demands are optimal

Our candidate demands and prices were defined as to satisfy the market-clearing con-
dition. To show that they constitute a competitive equilibrium, we only need to show that
demands are optimal given the prices. In this section we study agents’ optimization prob-
lem and provide conditions for demands to be optimal. The conditions are on the param-
eters A, B, and a.

We formulate agent i’s optimization problem as a dynamic programming problem.
The “state” at period / is evaluated after trade takes place and before the stock pays the
dividend. There are four state variables: the agent’s consumption good holdings, M,,, the
dividend, 4, the agent’s stock holdings, ¢;,, and the average stock holdings, Zj.": €/ N.
There are two control variables chosen between the state at period /-1 and the state at
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period /: the consumption, ¢;;_,, and the demand, x;,(p,). The dynamics of M,; are given
by the budget constraint

h
M= e™(My_y+d_sey1h—ciy_1h) - dl ,hé'll =pixi(pr)- (3.7

The agent behaves competitively and takes prices as given. Therefore the price, p;, in the
budget constraint is independent of the agent’s demand and given by equation (3.3). The
dynamics of d; and e;; are given by equations (2.1) and (3.4), respectively. (Equation (3.6)
gives the dynamics of ¢;; only when the agent submits his equilibrium demand.) Finally,
the dynamics of ij: , €./ N are given by

N N
Zj: 1651 _ 2j= 1 (ejJ—l + 8!',1)
N N

: (3.8)

since average stock holdings are equal before and after trade. Note that the agent does
not observe other agents’ stock holdings directly. However, he can infer average stock
holdings from the price, p;, using equation (3.3).

Summarizing, agent i’s optimization problem, (P.), is

su%) ) —E, (h Y. oexp(—acy~ Blh)) ,
Ci i Xi APl

subject to

A a va: (-1t Ey)
p=—d-—=—,
B B N

h
M,=¢ (le 1+Hdie—h—ciyah) — dl e_,,, 1= pixi(pr)s

di=d;_,+ 6,
€= (ey-1+€:)+xu(p1),
N N
218 Xy-q (-1t E5)

- 3

N N

and the transversality condition

N

l—300

lim E,V, (M,,,d,,e,,,z N j’l) exp (-fh) =0, (3.9)

where V, is the value function.'” Our candidate value function is

EJ'V_ 1 €l
VAMy, di e, _LN‘-‘

1-¢™ die,,+ F e 3.10
—_GXP(_O‘( ’ M, +de,+ (Q’(Zj—lejl/N))*-q)). (3.10)

12. The transversality condition (3.9) is standard for optimal consumption-investment problems. See, for
instance, Merton (1969) and Wang (1994).
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In expression (3.10), F(Q, v} = (1/2)»'Qv for a matrix Q and a vector v (¥' is the transpose
of v), Q is a symmetric 2 x 2 matrix, and ¢ is a constant.

In Proposition A.1, proven in Appendix A, we provide sufficient conditions for the
demand (3.1) to solve (P.), and for the function (3.10) to be the value function. The
conditions are on the parameters 4, B, a, 0, and ¢, and are derived from the Bellman
equation

Y e
=1 S
Vc(Mi,l~ladIlaei,lla
N
N
j=15i1

= sup [_CXP (o - )h+ E; Vc(Ml,l, d, e,

)exp (—ﬂh)}. (3.11)
el 1xi(p1)

There are two sets of conditions, the “optimality conditions” and the “Bellman con-
ditions”. To derive the optimality conditions, we write that the demand (3.1) maximizes
the R.H.S. of the Bellman equation. To derive the Bellman conditions, we write that the
value function (3.10) solves the Bellman equation.

We now derive heuristically the optimality conditions and later use them to compare
the competitive case to the private and public information cases. There are 3 optimality
conditions. The first optimality condition concerns A/B, the sensitivity of price to the
dividend. To derive this condition, we set ¢;,_; + €, and Z;V: e +e )/ N to 0, and d,
to 1. If agent ¢ submits the demand (3.1), his trade is 0 by equation (3.5). Suppose that he
modifies his demand and buys Ax shares. His holdings of the consumption good decrease
by p;Ax, which is (4/B)Ax by equation (3.3). His stock holdings become Ax, while average
stock holdings remain equal to 0. Equation (3.10) implies that the value function does not
change in the first-order in Ax if

——Zi1=0 3.12
3 (3.12)

Therefore, A/B, the sensitivity of price to the dividend, is #/(1 —e™™), the present value
of expected dividends.

The second optimality condition concerns a/B, the sensitivity of price to average
stock holdings. To derive this condition, we set d;, to 0, and e;_,+¢€;, and
Zj.vz {e;s-1+€;)/N to 1. If agent i submits the demand (3.1), his trade is 0 by equation
(3.5). Suppose that he modifies his demand and buys Ax shares. His holdings of the
consumption good decrease by p,Ax, which is —(a/B)Ax by equation (3.3). His stock
holdings become Ax, while average stock holdings remain equal to 1. The value function
does not change in the first-order if

~rht

1-¢™ a
»E+ O +0,=0. (3.13)

h

(0., denotes the 7, j’th element of the matrix Q.)

The third optimality condition concerns the speed of trade, a. To derive this con-
dition, we set d; and 2;\’: (e i-1+€,,)/Nto0,and e;;_,+¢;, to 1. Agent i thus needs to
sell one share to the other agents. If he submits the demand (3.1), he sells a shares. Suppose
that he modifies his demand and sells Ax fewer shares. His holdings of the consumption
good do not change since p,= 0. His stock holdings become 1 —a+ Ax, while average
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stock holdings remain equal to 0. The value function does not change in the first-order if

(1-a)Q1,=0. (3.14)

Equation (3.14) implies that ¢ = 1. In the competitive case the agent equates his marginal
valuation to the price, and sells the one share immediately. His stock holdings become
equal to average stock holdings, and dividend risk is optimally shared.

To derive the Bellman conditions we need to compute the expectation of the value
function. The value function is the exponential of a quadratic function of a normal vector,
and its expectation is complicated. Therefore, the Bellman conditions are complicated as
well. In Appendix A we show that the optimality conditions and the Bellman conditions
can be reduced to a system of 3 non-linear equations in the 3 elements of the symmetric
2 x 2 matrix Q.

The Bellman conditions simplify dramatically in the limit when endowment risk, o2,
goes to 0. In Proposition A.2, proven in Appendix A, we solve the non-linear system in
closed-form for 62 = 0 and use the implicit function theorem to extend the solution for
small 62. The Bellman conditions have a very intuitive interpretation for o2 = 0. To illus-
trate this interpretation, we determine Q,;+ Q,, and 0, using the Bellman conditions.
The expressions for 0;,+ 0., and @, will also be valid in the private and public infor-
mation cases. In the next two sections we will combine these expressions with the opti-
mality conditions, to study market liquidity and the speed of trade.

Adding up the Bellman conditions for 0, ; and 0 ,, i.e. equations (A.23) and (A.25),
we get

Qi+ Q2= (~ac’h+ (Oi1+012) e (3.15)

The L.H.S. Q. + Q1.2, represents agent i’s marginal benefit of holding Ax shares at period
I, when d;= 0 and e,, = Zjv L €uv=1. This marginal benefit is the sum of two terms. The
first term, —a6°he ™", represents the marginal benefit of holding Ax shares between periods
{and !+ 1. This term is in fact a marginal cost, due to dividend risk. The marginal cost is
increasing in the coefficient of absolute risk-aversion, &, and in the dividend risk, o”. The
second term, (Qy; + Q,,)e””, represents the marginal benefit of holding Ax shares at per-
iod /+ 1. It is the same as the marginal benefit at period / (except for discounting) because
diyy, €., and 2 1€, 1 are equal in expectation to their period / values. The Bellman
conditions 51mp11fy for 62=0 because the marginal benefit between periods / and /+1 is
only due to dividend risk. For 2> 0, the marginal benefit is also due to endowment risk

and is a complicated function of Q. Equation (3.15) implies that

aO_Z he—rh

O+ Qia=—-———;- (3.16)

1-e

Therefore, 0y, + 0, is simply a present value of marginal costs due to dividend risk.
The Bellman equation for Q,; is equation (A.23), i.e.

= (ac’h+(1—a)’Q)e ™. (3.17)
The L.H.S., 0., represents the marginal benefit of holding Ax shares at period /, when

d,= Zjv_ ,¢;:= 0 and e;;= 1. This marginal benefit is the sum of two terms. The first term
represents the marginal benefit of holding Ax shares between periods / and /+ 1. The
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second term represents the marginal benefit of holding (1 —«)Ax shares at period /+1."
This marginal benefit is obtained from the marginal benefit at period / by discounting and
multiplying by (1 —a)’. The “first” 1 —«¢ comes because e,,,, is 1 —a instead of 1 (in
expectation) and the “second” because we consider (1 — a)Ax shares instead of Ax. Equa-
tion (3.17) implies that

—rh

oc’he

Qi = T ey (3.18)
Therefore, @, 1s a present value of marginal costs due to dividend risk, exactly as
01,1+ (1.1 However, the discount rate is higher than r, and incorporates the parameter a
that measures the speed of trade. This is because for Q,, + @, the agent expects to hold
one share forever, while for (;, the agent expects to sell the share over time.

4. THE PRIVATE INFORMATION CASE

In this section we study the case where agents behave strategically. We refer to this case
as the private information case in order to contrast it io the case studied in the next
section, where agents behave strategically and where endowments are public information.
We first construct candidate demands, and provide conditions for these demands to con-
stitute a Nash equilibrium. We then study market liquidity and the speed of trade.

4.1. Demands

The demand of agent i at period [ is
Xilp) = Ad;— Bp;—ale; ;- + £,,). 4.1)

Demand is given by the same expression as in the competitive case. Therefore the price,
the trade, and stock holdings after trade are also given by the same expressions. The
parameters A, B, and a will however be different. In particular, the parameter a, that
measures the speed of trade, will be smaller than 1. Note that agent i’s demand does not
depend on his expectation of other agents’ stock holdings, which is 2. €1 since stock
holdings are 3, (e;;- +&,,)."" In fact. if we introduce a term in ¥, €,s- in the demand
(4.1), we will ﬁnd that its coefficient is 0. This is surprising: if 2, €.~ increases, agent i
expects larger future sales from the other agents. His demdnd at period / should thus
decrease, holding price constant. Demand does not change because “‘holding price con-
stant” means that the period / stock endowments, 2.4 €. are such that stock holdings,
2.l 1+€;;), Temain constant.

