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1 Introduction

These lectures will cover classic papers that study the role of information frictions and illiquidity for

asset returns and volume. Financial markets are characterized by large daily trading volumes and

episodic market crashes and ‘bubbles.’ Stories abound about successful traders who make fortunes

by pursuing ‘clever’ trading strategies. At the same time, there is the occasional bankruptcy or

ponzi scheme to suggest it may actually be difficult to ‘beat the market.’ It is natural to investigate

whether such evidence is consistent with models of differentially informed investors. We will start

with model where agents share common priors but receive different signals and then investigate

models where agents have different priors and thus different posterior beliefs even when they receive

the same signal.

2 Efficient markets, information, and the role of financial prices

Hayek (1945) points to the role of the price system to aggregate dispersed information. Information

about ‘circumstances of time and place’ that are difficult to summarize with statistics and to convey

to a central planner. Argues that the price system uniquely can make agents in dispersed location

and at different times coordinate their actions and optimize the ‘utilization of knowledge not given

to anyone in totality”. Importantly, “ it does not matter why the price of tin is high” for agents to

start to save on tin and substitute for other inputs.
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Related, Fama’s efficient market hypothesis (1976) contends that market prices always reflect all

available information efficiently, thus leading to optimal resource allocation. The notion of market

efficiency goes back at least to Bachelier (1900) and the idea that trading by agents leads prices to

reflect all available information. It usually leads to some assumption about the ‘unpredictability’ of

price movements (the ‘martingale’ condition), based on different levels of information (prices only,

public, private).

3 No-trade theorems

This section is based on the papers by Tirole (1982) and Milgrom and Stokey (1982). We establish

that in a market where investors share common priors and trade solely for speculative motives,

there can be no-trade in equilibrium even if investors have different informative signals.

3.1 No trade and pure speculation

Suppose n agents with (random) terminal endowment Wi can trade and asset at price P0 with

terminal payoff P1 which is uncorrelated with Wi ∀i. Assume that all agents are strictly risk-

averse (U ′ > 0, U ′′ < 0) and maxxE[U(Wi+xi(P1−P0(1+rf ))) |φi,Φ], where φi is a private signal

observed by agent i and Φ is all publicly available information (which includes the trading price

P0).

The FOC for agent i gives :

E[U ′(Wi + x(P1 − P0(1 + rf )))(P1 − P0(1 + rf )) |φi,Φ] = 0

Since agents are always free to not trade it must be that:

xi > 0 ⇐⇒ E[P1 |φi,Φ] > P0(1 + rf )

Market clearing implies
∑

i xi = 0. For simplicity let’s assume there are only n = 2 traders. Then

suppose there is trade and x1 = −x2 > 0 (say). It thus follows that

E[P1 |φ1,Φ] > P0(1 + rf ) > E[P1 |φ2,Φ]
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and by the law of iterated expectation we obtain the contradiction:

E[P1 |Φ] > E[P1 |Φ]

Therefore any rational expectation equilibrium must result in no trade and furthermore

P0(1 + rf ) = E[P1 |φi,Φ] = E[P1 |Φ] ∀i

This no-trade theorem shows that if it is common-knowledge that all agents starting from

common priors want to trade for purely speculative reasons based on private signals, then in

equilibrium they should all refrain from trading and prices should adjust to incorporate their

various signals so that no-trade is an equilibrium. Notice that no-trade does not imply no-price

change!

Where does the argument fail if the end of period price P1 is correlated with the agents terminal

wealth Wi?

Where does the common-knowledge assumption play a role in the argument?

For trade to take place in equilibrium, agents must differ in terms of endowments, preferences,

or beliefs.

3.2 No-trade and pareto efficient equilibrium: Milgrom and Stokey (1982)

Consider an economy with two dates: agents consume at date 0 and date 1 in states 1, . . . , S. They

have endowments in all states. Markets are effectively complete, so that at date 0 there is a round of

trading whereby agents achieve a pareto optimal allocation and consume their date 0 consumption.

After that, but before date 1, private information φi arrives to all traders (but there is no change to

the state space and initial endowments) and markets reopen for trade. Agents will thus condition

their trades on their private information φi and all new publicly availalbe information Φ (which

includes prices). We use the following notation:

• Wi is agent i’s optimal date 1 total consumption after the first round of trading. It’s a random

variable (agent i plans to consume Wis in state s).

• p(s, φi,Φ) is the probability that state s occurs and agent i gets information φi and public
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information is Φ. Importantly, all agents have common prior. So they all agree on these

probabilities. They may not know what information agent i actually obtains, but ex ante they

know every other agents possible information set and they agree about the prior probabilities.

• q(s) is the ex-ante state price of state s and q̂(s) is the new price system that prevails after

the information is released.

Theorem 2 of MS states that there will be no trading when markets reopen.1 That is, in spite

of the new information, the initial allocation is still Pareto optimal and there are no available gains

from trading.

Indeed, assume that there is a globally feasible trade ti(φi,Φ) (a random variable where agent

i trades tis in states s conditional on her private information) , so that

∑
i

ti(φi,Φ) = 0 (1)

E[Ui(Wi + ti)|φi,Φ] ≥ E[Ui(Wi|φi,Φ)] (2)

Then consider another trade Ti =
∑

φi,Φ
p(φi,Φ)ti(φi,Φ) (which is essentially the ex-ante expec-

tation of the assumed superior ex-post trades). Clearly Ti does not depend on future private of

public information. Further,
∑

i Ti =
∑

i

∑
φi,Φ

p(φi,Φ)ti(φi,Φ) =
∑

φi,Φ
p(φi,Φ)

∑
i ti(φi,Φ) = 0.

So clearly the trade is globally feasible. Further

Ui(Wis + Tis) = Ui(Wis +
∑
φi,Φ

p(φi,Φ)ti,s(φi,Φ)) ≥
∑
φi,Φ

p(φi,Φ)Ui(Wis + ti,s(φi,Φ))

By Jensen’s inequality and given the concavity of the utility function. Then taking unconditional

expectation we get

E[Ui(Wi + Ti)] ≥
∑
s

p(s)
∑
φi,Φ

p(φi,Φ)Ui(Wis + ti,s(φi,Φ)) =
∑
φi,Φ

p(φi,Φ)
∑
s

psUi(Wis + ti,s(φi,Φ))

= E[E[Ui(Wi + ti)|φi,Φ)]]

= E[Ui(Wi + ti)] ≥ E[Ui(Wi)]

1Here we follow the proof given in Ingersoll (1987)
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(where the last line follows from taking the unconditional expectation in inequality 2 above) which

contradicts the Pareto optimality of the initial trade ti (note that if Ti > 0 then by strict concavity

of the utility function Ti/2 will be strictly Pareto superior to ti).

Note that the fact that agents don’t want to retrade when market reopen (as long as endow-

ments, preferences, or states are not changed by the release of new information) does not mean

that prices don’t change. In fact, state prices change so that they reveal all the private information

of investors, in the sense that conditionning on the common public price gives each agent as much

information as she could get based on her private signal. In that sense the new equilbrium price is

‘fully revealing.’ More specifically, we will show that

p(s|φi,Φ) = p(s|q̂)

where q̂s are the new state prices. To see this note that ex-ante Pareto optimality implies

p(s)U ′is(Wis) = λiqs ∀i, s

Ex-post Pareto-optimality of the same allocation implies

p(s|φi,Φ)U ′is(Wis) = λ̂iq̂s ∀i, s

Thus

p(s|φi,Φ) =
λ̂iq̂s
λiqs

p(s) ∀i, s

and

p(s|φi,Φ)

p(s′|φiΦ)
=
q̂sqs′p(s)

q̂s′qsp(s′)
∀s, s′

note that the RHS is independent of i and depends only on ex-ante prior information and new

prices. Thus each agent can fully determine the posterior probabilities p(s|φi,Φ) solely from the

initial common prior state probabilities and common-knowledge new price system q̂.

The conclusion is that trading on private information, based on purely speculative motives (i.e.,

starting from a Pareto optimal allocation and not changing preferences, endowments or states),

will not occur in a rational expectations’ equilibrium. However, (state-)prices will adjust. In fact

5



they will “swamp” the private signals received by any agent, in that, after equilibrium prices are

determined each agent can afford to forget the signal he obserrved to compute his posterior beliefs.

she only needs to know the change in prices.

MS conclude:

Our results concerning rational expectations market equilibria raise the disturbing ques-

tions expressed by Beja , Grossman and Stiglitz and Tirole: Why do traders bother to

gather information if they cannot profit from it? How does information come to be

reflected in prices if informed traders do not trade or if they ignore their private infor-

mation in making inferences? These questions can be answered satisfactorily only in

the context of models of the price formation process, our central result, the no-trade

theorem, applies to all such models when rational expectations are assumed.

4 The Grossman REE paradox (Grossman (1976))

• N agents with wealth Wi0 = XiF +XiP0 can invest in risk-free asset with gross return R and

risky asset with price P0 which pays off P1 ∼ N(P , σp) at time 1.

• Wi1 = RWi0 + (P1 −RP0)Xi

• Each agent i observes signal yi = P1 + εi. εi ∼ N(0, σ2
ε ) iid with Cov(εi, εj) = 0.

• Assume agents are CARA normal with risk-aversion ai. Since terminal wealth will be normally

distributed in equilibrium, agents have mean-variance preferences.

max
X

E[Wi1 | Ii]−
ai
2
V [Wi1 | Ii] = max

X
RWi0 +Xi(E[P1 | Ii]−RP0)− ai

2
X2
i V [P1 | Ii]

• The FOC gives

Xi =
E[P1 | Ii]−RP0

aiV [P1 | Ii]

• An equilibrium is a price P (s1, . . . , sn) such that markets clear
∑

iXi = x, where x is the

total supply of the risky asset.
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• Grossman discusses how the equilibrium price functional would arise from a ”tatonnement”

process of a sequence of approximations to the equilibrium price (see page 577).

• To solve for the equilibrium, we will follow the three step procedure. First, conjecture an

equilibrium price functional. Second, given this conjecture, solve the first order condition of

each agent who conditions her demand on the information contained in price. Third, clear

markets and verify that the market clearling price is as conjectured in the first step.

• Guess an equilibrium price functional P0(y) = α0 +
∑

i αiyi. Now, because of the symmetry

it is natural to assume that αi are identical and to posit the simpler form P0(y) = α0 + αy,

where y = 1
n

∑
i yi. Note that y = P1 + ε, where ε ∼ N(0, σ

2
ε
n ).

• Given our conjecture the information set of each agent is Ii = {yi, P0(y)} = {yi, y}. Our first

step is to show that:

E[P1 | Ii] = E[P1 | yi, y] = E[P1 | y]

To prove this we will use the standard Gaussian projection theorem (see subsection 4.1). P1

can be decomposed:

P1 = P + β(y − E[y]) + ν

where ν ⊥ y (that is E[νy] = 0). The ‘regression’ coefficient is given by:

β =
Cov(P1, y)

V [y]
=

σ2
P

σ2
P + σ2

ε
n

Note also that E[y] = P . By orthogonality we have

V [ν] = V [P1]− β2V [y] =
σ2
P
σ2
ε
n

σ2
P + σ2

ε
n

=
1

τp + nτε

where we have used the notation that the precision of a random variable τν = 1
σ2
ν
.

Now, clearly E[P1|y] = P + β(y − P ). We want to show that E[P1|y, yi] = P + β(y − P ) as

well. For that it is sufficient to show that E[ν | yi] = 0. And this follows from

E[(P1 − P − β(P1 − P + ε))(P1 + εi)] = σ2
P (1− β)− βσ

2
ε

n
= 0

7



• It follows then that

E[P1|Ii] = P + β(y − P )

V [P1|Ii] = σ2
ν =

1

τp + nτε

So we get the demand of each agent (given our conjectured price functional)

Xi =
P + β(y − P )−RP0

aiσ2
ν

And market clearing
∑

iXi = x gives

P + β(y − P )−RP0 = āσ2
νx

where ā = 1∑
i

1
ai

is the harmonic average of the risk-aversion coefficient (the ‘representative’

CARA agent’s risk-aversion).

• Note the remarkable feature that plugging back the market clearing relation into the demand

we see that each individual demand becomes Xi = āx
ai

, which does not actually depend on

price! This is because of the information effect noted by (Admati (1989)). When prices

increase (say) in most models there is a wealth (absent here due to CARA) and substitution

effect. Here in addition there is an information effect which exactly offsets the substitution

effect (higher prices mean better (information about) fundamentals).

• Note the Skizophrenia of the investors. They take prices as given, i.e., ignore the impact of

their demand on price. On the other hand, they use prices to learn about other traders signals.

But prices can only reflect other traders information if these have an impact on prices. See

Hellwig (1980) who tries to rationalize this by considering an economy with infinitely many

small traders.

• We then get the equilibrium price functional consistent with optimality and market clearing;

P0(y) =
1

R

(
P (1− β) + βy − āσ2

νx
)
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We verify that it is indeed consistent with our initial conjecture and have thus found an

equilibrium. Is it unique? (yes among ‘linear equilibria’, but there might exist non-linear

equilibria where the price is not a linear function of all the signals... See DeMarzo and

Skiadas (1998) and also “Multiple Equilibria in Noisy Rational Expectations Economies” by

Domotor Palvolgyi and Gyuri Venter (2015)).

• Grossman points out the paradox of the equilibrium. All agents learn better information (a

sufficient statistic which dominates any single piece of dispersed information) from prices and

can thus discard their own information. But if they did so, then how would information get

into price in the first place? The issue is that all traders behave competitively and ignore the

impact they have on price (through their trading based on their own information). they take

the price functional ‘as given’.

• Theorem 2: suppose P ∗(y) is linear equilibrium function and P ∗∗(y) another increasing equi-

librium functional then there must exist H()̇ increasing so that P ∗∗ = H(P ∗). If H is not

identity function then P ∗∗ cannot be an equilibrium. This follows directly from the market

clearing condition using the FOC:

x =
∑
i

Ei[P1]−RP ∗

aV [P1]
<
∑
i

Ei[P1]−RP ∗∗

aV [P1]

If the LHS clears markets then the RHS cannot. The implication is that two equilibrium

price functionals cannot give access to the same information y for then the expectations and

variances are identical and the LHS and RHS will then only differ by the price component,

which cannot differ. So for there to be different equilibria, the price functional has to disclose

different information to agents.

• Grossman also discusses the Pareto efficiency of the equilibrium. He points out that the

decentralized equilibrium gives each investor access to y a sufficient statistic, which dominates

all the individual information signals. So a central planner having access to all yi would not

do any better.

• Grossman concludes with a critique of Hayek (1945). Unlike Hayek, who argues that agents

shouldn’t care why prices are high as long it makes them reduce their consumption of a
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more expensive good, Grossman points out that without noise equilbrium would typically

break down if informatino acquisition is costly, and with noise, then prices would not be fully

revealing and therefore agents would care ‘why’ prices are high (whether for fundamental or

noise reasons).

4.1 The Gaussian Projection theorem

• The multi-variate Gaussian projection theorem: Suppose X =

 X1

X2

 is a multivariate

normal vector of random variables (X1 is N -dimensional and X2 is K-dimensional).

• The expected return vector is µ =

 µ1

µ2

.

• We partition the covariance matrix Ω =

 Ω11 Ω12

Ω21 Ω22


• Then the vector of random variable X1 conditional on X2 = q is Gaussian (X1 |X2 = q) ∼

N(µ̄, Ω̄) with

µ̄ = µ1 + Ω12Ω−1
22 (q − µ2)

Ω̄ = Ω11 − Ω12Ω−1
22 Ω21

• This is similar to multi-variate linear regression. The proof follows.

• Define Xe
1 = X1 − µ1 and Xe

2 = X2 − µ2.

• Note that we can decompose Xe
1 = BXe

2 + u where we choose the (N,K) matrix B so that

u is orthogonal to any element of X2, that is: E[(Xe
1 − BXe

2)X>2 ] = 0(N,K). Equivalently

BE[Xe
2X
>
2 ] = E[Xe

1X
>
2 ], and thus B = Ω12Ω−1

22 .

• Since X1, X2 are jointly normal, it follows that u is normally distributed with zero mean and

with variance V ar(u) = V ar(X1)− V ar(BX2) = Ω11 −BΩ22B
> = Ω11 − Ω12Ω−1

22 Ω21.

