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1 Introduction

These lectures will cover classic papers that study the role of information frictions and illiquidity for
asset returns and volume. Financial markets are characterized by large daily trading volumes and
episodic market crashes and ‘bubbles.” Stories abound about successful traders who make fortunes
by pursuing ‘clever’ trading strategies. At the same time, there is the occasional bankruptcy or
ponzi scheme to suggest it may actually be difficult to ‘beat the market.” It is natural to investigate
whether such evidence is consistent with models of differentially informed investors. We will start
with model where agents share common priors but receive different signals and then investigate
models where agents have different priors and thus different posterior beliefs even when they receive

the same signal.

2 Efficient markets, information, and the role of financial prices

Hayek (1945) points to the role of the price system to aggregate dispersed information. Information
about ‘circumstances of time and place’ that are difficult to summarize with statistics and to convey
to a central planner. Argues that the price system uniquely can make agents in dispersed location
and at different times coordinate their actions and optimize the ‘utilization of knowledge not given
to anyone in totality”. Importantly, “ it does not matter why the price of tin is high” for agents to

start to save on tin and substitute for other inputs.
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Related, Fama’s efficient market hypothesis (1976) contends that market prices always reflect all
available information efficiently, thus leading to optimal resource allocation. The notion of market
efficiency goes back at least to Bachelier (1900) and the idea that trading by agents leads prices to
reflect all available information. It usually leads to some assumption about the ‘unpredictability’ of
price movements (the ‘martingale’ condition), based on different levels of information (prices only,

public, private).

3 No-trade theorems

This section is based on the papers by Tirole (1982) and Milgrom and Stokey (1982). We establish
that in a market where investors share common priors and trade solely for speculative motives,

there can be no-trade in equilibrium even if investors have different informative signals.

3.1 No trade and pure speculation

Suppose n agents with (random) terminal endowment W; can trade and asset at price Py with
terminal payoff P; which is uncorrelated with W; Vi. Assume that all agents are strictly risk-
averse (U’ > 0,U" < 0) and max, E[U(W;+xz;(P1 — Po(1+71¢))) | ¢i, @], where ¢; is a private signal
observed by agent ¢ and @ is all publicly available information (which includes the trading price
P).

The FOC for agent i gives :

EU' (Wi +x(Py — Po(1+ 7)) (P — Po(1 +75)) | ¢3, @] = 0

Since agents are always free to not trade it must be that:

z; >0 < E[Pl |¢i,q>] > Po(l —I—’I"f)

Market clearing implies ), x; = 0. For simplicity let’s assume there are only n = 2 traders. Then

suppose there is trade and x; = —z2 > 0 (say). It thus follows that

E[Pl | ¢1,q)] > P()(l —i—"f’f) > E[Pl | (;52,@]



and by the law of iterated expectation we obtain the contradiction:

E[P1|®] > E[P, | 9]

Therefore any rational expectation equilibrium must result in no trade and furthermore

Po(1+ry) = E[P|¢;,®| = E[P | D] Vi

This no-trade theorem shows that if it is common-knowledge that all agents starting from
common priors want to trade for purely speculative reasons based on private signals, then in
equilibrium they should all refrain from trading and prices should adjust to incorporate their
various signals so that no-trade is an equilibrium. Notice that no-trade does not imply no-price
change!

Where does the argument fail if the end of period price P, is correlated with the agents terminal
wealth W;?

Where does the common-knowledge assumption play a role in the argument?

For trade to take place in equilibrium, agents must differ in terms of endowments, preferences,

or beliefs.

3.2 No-trade and pareto efficient equilibrium: Milgrom and Stokey (1982)

Consider an economy with two dates: agents consume at date 0 and date 1 in states 1,...,S. They
have endowments in all states. Markets are effectively complete, so that at date 0 there is a round of
trading whereby agents achieve a pareto optimal allocation and consume their date 0 consumption.
After that, but before date 1, private information ¢; arrives to all traders (but there is no change to
the state space and initial endowments) and markets reopen for trade. Agents will thus condition
their trades on their private information ¢; and all new publicly availalbe information ® (which

includes prices). We use the following notation:

e W is agent ¢’s optimal date 1 total consumption after the first round of trading. It’s a random

variable (agent ¢ plans to consume Wi, in state s).

e p(s,¢;, ®) is the probability that state s occurs and agent i gets information ¢; and public



information is ®. Importantly, all agents have common prior. So they all agree on these
probabilities. They may not know what information agent ¢ actually obtains, but ex ante they

know every other agents possible information set and they agree about the prior probabilities.

e ¢(s) is the ex-ante state price of state s and ¢(s) is the new price system that prevails after

the information is released.