Our candidate demands constitute a Nash equilibrium if it is optimal for agent / to
submit his candidate demand when all other agents submit their candidate demands.'* We

13. We assume that the agent sells aAx shares at period /+ 1, while for Oy, + 0, we assumed that the
agent keeps all Ax shares. By the envelope theorem, the two assumptions are equivalent. In the private and
public information cases, it is casier to determine ), , making the first assumption. Tndeed, if the agent sells aAx
shares, p,. is independent of Ax and equal to 0. If the agent keeps all Ax shares, we have to take into account
the change in p,,,. For Q,, + Q, , the change does not matter because the agent does not trade in expectation
at period /+1.

14. Agent 7 can infer 2w €11 from the period /- | price, P

15. Note that there may exist other Nash equilibria in which demands are non-linear or depend on more
variables than p,, d,, and ¢;,-, + £, (such as “trigger-strategy” equilibria). Studying these equilibria is beyond
the scope of this paper.
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now study agent i’s optimization problem and provide conditions for the demand (4.1) to
be optimal. The only difference between this optimization problem and the optimization
problem in the competitive case, concerns the price, p;. In the competitive case p; is inde-
pendent of the agent’s demand and given by equation (3.3). In the private information
case p, is given by the market-clearing condition

Zj;e{ (Ady— Bpi—ale;;—1+ ;1)) + x.{p1) = 0. (4.2)

The price in the private information case coincides with the price in the competitive case
only when agent i submits his equilibrium demand.
Agent {’s optimization problem, (P,,), is

sup —Eo (h Y, exp(—ocy — ﬂlh))

einxi(pi)
subject to

Zj::i (Ad] - BPI - a(eﬂf, + Sj’I)) + x,-,l(pl) = 0,

h
M;, = erh(Mi,I—l +diaeyh =iy 1h) - dll—?f, £ = prxi( o),

d=d_1+96,
e = (€1 +€1) +x:.(p1),

N N
ij 1 €51 Z_;: 1 (ejJ*l + Sjyl)

3

N N
and the transversality condition
. ZNz 1 ej,]
lim EyV,| M.y, di, ey, —T exp (-pih) =0,
1>

where V,, is the value function. Our candidate value function is

Zj'v: 1650 )
N

Vpr(Mz',l, d, €irs

-l s o sy %)) w2
= -—expl-o P wtdieg+ F|Q, Zj-\l:le,’,//N +q ) 4.3)

The value function is given by the same expression as in the competitive case. The param-
eters Q and ¢ will however be different. In Proposition B.1, proven in Appendix B, we
provide sufficient conditions for the demand (4.1) to solve (P,,), and for the function (4.3)
to be the value function. These conditions are the optimality conditions and the Bellman
conditions.

The first two optimality conditions are the same as in the competitive case, namely

l_e—rhé
h B

+1=0, (4.4)
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and

1 _ €~rh

h

%+ Qi+ 012=0. (4.5)

The conditions are the same as in the competitive case because they are derived for
€1-1+ €;; equal to 27: (e;i-1+€,,)/N, and equal to 0 or 1. In both cases agent i does
not trade if he submits the demand (4.1). Therefore, if he modifies his demand, the first-
order change in the value function will be independent of whether the price changes or
not. To derive the third optimahty condition, we set ¢; and Zj.v: (e +€;)/Nto0, and
e;;-1+&;,to 1. Agent i thus needs to sell one share to the other agents. If he submits the
demand 4.1, he sells a shares. Suppose that he modifies his demand and sells Ax fewer
shares. The market-clearing condition (4.2) implies that p, increases by Ax/(N —1)B, and
thus becomes Ax/(N — 1)B instead of 0. Therefore the agent’s holdings of the consumption
good increase by (Ax/(N — 1)B)(a — Ax). His stock holdings become 1 ~a + Ax, while aver-
age stock holdings remain equal to 0. The value function does not change in the first-
order if

1 —e a

h  (N-1)B

+(1-a)0i,=0. (4.6)

Condition (4.6) differs from condition (3.14) in the competitive case, because of the first
term. This term represents the price improvement from trading more slowly. Because of
this term, @ will be smaller than 1.

The Bellman conditions are the same as in the competitive case. In Appendix B we
show that the optimality conditions and the Bellman conditions can be reduced to a
system of 4 non-linear equations in ¢ and in the 3 elements of the symmetric 2 x 2 matrix
Q. In Proposition B.2, proven in Appendix B, we solve the non-linear system in closed-
form for 62= 0 and use the implicit function theorem to extend the solution for small
oo,

4.2, Market liquidity and the speed of trade

4.2.1. Market liquidity. Before defining market liquidity, we study a/B, the sensi-
tivity of price to average stock holdings. Combining the optimality condition (4.5) with
the Bellman condition (3.16), we get

l-¢"a_ oc’he"”

—= . 4.7
h B 1 - @7

To provide some intuition for equation (4.7), we now set &; to 0, and e;;_,+¢&,; and
Zj.vz (ei-1+€,)/N to 1. Agent i thus does not trade, and expects to hold one share
forever. Since he does not trade, the price is equal to his marginal valuation. The L.H.S.
of equation (4.7) corresponds to the price, which is —a/B. The R.H.S. corresponds to the
marginal valuation, which is —ac?he /(1 ~ &™), i.e. is a present value of marginal costs
due to dividend risk.

To define market liquidity, we assume that an agent deviates from his equilibrium
strategy and sells one more share. Market liquidity is the inverse of the price impact, i.e.
of the change in price. The market-clearing condition (4.2) implies that if agent 7 sells one
more share, the price decreases by 1/(~ — 1)B. Therefore, price impact is 1/(N — 1)B. Note
that price impact is equal to the sensitivity of price to average stock holdings, a/B, divided
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by a(N —1). This is because when agent i deviates from his equilibrium strategy and sells
one more share, the other agents incorrectly infer that he did not deviate but received an
endowment shock higher by N/(a(N —1)). Indeed, they do not observe agent i’s endow-
ment and buy 1/(N —1) shares in both cases. In the second case, price impact is the
product of the increase in average stock holdings, 1/(a(N — 1)), times the price sensitivity,
a/B. Equation (4.7) implies that price impact is

1 1 ad’ke™
(N-DB a(N-1) (1-e ™y

(4.8)

Note that price impact is large when « is small, since a sale of one share signals that many
more shares will follow. As the time between trades, £, goes to 0, a will go to 0. Since
price sensitivity goes to a strictly positive limit, price impact will go to o and market
liquidity to 0.

4.2.2. Speed of trade. We now study the parameter a that measures the speed of
trade. Combining the optimality condition (4.6) with the Bellman condition (3.18), we get

1-¢e”  a ac’he™”

n v-ns_ V97

C(0—are 4.9)
To provide some intuition for equation (4.9), we set d; and Ej.v: (eju-1+€;)/N to 0 and
e;;-1+€;; to 1. Agent i thus needs to sell one share to the other agents. At period / he
sells a shares. If he sells fewer shares, he trades off an increase in the price at period / with
an increase in dividend risk at future periods. The L.H.S. of equation (4.9) represents the
price improvement. It is proportional to the price impact, 1/(N —1)8, and the trade, a.
The R.H.S. represents the increase in dividend risk and is a present value of marginal
costs.
Using equation (4.7) to eliminate B, we get

de” —aQe"+(N-1)(1~e™)+(N-2)1-e")= 0. (4.10)

Equation (4.10) gives a as a function of the number of agents, N, and the time between
trades, h, for 62= 0. To study how a depends on N and A, we use equation (4.10) for
o’ =0 and extend our results by continuity for small oZ. In Proposition 4.1, proven in
Appendix B, we study how a depends on N and /.

Proposition 4.1.  For small 62, a increases in N and h.

The intuition for Proposition 4.1 is the following. If N is large, the price improvement
obtained by delaying trades is small. If # is large, there are few trading opportunities.
Therefore, the increase in dividend risk from delaying trades is large. We finally study a
for two limit values of 4. The first value is o« and corresponds to the benchmark static
case. In the static case a is (N —2)/(N —1).'® The second value is 0 and corresponds to the
continuous-time case. In Proposition 4.2 we show that a is of order & and thus goes to 0
as h goes to 0. Proposition 4.2 is proven in Appendix B.

Proposition 4.2.  For small 6%, a/h goes to @>0 as h goes to 0.

16. For o2= 0, the result follows from equation (4.10). For o> 0 (and not necessarily small) the proof is
available upon request.
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To understand the implications of Proposition 4.2 for the speed of trade, assume that
at calendar time 7 agent i holds one share and average stock holdings are 0. The agent
thus needs to sell one share, and sells a shares at time 7. At time f+ /A he needsto sell 1 —a
shares, and sells a(1 — a) shares. At time ¢+ 24 he needs to sell (1 —a)” shares, and so on.
Therefore, at calendar time ¢ such that / —¢ is a multiple of 4, the agent needs to sell
(1 —a)" " shares. Since a/h goes to @>0 as h goes to 0, (1 —a)” """ goes to e e
(0, 1). The agent thus sells slowly.

The result of Proposition 4.2 is somewhat surprising since it implies that agents trade
slowly even when there are many trading opportunities. To provide some intuition for
this result, we assume that # goes to 0, and proceed in two steps. First, we assume that
price impact, 1/(N — 1}B, stays constant, and determine the direct effect of 4 on a. Second,
we take into account the change in price impact, and determine the indirect effect.