• It follows from the orthogonal decomposition above that the distribution of X1 conditional on

X2 = q is normal with mean E[X1 |X2 = q] = µ1+B(q−µ2) and with variance V ar[X1 |X2 =
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q] = V ar[u]

5 On the impossibility of informationally efficient markets (Gross-

man and Stiglitz (1980))

• A theory of “an equilibrium degree of disequilibrium”. Noise is essential for existence of

equilibrium, because prices are not fully informative and therefore it is valuable for some

agent to invest in information production.

• Risk-free asset R and risky asset u = θ + ε. θ ∼ N(θ, σ2
θ) and ε ∼ N(0, σ2

ε )

• θ is observable at cost C.

• A fraction λ (endogenous) of ex-ante identical traders choose to pay C and get informed.

• Note that unlike in Grossman (1976) there is no dispersed information.All informed have the

same signal. But see Diamond and Verrecchia (1981) and Verrecchia (1982).

• x is supply of risky assets. x ∼ N(x, σ2
x) is unobservable by uninformed.

• x, θ, ε independent.

• Agents start with initial wealth Wi0 = M̄i + X̄iP0. They invest in Mi risk-free dollars and Xi

shares of the stock, so that Wi0 = Mi +XiP0. At time 1 wealth Wi1 = Wi0R+Xi(u−RP0)

• Agents maximize CARA utility. All with same risk-aversion a. With Gaussian final wealth:

max
Xi

E[Wi1|Ii]−
a

2
V [Wi1|Ii] = Wi0R+Xi(E[θ|Ii]−RP0)− a

2
(V [θ|Ii] + σ2

ε ).

So the optimal demand of each agent is simply:

Xi =
(E[θ|Ii]−RP0)

a(V [θ|Ii] + σ2
ε )
.

where Ii depends on the agent’s information set.
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• Informed agent observe θ so E[Wi1|θ] = Wi0R+Xi(θ −RP0) and V [Wi1|θ] = X2
i σ

2
θ and

XI =
θ −RP0

aσ2
ε

• Uninformed agents observe only P0. What can they learn from price? Market clearing gives

λXI + (1− λ)XU = x. It follows that

P0 =
1

R
(θ − ψx) + (1− λ)

1

R
ψXu (3)

where we define ψ = aσ2
ε
λ . Thus it is natural to conjecture that uninformed investors, given

their own demand, can only infer from price wλ(θ, x) = θ− ψ(x− x) if λ > 0, otherwise only

w0(θ, x) = x. So we solve the equilibrium as follows:

(a) conjecture that (all agents conjecture that) P0 = α0 + αwwλ(θ, x).

(b) given (a) all agents formulate their optimal demands given their information set. Specif-

ically, II = {θ, P0} = {θ} and IU = {P0} = {wλ(θ, x)}

(c) Plug the optimal demands into the market clearing equation and verify (a).

• Note that if λ > 0 (there is a typo in GS (A11b)):

E[θ|wλ] = θ +
σ2
θ

σ2
θ + ψ2σ2

x

wλ := θ + βwλ

V [θ|wλ] = σ2
θ − (

σ2
θ

σ2
θ + ψ2σ2

x

)2(σ2
θ + ψ2σ2

x) =
σ2
θψ

2σ2
x

σ2
θ + ψ2σ2

x

=
1

1
τθ

+ 1
τψx

And if λ = 0

E[θ|w0] = θ

V [θ|w0] = σ2
θ

Whence the optimal demand of uninformed investors is

XU =
E[θ|wλ]−RP0

a(V [θ|wλ] + σ2
ε )
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• Using XU and XI in the market clearing equation confirms the conjecture that P0 is indeed

linear in wλ and thus we have derived an equilibrium. You can derive explicitly (α0, αw) by

solving this equation for P0(wλ):

wλ −RP0 + x+ (1− λ)ψ(
θ + βwλ −RP0

a(βσ2
θψ

2σ2
x + σ2

ε )
) = 0 (4)

• In the case where λ = 0 then the solution simplifies P0(x) solves: θ−RP0

a(σ2
θ+σ2

ε )
= x, which gives:

P0 =
θ − a(σ2

θ + σ2
ε )x

R

• Note that unlike in Grossman (1976) the price is not fully revealing even in the presence of

informed traders. Uninformed traders can only infer wλ from prices and would like to know

whether prices are high because θ is high or because x is low. This would clearly change their

demand for the asset.

Note that E[wλ|θ] = θ and V [wλ|θ] = ψ2σ2
x. So the equilibrium price signal is more informa-

tive the smaller is ψ, i.e., that is the higher λ and smaller is aσε (the more there are informed

agents and the less they trade for hedging as opposed to informational motives).

Now we turn to the equilibrium λ.

• A U-agent will want to become I-agent if

E[V (R(W0 − C) + (u−RP )XI)] ≥ E[V (RW0 + (u−RP )XU )]

where the ‘unconditional’ expectations are taken over θ, x, ε (ex-ante all investors are identi-

cal). Given exponential utility (V (x) = −e−ax) we have

E[V (WI1)]

E[V (WU1)]
= eaC

E[e−aXI(u−RP )]

E[e−aXU (u−RP )]
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Now E[e−aXI(u−RP )] = E
[
E[e−aXI(u−RP ) | θ, w]

]
and

E[e−aXI(u−RP ) | θ, w] = e−aXI(θ−RP )+a2

2
X2
I σ

2
ε

= e
− 1

2
(θ−RP )

σ2ε

Similarly, E[e−aXU (u−RP )] = E
[
E[e−aXU (u−RP ) |w]

]
and

E[e−aXU (u−RP ) |w] = e−aXU (E[u|w]−RP )+a2

2
X2
UV [u|w]

= e
− 1

2
(E[θ|w]−RP )2

σ2ε+V [θ|w]

Now, note that θ = θ + βw + ν where ν ⊥ w. Thus

E[e
− 1

2
(θ−RP )2

σ2ε |w] = E[e
− 1

2
V [θ|w]

σ2ε

(θ−RP )2

V [θ|w] |w]

=
1√

1 + V [θ|w]
σ2
ε

e
− 1

2
(E[θ|w]−RP )2

σ2ε+V [θ|w]

where we used that if z ∼ N(µz, 1) then E[e−tz
2
] = e

− tµ2

1+2t√
1+2t

with t = V [θ|w]
σ2
ε

.2

Since V [u|w] = σ2
ε + V [θ|w] and V [u|θ] = σ2

ε , it follows that

E[e−aXI(u−RP )] =

√
V [u|θ]
V [u|w]

E[e−aXU (u−RP )]

Putting everything together we find:

E[V (WI1)]

E[V (WU1)]
= eaC

√
V [u|θ]
V [u|w]

• An equilibrium fraction of informed agents λ is obtained when at the margin investors are

indifferent to becoming informed, thus when

eaC
V [u|θ]
V [u|w]

= 1

2E[e−tz
2

] =
∫
e
−tz2− 1

2
(z−µz)2

√
2π

dz =
∫
e
− 1

2
(1+2t)(z− µ

1+2t
)2− tµ2

1+2t
√
2π

dz from which the result follows.
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It is easy to see that γ′(λ) > 0, thus if γ(0) < 1 < γ(1) there is a unique ‘interior’ equilibrium.

Else, if γ(0) > 1, then λ = 0 is an equilibrium and if γ(1) < 1 then λ = 1 is an equilibrium

(GS theorem 3).

Note that γ′ > 0 implies that as the fraction of informed increases the relative utility of

informed decreases relative to the uninformed (because CARA utility is negative!). So the

more informed agents there are in equilibrium the smaller (the more negative) the utility of

the informed.

• note that

γ(λ) := eaC
V [u|θ]
V [u|w]

= eaC
1 +m

1 +m+ nm

where m = ψ2 σ
2
x

σ2
θ

and n = σ2
x
σ2
ε

and further

ρ2
θ,P =

1

1 +m

ρ2
θ,u =

n

1 + n

so the equilibrium determinant of λ is entirely driven by m,n,C, the cost of information and

informativeness of the price system (m) and the quality of the information of the informed

trader (n).

Specifically the equation can be rewritten as

1− ρ2
θ,P =

e2aC − 1

n

we see that

– increase in the quality of information (n) increases the informational efficiency

– a decrease in the cost of information, increases informational efficiency and increases the

equilibrium λ.

– a decrease in risk-aversion increase informational efficiency.

– An increase in σx will have no impact on the price efficiency. (why?)
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• An equilibrium does not exist without noise (i.e., when σx = 0) if eaC <
√

1 + n (Theorem 5)

Note that for λ > 0 then when σx = 0 we have n,m = 0 and thus equilibrium would require

eaC = 1 which cannot hold for aC > 0. Now λ = 0 is not an equilibrium since at that point

we have the condition:

E[V (WI1)]

E[V (WU1)]
= eaC

√
V [u|θ]
V [u|w0]

= eaC

√
σ2
θ

σ2
θ + σ2

ε

= eaC
√

1

1 + n
> 1 ifeaC >

√
1 + n

• When information is perfect (σε = 0) there never exists and equilibrium. If σε = 0 then for

λ > 0 we have nm = 0 and then γ(λ) > 1 if aC > 0. Further, for λ = 0 we have γ(0) = 0 < 1.

• Conclusion page 404: GS take issue with the efficient market hypothesis :

”Efficient Markets” theorists have claimed that ”at any time prices fully reflect all

available information” (see Eugene Fama, p. 383). If this were so then informed

traders could not earn a return on their information. We showed that when the

efficient markets hypothesis is true and information is costly, competitive markets

break down.

[. . .]

Efficient Markets theorists seem to be aware that costless information is a sufficient

condition for prices to fully reflect all available information (see Fama, p. 387);

they are not aware that it is a necessary condition. But this is a reducto ad

absurdum, since price systems and competitive markets are important only when

information is costly (see Fredrick Hayek, p. 452). We are attempting to redefine

the Efficient Markets notion, not destroy it. We have shown that when information

is very inexpensive, or when informed traders get very precise information, then

equilibrium exists and the market price will reveal most of the informed traders’

information. However, it was argued in Section III that such markets are likely to

be thin because traders have almost homogeneous beliefs.
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The model opens up many interesting theoretical issues (equilbrium traffic-jams, “Efficiently

inefficient markets” Garleanu-Pedersen (2020)).... ) and raises important empirical questions.

– Have markets befome more informationally efficient?

– How can we measure informational efficiency empirically?

– What are the implications for trading volume?

– What are welfare implications of better informational efficiency?

– How to organize markets (microstructure) to achieve such efficiency: OTC, CLOB, mar-

ket fragmentation. . .

– How come markets are not fully revealing (I suppose they are not)? If informational

efficiency is so important (is it?) for the allocation of resources and welfare, then why not

introduce several (non-linear) derivatives, which together would lead to full revelation

of the underlying state. Is there something inherent in the trading of several securities

that generates additional noise (or market incompleteness) that prevents markets from

ever becoming fully revealing?

6 The only game in town Bagehot (1971)

Bagehot (1971) contains the essential idea that investors trading randomly in an efficient market

might actually loose on average (which goes against the conventional wisdom of efficient markets of

Fama). His beautiful insight is that there are three types of agents in the market : informed specu-

lators who trade with superior information, uninformed agents who trade for ‘liquidity-motivated’

trades (or may simply be overconfident about their abilities), and market makers whose sole role it

is to provide liquidity and transacting whenever opposite orders fail to arrive. Bagehot argues that

since market makers will loose systematically to informed agents, she must recoup her losses from

trading with uninformed agents, who might thus loose systematically. The market maker does this

by setting the bid-ask spread appropriately. With this idea Bagehot offers the fundamental building

block for a theory of market liquidity and bid-ask spreads that is purely information-driven (and

not based on inventory concerns as in, e.g, Stoll (1978), Ho and Stoll (1981)). We will see two

different formalizations of this idea next.
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7 Sequential trading in price (or quote)-driven market: Glosten

and Milgrom (1985)

7.1 The general framework

• Formalize Bagehot’s idea in a model where informed or uninformed agents arrive randomly,

one at a time, to buy or sell one unit from a specialist.

• All orders submitted are market orders. GM do not consider limit orders or the possibility

of trading different order sizes. Further, every time a new agent is coming to the market, so

they cannot strategically delay the decision to trade (their decision is myopic).

• Specialists set bid and ask prices and revise their prices after every transaction. Trading

is anonymous so specialist cannot distinguish incoming traders. This is a screening model.

(But see Lee and Wang (2020) for an interesting extension to non-anonymous agents).

• Traders arrive to the market at (random) dates Tk. Arrival rates are not discussed much in

the paper, but at a minimum they are not informative about V and/or the identity of the

traders. Poisson arrival or deterministic arrival dates seems like what GM have in mind.

• V will be ‘realized’ at Tv > t. It is a random variable with V > 0 and σ2
V < ∞. Tv, V

independent.

• Informed agents have private information about V .

• All agents get utility ρxV + c from owning x shares of stock and consuming c. They are

risk-neutral but differ in terms of their time preference parameter ρ.

• ρ = 1 for market makers. For other traders it is a random variable independent from V and

Tv. The randomness in ρ will drive agents desire to trade (gets around the no-trade theorem).

It drives agents’ private valuations of the asset. ρ > 1 they want to buy from the specialist

and ρ < 1 they want to sell.

• Ht denotes public information. Jt private information. St is information of specialist, which

contains Ht (GM assume that specialists may be better informed than the public). Assume

that At, Bt are public information.
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• Given that specialist quotes {Bt, At}, it is optimal to buy if Zt > At and sell if Zt < Bt where

Zt = ρt(1− Ut)E[Vt|Jt, Ht, At, Bt] + ρtUtE[Vt|Ht, At, Bt]

where Ut = 1 if an uninformed arrives at t and zero otherwise. Note that ρt is a random

process whose distribution depends on the identity of the trader arriving to the market .

• GM define Ft to be all the information (it includes Ht, Jt as well as information generated by

who arrives at t, i.e., Ut, and information generated by At, Bt), so that

Zt = ρtE[V |Ft].

• Expected profit of specialist is E[(V −A)1Zt>A + (B − V )1Zt<B |St] which can be rewritten

as:

(E[V |Zt > A,St]−A)Prob(Zt > A|St) + (B − E[V |Zt < B,St])Prob(Zt < B|St)

• Competition among risk-neutral specialists implies the zero-expected-profit conditions:

A = E[V |Zt > A,St]

B = E[V |Zt < B,St]

GM assume that there is Bertrand competition at every trade/quote. So specialists set prices

so the zero-expected-profit condition holds for every trade. If specialists had some market

power then it might be optimal to relax this assumption (see Glosten (1989) and Glosten

(1994)).

• GM prop 1: We have At > Et[V ] > Bt. GM allow for St to be different from Ht and define

Et to be the expectation with respect to common-knowledge (Ht ∧ St which denotes events

that are both in St and in Ht; typically in many applications it is assumed that Ht = St).

The proof relies heavily on the law of iterated expectation (and recall that Zt depends on
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ρt, Ft):

At = Et[At] = Et[At|Zt > At] = Et[E[V |Zt > A,St]|Zt > At] = Et[V |Zt > At]

= Et[Et[Et[V |Zt > At, Ft, ρt]|Zt > A, ρt]|Zt > A]

= Et[Et[Et[V |Ft, ρt]|Zt > A, ρt]|Zt > A]

= Et[Et[Et[V |Ft]|Zt > A, ρt]|Zt > A] ≥ Et[Et[Et[V |Ft]|ρt]|Zt > A]

= Et[Et[V ]|Zt > A]

= Et[V ]

where we used the fact that E[X|X > a] ≥ E[X] and that ρt is independent of V so that

Et[V |Ft, ρt] = Et[V |Ft] and Et[Et[V |Ft]|ρt] = Et[V ].

• GM prop 2. The sequence of transaction prices {pk} forms a martingale w.r.t. to the special-

ist’s information Sk and the public information Hk, where we define Sk = ST+
k

and Hk = HT+
k

to be the information available to the specialist and the public right after the kth transaction

at Tk < TV . Note that after the kth transaction the additional information is the trading

price (ask or bid) and the implication that Zk < Bk or Zk > Ak. The transaction price is

Ak1Zk>Ak +Bk1Zk<Bk = E[V |STk , Zk > Ak]1Zk>Ak + E[V |STk , Zk < Bk]1Zk<Bk

= E[V |Sk]

Since pk = E[V |Sk] the martingale condition w.r.t Sk-filtration follows from the law of iterated

expectation. The martingale condition wrt to Hk follows from the fact that Hk is contained

in Sk and since pk is Hk measurable. Note that while transaction prices are martingales, it

does not follow that Ak, Bk are martingales. Indeed, as we show next the Bid-ask spread

converges in the limit and thus the difference between Ak −Bk decreases, which implies that

Ak, Bk cannot both be martingales.