Theorem 2 of MS states that there will be no trading when markets reopen.! That is, in spite
of the new information, the initial allocation is still Pareto optimal and there are no available gains
from trading.

Indeed, assume that there is a globally feasible trade t;(¢;, ) (a random variable where agent

i trades t;s in states s conditional on her private information) , so that

Zti(%@) =0 (1)

E[U;(W; + t;)| i, ®] > E[U;(Wi| i, @)] (2)

Then consider another trade T; = _, & p(¢i, ®)ti(¢i, @) (Which is essentially the ex-ante expec-

tation of the assumed superior ex-post trades). Clearly 7; does not depend on future private of

public information. Further, > . T; = >, Z%@ p(bi, ®)ti(s, @) = Z%q} (i, @) >, ti(¢s, @) = 0.

So clearly the trade is globally feasible. Further

Uz(Vst'i_T’zs) :Ul(m5+zp(¢z7 zs d)zv ZP sz’ Vst+tzs(¢u ))
¢i,®

By Jensen’s inequality and given the concavity of the utility function. Then taking unconditional

expectation we get

E[U (W +T > Zp Zp ¢27 m$+tzs ¢u Zp ¢z; Zps Wzs +tzs(¢27 ))
¢7/7

= E[E[U;(W; + ;)| i, ®)]]

= E[U;(W; + t;)] > E[U;(W;)]

"Here we follow the proof given in Ingersoll (1987)



(where the last line follows from taking the unconditional expectation in inequality 2 above) which
contradicts the Pareto optimality of the initial trade ¢; (note that if T; > 0 then by strict concavity
of the utility function 7;/2 will be strictly Pareto superior to ¢;).

Note that the fact that agents don’t want to retrade when market reopen (as long as endow-
ments, preferences, or states are not changed by the release of new information) does not mean
that prices don’t change. In fact, state prices change so that they reveal all the private information
of investors, in the sense that conditionning on the common public price gives each agent as much
information as she could get based on her private signal. In that sense the new equilbrium price is

‘fully revealing.” More specifically, we will show that
p(slgi, @) = p(s]q)
where §s are the new state prices. To see this note that ex-ante Pareto optimality implies
p(s)Uj(Wis) = Nigs Vi, s
Ex-post Pareto-optimality of the same allocation implies
p(s|¢i, YU (Wis) = Aids Vi s

Thus

5\’5qu
Aigs

p(s|di, @) = p(s) Vi, s

and

p(s[¢i, ®) _ Gsqsp(s)

= = Vs, s’
p(s'|0i®)  Goqsp(s)

note that the RHS is independent of ¢ and depends only on ex-ante prior information and new
prices. Thus each agent can fully determine the posterior probabilities p(s|¢p;, ®) solely from the
initial common prior state probabilities and common-knowledge new price system ¢.

The conclusion is that trading on private information, based on purely speculative motives (i.e.,
starting from a Pareto optimal allocation and not changing preferences, endowments or states),

will not occur in a rational expectations’ equilibrium. However, (state-)prices will adjust. In fact



they will “swamp” the private signals received by any agent, in that, after equilibrium prices are

determined each agent can afford to forget the signal he obserrved to compute his posterior beliefs.

she only needs to know the change in prices.

MS conclude:

Our results concerning rational expectations market equilibria raise the disturbing ques-
tions expressed by Beja , Grossman and Stiglitz and Tirole: Why do traders bother to
gather information if they cannot profit from it? How does information come to be
reflected in prices if informed traders do not trade or if they ignore their private infor-
mation in making inferences? These questions can be answered satisfactorily only in
the context of models of the price formation process, our central result, the no-trade

theorem, applies to all such models when rational expectations are assumed.

4 The Grossman REE paradox (Grossman (1976))

N agents with wealth W;g = X;r + X; Py can invest in risk-free asset with gross return R and

risky asset with price Py which pays off P, ~ N(P,o,) at time 1.

Wit = RWio + (P1 — RPy)X;

Each agent i observes signal y; = Py + ¢;. ¢; ~ N(0,0?) iid with Cov(e;, €j) = 0.

Assume agents are CARA normal with risk-aversion a;. Since terminal wealth will be normally

distributed in equilibrium, agents have mean-variance preferences.

max E[Wi | 7] - %V[Wﬂ | ] = max RWio + Xi(E[P1 | T] — RPy) — %X}V[Pl | 7]

The FOC gives
_ E[P|L] - RP,
Y VP T

An equilibrium is a price P(s1,...,s,) such that markets clear ) . X; = T, where T is the

total supply of the risky asset.



Grossman discusses how the equilibrium price functional would arise from a ”tatonnement”

process of a sequence of approximations to the equilibrium price (see page 577).