Equation (4.9) implies that if price impact stays constant, a is of order V. Therefore,
both @ and (1 —a)" =" go to 0 as / goes to 0. Since a goes to 0, agents break their trades
into many small trades. At the same time, since (1 —a)" =" goes to 0, agents complete
their trades very quickly. The intuition 1s that with constant price impact, agents’ problem
is similar to trading against an exogenous, downward-sloping demand curve. As & goes
to 0, agents can “go down” the demand curve very quickly, achieving perfect price-dis-
crimination and bearing little dividend risk. Note that both the L.H.S. and the R.H.S. of
equation (4.9) are of order VA, and thus go to 0 as 4 goes to 0. The L.H.S. represents the
price improvement obtained by delaying. Since agents break their trades into many small
trades, the price improvement concerns a small trade and goes to 0. The R.H.S. represents
the increase in dividend risk from delaying. It goes to 0 since agents complete their trades
very quickly and bear little dividend risk.

Equation (4.8) implies that as 4 and « go to 0, price impact does not stay constant,
but goes to co. The intuition is that a trade signals many more trades in the same direction.
The increase in price impact implies a decrease in a, which implies a further increase in
price impact, and so on. To determine this indirect effect of # on @, we note that the
L.H.S. of equation (4.9) does not go to 0 as # goes to 0. Indeed, the price improvement
obtained by delaying is proportional to the trade, g, which is small, and the price impact,
1/(N —1)B, which is large. The product of the trade and the price impact is in turn pro-
portional to the price sensitivity, «/B, which goes to a strictly positive limit. Since the
L.H.S. does not go to 0, the R.H.S. does not go to 0. The increase in dividend risk from
delaying does not go to 0 only when agents trade slowly and « is of order A.

The result of Proposition 4.2 is contrary to the Coase conjecture studied in the dur-
able goods monopoly literature. According to the Coase conjecture, a durable goods mon-
opolist sells very quickly as the time between trades goes to 0. Our result is contrary to
the Coase conjecture because endowments are private information. With private infor-
mation, price impact is larger than with public information, and agents have an incentive
to trade slowly. Price impact is larger because if an agent sells more shares, the other
agents incorrectly infer that he received a higher endowment shock. Therefore, they expect
larger sales in the future. In next section we study the case where endowments are public
information. We show that, as 4 goes to 0, price impact goes to 0 and agents trade very
quickly.

5. THE PUBLIC INFORMATION CASE

In this section we study the case where agents behave strategically and where endowments
are public information. This case serves as a useful benchmark, allowing us to compare

8102 1800100 6Z U0 Jasn abe|j0n uoisog Aq 0LEE9S L/6 1 2/2/99/10B11Sqe-a[o1e/pn]sal/woo dno ojwepeose//:sdiy Woly pepeojumod



232 REVIEW OF ECONOMIC STUDIES

our results to the durable goods monopoly literature. In the inter-dealer market interpret-
ation of the model, the public information case corresponds to mandatory disclosure of
trades that the dealers receive from their customers. We first construct candidate demands
and provide conditions for these demands to constitute a Nash equilibrium. We show that
there exists a continuum of Nash equilibria and select one using a trembling-hand type
refinement. We then study market liquidity and the speed of trade.

5.1. Demands

The demand of agent i at period [ is

P CTRRRI)
N

The only difference with the private information case is that agent i’s demand depends
on other agents’ stock holdings. We will give some intuition for this result later. The price
at period / is

xy(p))= Ad,— Bp,— A, —ale,; 1+ &) (5.1)

! d A.+a Zf\; eyt ey)

PB4 N '
The only difference with the private information case is that the sensitivity of price to
average stock holdings is (4, + @)/B and not a/B. Agent i’s trade and stock holdings after
trade are given by the same expressions as in the private information case.

Our candidate demands constitute a Nash equilibrium if it is optimal for agent i to
submit his candidate demand when all other agents submit their candidate demands. We
now study agent i’s optimization problem and provide conditions for the demand (5.1} to
be optimal. There are two differences between this optimization problem and the optimiz-
ation problem in the private information case. First, agent i’s demand, x;,(p,), can depend
on other agents’ stock holdings, e;,_,+¢;, for j#i, since these are public information.
Second, the market-clearing condition is

N
hIN IR -9
N

instead of (4.2), since demands depend on average stock holdings.
Agent i’s optimization problem, (P,), is

(5.2)

Zf*l' (Ad[ - Bp1 —-A. - a(ej,,_ 1+ Ej,l)) + X,'J(pl) =0, (53)

sup —Fo (h Y oexp(—ocy — ﬁlh)) ,

cit X (B}
subject to

N
Yoo (i1t Er)
N

2 (Ad, —Bp— 4. —alej-1+ e,-,,)) +x,(p) = 0,

h
M= erh(Mi,l—l +dio1eg—1h—cig-1h) - dIT—F €~ pix(pr),s

dy=d-1+90,
€= (€i—1 +€0) + x:1(p1),
N N
Zj: 1651 _ Z_,': [ (ej>/“1+ 8]',1)

N N

[l
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and the transversality condition

. ZN: 1 e;’.l
lim E() Vl’ Mi./, d/, €1y JT €Xp (—ﬁlh) = O,
FE=Y's]
where V), is the value function. Our candidate value function is

~

DIy
Vp(Mi,la d, ey, -j—]\;—/*)

1—¢ rh €1
el ol %)) s

The value function is given by the same expression as in the private information case. In
Proposition C.1, proven in Appendix C, we provide sufficient conditions for the demand
(5.1) to solve (P,), and for the function (5.4) to be the value function. These conditions
are the optimality conditions and the Bellman conditions. The optimality conditions are

L rh

mem A Ly, (5.5)
h B

l-e™ A, +a
¢ + + =0, 5.6
h B Ql.l QI.Z ( )

and
L=e™ 4 _mo=0 (5.7)
[ —— —— —a = . -
h (N-1)B o

Conditions (5.5) and (5.7) are the same as in the private information case. Condition (5.6)
is different, since the sensitivity of price to average stock holdings is (4. + a)/B and not
a/B. The Bellman conditions are the same as in the private information case.

Since there are as many conditions as in the private information case, but there is the
additional parameter A4,, there exists a continuum of Nash equilibria. The intuition for
the indeterminacy is that in the public information case agents know the market-clearing
price, and are indifferent as to the demand they submit for all other prices. Therefore the
slope of the demand function, B, is indeterminate.'” This intuition is the same as in Wilson
(1979), Klemperer and Meyer (1989), and Back and Zender (1993).

To select one Nash equilibrium, we use a refinement that has the flavour of trembling-
hand perfection in the agent-strategic form.'"” We consider the following “perturbed”
game. Each consumption and demand choice of agent / is made by a different “incar-
nation” of this agent. All incarnations maximize the same utility. They take the choices
of the other incarnations, and of the incarnations of the other agents, as given. Consump-
tion is optimally chosen, but demand is x;,(p;) + u,;, where x;,(p;) is the optimal demand
and u;,1s a “tremble”. For tractability, u,, is independent of u; - for =i’ or /#/’. Trembles
are thus independent over agents. Trembles are also independent over time, i.e. over incar-
nations of an agent, and this is why we need to consider trembling-hand perfection in the

17. It might seem that we get indeterminacy only because we allow agent /’s demand to depend on other
agents’ stock holdings, thus introducing the additional parameter A4,. This is incorrect. If in the private infor-
mation case we allow agent i’s demand to depend on his expectations of other agents’ stock holdings, we will
obtain an additional optimality condition. This condition will imply that 4.= 0.

18. See Selten (1975) and Chapter 8 in Fudenberg and Tirole (1991).
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agent-strategic form (that involves incarnations) rather than trembling-hand perfection.
For tractability, #;, is normal with mean 0 and variance ¢7. Since the normal is a continu-
ous distribution, agent i trembles with probability 1. However, behaviour has a rational
flavour since expected demand is x;,(p;), the optimal demand. A Nash equilibrium of the
original game satisfies our refinement if, and only if, it is the limit of Nash equilibria of
the perturbed games as o, goes to 0.

In Appendix C we show that our refinement selects one Nash equlibrium. The
intuition is that an agent does not know the market-clearing price, because of the trembles
of the other agents. Therefore, he is not indifferent as to the demand he submits for
each price, and the slope of the demand function can be determined. More precisely, our
refinement implies an additional optimality condition, that concerns the slope of the
demand function. To derive heuristically this condition, we set d, e, +¢&;;, and
Z;": (eji-1+€,)/N to 0. We also assume that u;, = 0, i.e. agent i does not tremble, and
that ¥°_ ., u;,/N = 1. If agent / submits his equilibrium demand (5.1), he sells one share to

j=1
the other agents at price 1/B. This follows from the market-clearing condition

Z;(V: 1 (€1 +€x1)
N

Zﬁﬂ. (Ad; —-Bp,—A. —ale;;-1+ &)+ uj,l) +x.(p1) =0, (5.8)
i.e. condition (5.3) adjusted for the trembles. If agent / modifies his demand and sells Ax
fewer shares, the price becomes 1/B + Ax/(N — 1)B. The agent’s holdings of the consump-
tion good increase by (1/B+Ax/(N—1)B)1—-Ax)~-1/B. His stock holdings become
—(1 — Ax), while average stock holdings remain equal to 0. The value function does not
change in the first-order if

1-e™ N-2
—+
h  (N-D1B

0.1 =0. (5.9

In Appendix C we show that the optimality conditions and the Bellman conditions
can be reduced to a system of 3 non-linear equations in the 3 elements of the symmetric
2 x 2 matrix Q. In Proposition C.3, proven in Appendix C, we solve the non-linear system
in closed-form for 62 = 0 and use the implicit function theorem to extend the solution for
small &2.

In the public information case, agent i’s demand depends on other agents’ stock
holdings, ¥, (e;:-1+ €;;). By contrast, in the private information case, agent i’s demand
does not depend on his expectation of other agents’ stock holdings, ¥ . e;;-1. The
intuition for the difference is the following. Suppose that in the private information case
Y- €5i-1 increases, holding price constant. Holding price constant means that the period
! stock endowments, ¥ . €;;, are such that stock holdings, 3, {(e;;-1+€,,), remain con-
stant. Therefore, agent i does not expect larger future sales from the other agents, and his
demand remains constant. By contrast, suppose that in the public information case
22 (€j0-1 + €;;) increases, holding price constant. Holding price constant now means that
the other agents “trembled” and by mistake sold less at period /. Therefore, agent i still
expects larger future sales, and his demand decreases.