• GM prop 4: Under some technical condition the expectations of the traders and specialists

converge in that E[V |Sk] − E[V |Fk] converges to zero in probability (note that Fk is the

information of the kth trader arriving to the market).
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• GM’s main proposition are quite technical. There paper is in general most well-known for

their first example in section 3, and specifically for the binomial example we discuss next.

7.2 Then binomial Glostem-Milgrom model

• Assume V = vh with prior probability π and vl < vh with 1− π.

• Informed agents know the realization of V and have a ρ = 1.

• GM propose 2 models for the preferences of uninformed agents:

(i) ρ is ∞ (in which case she will buy for sure) with probability γb or 0 (in which case she

will sell for sure) with probability γs = 1− γb.

(GM use γb = 0.5).

(ii) ρ is uniformly distributed on (0, 2). This model is less popular so we will consider only

the binomial model.

• Assume the proportion of informed traders in the population is α. Assuming independent

draws and arrival dates, this implies that the specialist assigns a probablity α that an arriving

trader is informed.

• Before any trader arrives the ‘fair value’ of the asset (given risk-neutrality and zero discount-

ing) is E(π) = πvh + (1− π)vl.

• Suppose that at T1 < Tv a trader arrives to the market and buys at the ask, then with proba

απ the specialist looses vh−A to an informed, and with (1−α)γb she is earning A−E from

an uniformed trader. So the break-even Ask price set by the specialist will satisfy:

απ(vh −A) = (1− α)γb(A− E)

Similarly the bid price will satisfy:

α(1− π)(B − vl) = (1− α)γs(E −B)

Let’s denote these two break-even prices
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A(π) =
απvh + (1− α)γbE(π)

απ + (1− α)γb

B(π) =
α(1− π)vl + (1− α)γsE(π)

α(1− π) + (1− α)γs

• The A,B just determined form the bid-ask spread before the first trader arrives. Immediately,

after the first trade occurs, the specialist will update her quotes to take into account the

information disclosed by the trade. If the trade was a buy, then her posterior probability

that {V = vh} will increase by Bayes-rule (and commensurately the probability of V = vl

will decrease). The posterior probabilities after the first transaction at T1 will be:

if buy π1,b = P (V = vh|buy) = P (buy|V=vh)P (V=vh)
P (buy) = (α+(1−α)γb)π

π(α+(1−α)γb)+(1−π)(1−α)γb
= (α+(1−α)γb)π

απ+(1−α)γb

if sell π1,s = P (V = vh|sell) = P (sell|V=vh)P (V=vh)
P (sell) = (1−α)γsπ

π(1−α)γs+(1−π)(α+(1−α)γs) = (1−α)γsπ
α(1−π)+(1−α)γs

So the bid-ask prices prevailing after the first trade (posted prior to the second trade) will be

A(π1,τ ), B(π1,τ ) with τ = 1 or 0 depending on whether the first trade was a buy (1) or a sell

(0).

• Note that the bid and ask break-even prices we determined actually correspond to the ‘no-

regret’ risk-neutral expected prices, in the sense that:

A(π) = E[V |buy] = π1,bvh + (1− π1,b)vl

B(π) = E[V |sell] = π1,svh + (1− π1,s)vl

which gives an alternative approach to derive the bid-ask prices.

• The process for bid-ask spreads follows then from the sequence of trade arrivals and decisions.

The sole state variable is the posterior probability πn,{τ1,τ2,...τn} which represents the posterior

probability that V = vh after n rounds of trading and having observed the history of trades

{τ1, . . . , τn} where τi ∈ {0, 1} (it equals 1 if the ith trade was a buy and 0 if it was a sell).
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Note that Bayes rule gives:

π1,τ

1− π1,τ
= Kτ

π

1− π

where

K1 =
α+ (1− α)γb

(1− α)γb
> 1

K0 =
(1− α)γs

α+ (1− α)γs
< 1

It is then easy to see that the sole state-variable is the number of buys and sells (the order in

which these occur do not matter). Specifically if we denote by nb =
∑

i≤n τi, then the bid-ask

spread prevailing after the nth trade will be A(πn,nb), B(πn,nb) where πn,nb is obtained from

the following equation:

πn,nb
1− πn,nb

= Knb
1 Kn−nb

0

π

1− π

• It is then possible to plot and anlyze the behavior of bid-ask prices and study their convergence

as the number of trades increases, as well as their properties with respect to the model

parameters (α, γb, π). It can in particular be shown that

– As time goes to infinity prices become fully revealing in the sense that limn→∞B(πn) =

limn→∞A(πn) = V in probability.

– The mid price is in general a biased estimate of the expected true value that is in general

A(π)+B(π)
2 6= E(πn).

– transaction prices are martingales wiht respect to the public information (number of buy

and sell trades).

– Bid and ask prices however are not martingales (wrt to public information), since their

difference is a decreaseing process.

– The bid-ask spread increases with uncertainty about the fundamental value (σV ), with

the fraction of uninformed α.

• The Glosten-Milgrom model (especially in its binomial form) has seen a wide variety of

extensions and application (see e.g., the work by Maureen O’hara and co-authors). It has
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also led to development of some statistical measures of stock-level market liquidity (such as

the PIN and the V-PIN measures of Easley, O’hara, and Paperman (1996) which have been

quite controversial, see e.g., Duarte, Hu, and Young (2019).)

8 Batch trading in price-driven market: Kyle (1985)

Kyle (1985) is another very nice formalization of Bagehot’s idea. In his model he considers a single

risk-neutral informed trader, called the ‘insider’ (though not necessarily an illegal insider), who

has long-lived information about the underlying terminal asset value of the firm. Unlike in GM

the agent is strategic about her trading and will optimally dynamically trade over several trading

rounds to maximize her expected trading profits. The agent submits only market orders. In

addition to the insider there is a continuum of noise traders who trade for non-speculative reasons.

A risk-neutral market maker absorbs the total excess demand coming from both types of traders

and sets the market clearing price so as to break-even. Since in the Kyle (1985) model informed

agents act first, this is more of a signalling model.3 The model gives insights into (a) the optimal

trading strategy of an insider, (b) her trading profits, (c) equilibrium price dynamics, (b) price

liquidity (or market depth) as measured by the ubiquitous Kyle’s lambda. The latter has led to

many econometric applications using high-frequency data to measure stock-level trading liquidity.

Kyle considers both a one period model and a multi-auction model where the agent can trade at

n trading rounds before her information becomes public. Finally he considers the continuous limit

of his model where the agent can trade continuously. We will start with the one-period model.

8.1 The one-period model

•

• The liquidation value v ∼ N(p0,Σ0).

• Noise traders’ demand is u ∼ N(0, σ2
u) independent of v.

3But see the insightful discussion in Brunermeier p. 95,96, who points out that because of the continuous un-
bounded support of the Gaussian distribution, off-equilibrium strategies need not be considered, and the order in
which players act does not seem crucial in the Kyle model, which quite different from standard signalling models.
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• The insider observes the realization of v, but not of u, and submits her market order x.4

• The risk-neutral market makers observe only total order flow, the net demand from both

insider and noise traders, denoted y = x + u. Market makers absorb the net demand y at

a price so that they break-even. Assuming Bertrand competition the set price so as to have

zero expected profits, i.e., E[−y(v − p1)|y] = 0 which implies p1 = E[v|y].

• An equilibrium then is a trading strategy x that maximizes the expected profits of the insider

and a price p that satisfies the zero-expected-profit condition of the market maker:

(i) maxxE[(v − p1)x|v],

(ii) p1 = E[v|y].

• To solve this equilibrium Kyle proceeds in three steps: First, conjecture that (the market

maker conjecture) the insider chooses a trading strategy of the form x(v) = β(v− p0). Given

this conjecture, the market maker will set prices to be linear in order flow:

p1 = E[v|y = β(v − p0) + u] = p0 + λy

where

λ =
cov(v, y)

V ar[y]
=

βΣ0

β2Σ0 + σ2
u

Second, conjecture that (the insider conjectures) that price responds linearly to order flow,

i.e., p1 = p0 + λy. Given this conjecture the insider will choose her demand to

max
x

E[(v − p1)x] = max
x

E[(v − p0 − λ(x+ u))x]

This implies an optimal trading strategy of the insider of the form (from the FOC):

x =
v − p0

2λ

4Kyle assumes the insider does not observe noise traders’ order flow when submitting her order (Rochet Vila
(1994) study the extension where she can and show that the model implications are very similar). Kyle also assumes
that the market maker only sees total order flow. Instead, Holden and Subrahmanayam show that if the market
maker can see the two order flows separately, without knowing which is informed versus uninformed, the equilibrium
is unchanged (in equilibrium the insider’s demand ‘mimics’ the noise trading distribution).
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The second order condition for a maximum is satisfied iff λ > 0.

Lastly, find λ a fixed point so that both conjectures are indeed consistent, i.e, such that:

1

2λ
= β

plugging in the expression for λ we find that the equilibrium values satisfy:

β2 =
σ2
u

Σ0
and λ =

1

2β
=

σ0

2σu

• We can then derive the ex-ante expected profit of the insider:

E[(v − p0)x− λx2] =
1

2
β2Σ0 =

1

2
σ2
uΣ0

and the amount of information that is incorporated into prices due to the information conveyed

by order flow:

V [v|p1] = V [v|y] = Σ0 − λ2σ2
y = Σ0 − λ2(β2Σ0 + σ2

u) =
1

2
Σ0

The model shows:

– Prices respond linearly to order flow.

– Kyle’s lambda measures the sensitivity of prices to order flow: it is a signal to noise

ratio. The more noise trading the less the adverse selection faced by market makers, the

less prices move in reaction to incoming orders.

– Half of the prior ‘fundamental uncertainty’ is incorporated into prices with one single

trading round.

– Insider profits are increasing in the amount of prior uncertainty about fundamentals and

the amount of noise (which offers camouflage for her trading).

• We now turn to the dynamic multi-auction model to see (i) how insiders will split their orders

when they can trade over multiple rounds, and (ii) how this ability to dynamically trade will
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affect price dynamics and market liquidity. The continuous time limit will be treated below

using stochastic calculus.

8.2 The discrete time dynamic model

• Kyle assumes that the insider can trade n times at dates 0 = t0 < t1, . . . , < tN = T .

• each round of trading the insider trades ∆xn so that her cumulative position after t auctions

is
∑t

n=1 ∆xn starting from x0 = 0.

• The insider maximizes max∆xn E[
∑n

n=1(v − pn)∆xn]

• Noise traders demand is ∆un ∼ N(0, σ2
u∆t) to approximate a discrete Brownian motion.

• At each auction round, the market maker absorbs total order flow ∆yn = ∆xn + ∆un and

sets the auction price to break-even: pn = En−1[v|∆yn].

• We will seek a linear equilibrium where pn = pn−1 + λn∆yn and the optimal demand of the

insider is of the form ∆xn = βn∆t(v − pn−1).

• The proof is recursive. We start by defining the expected future profit value function of

the insider Jn = max∆xt E[
∑N

t=n+1(v − pt)∆xt] and posit that Jn = αn(v − pn)2 + δn for

two constants αn, δn which we seek to determine recursively (and with boundary conditions

αN = δN = 0).

• By backward induction we can compute the value function of the insider by solving Jn−1 =

max∆xn E[(v − pn)∆xn + Jn] recursively from starting from n = N .

• At some round n the insider’s demand solves max∆xn E[(v − pn−1 − λn∆xn)∆xn + αn(v −

pn−1 − λn(∆xn + ∆un))2 + δn]

• The first order condition gives: ∆xn = βn∆t(v − pn−1) where

βn∆t =
1− 2αnλn

2λn(1− αnλn)
(?)

• The second order condition gives λn(1− αnλn) > 0.
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• Plugging back the first order condition and solving we find that indeed Jn−1 is quadratic and

obtain a recursive solution for δn−1, αn−1 given by equation 3.15 and 3.16 in Kyle (1985).

• Given the conjecture about the insider’s trading strategy that ∆xn = βn∆t(v − pn−1), the

market maker will set prices to satisfy:

pn = En−1[v|∆xn + ∆un] = pn−1 + λn(∆xn + ∆un)

with

λn =
covn−1[∆xn + ∆un, v]

Vn−1[∆xn + ∆un]
=

βnΣn−1

β2
n∆tΣn−1 + σ2

u

(??)

where we have defined the variance of the fundamental at the beginning of the nth auction

Σn−1 = En−1[(v − pn−1)2] (note also that En−1[∆xn + ∆un] = 0).

• By the Gaussian projection theorem the posterior variance of the asset value after the nth

auction becomes:

Σn = Σn−1 − λ2
n∆t(β2

n∆tΣn−1 + σ2
u) = Σn−1 − Σn−1λnβn∆t

• It is left to show that there exists a unique fixed point (λn, βn) that satisfies the two equations

(?), (??) as well as the second-order condition. Then a numerical solution requires starting at

T with boundary conditions αN = δN = 0 and ΣN = ε and iterating back using the difference

equations for αn, δn,Σn as well as the solutions for βn, λn. An equilibrium is found if the

recursion matches the initial condition Σ0. Kyle shows that one can always find a terminal

condition ε such that this works.

• We will study the economic implications of the model when we consider the continuous time

solution of the Kyle model as derived by Back (1992), which is obtained in closed-form and

easy to interpret. In particular, we shall show that in the continuous time limit:

– Traders will split their orders so as to trade, in expectation, a constant number of shares

per unit time.

– Kyle’s lamba is twice as large when the insider can trade continuously.
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– All of the private information is ultimately revealed to the market and prices become

fully revealing, that is ΣT = 0.

• Extensions and follow-up of the Kyle model are numerous and include:

– Uniqueness of the Kyle equilibrium: existence of non-linear equilibria?

– Non-Gaussian distribution for the noise and asset value.

– Multiple competing insiders.

– Risk-averse insider and residual risk.

– Activism (the insider can affect the asset value at a cost).

– Stochstic noise trader volatility.

– Stochastic horizon.

– Strategic noise traders.

• Kyle’s lambda has become a central empirical measure of stock illiquidity, which can be

estimated at various frequencies by regressing price changes (or returns) on order flow. Even

the very popular Amihud measure if illiquidity is based on Kyle’s insight. See Goyenko,

Holden, Trzcinka (2009) for a recent empirical comparison of different liquidity measures.

9 Continuous-time Kyle Model

Here we show the continuous time derivation of the Kyle (1985) model. We follow the derivation

in Collin-Dufresne and Fos (2017), who extend the kyle model to allow for stochastic noise trader

volatility but retain the assumption that the terminal asset value is normally distributed. This

allows to use standard Kalman-Filtering techniques. Instead, Back (1992) allows for arbitrary

distribution of the terminal price, which requires more complex techniques. We will see his approach

below.

9.1 Continuous time Kyle (1985) model with a finite horizon T

Let’s suppose that at T the liquidation value of the firm v will be announced. v is drawn from a

prior distrbution v ∼ N(v0,Σ0) at time 0. Only the insider gets to obseve v.
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The insider accumulates a total number of shares Xt by choosing an admissible trading rate

θt ∈ A with dXt = θtdt, so as to maximize the expected value of her trading profits. As shown in

Back (1992) it is actually optimal for the insider to trade in an absolutely continuous time fashion

prior to the announcement. Indeed, note that, assuming zero interest rates, the dynamics of wealth

of the insider is dWt = Xtdpt. Further XT v = XTPT = X0P0 +
∫ T

0 (Xtdpt+ptdXt+d[X, p]t). Thus

WT = W0 +
∫ T

0 Xtdpt = W0−X0P0 +
∫ T

0 (v−pt)dXt−
∫ T

0 d[X, p]t. Since d[X, p]t > 0 in equilibrium,

it is optimal to choose an absolutely continuous trading strategy. it follows that the insider will

maximize:

J(t, p, v) = max
θs∈A

E[

∫ T

t
(v − ps)θsds | Fyt , v] (5)

We define the set of admissible trading strategies A = {θt s.t. E[(v − pt)
2] ≤ ∞ ∀t]}.5 The

equilibrium price pt is set by the competitive risk-neutral market maker so as to break-even on

average. Specifically, the zero-profit condition for the market maker implies that

pt = E[v|Fyt ] (6)

where we denote by Fyt the filtration of the market maker generated by observing the cumulative

order flow yt, which is the sum of the informed order flow and noise trading:

dyt = θtdt+ σtdZt (7)

The cumulative order flow of noise traders is driven by a Brownian motion Zt with determinstic

volatility σt.