To solve for the equilibrium, we will follow the three step procedure. First, conjecture an
equilibrium price functional. Second, given this conjecture, solve the first order condition of
each agent who conditions her demand on the information contained in price. Third, clear

markets and verify that the market clearling price is as conjectured in the first step.

Guess an equilibrium price functional Py(y) = ag + Y, ;y;. Now, because of the symmetry
it is natural to assume that a; are identical and to posit the simpler form Py(y) = ag + a7,

where 77 = % > Yi- Note that § = P, + €, where € ~ N (0, %3)

Given our conjecture the information set of each agent is Z; = {y;, Po(y)} = {vi,y}. Our first
step is to show that:
ElP |1 = E[Py |y, y] = E[P1 | Y]

To prove this we will use the standard Gaussian projection theorem (see subsection 4.1). P;
can be decomposed:

P =P+ BF—Ef) +v
where v | 7 (that is E[vy] = 0). The ‘regression’ coefficient is given by:

_ COU(Phy) _ 0-%3

B = )
Vvl 0%+ %2

Note also that E[y] = P. By orthogonality we have

o? o2 1
M= VIRl =BV = S - o
where we have used the notation that the precision of a random variable 7, = U%

Now, clearly E[P1|y] = P + 8(y — P). We want to show that E[P|y,y;] = P+ B(y — P) as

well. For that it is sufficient to show that E[v|y;] = 0. And this follows from

E[(PL-P-B(PL—P+e)(PL+e)=0p(1-5) - 5‘;62 —0



e It follows then that

E[P|Z;) =P+ B(y — P)
1
Tp + NTe

VIPL) =0} =

So we get the demand of each agent (given our conjectured price functional)

P+ By —P)— RP,

aiag

X, =

And market clearing ), X; = T gives

P+B(H—P)— RPy=ao’T

L is the harmonic average of the risk-aversion coefficient (the ‘representative’

2ia;
CARA agent’s risk-aversion).

where a =

e Note the remarkable feature that plugging back the market clearing relation into the demand

azx

2%, which does not actually depend on

we see that each individual demand becomes X; =
price! This is because of the information effect noted by (Admati (1989)). When prices
increase (say) in most models there is a wealth (absent here due to CARA) and substitution

effect. Here in addition there is an information effect which exactly offsets the substitution

effect (higher prices mean better (information about) fundamentals).

e Note the Skizophrenia of the investors. They take prices as given, i.e., ignore the impact of
their demand on price. On the other hand, they use prices to learn about other traders signals.
But prices can only reflect other traders information if these have an impact on prices. See
Hellwig (1980) who tries to rationalize this by considering an economy with infinitely many

small traders.

e We then get the equilibrium price functional consistent with optimality and market clearing;

Po@) = 3 (P(1 - 8) + By — ao’7)



We verify that it is indeed consistent with our initial conjecture and have thus found an
equilibrium. Is it unique? (yes among ‘linear equilibria’, but there might exist non-linear
equilibria where the price is not a linear function of all the signals... See DeMarzo and
Skiadas (1998) and also “Multiple Equilibria in Noisy Rational Expectations Economies” by

Domotor Palvolgyi and Gyuri Venter (2015)).

Grossman points out the paradox of the equilibrium. All agents learn better information (a
sufficient statistic which dominates any single piece of dispersed information) from prices and
can thus discard their own information. But if they did so, then how would information get
into price in the first place? The issue is that all traders behave competitively and ignore the
impact they have on price (through their trading based on their own information). they take

the price functional ‘as given’.

Theorem 2: suppose P*(7) is linear equilibrium function and P**(y) another increasing equi-
librium functional then there must exist H() increasing so that P** = H(P*). If H is not
identity function then P** cannot be an equilibrium. This follows directly from the market
clearing condition using the FOC:
E'[P] E'[P] — RP**
_ Z 1] " 3 E'[Py] - RP™
aV P1 aV|P]
If the LHS clears markets then the RHS cannot. The implication is that two equilibrium
price functionals cannot give access to the same information 7 for then the expectations and
variances are identical and the LHS and RHS will then only differ by the price component,

which cannot differ. So for there to be different equilibria, the price functional has to disclose

different information to agents.

Grossman also discusses the Pareto efficiency of the equilibrium. He points out that the
decentralized equilibrium gives each investor access to 7 a sufficient statistic, which dominates
all the individual information signals. So a central planner having access to all y; would not

do any better.

Grossman concludes with a critique of Hayek (1945). Unlike Hayek, who argues that agents

shouldn’t care why prices are high as long it makes them reduce their consumption of a



4.1

more expensive good, Grossman points out that without noise equilbrium would typically
break down if informatino acquisition is costly, and with noise, then prices would not be fully
revealing and therefore agents would care ‘why’ prices are high (whether for fundamental or

noise reasons).