5.2. Market liguidity and the speed of trade

5.2.1. Market liguidity. The market-clearing condition (5.8) implies that if agent i
deviates from his equilibrium strategy and sells one more share, the price decreases by 1/
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(N = 1)B. Therefore, price impact is 1/{N — 1)B. Combining the optimality condition (5.9)
with the Bellman condition (3.18), we get

__1“7 - aGZhZe rh

(N-1DB (N-2)1—-¢")1-(1-a)Ye")

(5.10)

Price impact is thus difterent than in the private information case. In fact, it is easy to
check that for any ae [0, (N —2)/(N — 1)], price impact is smaller than in the private infor-
mation case. The intuition is that if in the private information case agent i deviates and
sells more shares, the other agents incorrectly infer that he received a higher endowment
shock. Therefore, they expect larger sales in the future. By contrast, if in the public infor-
mation case agent / deviates and sells more shares, the other agents correctly infer that he
deviated (or “trembled”). Therefore, they expect smaller sales in the future, and the price
does not decrease by as much.

Note that price impact is small when « is large, i.e. when dividend risk is shared
quickly. To provide some intuition for this result, we suppose that agent i deviates and
sells more shares. The other agents correctly infer that i deviated and that total stock
holdings remain constant. The deviation increases their stock holdings only for a short
period, since dividend risk is shared quickly. Therefore, the price decrease is small. As the
time between trades, A, goes to 0, ¢ will go to a strictly positive limit, i.e. agents will trade
very quickly. Equation (5.10) implies that price impact will go to 0, and market liquidity
to 00.

5.2.2. Speed of trade. Combining the optimality condition (5.7) with the Bellman

condition (3.18), we get
1 _—Th 2 h —rh
T e (5.11)
h (N-1)B 1-(1—-a)ye™

Equation (5.11) determines a. and is the same as in the private information case. The
L.H.S. represents the price improvement obtained by delaying. The R.H.S. represents the
increase in dividend risk. Using Equation (5.10) to eliminate B, we get

=

-2
N-1

a= (5.12)
Equation (5.12) is valid not only for o = 0 but for any o, since it can be derived directly
from equations (5.7) and (5.9).

The main implication of equation (5.12) is that « is independent of the time between
trades, h. Therefore, agents trade very quickly as % goes to 0. Indeed, assume that at
calendar time ¢ agent i/ holds one share and average stock holdings are 0. At calendar time
¢ such that ¢ -1 is a multiple of A, the agent holds (1 — )"~ " shares. Since « is indepen-
dent of A, (1 —a)"" """ goes to 0 as 4 goes to 0. The agent thus sells very quickly.

To provide an intuition for why agents trade very quickly, we assume that & goes to
0, and proceed as in the private information case. First, we assume that price impact stays
constant, and determine the direct effect of / on a. Second, we take into account the
change in price impact, and determine the indirect effect. Equation (5.11) implies that if
price impact stays constant, « is of order Vi. and thus agents trade very quickly. This
direct effect is the same as in the private information case. Price impact does not stay
constant, however. Equation (5.10) implies that if « is of order VA, price impact goes to 0
as h goes to 0. The decrease in price impact implies an increase in a, which implies a
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further decrease in price impact, and so on. This indirect effect reinforces the result that
agents trade very quickly. Note that the indirect effect works in the opposite direction
relative to the private information case.

6. WELFARE ANALYSIS

In the private and public information cases, stock holdings do not become identical after
one trading round. Therefore, dividend risk is not optimally shared. This entails a welfare
loss. In this section we define welfare loss and study two questions. First, how does welfare
loss depend on the time between trades, #7 In particular, how does welfare loss change
when we move from a static to a dynamic model? Second, how quickly does the market
become competitive as the number of agents, N, grows, i.e. how quickly does welfare loss
go to 0 as N grows?

6.1. Definition of welfare loss

To define welfare loss, we introduce some notation. We denote the time 0 certainty equiv-
alents of an agent in the competitive, private information, and public information cases
by CEQ,., CEQ,,, and CEQ,, respectively. (Since agents are symmetric, certainty equival-
ents do not depend on i.) We also denote the time O certainty equivalent of an agent in
the case where trade is not allowed by CEQ,. The “no-trade” case is studied in Appendix
D. Welfare loss, L, 1s

_ CEQ. - CEQ,, ©1)
CEQ.- CEQ,’ '
in the private information case and
L= w (6.2)

 CEQ.-CEQ,

in the public information case. The numerators of expressions (6.1) and (6.2) represent
the welfare loss in the private and public information cases, respectively, relative to the
competitive case. We normalize this welfare loss, dividing by the maximum welfare loss,
i.e. the welfare loss in the no-trade case relative to the competitive case. This definition of
welfare loss is the same as in the double auctions literature. Proposition 6.1 shows that in
the limit when o7 goes to 0, L is given by a very simple expression. The proposition is
proven in Appendix E.

Proposition 6.1. In both the private and public information cases

_ 2 _ —th
lim Lzulflh).
6250 1-(1—-aye™

6.3)

To provide some intuition for expression (6.3), we rewrite it as
((1-aP+(1-a)e”+ -+ (1 —afT Pe™+- - )1-e).

We also assume that at time ¢ agent i holds one share and average stock holdings are 0.
The agent thus needs to sell one share, but only sells a shares at time ¢. The welfare loss
of not selling (1 —a) shares corresponds to the term (1 —a)’. At time 7 + 4 the agent needs
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to sell (1 —a) shares but only sells a(1 — a) shares. The welfare loss of not selling (1 —a)®
shares, discounted at time ¢, is (1 —a)* ™, and so on. Note that expression (6.3) goes from
0 to 1 as a goes from 1 to 0.

6.2. Welfare loss and h

We now study how welfare loss, L, depends on the time between trades, 4. In particular,
we study how welfare loss changes when we move from a static model (A= o) to a
dynamic model. This exercise allows us to compare our results to the double auctions
literature that mainly considers static models. Corollary 6.1 follows easily from Prop-
osition 6.1 and is proven in Appendix E.

Corollary 6.1.  Suppose that & is small. In the public information case L increases in
h, but in the private information case L decreases in h.

In the public information case, welfare loss decreases as the time between trades, A,
decreases. This result is consistent with our results on the speed of trade. Indeed, in the
public information case, agents trade very quickly as & goes to 0. Therefore, welfare loss
goes to 0 as h goes to 0. In the private information case, welfare loss increases as 4
decreases. This result is not a simple consequence of our earlier results. Indeed, Prop-
osition 4.2 implies that agents trade slowly as 4 goes to 0. This means only that welfare
loss goes to a strictly positive limit as & goes to 0.

To provide some intuition for why welfare loss increases as 4 decreases, we assume
that at time ¢ agent / holds one share and average stock holdings are 0. Equation (4.9),
that we reproduce below, describes the agent’s trade-off.

1-¢™ a4 oo’ he

— = (l—g) ———————.
h (N—I)B( a)1~(1—a)2e"’1

-rh

(6.4)

The L.H.S. represents the price improvement obtained by selling fewer shares at time ¢,
while the R.H.S. represents the increase in dividend risk. The increase in dividend risk
corresponds to the marginal welfare loss. Total welfare loss is proportional to marginal
welfare loss and to 1 —a, the number of shares that agent / does not sell at time r. As 4
decreases, a decreases. If marginal welfare loss does not change, total welfare loss
increases, since agent / sells fewer shares at time 7. The change in marginal welfare loss is
equal to the change in price improvement. Price improvement changes only slightly, since
the increase in price impact, 1/(N — 1)B, offsets the decrease in the trade, a.

Corollary 6.1 does not imply that welfare in the private information case, CEQ,,,
decreases as / decreases. Indeed, as /4 decreases, there are more trading opportunities, and
welfare in the competitive case, CEQ, , increases. Therefore, CEQ,, may increase.'" Cor-
ollary 6.1 rather implies that in the presence of private information, dynamic competitive
and non-competitive models differ more than their static counterparts.

19. We do not study how CEQ,, depends on /i because when /4 changes, the dividend process and prefer-
ences change. This problem can be avoided by considering a “continuous” model where dividends follow a
Brownian motion and preferences are over consumption flow. We do not present the continuous model because
it is complicated. (The Bellman conditions are differential rather than algebraic equations.) We should note that
the continuous model produces the same welfare loss, L, as the discrete model.
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6.3. Convergence to a competitive market

Finally, we study how quickly the market becomes competitive, i.e. how quickly welfare
loss goes to 0, as the number of agents, N, grows. Corollary 6.2 answers this question in
the limit when o> goes to 0. The corollary follows easily from Proposition 6.1 and is
proven in Appendix E.

Corollary 6.2. In the public information case,

1 l-e™

L NI/ (V=1 (€3)
In the private information case
lim L:——ﬁ+o(%), (6.6)
0.0 (N=-1)(1-¢e) N
and
lim lim L= L (6.7)

h—0 0.,—0 N—l

In the public information case, welfare loss is of order 1/N?. In the private infor-
mation case, welfare loss is of order 1/N?, for a fixed . However, in the limit when A
goes to 0, welfare loss is of order 1/N. The two results are consistent: for a fixed small 4,
welfare loss is “of order” 1/N, except when N is very large in which case welfare loss is
of order 1/N?. The 1/N’ result was also obtained in the static models of the double
auctions literature.

Corollary 6.2 implies that in the presence of private information, dynamic non-com-
petitive models become competitive more slowly than their static counterparts. To provide
some intuition for this result, we assume that at time ¢ agent i holds one share and average
stock holdings are 0. Equation (6.4) implies that price improvement is of order 1/N.
Therefore, marginal welfare loss is also of order 1/N. Total welfare loss is proportional
to marginal welfare loss and to 1—a, the number of shares that agent i does not sell at
time z. In the static case, agent i keeps the 1 —a shares forever. Therefore, marginal welfare
loss is proportional to 1 —a. Since marginal welfare loss is of order 1/N, 1 —a is of order
1/N, and total welfare loss is of order 1/N?. (In fact, l —a= 1/(N — 1) since in the static
case a = (N —2)/(N —1).) As h goes to 0, a goes to 0 and 1 —a goes to 1. Therefore, total
welfare loss is of order 1/N. For a fixed small &, 1 —a is close to 1, except when N is very
large. When N is very large, the benefit of delaying is small and 1 —a is of order 1/N as
in the static case.