Thus an equilibrium is defined by a price process pt and an admissible trading strategy θt, that

maximizes the profits of the insider in equation (5), while satisfying the market-maker break-even

condition equation (6).

To solve the equilibrium, we first conjecture that the trading strategy of the insider is of the

form:

θt = βt(v − pt) (8)

5This technical condition is sufficient to insure that the wealth process of the insider is well-behaved and, in
particular, to rule out ‘doubling-strategies’ as discussed in Dybvig and Huang (1988).
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for some deterministic trading speed βt. Given this conjecture the market maker’s filtering problem

is a standard conditionally Gaussian problem:

dpt = λtdYt (9)

λt =
βtΣt

σ2
t

(10)

dΣt = −λ2
tσ

2
t dt (11)

where Σt = E[(v − pt)2 | Fyt ] is the conditional posterior variance of the Market maker conditional

on observing the continuous order flow.

We can get some intuition for these updating dynamics from the discretized version of the model

where we use dyt ≈ yt+dt − yt = βt(v − pt)dt+ σtε
√
dt with ε ∼ N(0, 1). Then pt+dt = Et[v|dyt] =

Et[v] + λt(dyt − E[dyt]) where

λt =
Cov(v, dyt)

V (dyt)
=
Cov(v, dyt)

V (dyt)
=

βtΣtdt

β2
t Σtdt2 + σ2

t dt

Simplifying by dt and taking the limit as dt→ 0 gives the expression for λt.
6 Further, the posterior

variance Σt+dt = Et[(v−pt+dt)2|dyt] = Σt−λ2
tV (dyt). In the limit as dt→ 0 we have V (dyt) = σ2

t dt,

which gives the desired equation.

Note that given our conjecture on θt, price impact λt is itself deterministic. Given the price

dynamics in (9) we turn to solving the insider’s optimization problem. First, note that his value

function can be rewritten as:

J(t, p, v) = max
θs∈A

E

[∫ T

t
(v − ps)θsds | Fyt , v

]
(12)

The HJB equation is:

max
θ

{
Jt +

1

2
Jppλ

2
tσ

2
t + Jpλtθ + (v − pt)θ

}
= 0. (13)

6A rigorous derivation of the continuous time Kalman filter equations can be found in Liptser and Shiryaev classic
textbook ”statistics of Random Processes.”
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It follows that the first order condition is:

Jpλt + (v − pt) = 0. (14)

We thus guess a quadratic form:

J(t, p, v) =
(v − p)2

2λt
+ f(t) (15)

Using this guess in the HJB equation we find

f ′ − (v − p)2 λ
′
t

2λ2
t

+
1

2
λtσ

2
t = 0 (16)

Thus the guess is consistent if:

f ′ = −1

2
λtσ

2
t (17)

λ′t = 0 (18)

Thus λ must be constant in equilibrium (otherwise the risk-neutral insider would shift all her

demand into states where there is lower price impact). Further, we can solve the equation for f(t)

(subject to f(T ) = 0) to get :

f(t) =
1

2
λ

∫ T

t
σ2
sds (19)

=
Σt − ΣT

2λ
(20)

where the second line follows from the explicit solution for the posterior variance given by:

Σt = Σ0 − λ2

∫ t

0
σ2
sds (21)

It remains to pin down the optimal trading strategy of the insider and, in particular, to show

there exists a strategy of the form conjectured by the market maker that is indeed optimal for the

insider. First, we conjecture that an optimal strategy for the insider must be such that limt→T pt =

v, so that there is no money left on the table. Otherwise, there would be an incentive for the insider
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to deviate from the trading strategy (e.g., trade a little more aggressively) to benefit from that

price gap.

Thus suppose the insider chooses a strategy as conjectured by the market maker with

βt =
λσ2

t

Σt

for some constant λ chosen such that ΣT = 0, i.e, such that

λ2 =
Σ0∫ T

0 σ2
sds

(22)

Then from (21) the posterior variance converges to zero at maturity (ΣT = 0) which implies

that pT = v (convergence in L2, which can be shown to imply a.s. convergence). As we show next

any strategy with that property is actually optimal for the insider.

Suppose that price is linear in order flow, that is dpt = λ(θtdt + σtdZt). Then consider an

arbitrary admissible trading strategy θt ∈ A and apply Itô’s lemma to the candidate quadratic

value function (39):

J(T, pT , v)− J(0, p0, v) =

∫ T

0
dJ(t, pt, v)

=

∫ T

0
−(v − pt)(θtdt+ σtdZt)

Taking expectation we find that for any admissible trading strategies:7

J(0, p0, v) = E
[
J(T, pT , v) +

∫ T

0
(v − pt)θtdt

]
(23)

Now, note that by definition J(T, pT , v) = (v−pT )2

2λ ≥ 0, thus

J(0, p0, v) ≥ E
[∫ T

0
(v − pt)θtdt

]
(24)

7The fact that the strategy is admissible guarantees that the stochastic integral is a martingale, since E[
∫ T
0

(v −
pt)

2σ2
t dt] <∞ for any θt ∈ A.
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for all θt.

Further, if we can find an admissible trading strategy such that pT = v a.s. then J(T, pT , v) =

0 a.s. and we obtain an equality in equation (24) which proves the optimality of the strategy. Thus

we have shown:

Theorem 1: For λ given by equation (22) and Σ given by (21) we have limt→T Σt = 0. Thus an

equilibrium exists where the equilibrium price process follows:

dPt = κt(v − Pt)dt+ λσtdZt (25)

κt =
λ2σ2

t

Σt
(26)

In that equilibrium the informed investor trades as in equation (8) with βt =
λσ2
t

Σt
.

We see that in the filtration of the insider the price follows a mean-reverting process with mean-

reversion rate equal to κt. For example we have that E[pt − v] = e−
∫ t
0 κsds(p0 − v). Note further

that dΣt
Σt

= κtdt, so that

Σt = Σ0e
−

∫ t
0 κsds.

It follows that the expected trading rate of the informed investor in her own filtration is:

E[θt | v, F Yt ] = (v − p0)βte
−

∫ t
0 κsds =

(v − p0)√
Σ0

σ2
t√∫ T

0 σ2
sds

(27)

To analyze the implications of our findings it is helpful to define the fundamental uncertainty

in terms of its annualized volatility Σ0 = σ2
vT . We see that in equilibrium:

• Price impact, Kyle’s lambda, is constant and can always be interpreted as an average signal

to noise ratio. When noise trading volatility is constant then λ = σv
σ . The reason is that since

the informed investor is risk-neutral she would otherwise concentrate her trading in those

states where she knows for sure that price impact will be lowest. Interestingly this result does

not hold when noise trading volatility becomes stochastic (Collin-Dufresne and Fos (2017)).

• The equilibrium price is a martingale in the filtration of the market maker (since E[dyt|Fyt ] =

0), but it is mean-reverting in the filtration of the insider with mean-reversion rate κt with
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limt→T κt = ∞. This is a Brownian-bridge type process which converges almost surely to v

at maturity T . When noise trading volatility is constant then κt = 1
T−t .

• All the information is revealed at T where prices become fully revealing, as ΣT = 0. When

noise trading volatility is constant Σt = σ2
v(T − t).

• The optimal trading strategy of the insider is to trade more aggressively in states where noise

trading variance is relatively highest (where she can hide best). When noise trading volatility

is constant note that βt = 1
λ(T−t) which goes to infinity as maturity approaches, so as to profit

from any remaining ‘inefficiency’ (pt 6= v). In expectation the insider trades at a constant

rate given by: E[θt | v, F Yt ] = (v−p0)
λT , which has a nice interpretation.

• Price volatility is σP (t) = λσt that is more information is revealed to the market in states

where noise trading volatility is highest (which is where the insider trades more). Price

volatility is constant and equal to σP (t) = σv when noise trading volatility is constant (and

information is revealed at a constant rate).

• The value function of the insider is J(0) = (v−p0)2

2λ + Σ0
2λ which implies that this unconditional

expected profit is given by: Σ0
λ =

√
Σ0

∫ T
0 σ2

t dt which is increasing in both prior fundamental

uncertainty and noise trading variance.

9.2 Continuous time Kyle (1985) model with a random poisson distributed

horizon T

Let’s suppose there is a random announcement time τ > 0 which has a deterministic intensity

ρt > 0. At τ the liquidation value of the firm v will be announced. v is known only to the insider,

but has a prior distribution perceived by the market maker of v ∼ N(v0,Σ0).

The insider accumulates a total number of shares Xt by choosing an admissible trading rate

θt ∈ A with dXt = θtdt on t < τ , so as to maximize the expected value of her trading profits:

J(t, p, v) = max
θs∈A

E[

∫ τ

t
(v − ps)θs1τ>sds | Fyt , v] (28)

We define the set of admissible trading strategies A = {θt s.t. E[(e−
∫ T
0 ρsdspT )2] ≤ ∞ ∀T ]}.8 The

8This technical condition is sufficient to insure that the wealth process of the insider is well-behaved and, in
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equilibrium price Pt is set by the competitive risk-neutral market maker so as to break-even on

average. Specifically, the zero-profit condition for the market maker implies that

Pt = pt1τ>t + v1τ≤t, (29)

that is the price jumps on the announcement date to the value v from the pre-announcement price

pt given by:

pt = E[v|Fyt , τ > t] (30)

where we denote by Fyt the filtration of the market maker generated on τ > t by observing the

cumulative order flow yt, which is the sum of the informed order flow and noise trading:

dyt = θtdt+ σtdZt (31)

The cumulative order flow of noise traders is driven by a Brownian motion Zt with determinstic

intensity σt <∞.

Thus an equilibrium is defined by a pre-anouncement price process pt and an admissible trading

strategy θt, that maximizes the profits of the insider in equation (28), while satisfying the market-

maker break-even condition equation (30).

To solve the pre-announcement equilibrium, we first conjecture that the trading strategy of the

insider (on {τ > t}) is of the form:

θt = βt(v − pt) (32)

for some deterministic trading speed βt. Given this conjecture the market maker’s filtering problem

is a standard conditionally Gaussian problem on the set {τ > t}:

dpt = λtdYt (33)

λt =
βtΣt

σ2
t

(34)

dΣt = −λ2
tσ

2
t dt (35)

where Σt = E[(v − pt)2 | Fyt ] is the conditional posterior variance of the Market maker conditional

particular, to rule out ‘doubling-strategies’ as discussed in Dybvig and Huang (1988).
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on observing the continuous order flow. Note the crucial fact that the announcement date is

unpredictable and independent of v, hence knowing τ > t does not improve the learning of the

market maker, i.e., pt = E[v | Fyt , τ > t] = E[v | Fyt ].

Note that given our conjecture on θt, price impact λt is itself deterministic. Given the price

dynamics in (33) we turn to solving the insider’s optimization problem. First, note that his value

function can be rewritten as (on the set τ > t):

J(t, p, v) = max
θs∈A

E

[∫ ∞
t

e−
∫ s
t ρudu(v − ps)θsds | Fyt , v

]
(36)

The HJB equation is:

max
θ

{
Jt +

1

2
Jppλ

2
tσ

2
t + Jpλtθ − ρtJ + (v − pt)θ

}
= 0. (37)

It follows that the first order condition is:

Jpλt + (v − pt) = 0. (38)

We thus guess a quadratic form:

J(t, p, v) =
(v − p)2

2λt
+ f(t) (39)

Using this guess in the HJB equation we find

f ′ − (v − p)2 λ
′
t

2λ2
t

+
1

2
λtσ

2
t − ρt

(
(v − p)2

2λt
+ f(t)

)
= 0 (40)

Thus the guess is consistent if:

0 = f ′ +
1

2
λtσ

2
t − ρtf(t) (41)

λ′t
λt

= −ρt (42)
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Solving the equation for λ we obtain:

λt = λ0e
−

∫ t
0 ρudu (43)

Solving the equation for f(t) (subject to f(∞) = 0) gives the solution:

f(t) = λt

∫ ∞
t

e−2
∫ s
t ρudu

1

2
σ2
sds (44)

=
Σt − Σ∞

2λt
(45)

Solving for the posterior variance we find:

Σt = Σ0 −
∫ t

0
λ2
sσ

2
sds (46)

We can then show the following Theorem:

Theorem 2: If we can find a constant λ0 such that limt→∞Σt = 0 where λt,Σt are given in

equations (43) and (46), then there exists an equilibrium where the price process follows:

dPt = κt(v − Pt)dt+ λtσtdZt + (v − Pt)d1τ≤t (47)

κt =
λ2
tσ

2
t

Σt
(48)

In that equilibrium the informed investor trades as in equation (32) with βt =
λtσ2

t
Σt

. The expected

trading rate of the informed investor in her own filtration is:

E[θt | τ > t, v, F Yt ] = (v − p0)βte
−

∫ t
0 κsds =

(v − p0)√
Σ0

λ0e
−

∫ t
0 ρsds

√
Σ0

σ2
t (49)

Proof. First we note that if the insider follows the strategy listed in the theorem, then the price

Pt = pt1τ>t + v1τ≤t, where pt is defined in equation (6). That is the price is consistent with the

equilibrium zero-profit condition of the market maker. It remains thus to show that θt given in

the theorem, is an optimal trading strategy for the insider, i.e., that it solves the optimization

problem (12) on τ > t.

To that effect, consider an arbitrary admissible trading strategy θt ∈ A and apply Itô’s lemma
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to the candidate quadratic value function (39):

e−
∫ T
0 ρsdsJ(T, pt, v)− J(0, p0, v) =

∫ T

0
e−

∫ t
0 ρsds (dJ(t, pt, v)− ρtJ(t, pt, v)dt)

= −
∫ T

0
e−

∫ t
0 ρsds(v − pt)(θtdt+ σtdZt)

Taking expectation we find that for any admissible trading strategies:9

J(0, p0, v) = E
[
e−

∫ T
0 ρsdsJ(T, pt, v) +

∫ T

0
e−

∫ t
0 ρsds(v − pt)θtdt

]
(50)

Now, note that by definition J(T, pt, v) ≥ 0, thus

J(0, p0, v) ≥ E
[∫ T

0
e−

∫ t
0 ρsds(v − pt)θtdt

]
(51)

for all θt and all T . In particular, taking the limit as T →∞ we have by bounded convergence:

J(0, p0, v) ≥ E
[∫ ∞

0
e−

∫ t
0 ρsds(v − pt)θtdt

]
(52)

Further, if we can find an admissible trading strategy such that limT→∞ E
[
e−

∫ T
0 ρsdsJ(T, pT , v)

]
=

0 then we obtain an equality in equation (52) which proves the optimality of the strategy. Now,

note that

E
[
e−

∫ T
0 ρsdsJ(T, pT , v)

]
= E

[
e−

∫ T
0 ρsds{(v − pT )2

2λT
+ f(T )}

]
=

ΣT

2λ0
+ e−

∫ T
0 ρsdsf(T )

=
2ΣT − Σ∞

2λ0

Clearly a sufficient condition for a the right-hand side to go to zero and a strategy to be optimal is

9The fact that the strategy is admissible guarantees that the stochastic integral is a martingale, since

E[
∫ T
0
e−

∫ t
0 2ρsds(v − pt)2σ2

t dt] <∞ for any θt ∈ A.
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that limT→∞ΣT = 0 as stated in the theorem.

Below we give the explicit solution to the equilibrium when intensity and and noise trading

volatility are constant. See Collin-Dufresne, Fos, Muravyev (2019) for an application with increasing

intensity and noise-trading volatility to explain the information linkages between equity and option

markets. Presentation slides are posted on moodle.

9.2.1 Constant intensity and noise trading volatility

Here we explicitly compute the equilibrium when σ, ρ are both constant.