The Gaussian Projection theorem

X4
The multi-variate Gaussian projection theorem: Suppose X = is a multivariate

Xo

normal vector of random variables (X is N-dimensional and X is K-dimensional).

. M1
The expected return vector is p =

12

» . , Q1 Qo
We partition the covariance matrix {2 =

Qo1 Qoo

Then the vector of random variable X; conditional on X5 = ¢ is Gaussian (X1 | Xo = q) ~

N(fi, Q) with

=i
Il

1+ Q1295 (¢ — p2)

2
I

Q11 — Q12055 Qa1

This is similar to multi-variate linear regression. The proof follows.
Define X{ = X1 — p1 and X§ = X — po.

Note that we can decompose X{ = BX§ + u where we choose the (N, K) matrix B so that
u is orthogonal to any element of X», that is: E[(X{ — BX$§)X, | = O(n,K)- Equivalently
BE[X$X, ] = E[X{X, ], and thus B = Q1505

Since X7, X3 are jointly normal, it follows that u is normally distributed with zero mean and

with variance Va'r(u) = V(ZT(Xl) — VCL’I”(BXQ) = QH — BQQQBT = QH — 91292_21921.

It follows from the orthogonal decomposition above that the distribution of X; conditional on

X9 = g is normal with mean E[X; | X3 = q] = pu1+ B(q—p2) and with variance Var[X; | Xo =

10



5

q] = Var[u]

On the impossibility of informationally efficient markets (Gross-

man and Stiglitz (1980))

A theory of “an equilibrium degree of disequilibrium”. Noise is essential for existence of
equilibrium, because prices are not fully informative and therefore it is valuable for some

agent to invest in information production.

Risk-free asset R and risky asset u =0 +¢. 6 ~ N(0,02) and € ~ N(0,0?)

6 is observable at cost C.

A fraction A\ (endogenous) of ex-ante identical traders choose to pay C and get informed.

Note that unlike in Grossman (1976) there is no dispersed information.All informed have the

same signal. But see Diamond and Verrecchia (1981) and Verrecchia (1982).
x is supply of risky assets. x ~ N(Z,02) is unobservable by uninformed.
x, 0, € independent.

Agents start with initial wealth W;o = M; + X;P,. They invest in M; risk-free dollars and X;
shares of the stock, so that Wiy = M; + X;Py. At time 1 wealth W;; = WoR + X;(u — RP)

Agents maximize CARA utility. All with same risk-aversion a. With Gaussian final wealth:

max E[Wa| T = SVIWalZ] = WioR + Xi(E[6|Z] — RPy) — 5(VIB|Zi] + 02).

So the optimal demand of each agent is simply:

(E10|Z:] — RPy)
a(V[|Zi] + 02)

X; =

where Z; depends on the agent’s information set.

11



e Informed agent observe 6 so E[W;1|0] = WioR + X;(6 — RPy) and V[W;1]0] = X203 and

_ 0—RR

X 5
ao?

e Uninformed agents observe only Py. What can they learn from price? Market clearing gives

AX7+ (1 — M) Xy = z. It follows that

Po= (0= a) + (1= N vX, g

a

2
where we define ¢ = if . Thus it is natural to conjecture that uninformed investors, given

their own demand, can only infer from price wy(0,z) = 0 — ¢ (z — ) if A > 0, otherwise only
wp(0, x) = x. So we solve the equilibrium as follows:
(a) conjecture that (all agents conjecture that) Py = ag + a,wy (6, x).
(b) given (a) all agents formulate their optimal demands given their information set. Specif-
ically, Zy = {0, Py} = {0} and Zyy = {Po} = {wx(0,x)}
(c) Plug the optimal demands into the market clearing equation and verify (a).

e Note that if A > 0 (there is a typo in GS (Allb)):

2

E[flwy\] =0+ 25wy =10
Phoa) =7+ 3 =7+
0_2 UQT/JQO'Z 1
ViOlwy] = 0§ — (—5—25—)%(0F + ¢?0)) = -2 =
Bloa] = 3 (o§+¢203)(9 Vo) o +vr0f L+
Andif A =0
E[0|lwo] =0

V[0|wo)] = o}

Whence the optimal demand of uninformed investors is

E[0|w)\] - RP()

A= LV blwa] + 02)

12



e Using Xy and X; in the market clearing equation confirms the conjecture that Py is indeed
linear in w)y and thus we have derived an equilibrium. You can derive explicitly (ag, cu) by

solving this equation for Py(wy):

0+ Bwy — RPy

w)y — RP() + T+ (1 — A)w(a(,803¢20'2 + 0-2)