7. CONCLUDING REMARKS

This paper studies a dynamic model of a financial market with N strategic agents. Agents
receive random stock endowments at each period and trade to share dividend risk. Endow-
ments are the only private information in the model. We find that agents trade slowly
even when the time between trades goes to 0. In fact, welfare loss due to strategic behav-
iour increases as the time between trades decreases. In the limit when the time between
trades goes to 0, welfare loss is of order 1/N, and not 1/N” as in the static models of the
double auctions literature. The model is very tractable and closed-form solutions are
obtained in a special case.
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We made two important simplifying assumptions. The first assumption is that the
only agents in the market are large and strategic. This assumption implies that the equilib-
rium price fully reveals their endowments. If small “noise” traders were present in the
market, price would not be fully revealing and large agents would not be identified
immediately. However, if we introduce noise traders in this model, we run into the infinite
regress problem, i.e. into an infinite number of state variables. The intuition is that since
price is not fully revealing, an agent uses his expectation of other agents’ stock holdings
when forming his demand. To form this expectation, he uses past prices and his own past
stock holdings. Since other agents are forming their expectations in the same way, the
agent needs to form expectations of other agents’ past stock holdings, and so on. Vayanos
(1998) studies a model with one large trader who receives random stock endowments, a
competitive risk-averse market-maker, and noise traders. Since the large trader has better
information than the market-maker, there is no infinite regress problem. When the time
between trades goes to 0, the trading process consists of two phases. During the first
phase, the large trader sells very quickly a fraction of his endowment and is identified by
the market-maker. He completes slowly his trades during the second phase. If there are
many noise traders, the large trader may “manipulate” the market, overselling during the
first phase and buying during the second phase.

The second assumption is that dividend information is public. This assumption rules
out trades motivated by inside information. Chau (1998) studies a model with one large
trader who receives both inside information and random stock endowments, a competitive
market-maker, and noise traders. He also finds that the large trader may manipulate the
market.

APPENDIX
A. The competitive case

We first provide conditions for the demand (3.1) to solve (P.), in Proposition A.1. We then show that the
conditions can be reduced to a system of 3 non-linear equations. Finally, we solve the system in closed-form
for 0% = 0 and extend the solution for small 672, in Proposition A 2.

A.1. The conditions. To state Proposition A.l, we define the following symmetric 2 x 2 matrices. First,
we define ¢ by

Qi =(1-ayo,, (A1)
l—e " 4
Qo= ;—?au ~ @0 +(1 - )01, (A.2)
and
L—e ™24
Q2= hif '%"*'HZQH +2aQy 5+ (s (A3)

Next, we define I, the variance-covariance matrix of the vector (g,,, 3" £ +/N). This matrix is
g j=1%J

. L (1 1N
I = O",h( . (A4)
1/N 1/N
Finally, we define R, R’, and P by
R=T+a@? (A.5)
R =aQ3R'Q, (A.6)

and

P=(Q -R -ac’hl)e ™ (A7
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In equation (A.7), T is a 2 x 2 matrix whose elements are 1 for (i, j) = (1, 1) and 0 otherwise.

Proposition A.1. The demand (3.1) solves (P.) and the function (3.10) is the value function, if the following
conditions hold. First, the optimality conditions (3.12)3.14), and the inequality Q,,<0. Second, the Bellman
conditions

0-r, (A8)
and
—rh —rh _
_log(R)e™ (Be™nh 1, ( L ) (A9)
20(1-¢™) a(l-e™) a “\e’-1

In equation (A.9), |R| denotes the determinant of the matrix R.

Proof. The demand (3.1) solves (P.) and the function (3.10) is the value function, if the following are
true. First, the function (3.10) solves the Bellman equation (3.11), for the demand (3.1) and the optimal consump-
tion. Second, the demand (3.1) and the optimal consumption satisfy the transversality condition (3.9). We will
show that conditions (3.12)~(3.14), @, <0, (A.8), and (A.9) are sufficient for the Bellman equation and the
transversality condition.

Bellman equation

We proceed in 3 steps. First, we show that the optimality conditions (3.12)~3.14), and @, <0 are sufficient
for the demand (3.1) to maximize the R.H.S. of the Bellman equation. Second, we compute the expectation of
the R.H.S. w.r.t. period /-1 information. Finally, we show that the Bellman conditions (A.8) and (A.9) are
sufficient for the function (3.10) to satisfy the Bellman equation.

Step 1. Optimal demand
Before trade at period /, agent i knows &, and £, but not g;, for j=i. He thus chooses his demand, x..(p), to
maximize

[—e

h

h
(—dlfe,ﬂ, £ “szf,l(Pz)) +dfes-r + £+ X0(pr))

e—1+ €t X, (1)
* F(Q’ (Z{VZ e+ Ej,l)/N)>))’

o

—E., j»:€Xp (—a(

where the price, p, is given by equation (3.3). The agent can infer ¥, £, from the price. Therefore his problem
is the same as knowing st,. €,; and choosing a trade, x, to maximize

l—e(A N (€ +E;
‘%(Ed[“%%l)x“d161‘1+d1(e,-11_1+£,-'1+x)

F( ( e -1+ EytXx ))
+ B
Q, Zjv: 1 (e)',lfl + Ej‘[)/N

If the trade (3.5) is optimal, then the demand (3.1) is optimal, since it produces this trade. Setting

N
(ijl(fj,hﬁsi,l)
x= g Rz TR

N —(ei,1—1+8i,1))+-5x’

the demand (3.1) is optimal if Ax = 0 maximizes
_ 1 —e""(ﬁd _a Z;V: e+ e,.z)>(a(2}v= e+ €50)

E \B ' B N N

—(ey 1+ ei.l)) + Ax)

N (e +E;
~dig + d,((l —a)(e 1+ €} +a z’—“—(e—";v—l—ﬁ + Ax)

+F(Q, ((1 —aew-1+e) v alE_ (eu-1 T EL)/N) +Ax)). Al0)

e+ )/N
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Conditions (3.12)~(3.14) ensure that the first-order condition is satisfied for Ax = 0. Condition Q,; <0 ensures
that expression (A.10) is concave.
Using the definition of the matrix ¢, we can write expression (A.10) for Ax = 0 as

d + F( Q/ ( €1t & )) (A 11)
€; . ; . .
e E:ﬁ e+ e,0N/,

Step 2. Computing the expectation

We have to compute the expectation of the period / value function w.r.t. period /—1 information, i.e. w.r.t. 8,
and g,,. Using the budget constraint (3.7) and expression (A.11), we have to compute

_ o, th

1
E,_exp (—05( MMy +dioey -k —Ci- )+ (d + 66—

+F<Q’,( e ))+q)vﬁh). (A12)
X le +€;,)/N

Computing expectations w.r.t. §, is straightforward. We get

__rh

4 4 1. 2, 2
e My e )+ e e 07 el

el 275 o)
2; e !+8/‘.I)/N

b v

To compute expectations w.r.t. £;,, we use the formula
. [ ) 1
E(exp (-a(a + &'x +3x'¢x))) = exp ( - a(a ~Llab' 21+ acE) b+ 3 log |+ acZ? |)) (A14)
\ o

where x is a #x 1 normal vector with mean 0 and variance-covariance matrix X°, 7 the # x n identity matrix, a
a number, b an # x | vector, and ¢ an nx n symmetric matrix. (Formula (A.14) gives simply the moment generat-
ing function of the normal distribution for ¢ = 0. We can always assume ¢ = 0 by also assuming that x is a
normal vector with mean 0 and variance-covariance matrix £2(/+ acX?)™".)

We set

( £ )
= s
Z‘,V, 1 'E.J-//N
X’ the matrix defined by equation (A.4),

1 e

. €is-1 Bh
rh rh 1 2 2
a=——e"(My_y—c,oh+e”d e, —y0007hej; - +F( ( . ))+ +—,
h i . petee ! ¢ Z“,\L,L’/./—l/N 4 a

Ciy—t
b= Q’( o )
Z‘:\: €1 /N
and ¢ = (. Using the definitions of R and R’, we can write expression (A.13) as

—rit
_ , s
exp (‘a(" A“*f’rl(M,./ 1 e oy +etdi e, —Yaothel,

+F(Q’*R’, (27: :/leI/N>)+£l&—log|R\+q>-ﬁh).
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Finally, using the definition of P, we can rewrite this expression as

1-¢ rh h
expl—a P e (M1 —ci—1h) +e"di_rei1

€i1— 1

+ e”’F(P, ( X )) +—Ilog|R| + q) - Bh). (A.15)
Zj]ilejvlfl/N 20

Step 3. Bellman equation

To compute the R.H.S. of the Bellman equation, we have to maximize w.r.t. ¢,

—th

1 —
—exp (—aci - )k —exp (— a( < My, -y ) ve™d e,
+e”'F(P( et ))+ilog|R\ +q) - ﬁh) (A.16)
AL e /N)) 2 ’ ’

Simple calculations show that the maximum is

e ( a(lﬁe_rhM +d +F(P( ot )>+ U jog Rl
—exp|-a|l —— M, 1€ g —lo, e
p h -1 Q16111 zjv:]ej,/“l/N 2 g

—rh _
ger s B R 1 (l_e,,h)log( L ))) (A17)
a a |

This is equal to the period /—1 value function if conditions (A.8) and (A.9) hold.