Solving for the posterior variance and imposing the terminal condition limt→∞Σ(t) = 0 we

obtain:

Σ(t) =
λ2

0σ
2

2ρ
e−2ρt (53)

Then an equilibrium exists if we can find λ0 such that we satisfy the initial condition Σ(0) = Σ0.

Indeed, we find that the solution is:

λ0 =

√
2ρΣ0

σ
(54)

wich corresponds to the price impact that would obtain in a finite horizon economy with a fixed

horizon of T = 1
2ρ . The corresponding posterior variance is:

Σ(t) = Σ0e
−2ρt (55)

Further, we can compute the equilibrium trading strategy:

θt =
2ρeρt

λ0
(v − pt) (56)

and the price process starts from P0 = v0 and has jump-diffusion dynamics:

dPt = 2ρ(v − Pt)dt+
√

2ρΣ0e
−ρtdZt + (v − Pt)d1τ≤t (57)

We note that the equilibrium price prior to the announcement is a Gaussian mean-reverting
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process in the filtration of the insider with mean-reversion strength equal to twice the announcement

intensity and an exponentially decreasing volatility.

We can compute its expectation and variance, conditional on the insider’s information:

Et[pT − v|v, τ > T ] = e−2ρ(T−t)(pt − v) (58)

Vt[pT − v|v, τ > T ] = e−2ρT (1− e−2ρ(T−t))Σ0 (59)

And we see that pt converges in L2 to v when t goes to infinity.

The expected trading rate becomes

E[θt | τ > t, v, F Yt ] =
(v − p0)

λ0
1
2ρ

e−ρt (60)

which starts at time 0 at the same rate one would expect in an economy with a fixed time horizon

equal to 1/(2ρ) and then decreases at the constant intensity rate.

9.3 Continuous time Kyle (1985) model with stochastic noise trading volatility

and stochastic horizon

See presentation slides posted on moodle along with the papers Collin-Dufresne and Fos (2017).

The setup is identical to the one seen in the previous section. The only addition is that now the

noise trading volatility process is stochastic driven by it own independent Brownian motion shock

Wt. That is:

• The liquidation value of the firm v will be announced at T .v ∼ N(v0,Σ0) at time 0. Only the

insider gets to observe v at t = 0.

• The insider chooses his trading strategy dXt = θtdt to maximize J(t) = maxθs∈AE[
∫ T
t (v −

ps)θsds | Fyt , v]

• Market Makers set price competititely:pt = E[v|Fyt ] where we denote by Fyt the filtration of

the market maker generated by observing the cumulative order flow yt (and noise-trading
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volatility σt), which is the sum of the informed order flow and noise trading

dyt = θtdt+ σtdZt

dσt = m(σ, t)dt+ ν(σ, t)dWt

• To solve the equilibrium, we first conjecture that the trading strategy of the insider is of the

form:

θt = βt(v − pt) (61)

for some stochastic trading speed process βt, which may in particular depend on the noise

trading volatility process. Given this conjecture the market maker’s filtering problem is a

standard conditionally Gaussian problem:

dpt = λtdYt (62)

λt =
βtΣt

σ2
t

(63)

dΣt = −λ2
tσ

2
t dt (64)

where Σt = E[(v − pt)2 | Fyt ] is the conditional posterior variance of the Market maker condi-

tional on observing the continuous order flow.

• Note that given our conjecture on θt, price impact λt is itself a stochastic process (possibly

depending on t and the history of σt).

• Then s Given the price dynamics in (62) we turn to solving the insider’s optimization problem.

Given the deterministic volatility solution we guess that the value function of the insider is

of the form

J(t) = J(t, p, v) =
(v − p)2 + Σt

2λt

Given this guess we not that

dJ = −(v − p)(θtdt+ σtdZt) + ((v − p)2 + Σt)d
1

λt
− (v − p)d[p, frac1λt]t

Integrating and rearranging and taking expectation, we see that if:
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(i) Market depth is a martingale, that is E[d 1
λt

] = 0

(ii) Market depth is independent of the price process d 1
λt
dpt = 0.

Then

J(0) = E[

∫ T

0
(v − pt)θtdt+ J(T )]

Now, since J(T ) ≥ 0, we see that (i) for any admissible θ we have J(0) ≥ E[
∫ T

0 (v − pt)θtdt]

and (ii) If the exists a θ∗t such that pT = v a.s. (i.e. there is no money left on the table) then

J(0) = E[
∫ T

0 (v − pt)θtdt], which establishes the optimality of the trading strategy for that

price proces.

• It remains to find λt,Σt so that given a trading strategy pinned down by (63) that is βt =
λtσ2

t
Σt

the price process satisfy the Bridge property that limt→T Pt = v a.s.. Equivalently we look for

a process Σt such that limt→T Σt = 0. So we need to solve the forward backward system (on

the filtration generated by σt, note that this will automatically satisfy condition (ii) above):

– E[d 1
λt
|Fσt ] = 0

– dΣt = −λ2
tσ

2
t dt with limt→T Σt → 0.

• Motivated by the deterministic case, we conjecture that λt =
√

Σt
Gt

which decouples the

forward backward system:

– E[d
√
Gt|Fσt ] = − σ2

t√
Gt
dt

– dΣt
Σt

= − σ2
t
Gt
dt with limt→T Σt → 0.

The solution is then

Σt = Σ0e
−

∫ t
0

σ2t
Gt
dt

where Gt solves the backward (recursive) equation

√
Gt = E[

∫ T

t

σ2
t√
Gt
dt]

43



• Collin-Dufresne and Fos (2017) establish under what conditions a solution to G exists such

that ΣT = 0 and pT = v a.s.. This implies tha the equilibrium exists with λt =
√

Σt
Gt

where

the price process follows:

dPt = κt(v − Pt)dt+ λtσtdZt (65)

κt =
σ2
t

Gt
(66)

In that equilibrium the informed investor trades as in equation (61) with βt = κt
λt

.

We see that in this model

– Price impact is in general stochastic that it tends to increase on average (because its

inverse, market depth) is a martingale. Liquidity deteriorates over the trading day in

equilibrium so that the insider is willing to trade early and give up her option to delay

trading to wait for better liquidity states. (Stochastic noise trading volatility gives the

insider a liquidity timing option.)

– The optimal trading strategy of the insider is to trade more in states where price impact

it lowest as well as in states where noise trading volume is highest (relative to the average

level of uninformed noise trading).

– Price volatility is stochastic driven by noise trading volatility. In states where noise

trading volatility is high, the insider trades more and more information gets into prices.

9.4 Continuous time Kyle (1985) with non-normally distributed terminal value:

Back (1992)

• Given a price function P (t, Yt), insider maximizes

max
θ
E

[∫ T

0
(v − P (t, Yt))θt dt | v

]
. (67)

• Market Maker has prior v ∼ F (x) = Prob(v ≤ x) (not necessarily normal!) and observes

total order flow Yt:
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dYt = θtdt+ σdZt

where Zt is standard Brownian motion and where dXt = θtdt is the trading strategy of the

insider. Note that it is not a priori obvious why the insider should trade in an absolutely

continuous fashion (i.e., without any dZt term). However, given that the model assumes that

σ is common-knowledge any additional Brownian component would effectively be ‘observed’

by the market maker and lead to price impact that would reduce the profits of the insider.

See the discussion page 393-394 in Back (1992). Here we will proceed with the conjecture

that the insider’s strategy is of that form.

• An equilibrium is a pair (P, θ) s.t. trading strategy θ maximizes (67) given P and

P (t, Yt) = E
[
v | FYt

]
(68)

• Search for an equilibrium where P (y, t) only depends on aggregate order flow. Then, risk-

neutrality of the market maker implies P (Yt, t) = E[h(YT ) | FYt ] for some function h(Y ).

• Note that in continuous time it is natural to assume that the insider can effectively ‘observe’

total order flow Yt and hence also σZt and thus she can condition her trades on the noise

trader demand. This is because in equilibrium Yt can be inverted from P (Yt, t). This is

different from the discrete Kyle model where it is assumed that the insider cannot condition

her trades on noise trader demand which it does not observe. But see Rochet and Vila (1992)

who study a one-period Kyle model, where the insider can observe noise trader demand.

• If the insider’s trading strategy is unpredictable (i.e. E[θt|Fyt ] = 0), then

P (y, t) = E[h(y + σ(ZT − Zt)) | FZt ].

So the price function is pinned down by h(·) (given law of Z).

• If the insider leaves no-money on the table at maturity, then h(YT ) = v a.s..

• To find candidate h(·), we use the fact that YT ∼ N(0, σ2T ). So we need h−1(v) ∼ N(0, σ2T ),
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which implies Prob(h−1(v) ≤ y) = N( y

σ
√
T

) where N(x) is the standard normal cumulative

distribution function. But we also have by definition Prob(v ≤ h(y)) = F (h(y)). Thus our

candidate

h(y) = F−1(N(
y

σ
√
T

))

. Note that h′(y) > 0 (since N ′(x) > 0 and F ′(x) > 0).

• It remains to show that (a) there exists a trading strategy θt such that yt is a Brownian

motion on its own filtration that converges almost surely to h−1(v), and (b) that this strategy

is optimal for the insider.

• The insider maximizes

E

[∫ T

0
(v − P (t, Yt))θt dt | v

]

• HJB equation for value function J(Yt, t) is linear in control θ. Obtain:

(HJB) 0 =
1

2
JY Y σ

2 + Jt

(FOC) 0 = JY + v − P (Y, t)

• Using Feynman-Kac we seek (a ’no-trade’) solution of the form J(y, t) = Et[g(y+σ(ZT−Zt))|v]

for some function g(·).

• To determine g we assume by ‘continuity’ that the second (FOC) equation holds at T (where

P (Y, t) = h(Y )). So g should satisfy g′(y) + v − h(y) = 0, which leads us to guess a function

of the form g(y) = supȳ
∫ ȳ
y (v− h(z))dz. Optimizing over ȳ leads to the condition ȳ = h−1(v)

and our guess

g(y) =

∫ h−1(v)

y
(v − h(z))dz

Clearly we have that g(y) satisfies:

0 = gY + v − h(y)

• It follows (with sufficient regularity so we can take derivatives inside the expectation) that
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for our candidate value function:

JY (y, t) = Et[gY (y + σ(ZT − Zt))|v] = Et[h(y + σ(ZT − Zt))− v|v] = P (y, t)− v

Thus, the candidate J satisfies the HJB equation and FOC.

• It follows that for any θt:

J(Y0, t) = E0

[
g(YT ) +

∫ T

0
(v − P (Yt, t))θtdt

]

• Now note that g(y) ≥ 0 and that for the particular strategy θ∗t such that Y ∗T = h−1(v) a.s.

(which is equivalent to h(Y ∗T ) = v) we have g(Y ∗T ) = 0. This establishes the optimality of

our candidate value function, if indeed we can find the strategy with the desired convergence

property.

• To complete the proof it remains to show that we can find a strategy θ∗t such that dYt =

θ∗t dt + σdZt converges a.s. to h−1(v) at T and such that E[θ∗t |FYt ] = 0. Note that the

process dYt = 1
T−t(h

−1(v)− Yt)dt+ σdZt is a Brownian bridge that converges almost surely

to h−1(v) at maturity in the filtration of the insider. Further we have dYt = σdZyt where Zyt

is a standard Brownian motion on F Yt . Thus the insider’s trading strategy

dXt =
1

T − t
(h−1(v)− Yt)dt

is optimal.

• To prove the ‘Brownian bridge property,’ note that ε = h−1(v) ∼ N(0, σ2T ). Consider

dYt = βt(ε− Yt)dt+ σdZt for some constant c to be the observation equation for the random

variable ε and define pt = E[ε|FYt ] and Σt = E[(ε − pt)
2|FYt ]. Then standard Gaussian
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Kalman filtering gives

dpt =
βtΣt

σ2
(dYt − βt(pt − Yt)dt)

=
β2
t Σt

σ2
(ε− pt)dt+

βtΣt

σ2
σdZt

dΣt = −β
2
t Σ2

t

σ2
dt

Set βt = 1
T−t , to obtain the following solution :

dpt =
1

T − t
(ε− pt)dt+ σdZt

Σt = σ2(T − t)

Given initial condition p0 = Y0 = 0 we see that with θt = 1
T−t(ε−Yt) we have pt = Yt ∀t a.s..

This establishes that Yt is a martingale on its own filtration (E[θt] = 0) that converges almost

surely to ε at T (ΣT = 0).

9.4.1 The Gaussian case

Suppose that v is normally distributed with mean v0 and variance σ2
vT . Then F (x) = N( (x−v0)

σv
√
T

),

thus F−1(y) = v0 + σv
√
TN−1(y). It follows that:

h(y) = F−1(N(
y

σ
√
T

)) = v0 + λy

where

λ =
σv
σ

This implies P (y, t) = E[h(y + σ(ZT − Zt)] = v0 + λy which implies dPt = λdYt. Further

h−1(v) = v−v0
λ so θt = 1

λ(T−t)(v−v0−λYt)dt = 1
λ(T−t)(v−Pt)dt and we obtain the same equilibrium

as in the continuous time Kyle model
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9.4.2 The Log-Normal case

Suppose that log v is normally distributed with mean v0 and variance σ2
vT . Then F (x) = Prob(v ≤

x) = Prob(log v ≤ log x) = N( (log x−v0)

σv
√
T

), thus F−1(y) = exp(v0 + σv
√
TN−1(y)). It follows that:

h(y) = F−1(N(
y

σ
√
T

)) = exp(v0 + λy)

where

λ =
σv
σ

This implies P (y, t) = E[h(y + σ(ZT − Zt)] = exp(v0 + λy + 1
2λ

2σ2(T − t)) which implies

dPt
Pt

= λ(dYt− 1
2λσ

2dt). Further h−1(v) = log v−v0
λ so θt = 1

λ(T−t)(log v−v0−λYt)dt = 1
λ(T−t) log v

Pt
dt

and we obtain ’log-normal’ version of the continuous time Kyle model, where prices are log-normally

distributed (consistent with limited liability and empirical return features) and it makes sense to

think of an illiquidity ‘Kyle-lambda’ computed from returns as opposed to price changes.

10 Kyle and Lee When are financial markets strategic?

• Kyle (1989) and Kyle and Lee (2018) provide nice equilibrium models where agents act strate-

gically, in the sense that they take into account the impact of their trading on the equilibrium

price. In so doing, they avoid the problem of the rational expectation equilibrium (REE) dis-

cussed above in the context of Grossman and Grossman-Stiglitz’s models. The issue of trader

‘skizophrenia’, who learn from prices the information of other traders even though they as-

sume that they themselves have no impact on price. The fact that in equilibrium (if noise is

sufficiently small) there may be no incentive to acquire information, since prices reveal that

information ’costlessly’ and therefore free-riding is optimal. If agents act strategically, then

their trading will be less aggressive thus changing the information acquisition incentives. The

papers discuss whether and under what conditions the strategic equilibrium approaches the

competitive REE. The conclusion is that while prices may look similar in the two economies

in many conditions (e.g., when the number of traders increases), quantities rarely look alike

(trading behaviors remain quite different). Further, the incentives with respect to information

acquisition or the organisation of markets are very different across the two equilibrium con-
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cepts. Lastly, the papers show that measures based on Kyle-lambda type of price impact are

only imperfect measures of market illiquidity as they do not properly take into account the

impact of adverse selection on the actual quantity traded in equilibrium. On a technical side,

Kyle (1989) uses a model with exogenous noise traders, whose demand for shares is perfectly

price inelastic, whereas Kyle and Lee (2018) uses trader specific hedging demands driven by

endowment shocks to model noise. The latter is more suitable to think about welfare implica-

tions (every trader has a well-defined utility) and strategic trading equilibria (every trader is

strategic). In a nutshell, Kyle (1989) is the strategic version of the Grossman-Stiglitz (1980)

REE model, whereas Kyle-Lee (2018) is the strategic version of the Diamond and Verrecchia

(1981) REE model.

• Asset value v ∼ N(0, σ2
v).

• n = 1, . . . N agents with CARA utility and absolute risk-aversion A.

• Each agent observes a signal in = v + en where en ∼ N(0, σ
2
v
τI

). All signals are independent.

Note that τI measures the precision of the signal relative to the prior uncertainty.10

• Each agent receives a certain number of shares of the asset as a random endowment sn ∼

N(0, σ2
s).