)=0 (4)

9—RPy
a(og—i-ag)

e In the case where A\ = 0 then the solution simplifies Py(z) solves: = x, which gives:

0 — a0} +0?)z
R

Py =

e Note that unlike in Grossman (1976) the price is not fully revealing even in the presence of
informed traders. Uninformed traders can only infer wy from prices and would like to know
whether prices are high because 6 is high or because x is low. This would clearly change their

demand for the asset.
Note that Ewy|0] = 6 and V[w,|0] = ¢?c2. So the equilibrium price signal is more informa-
tive the smaller is 1, i.e., that is the higher A and smaller is ao, (the more there are informed

agents and the less they trade for hedging as opposed to informational motives).

Now we turn to the equilibrium .

e A U-agent will want to become I-agent if
E[V(R(Wy—C)+ (u— RP)X1)] > E[V(RWy + (u — RP)Xy)]

where the ‘unconditional’ expectations are taken over 6, z, e (ex-ante all investors are identi-

70,1)

cal). Given exponential utility (V(z) = —e we have

EWV(Wi)] _ oo Ble X0 P)

E[V(Win)] Ele~aXu(u—RP)]

13



Now E[e—eX1(u—RP)] — g [E[e‘aXf(u_RP) 16, w]] and

2
E[e—aXI(u—RP) | 0 ,w] _ e—aXI(Q—RP)—I-%XIQa?
)

_1(6—-RP)
= e 2 Ug

Similarly, E[e-¢Xvu=FP)] = p [Ele~¢Xvu=EP) | y]] and

Ele-aXu-RP) | 1 _ o~ aXv (Eluhw]~RP)+% X2 Vulu]

1 (E[6|w]—RP)>
—¢ 2 oZ4VIblu]

Now, note that # = 6 + Bw + v where v L w. Thus

_1(0=RP)? _1VI[olw] (0—RP)?
E[e 2 52 ‘w] — E[e 2 52 Vio[w] |w]
1 _ 1 (Blojw]-RP)?
=—— ¢ 2 o2tV
o _ ot Vioju)
where we used that if 2 ~ N(ju,, 1) then E[e”%*"] = ¢ o Witht = - 2

Since Vulw] = 02 + V[f|w] and V[u|d] = o2, it follows that

E[efaXI(ufRP)] _ V[U|9] E[e*aXU(u*RP)]

Putting everything together we find:

e An equilibrium fraction of informed agents A is obtained when at the margin investors are

indifferent to becoming informed, thus when

V{ul6]

aC
“ Viuful

2
1 23 2 tp
32— 5)  — Ty

dz = f NeT dz from which the result follows.

2 d (emn)?

N

*Ele] = [

14



It is easy to see that 4/(A) > 0, thus if 4(0) < 1 < (1) there is a unique ‘interior’ equilibrium.
Else, if 4(0) > 1, then A = 0 is an equilibrium and if v(1) < 1 then A = 1 is an equilibrium
(GS theorem 3).

Note that v/ > 0 implies that as the fraction of informed increases the relative utility of
informed decreases relative to the uninformed (because CARA utility is negative!). So the
more informed agents there are in equilibrium the smaller (the more negative) the utility of

the informed.

note that

V{ul6] c 14+m
A) = aC _ L
1) = V{u|w] © T+m+nm

2 2
where m = 1/)2% and n = %% and further
6 €

9o 1
pe’P_l—i—m
2 n
pO,u_1+n

so the equilibrium determinant of A is entirely driven by m,n, C, the cost of information and
informativeness of the price system (m) and the quality of the information of the informed

trader (n).

Specifically the equation can be rewritten as

62aC’ -1

2
l—pgp= -

we see that

— increase in the quality of information (n) increases the informational efficiency

— a decrease in the cost of information, increases informational efficiency and increases the

equilibrium A.

a decrease in risk-aversion increase informational efficiency.

An increase in o, will have no impact on the price efficiency. (why?)

15



e An equilibrium does not exist without noise (i.e., when o, = 0) if ¢“ < /T + n (Theorem 5)

Note that for A > 0 then when o, = 0 we have n,m = 0 and thus equilibrium would require
e®“ =1 which cannot hold for aC' > 0. Now A = 0 is not an equilibrium since at that point

we have the condition:

1
= ¢ T >1 ife® >V1+n
V n

e When information is perfect (o, = 0) there never exists and equilibrium. If o. = 0 then for

A > 0 we have nm = 0 and then y(A) > 1 if aC > 0. Further, for A = 0 we have 7(0) =0 < 1.
e Conclusion page 404: GS take issue with the efficient market hypothesis :

”Efficient Markets” theorists have claimed that ”at any time prices fully reflect all
available information” (see Eugene Fama, p. 383). If this were so then informed
traders could not earn a return on their information. We showed that when the
efficient markets hypothesis is true and information is costly, competitive markets
break down.