+

Transversality condition

It is easy to check that, by substituting the optimal c;,_, in the second term of expression (A.16), we find
expression (A.17) times ¢”*. Therefore the expectation of the period / value function at period /— 1, is the period

-1 value function times ¢™. Recursive use of this equation implies equation (3.9). ||

A.2. The System. The system will follow from the Bellman condition (A.8). In this condition, the matrix
P is indirectly a function of ¢, which is in turn a function of B, a, and Q. To have Q as the only unknown, we
eliminate first B and then « in the definition of (. Using condition (3.13), we can write ¢ as a function of @
and Q, as follows

Q= (1-aYQus, (A.18)

Q2= aC-a)0s + O, (A.19)
and

Q2= a2~ a0 + Qoo (A.20)

Since a=1 from condition (3.14), ¢ becomes a function of Q only. Therefore, the system is the Bellman
condition (A.8), where P, R, and R are given by equations (A.7), (A.6), and (A.5), respectively, ¢ by equations
(A.18), (A.19), and (A.20), and a = 1. Having solved this system, we can solve for 4, B, and ¢, using equations
(3.12), (3.13), and (A.9), respectively. We also have to check that inequality @, , <0 is satisfied.

A.3. The solution
Proposition A.2. The system has a solution for small o2. For 62 = Q the solution is

ao.Zh e—Zrh

PR

Q= —acthe™ <0, Gro==0Qpp=~ {—o

(A2D)

Proof. We first solve the system for o2 = 0. We then usc the implicit function theorem to extend the
solution for small ¢2.
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The solution for 6% = 0.
For 62=0, R"= 0 and
Q= P=(¢ -ac’hle™. (A.22)

To solve the system, we use equations (A.18)—~(A.20) and (A.22). We treat ¢ as a parameter in equations (A.18)-
(A.20), obtain Q as a function of a, and then set ¢ = 1 to obtain the @ of the proposition. We treat ¢ as a
parameter because the expression of Q as a function of @ will also be valid in the private and public information
cases.

The equation for Q,, is

= =al 0y, —acthe™, (A.23)
and is satisfied for
oG’ he™™
Qui=- 1—( *éz)ze""'. (A.24)
The equation for @, is
Qo= w@—a)O + Qia)e -, (A.25)
and is satisfied for
_ —rh
Q.= % (A.26)
Finally, the equation for Q0,5 is
Q2= (—a2—a)Qu, + Qaade™, (A.27)
and 1s satisfied for
5 —h
Qao= - La)g%‘e (A.28)

[—¢™

Setting a = 1, we obtain the Q of the proposition.

Small 62,

To extend the solution for small 62, we consider the function

: Q_I‘Ih_Pl.l‘
G(QI.I»QI.ZwQZ‘_‘AG{ 0'5~/l-N):Z Q- P
Qoo P!

The matrices P, R’, R, and @ are defined by equations (A.7), (A.6), (A.5), (A.18), (A.19), and (A.20), fora =
1 and Q1= Q1.h. We use Oy, instead of O, to deal with the case #= 0. We apply the implicit function
theorem to G al the point -, where o, = 0, 0, = —~ac’e™™, and 0., and 0., are given by expressions (A.21)
for Qv = Q1.h. h can be 0, in which case we extend G, @1 ,, and 0, bc continuity. The function G is equal to
0 at ./, since Q solves the system. To apply the implicit function theorem, we only need to show that the
Jacobian matrix of G w.r.t. 0,,, 0., and (., is invertible. Using equation (A.22) (which is valid since we
compute partial derivatives for 67 = 0) it is easy to check the following. First, the partial derivatives of G, ,
w.rt. Ovi, Gia wort. Qs and Gy, w.rt. O, are strictly positive. Second, the partial derivatives of Gy WLt
Q2. 022, and G5, w.r.t. O, are 0. Therefore. the Jacobian matrix is invertible. Since @, ;<0 at v/, 0y, <0
and Q,, <0 for small o. ||

B. The private information case

We first provide conditions for the demand (4.1) to solve (P,,), in Proposition B.1. We then show that the
conditions can be reduced to a system of 4 non-linear equations, We solve the system in closed-form for
o2 = 0 and extend the solution for small 62, in Proposition B.2. Finally, we prove Propositions 4.1 and 4.2.

B.1. The conditions. To state Proposition B.1, we use the matrices ¢, *° R, R, and P, defined in Appen-
dix A.
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Proposition B.1. The demand (4.1) solves (P,,) and the function (4.3) is the value function, if the following
conditions hold. First, the optimality conditions (4.4)(4.6), and the inequality

-1‘:4" (N—21)8+ 01 <0. (B.1)
Second, the Bellman conditions
Q=P, B.2)
and
_log (IRI){;" L B ok L) < L ) (B.3)
2{1 —e™) a(l—-e¢™) o A |

Proof. We will show that the optimality conditions (4.4)-(4.6), and (B.1) are sufficient for the demand
(4.1) to maximize the R.H.S. of the Bellman equation. The rest of the proof is as in the competitive case.

Before trade at period /, agent i knows 8; and €,;, but not g;, for j#i. He thus chooses his demand, x;,(p,),
to maximize

1- e—rh

h
el o)
Yo leu-1t g)/N
where the price, p,, is given by equation (4.2) and depends on x;/(p;). Instead of solving this problem, we proceed
as in Kyle (1989) and solve a simpler problem. We assume that the agent knows the residual demand of the
other agents (i.e. knows ¥, €,,) and simply chooses a trade, x, on this residual demand. The market-clearing

jai

condition (4.2) implies that the price, p;, is

h
—E,, j»i €Xp (—a( (_dl W Eiy ‘P/xi,l(Pl)) +de 1+ Ey+ xi(pr))

A, aXles-i1+Eu) x
—d—= + .
B“ B N-1 (N-1)B

Therefore, the agent’s problem is to maximize w.r.t. x

l—e_"'(Ad a X €11y x
_ L4-2

x—dig+dfe, 1 +&,+x
h \B" B  N-1 (N—I)B) et diey -1+ Eut )

F( ( ey tEtX ))
+ ’ .
¢ Zjvz et e0/N

It the trade (3.5) solves this problem, then the demand (4.1) is optimal since it produces this trade for all values
of 3, ..€,s Defining Ax as in the competitive case, the demand (4.1) is optimal if Ax = 0 maximizes

1 _e—rh(A a }v: ' (ej’,,l +Ej.,)+ Ax )(G(Z;v: 1 (ej,l—l +£j,1)

—d,
h ! N

B B N (N-1)B '(ei,1—1+€i.1))+Ax)

Z;VZ (et +£j.l)+Ax>

~digi+ d/((l —a)(e-1+ey)ta N

. F( 0. ((1 —aew—r + ) +a (-1 +eu)/N)+ Ax)) B4

Y (et €m)/N

Conditions (4.4)~(4.6) ensure that the first-order condition is satisfied for Ax = 0. Condition (B.1) ensures that
expression (B.4) is concave. Proceeding as in the competitive case, we can rewrite expression (B.4) for Ax = 0 as

d , eiy-1+ €y I
i +F(Q ’ (Z;v: e+ Ei.])/N)).
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B.2. The system and the solution. The first 3 equations follow from the Bellman condition (B.2), where
P, R’, and R are given by equations (A.7), (A.6). and (A.S), respectively, and Q' by equations (A.18)-(A.20).
The last equation is

1
N—*T(Q‘ 1+ Q)= (1-a)Q,. (B.5)
This equation follows from conditions (4.5) and (4.6) by eliminating B.

Proposition B.2. The system has a solution for small 6%. For 62 = 0 the matrix Q is given by

aghe™ a@-a)Q e
Q27— = —(—)%{-ﬂ (B.6)

1= -aye™ 1-¢

Ql,l =-

and a is the unique solution i [0,(N -2)/(N -1)] of

de —a2e™ + (N- 11 —e™N+(N=-2)1-¢"")= 0. (B.7)

Proof. We first solve the system for 67 = 0. To obtain ( as a function of a, we proceed exactly as in the
competitive case. To obtain equation (B.7), we eliminate ), and Q- in equation (B.5). Finally, we check that
inequality (B.1) is satisfied. Using equation (4.5), we can write inequality (B.1) as

2 O+

+ <0.
N-1 a Qu

Since 0 <a <1, @y, <0. Since in addition Q,;+ ¢1>= —0c’he ™ /(1 —e™) <0, the inequality is satisfied.
To extend the solution for small o2, we consider the function

Ql,l 7P|.I
Q].ZvP'[_l
QZ,ZiPZZ
BQ/AN =M@+ Qi) - —aiOh )

2 1
G(Ch1, 012,22, 4, 62,02, hN)Y= E

The matrices P, R, R, and Q’ are defined by equations (A.7), (A.6), (A.5), (A.18), (A.19), and (A.20), for a =
ah. We use 4 instead of a to deal with the case # = 0. We apply the implicit function theorem to G at the point
./, where 62= 0, Q is given by expressions (B.6) of the proposition for a = ah, and a is the unique solution in
(0, (N —2)/(N—1)h) of

(@hYe™ —ah(2e™ + (N = 1)1 —e ™)+ (N=2)1 =) = 0, (B.8)

i.e. of equation (B.7) for a = ah. h can be (), in which case we extend G, @, and a by continuity. The function
G is equal to 0 at ../, since Q and a = ak solve the system. To apply the implicit function theorem, we only
need to show that the Jacobian matrix of G w.r.t. the Qs and 4 is invertible. Tt is easy to check that the partial
derivative of a component of G, other than G, w.r.t. 0, is 0, and that the partial derivative of G, w.r.t. 0,
is strictly positive. Therefore, the Jacobian matrix of G is invertible if, and only if, the Jacobian matrix of G, ;,
Gio, and G, w.rt. Qv , Qy2, and 4 is invertible. This matrix is

1= (1—ah)’e™/h 0 20011 —ak)e™
—a(2 —ah)e™™ (I—e™/h  =20,.(1 —ah)e™
ah—(N-2)/{N-1)  1/(N-1) Quah

To compute the determinant, we add the first row to the second and factor out Q; (1 -e¢™/h. We get

(1= —ahye™/h 0 2(1 —ahye™
Cui(l—e™/h 1 1 0
ah—(N-2)/(N-1) 1/N-1) h
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Subtracting the second column from the first and expanding the determinant we get

l=e™(1-Q~ahie™
O ( ( )

p p h+2(1 —ﬁh)ze""),

which is strictly negative. ||
We now prove Proposition 4.1.

Proof of Proposition 4.1. Equation (B.8) implies that ¢ = g is increasing in N and decreasing in e™, i.e.
increasing in 4. By continuity it is increasing in N and 4 for 62 small. ||

Finally, we prove Proposition 4.2.