• Each agent submits symmetric linear demand schedules X(P, in, sn) = −πpP +πIin−πssn.11

• Market clearing
∑

nX(P, in, sn) = 0.

• Study 2 kinds of equilibrium:

(i) Strategic (Bayesian-Nash) equilibrium: each agent chooses her demand curve to maxi-

mize her expected utility, taking as given all other (N − 1) agents demand curve.

(ii) Competitive REE: each agent chooses her demand curve to maximize her expected utility

taking the price functional as given.

We focus first on the strategic equilibrium

10Kyle (1989) also has M uninformed agents (without signal).
11The paper focuses only on symmetric linear equilibria and does not investigate whether their exists non-linear

equilibria.
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10.1 Strategic equilibrium

• If agent n is strategic then she considers the residual supply curve

P =
πI
πp
i−n −

πs
πp
s−n︸ ︷︷ ︸

pn

− 1

(N − 1)πp︸ ︷︷ ︸
λ

Xn

where we define s−k = 1
N−1

∑
n6=k sn.

• So the agent can infer
πp
πI
pn = v + e−n − πs

πI
s−n := v + eP from the market price, which is a

noisy estimate of the other traders information. note that

V ar[ep] = σ2
v

(N−1)τI
+ π2

s

π2
I (N−1)

σ2
s .

• Agent n maximizes J = E[(Xn + sn)v −XnP |P, in, sn]− A
2 Var[(Xn + sn)v |P, in, sn]

• FOC gives

Xn =
(E[v |P, in, sn]−AsnVar[v |P, in, sn]− pn)

2λ+AVar[v |P, in, sn]

• The SOC is 2λ+AVar[v |P, in, sn] > 0.

• Note that

E[v |P, in, sn] = E[v | πp
πI
pn, in, sn]

=
1

1 + τI + (N − 1)τIϕ
((N − 1)τIϕ

πp
πI
pn + τIin)

where we define

ϕ =
σ2
v

(N − 1)τIV [eP ]

and

V̂ := Var[v |P, in, sn] =
σ2
v

1 + τI + (N − 1)τIϕ

• The proof of this relies on the multi-variate Gaussian projection theorem. It follows also

straightforwardly from the result that if one observes n signals si = v + εi with independent
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εi ∼ N(0, σ2
i ), then the minimum variance portfolio of the signals S =

∑
iwisi = v+

∑
iwiεi

with weights wi = τi∑
j τj

and precisions τi = 1
σ2
i
, is a sufficient statistic for the n signals in the

sense that v = βS + ν with β = Cov(v,S)
V (S) = σ2

v

σ2
v+

∑
i w

2
i σ

2
i

satisfies ν ⊥ si ∀i.

• Plug the solutions into the FOC to obtain :

(2λ+AV̂ )Xn =
1

1 + τI + (N − 1)τIϕ
((N − 1)τIϕ

πp
πI
pn + τIin)−AsnV̂ − pn

• Now we use the definition pn = P + λXn to obtain

(λ+AV̂ )Xn =
1

1 + τI + (N − 1)τIϕ
((N − 1)τIϕ

πp
πI

(P + λXn) + τIin)−AsnV̂ − P

rearranging

((1 + τI)λ+Aσ2
v)Xn = τIin −Aσ2

vsn − (1 + τI + (N − 1)τIϕ(1− πp
πI

))P

• Matching with the assumed form Xn = −πpP + πIin − πssn we get three equations for

πp, πs, πI :

((1 + τI)λ+Aσ2
v)πp = 1 + τI + (N − 1)τIϕ(1− πp

πI
)

((1 + τI)λ+Aσ2
v)πI = τI

((1 + τI)λ+Aσ2
v)πs = Aσ2

v

λ =
1

(N − 1)πp

from which it follows that

πp
πI

= (1 + τ−1
I + (N − 1)ϕ(1− πp

πI
))

πs
πI

=
Aσ2

v

τI
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and finally:

πp
πI

= 1 +
1

τI + (N − 1)τIϕ

πs
πI

=
Aσ2

v

τI

((1 + τI)λ+Aσ2
v)πp = τI(1 +

1

τI + (N − 1)τIϕ
)

• Solving for πp, πs, πI we get the expression for the optimal demand Xn of each agent. Imposing

market clearing
∑N

n=1Xn = 0 we obtain the market clearing price

P =
πI
πp

∑
n

in −
πs
πp

∑
n

sn

• substituting the expression for λ into the SOC we get a necessary condition for an equilibrium

to exist.

• Putting all the results together we get proposition 1.

10.2 The competitive equilibrium

• Assume that all agents have demand functions of the form Xn = πIin − πssn − πPP .

• When agents take prices as given market clearing implies
∑

nXn = 0, that is P = πI
πp
ī− πs

πp
s̄

where we define s̄ = 1
n

∑
n sn.

• Of course, given her own signal and endowment (in, sn) the agent can infer from the price

the same signal as in the competitive case
πp
πI
P − (in − πs

πI
sn) = v + e−n − πs

πI
s−n := v + eP

from the market price, which is a noisy estimate of the other traders information. note that

V ar[ep] = σ2
v

(N−1)τI
+ π2

s

π2
I (N−1)

σ2
s .

• Agent n maximizes J = E[(Xn + sn)v −XnP |P, in, sn]− A
2 Var[(Xn + sn)v |P, in, sn]

• FOC gives

Xn =
(E[v |P, in, sn]−AsnVar[v |P, in, sn]− P )

AVar[v |P, in, sn]

• The SOC is AVar[v |P, in, sn] > 0 which is always satisfied in this case!
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• Note that

E[v |P, in, sn] =
1

1 + τI + (N − 1)τIϕ
((N − 1)τIϕ

πp
πI
P + τIin)

where we define

ϕ =
σ2
v

(N − 1)τIV [eP ]

and

V̂ := Var[v |P, in, sn] =
σ2
v

1 + τI + (N − 1)τIϕ

• Plug the solutions into the FOC to obtain :

(AV̂ )Xn =
1

1 + τI + (N − 1)τIϕ
((N − 1)τIϕ

πp
πI
P + τIin)−AsnV̂ − P

rearranging we get:

Aσ2
vXn = τIin −Aσ2

vsn − (1 + τI + (N − 1)τIϕ(1− πp
πI

))P

• Matching with the assumed form Xn = −πpP + πIin − πssn we get three equations for

πp, πs, πI :

(Aσ2
v)πp = 1 + τI + (N − 1)τIϕ(1− πp

πI
)

(Aσ2
v)πI = τI

(Aσ2
v)πs = Aσ2

v
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which are the same equations as in the strategic case with λ = 0! It follows that

πs = 1

πI =
τI
Aσ2

v

πp
πI

= 1 +
1

τI + (N − 1)τIϕ

• Solving for πp, πs, πI we get the expression for the optimal demand Xn of each agent. Imposing

market clearing
∑N

n=1Xn = 0 we obtain the market clearing price

P =
πI
πp

∑
n

in −
πs
πp

∑
n

sn

Since the ratios πI
πp

and πs
πp

are unchanged the equilibrium price is actually identical relative

to the strategic case!

• Putting all the results together we get proposition 2. Note the interesting results:

– Equilibrium always exists in the competitive case, but not in the strategic case (requires

N > 2 and SOC).

– The equilibrium price function is the same in both models. This implies that in equilib-

rium, in the competitie model there is a residual demand curve with a strictly positive

slope (λ), even though the informed agent assumes it is zero! (the schizophrenia).

– The quantities traded by the agents differ in that

XStrat
n = χXComp

n

where

χ = (
N − 2

N − 1
− 2ϕ)/(1− ϕ)

ϕ =
τI

τI +A2σ2
vσ

2
s

Agents trade less in the strategic equilibrium. Kyle and Lee define χ as the measure of
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market competitiveness. When χ = 1 both equilibria are identical, strategic consider-

ations become insignificant. Note that χ depends only on N and on the informational

efficiency ϕ and decreases in both. For strategic markets to become competitive re-

quires both N → ∞ and ϕ → 0. The latter means that either their signal becomes

uninformative or their hedging motive dwarfs their information motive of trading.

Summarizing, financial markets become perfectly competitive if and only if there

are infinitely many traders and relative informational efficiency ’ approaches

zero, in which case hedging completely dominates speculation. As long as spec-

ulation remains important in financial markets, markets remain imperfectly

competitive.

11 Illiquidity, stock returns, and the role of market making: Grossman-

Miller (1988)

Propose a model of market making and liquidity based on the temporal imbalance of order flow

and demand and supply for immediacy. It is different from the information based theory with risk-

neutral market makers (Glosten-Milgrom (1985)), and more related to the inventory- models where

risk-averse market makers hold risky inventory and provide immediacy to arriving customers. GM

point out that market makers’ supply of immediacy stands in contrast with thin, illiquid markets

(such as housing) where immediacy is not a primary concern and issues regarding moral hazard

and adverse selection lead the ’market makers’ to offer services in marketing, advertising, search

services rather than providing immediacy by acting as principal traders.

• Model has three CARA agents with same risk-aversion a. Agent 1 arrives in period 1 and

wants to sell i units of an asset (e.g., because she is endowed with i units of that asset).

Agent 2 arrives in period 2 and wants to buy i units of the same asset (e.g., she has a risky

endowment of −i units). The asset pays a risky dividend in period 3 which is P3 ∼ N(µ, σ2).

If the two agents arrived to the market at the same time, they would trade with each other

and there would be zero trade imbalance. Instead, there are M market makers who are

present in the market at all times and will provide immediacy, buying from agent 1 in period
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1 and selling to agent 2 in period 2.

• Assuming zero risk-free rate, agent 1 starts with B0 cash and i shares to invest in x1 shares

at time 1 so that W1 = x1P1 + B1 = iP1 + B0. Then at time 2 she rebalances her portfolio

so that W2 = x2P2 + B2 = x1P2 + B1. Finally W3 = x2P3 + B2. Combining we find that

W3 = x2(P3 − P2) + x1(P2 − P1) + iP1 +B0 which can be rewritten as:

W3 = B0 + x̂1(P2 − P1) + x̂2(P3 − P2) + iP3

with x̂i = xi − i defining the trade net of the initial exposure.

• Proceeding recursively and using the CARA-normal setup maxx̂2 E2[U(W3)] = maxx̂2 E2[W3]−
a
2V2[W3] which gives:

x̂2 =
E2[P3]− P2

aV2[P3]
− i := D(i)

• Now at t = 2 the newly arriving agent 2 has offsetting excess demand x̂new2 = D(−i), and the

M market makers each demand D(0), thus market clearing (sum of excess demands is zero)

gives:

D(i) +MD(0) +D(−i) = 0

Together this implies

P2 = E2[P3]

and thus x̂∗2 = −i = −x̂new2 .

• It follows that for agent 1, W3 = B0 +x̂1(P2−P1)+x̂∗2(P3−P2)+iP3 = B0 +x̂1(P2−P1)+iP2.

Thus at date 1, agent 1 seeks x1 to maxx̂1 E1[W3]− a
2V1[W3] which gives:

x̂1 =
E1[P2]− P1

aV1[P2]
− i =

E1[P3]− P1

aV1[E2[P3]]
− i

Note that we need some news about the terminal payoff to arrive in period 2 (so that V1[P2] =

V1[E2[P3]] > 0). for the model to display some interesting properties.

• Similarly the demand from market makers in period 1 will be xm1 = E1[P2]−P1

aV1[P2] = E1[P3]−P1

aV1[E2[P3]] .
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Thus market clearing implies : x̂1 +Mxm1 = 0 which implies

E1[P2]− P1

aV1[P2]
=

i

1 +M
≡ xm1

• Define the excess return earned by market makers:

E1[r] = E1[
P2

P1
]− 1 = xm1 P1aV1[r]

The excess return earned by market makers is increasing in the ‘dollar’ inventory xm1 P1 held

by market makers, if and only if V1[r] > 0. The latter requires V1[P2] = V1[E2[P3]] > 0.

That is, there needs to be some risk in the time-2 prices, which in the context of the model

means some news about the terminal payoff P3 must be disclosed at time 2. Else, holding the

inventory from period 1 to period 2 is not risky, and there is no role for providing immediacy.

• How much of the desired customer trade is completed at time 1 versus time 2 (this is an

interesting alternative measure of liquidity that is different from the classic bid-ask spread)?

x∗1 = xm − i = − M

M + 1
i and x∗2 = −i = x∗1 −

i

M + 1
.

Thus only a fraction M
M+1 of the desired trade (−i) is done in period 1. The larger the number

of market makers M , the more liquid the market. Because of limited risk-bearing capacity of

market makers, it is not optimal to execute all of the desired trade rightaway, but rather to

hold on to some exposure.

• What is the equilibrium number of market makers?

Assume that it costs C to become one. Then free entry implies M solves:

E[U(B0 − C + xm1 (P2 − P1) + xm2 (P3 − P2)] = E[U(B0)]

using the fact that xm2 = 0 and xm1 = i
M+1 we obtain the following condition:

E[e−a[−C+ i
M+1

(P2−P1)] = 1
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where P2 = E2[P3]. Assuming that i, P2 are independent and normally distributed we obtain:

E[eaC+ 1
2

( ai
M+1

)2V1[P2]−a i
M+1

E1[P2−P1]] = E[eaC−
1
2

( ai
M+1

)2V1[P2]] = 1

Assuming that i is normally distributed we can compute the expectation using the moment

generating function of a Chi-Squared random variable to obtain:

1√
1 + t

e−
E[i]2

1+t
t
2 = e−ac

where

t =
a2V1[P2]

(1 +M)2
V [i]

If E[i] = 0 (imbalances are zero on average) then t is determined only by ac and is in fact

increasing in ac. So M is larger the smaller ac and the larger the risk to hedge (V [i]V [P2]).

• Implication of the model for price auto-correlation (an alternative measure of illiquidity,

relative to Bid-ask spread also advocated by Roll (1984)). Define autocorrelation to be

q =
Cov(P2 − P1, P1 − E0[P1])√
V [P2 − P1]V [P1 − E0[P1]]

• Use P2 = E2[P3] and P1 = E1[P2]− i
1+M aV1[P2] and E0[P1] = E0[P2] (i.e., assuming E0[i] = 0)

to get that P2−P1 = P2−E1[P2]+ i
1+M aV1[P2] and P1−E0[P1] = E1[P2]− i

1+M aV1[P2]−E0[P2]

Further, assume that s2 = V1[P2] ≡ V1[P2 − E1[P2]] = V [E1[P2]− E0[P2]]

So that

q = − t√
1 + t

This implies the autocorrelation in price changes is negative and determined solely by the

cost of becoming a market maker. More negative autocorrelation expected the more costlier

it is to become a market maker (the lower the risk-bearing capacity of market makers).

• Nice discussion of different market structures p. 620-622, where they compare (i) highly

liquid stocks, where there is a lot of order-flow and where the specialist can play the role of

an ”auctionneer”, (ii) for smaller stocks role of the specialist becomes more prevalent, there
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are fewer market makers who need to take the stocks on their books (where the minimum tick

size rule plays a role in preventing exercise of monopoly power) and where illiquidity can arise

if too large an order comes to the market, (iii) the upstairs market which functions like a search

market for larger ”block-size” trades, (iv) the pure OTC search markets, with no obligation

to maintain any continuous market making presence. Suggests many interesting questions:

What is the ‘optimal’ market structure? Does it depend on security characteristics? Does

it depend on client/customer characteristics and needs? What is interaction between market

structure, liquidity and efficiency?

• Discussion of the relation to the literature on Bid-ask spreads and on the role of market

makers in the 1987 Krash. In general, the idea of this paper is that Market maker risk-

bearing capacity and fluctuations therein can explain (time-varying) market liquidity in ways

that simply looking at bid-ask spreads may be mis-leading. Also, this is a different source of

illiquidity than the information cost discussed previously. See also the interesting discussion

of GM by Whitcomb, posed on moodle.

12 Illiquidity and Stock Returns: Amihud Mendelson (1986)

Why do investors hold different portfolios? How does illiquidity affect asset returns? AM envision

that both investors demand is shaped by different liquidity needs (they have different trading

horizons, maybe are subject to different liquidity shocks). Further assets have different liquidity

characteristics (their bid-ask spreads differ, which might reflect a cost of immediacy or informational

frictions). AM propose a theory where in equilibrium different liquidity clienteles choose portfolios

with different liquidity characteristics, and where in equilibrium the expected return on individual

assets will be increasing in the bid-ask spread. That is, the cross-section of stocks’ expected returns

will be affected by illiquidity characteristics.