Efficient Markets theorists seem to be aware that costless information is a sufficient
condition for prices to fully reflect all available information (see Fama, p. 387);
they are not aware that it is a necessary condition. But this is a reducto ad
absurdum, since price systems and competitive markets are important only when
information is costly (see Fredrick Hayek, p. 452). We are attempting to redefine
the Efficient Markets notion, not destroy it. We have shown that when information
is very inexpensive, or when informed traders get very precise information, then
equilibrium exists and the market price will reveal most of the informed traders’

information. However, it was argued in Section III that such markets are likely to

be thin because traders have almost homogeneous beliefs.

16



The model opens up many interesting theoretical issues (equilbrium traffic-jams, “Efficiently

inefficient markets” Garleanu-Pedersen (2020)).... ) and raises important empirical questions.

— Have markets befome more informationally efficient?

— How can we measure informational efficiency empirically?

— What are the implications for trading volume?

— What are welfare implications of better informational efficiency?

— How to organize markets (microstructure) to achieve such efficiency: OTC, CLOB, mar-

ket fragmentation. ..

— How come markets are not fully revealing (I suppose they are not)? If informational
efficiency is so important (is it?) for the allocation of resources and welfare, then why not
introduce several (non-linear) derivatives, which together would lead to full revelation
of the underlying state. Is there something inherent in the trading of several securities
that generates additional noise (or market incompleteness) that prevents markets from

ever becoming fully revealing?

6 The only game in town Bagehot (1971)

Bagehot (1971) contains the essential idea that investors trading randomly in an efficient market
might actually loose on average (which goes against the conventional wisdom of efficient markets of
Fama). His beautiful insight is that there are three types of agents in the market : informed specu-
lators who trade with superior information, uninformed agents who trade for ‘liquidity-motivated’
trades (or may simply be overconfident about their abilities), and market makers whose sole role it
is to provide liquidity and transacting whenever opposite orders fail to arrive. Bagehot argues that
since market makers will loose systematically to informed agents, she must recoup her losses from
trading with uninformed agents, who might thus loose systematically. The market maker does this
by setting the bid-ask spread appropriately. With this idea Bagehot offers the fundamental building
block for a theory of market liquidity and bid-ask spreads that is purely information-driven (and
not based on inventory concerns as in, e.g, Stoll (1978), Ho and Stoll (1981)). We will see two

different formalizations of this idea next.
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7 Sequential trading in price (or quote)-driven market: Glosten

and Milgrom (1985)

7.1 The general framework

e Formalize Bagehot’s idea in a model where informed or uninformed agents arrive randomly,

one at a time, to buy or sell one unit from a specialist.

e All orders submitted are market orders. GM do not consider limit orders or the possibility
of trading different order sizes. Further, every time a new agent is coming to the market, so

they cannot strategically delay the decision to trade (their decision is myopic).

e Specialists set bid and ask prices and revise their prices after every transaction. Trading
is anonymous so specialist cannot distinguish incoming traders. This is a screening model.

(But see Lee and Wang (2020) for an interesting extension to non-anonymous agents).

e Traders arrive to the market at (random) dates T. Arrival rates are not discussed much in
the paper, but at a minimum they are not informative about V' and/or the identity of the

traders. Poisson arrival or deterministic arrival dates seems like what GM have in mind.

e V will be ‘realized” at T, > t. It is a random variable with V' > 0 and 0‘2, < oo. T,V

independent.
e Informed agents have private information about V.

e All agents get utility pzV + ¢ from owning = shares of stock and consuming c¢. They are

risk-neutral but differ in terms of their time preference parameter p.

e p =1 for market makers. For other traders it is a random variable independent from V' and
T,. The randomness in p will drive agents desire to trade (gets around the no-trade theorem).
It drives agents’ private valuations of the asset. p > 1 they want to buy from the specialist

and p < 1 they want to sell.

e H; denotes public information. J; private information. S; is information of specialist, which
contains H; (GM assume that specialists may be better informed than the public). Assume

that Ay, B; are public information.
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e Given that specialist quotes { B, A}, it is optimal to buy if Z; > A; and sell if Z; < B; where
Zy = pi(1 — Up) E[Vi|Jy, Hy, Ay, Be] + pr Uy E[Vi| Hy, Ay, By
where U; = 1 if an uninformed arrives at t and zero otherwise. Note that p; is a random
process whose distribution depends on the identity of the trader arriving to the market .
e GM define F; to be all the information (it includes Hy, J; as well as information generated by

who arrives at t, i.e., Uy, and information generated by A, B;), so that

Zt = ptE[V|Ft]

e Expected profit of specialist is E[(V — A)1z,54 + (B — V)1z,<p| St which can be rewritten

as:

(E[V‘Zt > A, St] — A)PTOb(Zt > A‘St) + (B — E[V‘Zt < B,St])PTOb(Zt < B|St)

e Competition among risk-neutral specialists implies the zero-expected-profit conditions:

A= E[V’Zt > A, St]

B = E[V|Zt < B,St]

GM assume that there is Bertrand competition at every trade/quote. So specialists set prices
so the zero-expected-profit condition holds for every trade. If specialists had some market
power then it might be optimal to relax this assumption (see Glosten (1989) and Glosten

(1994)).

e GM prop 1: We have A; > Ei[V] > B;. GM allow for S; to be different from H; and define
E; to be the expectation with respect to common-knowledge (H; A Sy which denotes events

that are both in Sy and in Hy; typically in many applications it is assumed that H; = Sy).

The proof relies heavily on the law of iterated expectation (and recall that Z; depends on
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PtaFt)3

A = Bi[A) = B AZ > A = BE[VIZ > A, 8|2 > Al = BiV|Z > Ay
— BBEVIZ > An Fopil|Ze > A, pil| 2 > Al
= Ey[Ey[Ex[V[Fy, pi| Ze > A, pi| Ze > Al
= E(E(E(VIF|Ze > A, pi]| Ze > Al = B [E[E V| F]|pe]| Ze > Al
= EyE (V]| Z > A

= I4[V]

where we used the fact that E[X|X > a] > F[X] and that p; is independent of V' so that
Et[V’Ft, Pt] = Et[V’Ft] and Et[Et[V|Ft”pt] = Et[V]

GM prop 2. The sequence of transaction prices {py} forms a martingale w.r.t. to the special-
ist’s information S and the public information Hy, where we define S = ST; and Hy = HT;:
to be the information available to the specialist and the public right after the k" transaction
at T, < Ty. Note that after the k" transaction the additional information is the trading

price (ask or bid) and the implication that Z; < By or Zy > Aj. The transaction price is

Aplg,~a, + Biplg.<p, = E[VI|St,, Z, > Apllz,>a, + E[V|St,, Zi < Billz,<B,

= E[V]S]

Since py = E[V|Sk] the martingale condition w.r.t Si-filtration follows from the law of iterated
expectation. The martingale condition wrt to Hy follows from the fact that Hy is contained
in St and since py is Hp measurable. Note that while transaction prices are martingales, it
does not follow that Ay, By are martingales. Indeed, as we show next the Bid-ask spread
converges in the limit and thus the difference between A — Bj decreases, which implies that

Ay, By, cannot both be martingales.

GM prop 4: Under some technical condition the expectations of the traders and specialists
converge in that E[V|Sx] — E[V|F] converges to zero in probability (note that Fj is the

information of the kth trader arriving to the market).
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7.2

GM’s main proposition are quite technical. There paper is in general most well-known for
their first example in section 3, and specifically for the binomial example we discuss next.
Then binomial Glostem-Milgrom model

Assume V = vy, with prior probability 7 and v; < vp, with 1 — 7.

Informed agents know the realization of V' and have a p = 1.

GM propose 2 models for the preferences of uninformed agents:

(i) p is co (in which case she will buy for sure) with probability 7° or 0 (in which case she
will sell for sure) with probability v* = 1 — A,
(GM use v* = 0.5).

(ii) p is uniformly distributed on (0,2). This model is less popular so we will consider only

the binomial model.

Assume the proportion of informed traders in the population is . Assuming independent
draws and arrival dates, this implies that the specialist assigns a probablity a that an arriving

trader is informed.

Before any trader arrives the ‘fair value’ of the asset (given risk-neutrality and zero discount-

ing) is E(n) = o + (1 — m)v;.

Suppose that at T7 < T, a trader arrives to the market and buys at the ask, then with proba
ar the specialist looses v, — A to an informed, and with (1 — a)y? she is earning A — E from

an uniformed trader. So the break-even Ask price set by the specialist will satisfy:

ar(v, —A) = (1 —a)’(A - E)

Similarly the bid price will satisfy:

al—m)(B—v)=(1-a)y(F—-B)

Let’s denote these two break-even prices
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amvy, + (1 — a)y?E(n)
am + (1 —a)yb
1—muy+(1— )y E(r)
a(l—m)+ (1 —a)y*