Proof of Proposition 4.1. Proposition B.2 implies that 4= a/h is a continuous function of 4 and o>
Equation (B.8) implies that ¢ = (N —2)r/2 for & = 0 and &2 = 0. By continuity @> 0 for /= 0 and o2 small. ||

C. The public information case

We first provide conditions for the demand (5.1) to solve (P,), in Proposition C.1. We then study the perturbed
game, and show that our refinement implies an additional optimality condition. We next show that the optimality
conditions and the Bellman conditions can be reduced to a system of 3 non-linear equations. Finally, we solve
the system in closed-form for 62 = 0 and extend the solution for small 67, in Proposition C.3.

C.1. The conditions for (P,). To state Proposition C.1, we use the matrices ', 32 R, R, and P, defined
in Appendix A. However, we change the definitions of @} and @3, to

1-e™a(d,+a)

0= T

+a(l-a)Qi 1+ (1 -a)01 5, (C.1)

and

1-e"2a(d.+a
sy = — % + @0+ 22002+ 0. (C.2)

Proposition C.1. The demand (5.1) solves (P,) and the function (5.4) is the value function, if the following
conditions hold. First, the optimality conditions (5.5)-(5.7), and the inequality

—rh

1-¢ 2
A m+ Qi1 <0. (C3)

Second, the Bellman conditions
g=P, (C4)

and

_log(Rpe™ (Be™-nh 1 ( h 1>. ©5)

T2a(l-e) a(l-e) a “\e”-

Proof. We will show that the optimality conditions (5.5)-(5.7), and (C.3) are sufficient for the demand
(5.1) to maximize the R.H.S. of the Bellman equation. The rest of the proof is as in the competitive case.
Before trade at period /, agent / knows &, and €, ¥j. He thus chooses his demand, x,,(p;), to maximize

1 —e h -1+ Ert Xis(Pr) )))>
— — —dy ——— i i d, il — i I F » ?
exp( a( P ( e ,z(ﬂ:)) +dfey— + e+ xp)+ (Q (Zj_v: e+ E.0/N
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where the price, p,, is given by equation (5.3) and depends on X, (p,). The agent knows the residual demand of
the other agents. Therefore his problem is the same as choosing a trade, x, on this residual demand. The market-
clearing condition (5.3) implies that the agent’s problem is to maximize w.r.t. x

—en N
_lfe ’(ﬁdfilﬁgiﬂ(eu 1H‘fk,z)fgEF,(EI./—|+E,./)+ x )x

hn \B' B N B N-1 (N-1B

dis+d ) F<Q ( e >)
~digitditey -+ €+ )+ FLQ, '
€+ die; ! Zf’: e+ e )/N

If the trade (3.5) solves this problem, then the demand (5.1) is optimal since it produces this trade. Defining Ax
as in the competitive case, the demand (4.1) is optimal if Ax = 0 maximizes

_1—e_'h<é _A_IALIZf:|(E’,,z—|+€,,1)+ Ax )(Q(Zﬁl(é,;pﬁsﬂ)

# \B' B N (N-1)B N

—(e -1+ s,,,)) + Ax)

—d1EL,+d1((l —a)ey 1+ E)+ PRYSICTERLTIN Ax)
+F<Q ((1 —a)ey 1+ Sr.l)+a(2:\; e +€,.1)/N)+AX))
| 2,\7 (e 1+ €0/N »

Conditions (5.5)(5.7) ensure that the first-order condition is satisfied for Ax = 0. Condition (C.3) ensures that
expression (C.6) is concave. Proceeding as in the competitive case, we can rewrite expression (C.6) for Ax=0
as

(C.6)

' €1+ &y
de,.,,w(g',( it )) I
TUIEEY (e e )/N

C.2. The perturbed game. We first provide conditions for the demands (5.1) to constitute a Nash equilib-
rium of the perturbed game. We then study the limit of these conditions as o goes to 0, and show that our
refinement implies an additional optimality condition.

The demands (5.1) constitute a Nash equilibrium of the perturbed game if there exist consumption choices,
¢4, such that the following are true. First, the demand (5.1) maximizes the utility of the incarnation of agent 7
that chooses demand at period / (the “(i,/) demand” incarnation). Second, the consumption ¢;, maximizes the
utility of the incarnation of agent 7 that chooses consumption at period / (the ““(i, /) consumption” incarnation).
Both incarnations take the choices of the other incarnations as given, i.e. assume that the (4, /") demand incar-
nation chooses the demand (5.1) plus the noise u;,-, and that the (/, /") consumption incarnation chooses ¢, .

In Proposition C.2 we provide sufficient conditions for the demands (5.1) to constitute a Nash equilibrium
of the perturbed game. These conditions are on the parameters 4, B, 4., a, O, and ¢. The parameters Q and ¢
correspond to the value function, which is still given by expression (5.4). To state Proposition C.2, we define
the following matrices. First, the symmetric 4 x 4 matrix . The top left 2 x 2 submatrix of ¢’ is the matrix ¢/
defined at the beginning of Appendix C. The remaining elements of O are

-rh

- . l—¢™ a
Qia=(l-a)Q,, Q/u:ih E'“*“)Qu,
A l-e™ A, +a . 1—e™ 4, +2a
im0+ Qs Qhes - — S a0~ 01,
Q2.3 h B Ql.l Ql_ Q.4 h I (lQIJ QL
. . 1-e™1 s, =2
- ) y 1 1 i R )
2= O O " B O Qi " B O

N

We next define £, the variance-covariance matrix of the vector (g, Y €u/N,us Y ), and R and R

by ’
R=TI+a(Q$,

and
R=aQ$RQ.

Finally, we define P by equation (A.7), where R’ now denotes the top left 2 x 2 submatrix of R
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Proposition C.2. The demands (5.1) constitute a Nash equilibrium of the perturbed game, if the following
conditions hold. First, the optimality conditions (5.5)~(5.9), and the inequality (C.3). Second, the Bellman conditions

o=2P, (€7

and

_log(R)e™ (Be™~rk_1, g( A 1). (C.8)
e

T2a(l-e) afl-e*) «a o

Proof. We assume that the value function after trade at period / is given by expression (5.4). We first
show that the demand (5.1) maximizes the utility of the (i, /) demand incarnation. We then study the optimization
problem of the (i,/—1) consumption incarnation and determine c;,;-;. We also show that the function (5.4)
satisfies the Bellman equation, i.e. that the value function after trade at period /1 is given by expression (5.4).
The transversality condition follows as in the competitive case. Therefore, the value function is indeed given by
expression (5.4).

Step 1. Optimal demand

The optimal demand maximizes

1-e™ h
~E,;, j«: XD (—a( h (_dl '1-_9 :47] _Plxi.l(Pl)> +dle 1+ e+ x(p))

. F(Q, ( e]z;,/l—l + &1+ x;,(pr) )))),
Z,-: et 8;,1)/N
where the price, p,, is given by equation (5.8) and depends on x,,(p;). Instead of solving this problem, we proceed
as in the private information case, and solve a simpler problem. We assume that the residual demand of the

incarnations of the other agents is known (i.e. 3, is known) and choose a trade, x, on this residual demand.
The market-clearing condition (5.3) implies that x maximizes

1 —e_'h(A A, 2:, et e) a Zj,t,-(ej,l— 1+ E5)
- Za-= L

h B B N B N-1
u
+l24&’-’+————£———)x—d,s,-,,+d,(e,~,,_1+£,-,,+x)
B B-1 (N-1B

F(Q ( e 1+ E+Xx ))
+ X .
Yoe (et )/ N
If the trade
Y (-1 +E; LU
a(z—; ! (eli;v ! JJ) - (e.',l—l + 8,—,1)) - Z = u]’l;

solves this problem, then the demand (5.1) is optimal since it produces this trade for all values of ¥,

(27: (-1 E5)
X=q|\—/——mMmM™m
N

i ¥y Setting

2‘ ,'u'J
—{eis-1 +£1,l)) _JI‘\I“L"‘AX,

the demand (5.1) is optimal if Ax = 0 maximizes

_l—e”"(éd_Ae+a2;v=1(91',1-1+€j‘1)+l):,-¢i“1,1+ Ax )

n \B' B N B N (N-1)B

( (Zj:l(fj,l—l“'fj,l)
x|al 22—
N

U
~(ey—1+ 81}1)) _Z,E;_\l[_/f_’_ A)C)

N
2;: V14 €. Xty
N

—dig;+ dl((l —a)ey-1+E)+a + Ax)

+F(Q, ((1 ~a)ey_1+e)+a(E)_  (ey-1+ &)/ N) =X, u;/N+ AX)) €9)

Z;\; 1 (eji1+ €j.1)/N
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Conditions (5.5)—(5.7), and (5.9) ensure that the first-order condition is satisfied for Ax = 0. Condition (C.3)
ensures that expression (C.9) is concave.