Our model predicts that higher-spread assets yield higher expected returns, and that

there is a clientele effect whereby investors with longer holding periods select assets with

higher spreads. The resulting testable hypothesis is that asset returns are an increasing

and concave function of the spread. The model also predicts that expected returns net

of trading costs increase with the holding period, and consequently higher-spread assets
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yield higher net returns to their holders. Hence, an investor expecting a long holding

period can gain by holding high-spread assets.

AM also test their theory empirically and find support for it:

We test the predicted spread-return relation using data for the period 1961-1980, and

find that our hypotheses are consistent with the evidence: Average portfolio risk-

adjusted returns increase with their bid-ask spread, and the slope of the return-spread

relationship decreases with the spread. Finally, we verify that the spread effect persists

when firm size is added as an explanatory variable in the regression equations. We

emphasize that the spread effect is by no means an anomaly or an indication of mar-

ket inefficiency; rather, it represents a rational response by an efficient market to the

existence of the spread.

AM’s paper is one of the first to link microstructure with more traditional asset pricing and suggest

that illiquidity could be ‘priced,’ and affect the cross-section of expected returns. It is interesting

that their mechanism is not related to the traditional risk-premium explanation (unlike the Acharya-

Pedersen ‘liquidity risk-premium’ model we will see next). Further, their model is one of different

clienteles, i.e., effectively of segmented markets, where in equilibrium, there is not necessarily one

common pricing kernel that prices all assets consistently (arbitrage is ruled out, because shorting

is not allowed). In their own words:

This study highlights the importance of securities market microstructure in determining

asset returns, and provides a link between this area and mainstream research on capital

markets. Our results suggest that liquidityincreasing financial policies can reduce the

firm’s opportunity cost of capital, and provide measures for the value of improvements

in the trading and exchange process. In the area of portfolio selection, our findings

may guide investors in balancing expected trading costs against expected returns. In

sum, we demonstrate the importance of market-microstructure factors as determinants

of stock returns.

12.1 The theory

• We consider a slightly simpler version of the AM model first.
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• Investor A is risk-neutral and has random trading horizon τ with intensity λA.

• Each security pays continuous dividend δ and is in finite supply (e.g., 1 unit). Note that AM

assume that each security pays different dividend stream δi.

• Each security quoted by market makers at fixed bid-ask spread [Pi −Ciδ, Pi]. Note that AM

use a proportional spread instead i.e., assume that the Bid is (1− Si)Pi.

• Exogenous risk-free rate r, infinite supply, no trading costs.

• No short-sales.

• Equilibrium price is Pi(0) = E[
∫ τ

0 e
−rtδdt+e−rτ (Pi(τ)−Ciδ)], so that the expected return on

asset i is equal to the risk-free rate and the risk-neutral agent is indifferent between investing

in the risky asset or holding the risk-free asset.

• Note that at any time t, (dropping the i subscript for simplicity) we have Pt1τ>t = Et[
∫∞
t e−r(s−t)δ1τ>sds+∫∞

t e−r(s−t)(Ps− − Cδ)d1τ≤s] so that e−rtPt1τ>t +
∫ t

0 e
−rsδ1τ>sds+

∫ t
0 e
−rs(Ps− − Cδ)d1τ≤s

is a martingale. Using the fact that Et[d1τ≤t] = λ1τ>tdt and Et[d1τ>t] = −λ1τ>tdt and

assuming that ‘no-common-jumps’ (i.e., dPtd1τ>t = 0) we get the expression:

1τ>t {dPt − (r + λ)Ptdt+ δdt+ (Pt − Cδ)λdt} = 0

which implies :

dPt + δ(1− Cλ)dt

Pt
= rdt

We recognize on the LHS the expected return on the stock at time t conditional on having not

sold prior to t. Looking for a stationary solution with a constant Pt = P , we easily solve for P

(note that we could also directly solve the expectation for Pi(0) above under the assumption

of a constant Pi).

• Solution Pi = δ
r (1− λACi) =: P

A
i

⇒ If A is marginal holder of security i then it trades at a discount DA
i = λACi to the friction-less

value, that accounts for the NPV of expected future transaction costs.
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• Note:

– DA
1 = λAC1 increasing in C1 → liquidity premium effect.

–
DA1
C1

= λA is decreasing in E[τA] = 1
λA

→ liquidity clientele effect.

• Consider now what happens if there are two clienteles λA < λB (that is A has a longer average

horizon than B) and two types of assets C1 < C2.

• If A has unlimited capital she will hold both assets (since P
A
i > P

B
i ∀i = 1, 2 because A has

a longer horizon)

⇒ There should be no liquidity clientele effect (only a liquidity premium).

→ Clientele effects should be more prevalent when funding is restricted (crisis?).

• If A has limited capital and cannot buy all the bonds, then we expect that B will be marginal

in bond 1 (the low cost asset, which is B’s comparative advantage since B has a shorter

horizon). So P1 = P
B
1 .

• Further, since A must choose not to buy (all of) security 1 at this price, A must earn more

than the risk-free rate on security 2 in equilibrium. So we expect P2 < P
A
2 .

• Indeed, in equilibrium A must be indifferent between security 1 and 2:

E[
dP2 + δdt

P2
− C2δλA

P2
dt] = E[

dP1 + δdt

P1
− C1δλA

P1
dt] > rdt

• This implies that P2 = 1−C2λA
1−C1λA

P1 = δ
r (1−D2) where D2 = 1− 1−C1λB

1−C1λA
(1− C2λA)

• It is then easy to show that DB
2 ≡ C2λB > D2 > C2λA ≡ DA

2 . This implies that B does not

want to hold the high t-cost asset 2 in equilibrium, wheras A is indifferent between holding

asset 2 or asset 1 and earns a return higher than the risk-free rate for holding the most illiquid

assets.

• It is easy to show that in equilibrium:

– D2 > D1 (liquidity premium effect). Securities with higher transaction costs will have

higher gross expected returns as δ
P2

= r
1−D2

> r
1−D1

= δ
P1

.
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– D2
C2

< D1
C1

(liquidity clientele effect). Controlling for the security specific trading cost (i.e.,

the measured bid-ask spread) high t-cost firms have lower expected ”gross returns”. This

is because higher t-cost firms are held by longer horizon investors who effectively amortize

the t-cost over a longer horizon. So the selection mechanism implies that gross-returns

seem less sensitive to t-costs in the cross-section.

– D2
λAC2

> D1
λBC1

(clientele equilibrium rents effect). Since long-horizon investors need to

be compensated to hold higher transaction costs assets (and not flock to the lower

transaction cost assets which are held by the short-horizon investors), they earn extra-

rents on these assets in equilibrium.

• In addition this model has implications for the cross-section of portfolio holdings:

– Credit (Funding) Market conditions should affect the empirical results: clientele effects

should be stronger when funding market conditions are tight.

– In equilibrium long-horizon investors are indifferent between high and low liquidity as-

sets (so might expect their portfolios to be less informative than those of short-horizon

investors).

– Long-horizon investors should extract rents in equilibrium. So one should see higher

average returns net of trading costs for them.

This could potentially be tested by normalizing spreads by the expected transaction

costs (turnover × bid-ask spread) of the marginal investor.

• The AM theory relies on strong assumptions (risk-neutrality, no short-sales, limited funding

resources, exogenous T-costs and exogenous trading horizon...)

• The AM theory is entirely about exogenous trading costs and exogenous horizon. But what

determines asset illiquidity (the Ci parameters)?

• AM actually derive a richer model with M securities and N investors and show that:

The ensuing equilibrium has the following characteristics: (i) market-observed av-

erage returns are an increasing function of the spread: (ii) asset returns to their
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holders, net of trading costs, increase with the spread: (iii) there is a clientele ef-

fect, whereby stocks with higher spreads are held by investors with longer holding

periods: and (iv) due to the clientele effect, returns on higher-spread stocks are less

spread-sensitive. giving rise to a concave return-spread relation.

:

In particular, they prove the two propostions:

– Proposition I (clientele effect). Assets with higher spreads are allocated in equilibrium

to portfolios with (the same or) longer expected holding periods.

– Proposition 2 (spread-return relationship). In equilibrium, the observed market (gross)

return is an increasing and concave piecewise-linear function of the (relative) spread.

They proceed to test this using empirical data.

12.2 Empirical test

• Use CRSP data.

• Measure illiquidity using as proxy for the trading cost the average of the beginning and

end-of-year relative bid-ask spreads for each of the years 1960-1979.

• Divide the data into twenty overlapping periods of eleven years each, consisting of a five-year

estimation period En, a five-year portfolio formation period Fn, and a one-year cross-section

test period Tn (n = 1, 2, ..., 20).

• For each En estimate CAPM beta.

• For each Fn rank all stocks in seven portfolios based their end of Fn-year bid-ask spread.

Then within each of the seven portfolios rank on their En-β and split into seven portfolios.

This procedure results in 7×7 = 49 equal-sized portfolios ranked on bid-ask spread and beta.

• Then for each of the 49 portfolios estimate their CAPM beta and their average bid-ask spread

during the En period.
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• Lastly they run a pooled time-series and crossectional regression of the average monthly excess

portfolio returns Repn in each Tn periods on the portfolio βPn and their bid-ask spreads SPn

as in equation (8) in their paper.

• Results summarized in section 3.3. lend support to their theory. They find in particular:

The coefficient of SPn implies that a 1% increase in the spread is associated with

a 0.211% increase in the monthly risk-adjusted excess return. The coefficient of β

declines when the spread variable is added to the equation, indicating that part of

the effect which could be attributed to β may, in fact, be due to the spread.

13 Illiquidity and Stock Returns: Acharya Pedersen (2005)

AM (1986) showed theoretically and empirically that illiquidity can affect the cross-section of

measured stock returns. AP (2005) present a simple model where illiquidity risk will be priced

and carry a risk-premium. Their focus in on liquidity risk, i.e., the fact that illiquidity may change

over time in ways that agents care about and thus may want to hedge against. In equilibrium,

liquidity betas will be priced characteristics of stock returns. Their idea is a simple extension of

the CAPM logic and indeed in their model the CAPM holds exactly, but for returns defined net of

(exogenously specified) t-costs.

13.1 The Model

• Overlapping generations of agents who live for 2 periods. Agent n = 1, . . . , N of generation

born at time t has CARA utility with risk-aversion An, is endowed with en(t), trades at time

t, and then sells all of her shares at time t + 1 (to generation t + 1) in order to consume at

t+ 1.

• There are a total of I risky securities with total supply of Si ∀i = 1, . . . , I of each risky

security. Each security pays a dividend Di(t+ 1), it has an illiquidity cost of Ci(t+ 1) (when
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sold) and has price Pi(t). Ci(t) and Di(t) follow stochastic processes:

Ci(t+ 1) = C̄ + ρC(Ci(t)− C̄) + ηi(t+ 1)

Di(t+ 1) = D̄ + ρD(Di(t)− D̄) + εi(t+ 1)

where εi(t), ηi(t) are jointly normally distributed with zero mean and variance matrices V [ε] =

ΣD, V [η] = ΣC , E[εη>] = ΣDC and covariance matrices and uncorrelated across time.

• Short-selling is not allowed.

• There is a risk-free asset with rate of return Rf > 1 in infinite supply (a risk-free technology).

• Assuming that generation t-agent n’s wealth will be conditionally normally distributed, the

CARA assumption implies that she chooses the vector of risky asset holdings y in order to

maxy E[Wt+1]− An
2 V [Wt+1], where terminal wealth is given by

Wt+1 = (et − y>Pt)Rf + y>(Dt+1 + Pt+1 − Ct+1)

• The first-order conditions implie:

yn(t) = (AnV [Dt+1 + Pt+1 − Ct+1])−1 (Et[Dt+1 + Pt+1 − Ct+1]− PtRf )

Market Clearing implies that in equilibrium
∑

n yn(t) = S, which implies a market clearing

price vector:

Pt =
1

Rf
(Et[Dt+1 + Pt+1 − Ct+1]−AV [Dt+1 + Pt+1 − Ct+1])

where the aggregate risk-aversion is A−1 =
∑

n
1
An
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We look for a stationary equilibrium of the form Pt = p0 + pdDt − pCCt. Note that :

Et[Dt+1 + Pt+1 − Ct+1] = p0 + Et[Dt+1(1 + pd)− (1 + pc)Ct+1]

= p0 + (1 + pd)(D̄ + ρD(D(t)− D̄))− (1 + pc)(C̄ + ρC(C(t)− C̄))

Vt[Dt+1 + Pt+1 − Ct+1] = V [(1 + pD)εt+1 − (1 + pC)ηt+1]

So the coefficients must satisfy

Rfpd = (1 + pd)ρD

RfpC = (1 + pc)ρD

Rfp0 = p0 + (1 + pd)(1− ρD)D̄ − (1 + pC)(1− ρC)C̄ −AV [(1 + pD)εt+1 − (1 + pC)ηt+1]

• With this solution we see that indeed Wt+1 is normally distributed. It follows that the CAPM

holds in every period (every agent will optimally choose to hold a long position in risky assets

consisting of a fraction A
An

of the market portfolio S (this follows from comparing the market

clearing condition and the FOC) and a long position in the risk-free asset. In particular, note

there is no shorting in equilibrium. Thus for any asset i its net return satisfies the CAPM

equation:

Et[Ri(t+ 1)− ci(t+ 1)] = Rf + βi(Et[RM (t+ 1)− cM (t+ 1)]−Rf )

βi =
Covt[Ri(t+ 1)− ci(t+ 1), RM (t+ 1)− cM (t+ 1)]

Vt[RM (t+ 1)− cM (t+ 1)]

Ri(t+ 1) =
Pi(t+ 1) +Di(t+ 1)

Pi(t)

ci(t+ 1) =
Ci(t+ 1)

Pi(t)

RM (t+ 1) =
N∑
i=1

ωi(t)Ri(t+ 1)

ωi(t) =
SiPi(t)∑
j SjPj(t)

cM (t+ 1) =

N∑
i=1

ωi(t)ci(t+ 1)
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• AP derive 2 additional propositions that show that (i) the conditional expected excess return

on a portfolio is typically increasing in its illiquidity when illiquidity is persistent (ρC > 0)

that is persistence in illiquidity implies return predictability, and (ii) the covariance between

a portfolio’s return and its cost of trading is typically negative.

• Expanding the CAPM equation we get the main equation (8) of the AP paper, which expresses

measured excess returns in terms of the illiquidity premium (similar to AM1986), a traditional

CAPM market beta, and three additional illiquidity betas. It is this equation that they

proceed to test empirically.

• A good summary of their findings is on page 377 and 378. Based on average rate of turnover

the main component of the risk-premium due to liquidity seems to be the AM86 liquidity

level premium (estimated at 3.5% per year). The three liquidity risk-premium component

contribute an additional 1.1% per year to a stock’s measured ”gross” risk-premium. The most

significant beta seems to be the Cov(ci, RM ) beta, which contributes 0.86% of the liquidty

risk-premium and suggests investors care to hold securities who are liquid when the market

returns are low.

• They test the 4-beta CAPM in five steps, see page 11
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14 Differences in Beliefs and short-sale constraints: Miller (1977)

So far we considered models where agents are differentially informed, but share the same priors so

that if they had access to the same signals they would come to the same conclusion (i.e., posterior).

Instead we will now consider a series of papers where agents have different priors and ‘agree to

disagree’ (see Aumann (1976) for a theoretical discussion of the impossibility for rational agents

with common-knowledge to ’agree to disagree’).

Miller (1977) is one of the first to realize that combining differences in beliefs with short-sale

constraints can explain many economic phenomena,12 including:

• why stocks with highest risk have low returns (the volatility anomaly of Ang, Hodrick, Xing,

Zhang (1996)),

• the poor long run results on new issues of stocks (the new issuance anomaly of Daniel adn

Titman (2006)),

• the presence of discounts from net value for closed end investment companies (the closed-end

fund discount of Lee, Schleifer, and Thaler (1991)), and

• the lower than predicted rates of return for stocks with high systematic risk (the betting

against beta anomaly of Black (1978) and Frazzini-Pedersen (2014)).

His idea rests on the simple insight that if investors have enough resources to buy all the shares

of a company and there are short-sales constraints, then the equilibrium valuation will reflect the

beliefs of the most optimistic investors. Thus stocks will tend to be overvalued. This effect will be

more prevalent amongst stocks which are riskier (where the differences in beliefs are largest). Thus

riskier stocks will tend to be more overvalued and underperform. New issues and younger stocks

are more likely to present large disagreement, etc....

To illustrate his basic idea in a simple framework we present a static model from Kerry Back’s

textbook. Then we will consider a dynamic setting due to Harrison and Kreps (1978) and a

continuous time setting due to Scheinkman and Xiong (2011).

12Note that this is Edward Miller and not Merton Miller!
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15 The static Model

This simple model is based on Back’s chapter18.4 description of the Chen, Hong and Stein (2002)

paper.

• A continuum of CARA agent of mass 1 indexed by h with risk-aversion coefficient γ trade

one risky asset with payoff P1 ∼ N(µh, σ
2).

• There exists a risk-free rate Rf .

• Each agent’s demand is xh =
µh−P0Rf

γσ2

• Each agent is endowed with 1 unit of stock.

• Assume µh is uniformly distributed on (µ∗ −∆, µ∗ + ∆)

• In the absence of short-sales then the aggregate demand of all investors is

Dm =
1

2∆

∫ µ∗+∆

µ−∆∗

µ− P0Rf
γσ2

dµ =
µ∗ − P0Rf

γσ2

and market clearing imposes that Dm = 1. It follows that the unconstratined equilibrium

price is

P unc0 =
µ∗ − γσ2

Rf

• Suppose instead that there are short-sales constraints. Then investor h’s optimal demand

becomes : xh =
µh−P0Rf

γσ2 1µh≥P0Rf

• If the unconstrained price is such that the short-selling constraint will never bind for any

investor, then the market clearing price will be unchanged. This will be the case if µh ≥

µ∗ − γσ2 ∀h, or equivalently if ∆ ≤ γσ2 (that is if there is not much dispersion in beliefs).

• Consider now the case where ∆ > γσ2 then there is a positive mass of investors (with

µh < µ∗ − γσ2) who would like to short the stock and cannot. Thus the equilibrium demand
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is:

Dm =
1

2∆

∫ µ∗+∆

µ−∆∗

µ− P0Rf
γσ2

1µ≥P0Rfdµ

=
1

2∆

∫ µ∗+∆

P0Rf

µ− P0Rf
γσ2

dµ

=
(µ∗ + ∆− P0Rf )2

4∆γσ2

• Then market clearing imposes Dm = 1 which gives the market clearing price:

P0 =
1

Rf
(µ∗ + ∆− 2

√
∆γσ2)

• Note in particular that the price with short-sale constraints is always greater than the un-

constrained price:

Rf (P con0 − P unc0 ) = γσ2 + ∆− 2
√

∆γσ2 = (
√
γσ2 −

√
∆)2 > 0

• We see that short-selling constraints indeed increase the equilibrium price if ∆ > γσ2 and

that more dispersion in beliefs lead to higher prices
∂P con0
∂∆ > 0.

16 Speculative behavior in a dynamic setting (Harrison and Kreps

(1978))

HK propose a model where agents have heterogeneous beliefs and where they can dynamically trade

a stock and where in equilibrium they will display speculative behavior in the sense that they will

be willing to pay more for a stock if they can retrade than the most optimistic investor would be

willing to pay if she were obliged to hold on to the stock forever. In a sense they show that all

agents are willing to pay more to exploit the option to resell to the most optimistic investor in any

given state. So crucially for this effect to operate it has to be that agents are heterogeneous and

that the ranking of investors’ optimism may change across states.
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16.1 An example

• two types of risk-neutral agents a = {1, 2} who trade

• one stock which pays a dividend dt ∈ {0, 1} which follows a continuous time Markov chain.

• The transition probability Matrix perceived by agent a is Qa with elements qai,j , which denotes

the probability of transitionning from state i to state j.

• for agent 1 we assume q1
01 = 1/2 q1

10 = 2/3

• for agent 2 we assume q2
01 = 1/3 q2

10 = 1/4

• There is one risk-free rate Rf so that the gross risk-free discount rate is γ = 1/Rf = 0.75.

• Short sales are not allowed.

• What it the value to agent a of holding the stock forever?

Define pai the value to a of holding the stock forever starting in state i. Clearly we have

pai = γ(qaiip
a
i + qaijp

a
j )

which a system of two equations and 2 unknowns which can be solved for the two values for

agent a. Using the numerical values we find:

p1
0 = 1.33 p1

1 = 1.22 whereas p2
0 = 1.45 p2

1 = 1.91

• Based on these values one might think that agent 2 should always hold the stock. However, HK

shows that the prices p2
i cannot be an equilibrium. Indeed, suppose that agent 1 anticipates

these prices, then consider the strategy where she buys the stock in state 0 in order to sell it

in state 1 at 1.91. Agent 1’s expected value of this strategy in state 0 is then

V0 = γ(q1
01(1 + 1.91) + q1

00)(γq1
01(1 + 1.91) + q1

00(γq1
01(1 + 1.91) + . . .

= γ(q1
01(1 + 1.91) + q1

00V0)
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from which we obtain that

V0 = 1.75 > 1.45

Thus agent 1 would be willing to bid up the price above p2
0 to at least 1.75 > max{p1

0, p
2
0}.

But of course, then p2
1 is too low a price as well, since agent 2 will now want to buy in state

1 to resell to agent 1 whenever state 0 comes around at what she will consider inflated prices

1.75 > 1.45. . .

• What is then the equilibrium price in this market?

• HK define the set of consistent prices to satisfy

pt(xt) = max
a∈A

sup
T
Ea[

T∑
k=t+1

γk−tdk(ξk) + γT pT (ξT )|ξt = xt] (?)

where ξt is the (vector)-process that captures all of the information relevant to determine

the dividend process dt(ξt) and A is the set of all agents who have different beliefs about the

probability distribution of ξt and T is a stopping time defined with respect to the filtration

generated by ξt. This is clearly the maximum value of any trading strategy that can be

followed by any class of agent. If the price were lower, it would imply that there exists a class

of agents a∗ that has a trading strategy available (buy in state ξt = xt and sell according to

the stopping time T ∗) which would generate a higher valuation. All the other agents a 6= a∗

would like to sell, but because of the short-selling constraint they cannot.

• HK’s proposition 1 simplifies the definition of consistent prices to

pt(xt) = max
a∈A

Ea[γ{dt+1(ξt+1) + pt+1(ξt+1)}|ξt = xt] (??)

To prove the equivalence between the two statements, note that if (??) holds then pt(xt) ≥

Ea[γ{dt+1(ξt+1) + pt+1(ξt+1)}|ξt = xt]. Thus using the law of iterated expectation and the

optional stopping theorem we find that (?) holds as well. Conversely, it is clear that if (?)

holds then clearly pt(xt) ≥ Ea[γ{dt+1(ξt+1)+pt+1(ξt+1)|ξt = xt]. Now suppose that the strict

inequality holds for some xt then using the optional stopping theorem and law of iterated
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expectation we obtain that pt(xt) > maxa∈A supT E
a[
∑T

k=t+1 γ
k−tdk(ξk) + γT pT (ξT )|ξt = xt]

which contradicts (??).

• HK then give an algorithm to compute the optimal p∗t following a recursive approach starting

from p0
t = 0 then define the sequence pnt for all n = 1, . . . that satisfies:

pnt (xt) = max
a∈A

Ea[γ{dt+1(ξt+1) + pn−1
t+1 (ξt+1)|ξt = xt]

note that by definition the sequence is increasing so that the (possibly infinite) limit limn→∞ p
n
t (x) =

p∗t (x) exists

• Proposition 2 then shows that p∗t thus defined is (i) consistent in that it satisfies (??) and

(ii) minimal in that any other solution to (??) will be greater or equal. The proof relies on

taking the limit on both sides of the definition of pnt and using monotone convergence one

sees that p∗t clearly satisfies (??). Then one can show recursively that any consistent pricing

scheme pt(xt) > 0 = p0(xt) (since we assume strictly positive dividends) and then we can

show recursively that if a consistent price function pt(xt) > pn(xt) then pt(xt) > pn+1(xt)

which implies that pt(xt) > p∗(xt).

• We note that since T = ∞ (i.e., buy and hold) is a feasible trading strategy, the consistent

price must be larger than the maximum buy and hold value perceived by any agent.

• Going back to our example looking for a stationary solution p∗0, p
∗
1 must satisfy:

p∗0 = γmax
a
{qa01p

∗
1 + qa00p

∗
0}

p∗1 = γmax
a
{qa10p

∗
0 + qa11p

∗
1}

which gives: the solution p∗1 = 2.07692 and p∗0 = 1.84615. and we can compute the value for
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each agent in each state and find that

q1
01p
∗
1 + q1

00p
∗
0 = p∗0

q2
01p
∗
1 + q2

00p
∗
0 = 1.69231

q1
10p
∗
0 + qa11p

∗
1 = 1.69231

q2
10p
∗
0 + qa11p

∗
1 = p∗1

Thus agent 1 holds the stock in state 0 whereas agent 2 holds the stock in state 1.

• HK’s conclusion page 335 is worth reading. They point out that their analysis requires that

agents have full knowledge of the other investors (different) beliefs and they agree to disagree,

in order to derive the optimal trading strategy.

If one drops this utopian assumption, and further introduces such a real-life phe-

nomenon as privileged information, one gets a world in which investors must turn

to public information, such as prices and trading volume, to discover what their

fellow investors know and how they will react to incoming information. At the risk

of gross overstatement, we suggest that this line of reasoning might lead to a ”legit-

imate” theory of technical analysis. Proponents of the efficient market hypothesis

conclude that the rational portfolio strategy (in view of transaction costs and risk

aversion) is to buy a well-diversified portfolio and hold it. Quite a different view

of ”rational” portfolio management emerges from our model. [...] In the general

model, investors can achieve an expected net present value of zero only from stock

bought in certain circumstances and only if they follow certain selling strategies.

(The strategy of selling after one period, which leads to much churning of the

portfolio, always works.) The strategy of buying in favorable circumstances and

holding for many periods typically yields an expected loss. In brief, all investors

must actively manage their portfolios in order to expect a proper return. [...]

In our model, all investors have complete information from the outset, but still

they arrive at different subjective assessments. Speculation and active portfolio

management follow inevitably.
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17 Continuous time model: Scheinkman and Xiong (2003)

SX propose a continuous time version of the HK model, where disagreement is driven by overcon-

fidence and biased learning. Their purpose is to study the joing dynamics of asset pricing bubbles,

trading volume, and price volatility.

• The risky asset pays a dividend

dDt = ftdt+ σDdZ
D
t

dft = λ(f̄ − ft)dt+ σfdZ
f
t

• There are two sets of risk-neutral agents who each observe two signals about the fundamental

driving the dividend process:

dsjt = ftdt+ σjdZjt j = A,B

Investors have to learn ft from the history of Dt, s
A
t , s

B
t .

• Investors are over-confident in that the think their own signal sjt for group j is more precise

than what it really is. So for example investors in group A think that:

dsAt = ftdt+ σA(φdZft +
√

1− φ2dZAt )

So they think their own signal has a correlation φ with the true fundamental, but that sBt is

(correctly) uncorrelated with ft so that the other investor has an uninformative signal.

• Based on this SX characterize the learning dynamics of each group of investor using standard

Kalman filtering. So for example, for group A lets define f̂At = EAt [ft] and γt = V A
t [ft] then
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we have

df̂At = λ(f̄ − f̂At )dt+ λAt (dsAt − f̂At dt) + λBt (dsBt − f̂At dt) + λSt (dDt − f̂At dt)

λAt ≈
Cov(ft + dft, ds

A
t )

V [dsAt ]
=
σsσfφ+ γt

σ2
s

λBt ≈
Cov(ft + dft, ds

B
t )

V [dsBt ]
=
γt
σ2
s

λDt ≈
Cov(ft + dft, dDt)

V [dsBt ]
=

γt
σ2
D

and where the posterior variance of the signal has the dynamics:

dγt = (σ2
f − (λAt )2σ2

s − (λBt )2σ2
s − (λDt )2σ2

D)dt

HK focus on the stationary solution where the posterior variance is γ defined as the positive

solution of the quadratic equation dγt = 0.

• HK then compute the dynamics of disagreement: the differences in beliefs process for group

A: gAt = f̂Bt − f̂At which they charaterize in proposition 1 as a simple mean-reverting process

dgAt = ρgAt dt+ σgdW
A
g (t)

This follows directly from the definition of f̂At and the analogous expression for f̂Bt , taking

their difference and using the expression for γ to simplify the expression for ρ.

• What is the value of the stock if agents A,B can trade with each other, are risk-neutral, and

short-selling is not allowed? SX add the requirement that when an owner sells the asset she

incurs trading costs c (otherwise agents might continuously sell the asset back and forth).

Following HK (compare also with Amihud-Mendelson) they define the value of the stock to

the owner o = A,B as :

pot = sup
τ
Eo[

∫ t+τ

t
e−r(s−t)dDs + e−rτ (pōτ − c)]

wherepōτ is defined as the reservation value of the current owner at the next transaction date
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(which will be the value to the other group).

we can rewrite this expression as:

pot = sup
τ
Eo[

∫ ∞
t

e−r(s−t)dDs − e−rτ
∫ ∞
t+τ

e−r(s−t−τ)dDs + e−rτ (pōτ − c)]

Using the definition of the dividend process it becomes:

pot = sup
τ
Eo[

f̄

r
+
f̄ − f̂ot
r + λ

− e−rτ (
f̄

r
+
f̄ − f̂oτ
r + λ

) + e−rτ (pōτ − c)]

so it is natural to seek a solution of the form

pot =
f̄

r
+
f̄ − f̂ot
r + λ

+ q(got )

where the resale option value q(got ) will solve the American option pricing problem given by

equation (13) in the paper, namely the value of the resale option satifies:

q(got ) = sup
τ
Eo[e−rτ (

got
r + λ

+ q(gōτ )− c)]

• Theorem 2 then establishes that there exists an optimal barrier policy, so that when the

differences in beliefs process becomes large enough goτ > k∗, then at that time τ it becomes

optimal to pay the cost c and sell the asset to the second group of investors, at which point

the process goτ is reset for the new owners at −k∗ and the process restarts.

• The trading volume will depend directly on c (it goes to zero as c becomes very large and to

infinity as it becomes very small and the switch between owners becomes continuous). SX

show that even when c→∞ and the asset switches continuously between groups, the resale

option value retains a strictly positive value.

• Figure 1 shows comparative statics of the model with respect to increases in the “overconfi-

dence” parameter φ. Specifically, it shows the impact of overconfidence (which governs the

cross-sectional dispersion in beliefs) on the time between trades (i.e, volume of trading), and

the bubble component (q(−k∗)), and the excess volatility due to the bubble component (i.e.,
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the volatilility of q(g0
t ) evaluated at g = k∗).

• SX then consider different applications of their model, such as (i) how could it explain a market

Krach (e.g., if there is a small probability that the fundamental value will be revealed to all),

(ii) the impact of introducing a financial transactions’ cost (e.g., raising c) on the bubble and

volume dynamics, see figure 3; (iii) negative stub-values, and (iv) IPO underpricing.

From their conclusion:

This allows us to characterize properties of the magnitude of the bubble, trading

frequency, and asset price volatility and to show that the model is consistent with

the observation that in actual historical bubbles, volatility and turnover are also

inordinate. Theoretical results and numerical exercises suggest that a small trading

tax may be effective in reducing speculative trading, but it may not be very effective

in reducing price volatility or the size of the bubble. Through a simple example, we

also illustrate that the bubble can cause the price of a subsidiary to be larger than

that of its parent firm, a violation of the law of one price. It is natural to conjecture

that the existence of a speculative component in asset prices has implications for

corporate strategies. Firm managers may be able to profit by adopting strategies

that boost the speculative component. The underpricing of a firm’s initial public

offering (IPO) has been puzzling. Rajan and Servaes (1997) show that higher initial

returns on an IPO lead to more analysts and media coverage. Since investors may

disagree about the precision of information provided by the media, the increase in

this coverage could increase the option component of the stock. Therefore, IPO

underpricing could be a strategy used by firm managers to boost the price of their

stocks.
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