Expression (C.9), evaluated for Ax = 0, corresponds to the case where the (i, /) demand incarnation submits
the demand (5.1). Since it submits the demand (5.1} plus the noise u,;, expression (C.9) becomes

1

1 7e"rh(£d ActraXl @ute) 1T, u,.:)

h B B N B N

N Y

- +E€ -
X <a (2‘—*1 = @ 24) —(ei 1+ 8,_/)) +u— ZI = ujl,)
N N
N N
_ (e, +E U

—diEyt dl((l —a)e -1+ €y)+a 2 j;V ) + Ui~ 2, _}\l/ ”)

(I~aley- +eu)+ a(Z‘,”; Ve e )Ny +u, - Z,N, /N
+F(Q,( N ))
Yoo (e e NN

Proceeding as in the competitive case, we can rewrite this expression as

(eir—1+ &)
N
R (e +E/N
die, + F| O, ,2"‘( i€/ (C.10)
Uiy
27,—,1”1.1/]\,

Step 2. Bellman equation

We first compute the expectation of the period / value function w.r.t. period / — 1 information, i.e. w.r.t. 8, €,,,
and u;,. Using the budget constraint (3.7) and expression (C.10), we have to compute

—rh

Eyexp| —a MMy +d ey B) + (di) + 8,)e
(e 1+ &)
e 27 e +E)/N vql-pnl.
Uiy
Z,\: Vu/ N

Proceeding as in the competitive case, we get

—rh

exp| —a e M.y —coh)+e™d_ e ~sacthel -,
€if-1
N . ZN_ e /N 1 .
+Fy-R. |77 +—Ilog|Rl+q |-Bh|.
4 o P glRl+q|-B
0

Finally, using the definition of P, we can rewrite this expression as

1 _efrh
exp (7(1( p eP(M o~ hy+e™d e

" €ir-1 L . _
X e F(P,(ZN e,_/7|/N))+2alog|R|+q) ﬁh) (C.11)

F=1
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The (i, — 1) consumption incarnation chooses consumption, ¢;,_;, to maximize

—rh

1 —
—exp (—aci - )k —exp (— o ( (M1 —cig ) +e™d ey

€ir-1 i .
+e"’F(P,( ' >)+—log|R + )— h).
Zjv:lej1171/N 20 | 1 ﬁ
As in the competitive case, the maximum is

- €ry-
—exp(—a( he Mi‘,_l+d,_1e,v,,_1+F(P,< ! >>

Ty e /N
wy (Be =]
[#4

~(1—e"")log( rhh )))
a e -1

This is equal to the period /— 1 value function if conditions (C.7) and (C.8) hold. ||

—rh

1 .
+-—1log|Rle™" + g~
2a

The optimality conditions of Proposition C.2 are those of Proposition C.1, plus condition (5.9). The
Bellman conditions are different than in Proposition C.1, since the matrices R” and P are different, and |R|#|R).
However, it is easy to check that for ¢2= 0 the Bellman conditions are the same. Therefore, our refinement
implies the additional optimality condition (5.9).

C.3. The system and the solution. The system is the Bellman condition (C.4), where P, R’, and R are
given by equations (A.7), (A.6), and (A.5), respectively, Q" by equations (A.18)-(A.20), and a = (N-2)/(N - 1).
In the public information case, equations (A.19) and (A.20) follow from equations (C.1), (C.2), and (5.6). The
fact that a = (N —2)/(N —1) follows from equations (5.7) and (5.9).

Proposition C.3.  The system has a solution for small 6%. For 6% = 0 the matrix Q is given by

__ oacthe™ Ora= —uy = NN =D/N -1 Orre™
I-(/(N-1pe™ =7 I-e™ ‘

O = (C.12)

Proof. We proceed exactly as in the competitive case, but with a = (N —2)/(N—1) instead of a= 1. ||

D. The no-trade case

We first study agents’ optimization problem and, in Proposition D.1, provide a set of sufficient conditions. The
conditions can be reduced to a non-linear equation. We solve the equation in closed-form for o7 = 0 and extend
the solution for small 62, in Proposition D.2.

D.1. The optimization problem

We formulate agent i’s optimization problem as a dynamic programming problem. The state variables are the
consumption good holdings, M;,, the dividend, di, the stock holdings, e;;,, and the average stock holdings,
2;: L€/ N. Average stock holdings will, of course, be irrelevant. We include them to facilitate the comparison
of the no-trade case to the competitive, private information, and public information cases. The only control
variable is the consumption, ¢;;_,. The dynamics of M,,, 4;, and f; L €,:/ N are given by equations (3.7), (2.1),
and (3.8), respectively. The dynamics of e;, are simply

€= €1+ €

Agent i’s optimization problem, (7,), is

sup — Ep (h (2 pexp (—ac.,— Bih)),

cht
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subject to
rh h
My=e™ (M o +dy e oy 1h)—d/] — Eits
- €
(/j B (J/, i + 5,7.
e - (e 85

N N
X e X e ey

N N

a

and the transversality condition

. N
e
lim £, V,,( ;’VI,_/h d. €. 2/ 7‘\1’ /I) CXp ('Blh) =0,

{35 \

where V), is the value function. Our candidate value function i

V, (M d, “‘—-*/\ I "/./) = -¢ ])(*(1( —I '—();h M+ de 1 (Q ( o )) )) (D 1)
" Ay Cige X : vy i . gl .
A ! N / " : o Z/\— i ‘)r.r‘/N

In Proposition D.1 we provide sufficient conditions for the function (D.1) to be the value function. To state the
proposition, we set ' = (0, and use the matrices X°, R, R, and P, defined in Appendix A.

Proposition D.1.  The function (D.1) is the value funciion, if the Bellman conditions

Q=7 (D.2)
and
log(|Rle™ (Be™™ -1 | ( i )
= S —~lo D3
‘ 201 =™y a1 e o« Ble ) (D-3)
hold.

Proof. To show the Bellman equation, we proceed in two steps. First, we compute the expectation of the
R.H.S. w.r.t. period / — | information. Second, we show that the Bellman conditions (D.2) and (D.3) are sufficient
for the function (D.1) to satisfy the Bellman cquation. The proof, and the proof of the transversality condition,
are as in the competitive case. ||

D.2. The equation and the solution

The equation follows from the Bellman condition (D.2), where P, R’, and R are given by equations (A.7), (A.6},
and (A.5), respectively, and @ = Q. Setting 0, - = Q.- = 0, it is easy to check that the equations corresponding
to Q) and @, are satisficd. We are left with the equation corresponding to @ ;.

Proposition D.2.  The equation has a solution for small ¢>. For 6. = 0 the solution is

Q=== (B4

Proof. To solve the equation for ;= 0 we proceed as in the competitive casc. To extend the solution
for small o7, we apply the implicit function theorem to the function

Q].] _Pl_l

GOy, 67 00 h N) = p
1

at the point . », where o = 0 and @, , is given by expression (D.4) of the proposition. It is easy to check that
the partial derivative of G w.r.t. @y, is strictly positive. ||
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E. Welfare analysis
We first prove Proposition 6.1.

Proof of Proposition 6.1. Noting that dy = d, M, = M, and e,,= ¢, each CEQ is

1- e—rh

M+de+(011+2012+ Qa2) +4.

The 4 CE(Q’s are equal for o> = 0. Indeed, Propositions A.2, B.2, C.3, and D.2 imply that

oo he™
O+ Q= EEpSTE Q2+ 02=0. (E.1)

Therefore, Qy1+20,,+ (2 is the same in the competitive, private information, public information, and no-
trade cases. To show that g is also the same, we need to show that R is the same. Indeed, in all 4 cases R= /.
Since the 4 CEQ’s are equal, we need to use I"'Hospital’s rule and replace them by their partial derivatives w.r.t.
o and o2 = 0. We first show that the partial derivative of @y, +2Q;,+ Qs> is the same in all 4 cases. We then
compute the partial derivative of g.

Partial derivative of Q11 +20,2+ Qa2
We differentiate implicitly the Bellman condition Q = P w.r.t. o7 at o} = 0. Noting that 2*= 0 and R= I, we
get

d0= dP= (dQ - aQdsQ )e™.

From this matrix equation, we “extract” one scalar equation (equation .%), multiplying from the left by x’ =
(1,1) and from the right by x. To show that the partial derivative of @, +2Q;2+ @2 is the same in the
competitive, private information, public information, and no-trade cases, we will show that (i) equation . is
the same in all 4 cases, and (ii) the terms in dQ; ; in equation . are only in d(Q 1 +2Q; >+ Q> ). Since the terms
obtained from aQ'dX*Q are in @1, + Q1. and Q1.+ Q5,, and since, by equations (A.18)-(A.20), and (E.1),
these are the same in all 4 cases, equation .¥ is the same in all 4 cases. Moreover since, by equations (A.18)-
(A.20),

d(Qa+201 2+ o) = d(Qi+2012+ 022),

the terms in dQ, ; in equation . are only in d(Q1,1 + 202+ 023).

Partial derivative of q
We differentiate the Bellman condition

_ log (RDe™ . Be ™ -k —ll ( h )
l *

2l =) o(l-e™) « e’ -

w.r.t. 62 at 62 = 0. Noting that d|R| = dR;, +dR,, and dR = a(dZ’, we get

7-Q'1,z]:,' Q'z,z)l

dq he™ < |
— = +
30 21 e\ &

Since 01, + 01 and Q-+ 04 are the same in all 4 cases, 'Hospital’s rule implies that
L= (Qlll )c - (Q,ll )pr
(Qll,l )L‘ - (Q’ll )n ’
in the private information case and
L= @)= (@)
(i) = (@)

in the public information case, where (Q1.1)c, (Q1.1)pr, (@1.1)p, and (1 ,,), denote @}, in the competitive, private
information, public information, and no-trade cases, respectively. Using equation (A.18) and Propositions A.2,
B.2, C.3, and D.2, we get equation (6.3). ||

8102 1800100 6Z U0 Jasn abe|j0n uoisog Aq 0LEE9S L/6 1 2/2/99/10B11Sqe-a[o1e/pn]sal/woo dno ojwepeose//:sdiy Woly pepeojumod



VAYANOS STRATEGIC TRADING 253

We now prove Corollary 6.1.

Proof of Corollary 6.1. We use equation (6.3) for o2 = 0. We then use continuity of 3L/9h to extend our
results for small o2, In the public information case, we set a = (N —2)/(N — 1) in equation {6.3). In the private
information case, we combine equations {(4.9) and (6.3) into

( ] —e rh ).2 a

L:(l_(l)*‘TT;'7‘ .
ac e (N-1)B

Using equation (4.8), we can write this equation as

1-a

l= .
N-1

(E.2)
Since a increases in k4, L decreases in h. ||
We finally prove Corollary 6.2.

Proof of Corollary 6.2. In the public information case, we set a = (N —2)/(N —1) in equation (6.3). In
the private information case, equation (6.6) follows from equation (E.2) and

|
a=1- ! = +o( )
(N-11 —¢™™) N -1
To prove this fact, we set x = 1/(N — 1), write equation (4.10) as
xde™" —axe "+ (1 =N -(x- D1 -e"")= 0,

and differentiate implicitly w.r.t. x at x = 0, « = 1. Equation (6.7) follows from equation (E.2) and the fact that
a goes to 0 as & goes to 0. ||
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