A(rm) =

B(r) =

e The A, B just determined form the bid-ask spread before the first trader arrives. Immediately,
after the first trade occurs, the specialist will update her quotes to take into account the
information disclosed by the trade. If the trade was a buy, then her posterior probability
that {V = vy} will increase by Bayes-rule (and commensurately the probability of V = v,

will decrease). The posterior probabilities after the first transaction at T} will be:

. _ _ _ Puy|V=uv,)P(V=up) _ (a+(1—a)y®)7 _ (a+(1—a)y")w
if buy 1 = P(V = vp|buy) = ‘ P(be) Y= W(a+(1—a)vb)+(11ﬂ)(l—a)'yb = aw+(1_07)7b
. o o _ P(selllV=vp)P(V=vp) __ 1—a)ysm o 1—a)ysm
if sell my 5 = P(V = vp|sell) = et P(s}égl)( = W(l_a)75£(1—72)7(a+(1—a)75) = a(1£w)+(¥—a>v5

So the bid-ask prices prevailing after the first trade (posted prior to the second trade) will be

A(my7), B(m ) with 7 =1 or 0 depending on whether the first trade was a buy (1) or a sell

(0).

e Note that the bid and ask break-even prices we determined actually correspond to the ‘no-

regret’ risk-neutral expected prices, in the sense that:

A(m) = E[V|buy] = 1 pvp + (1 — m1p)0

B(’/T) = E[V\sell] = 7T17S’Uh + (1 — 7T1,S)Ul

which gives an alternative approach to derive the bid-ask prices.

e The process for bid-ask spreads follows then from the sequence of trade arrivals and decisions.
The sole state variable is the posterior probability 7, 7, -, .7,} which represents the posterior
probability that V' = v, after n rounds of trading and having observed the history of trades

{71,..., 7} where 7; € {0,1} (it equals 1 if the ith trade was a buy and 0 if it was a sell).
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Note that Bayes rule gives:

1,1 7T
1—7‘(177—_ Tl—’]T
where
1— b
K=ot ooty
(I —a)b
1_ S
Ko— L=
a+(1—a)y

It is then easy to see that the sole state-variable is the number of buys and sells (the order in
which these occur do not matter). Specifically if we denote by n, = > ., 7;, then the bid-ask
spread prevailing after the n'* trade will be A(mym, ), B(7n,n,) where m, 5, is obtained from

the following equation:

Tn,ny, — KT R m
- 1

1 —mpm, 0 1—m

e [t is then possible to plot and anlyze the behavior of bid-ask prices and study their convergence
as the number of trades increases, as well as their properties with respect to the model

parameters (a, 7%, ). It can in particular be shown that

As time goes to infinity prices become fully revealing in the sense that lim,, o B(m,) =
lim,, ;o0 A(7,) = V in probability.

— The mid price is in general a biased estimate of the expected true value that is in general

AmEB@) o

).

transaction prices are martingales wiht respect to the public information (number of buy

and sell trades).

— Bid and ask prices however are not martingales (wrt to public information), since their

difference is a decreaseing process.

The bid-ask spread increases with uncertainty about the fundamental value (oy ), with

the fraction of uninformed o.

e The Glosten-Milgrom model (especially in its binomial form) has seen a wide variety of

extensions and application (see e.g., the work by Maureen O’hara and co-authors). It has
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also led to development of some statistical measures of stock-level market liquidity (such as
the PIN and the V-PIN measures of Easley, O’hara, and Paperman (1996) which have been

quite controversial, see e.g., Duarte, Hu, and Young (2019).)

8 Batch trading in price-driven market: Kyle (1985)

Kyle (1985) is another very nice formalization of Bagehot’s idea. In his model he considers a single
risk-neutral informed trader, called the ‘insider’ (though not necessarily an illegal insider), who
has long-lived information about the underlying terminal asset value of the firm. Unlike in GM
the agent is strategic about her trading and will optimally dynamically trade over several trading
rounds to maximize her expected trading profits. The agent submits only market orders. In
addition to the insider there is a continuum of noise traders who trade for non-speculative reasons.
A risk-neutral market maker absorbs the total excess demand coming from both types of traders
and sets the market clearing price so as to break-even. Since in the Kyle (1985) model informed
agents act first, this is more of a signalling model.? The model gives insights into (a) the optimal
trading strategy of an insider, (b) her trading profits, (¢) equilibrium price dynamics, (b) price
liquidity (or market depth) as measured by the ubiquitous Kyle’s lambda. The latter has led to
many econometric applications using high-frequency data to measure stock-level trading liquidity.

Kyle considers both a one period model and a multi-auction model where the agent can trade at
n trading rounds before her information becomes public. Finally he considers the continuous limit

of his model where the agent can trade continuously. We will start with the one-period model.

8.1 The one-period model

e The liquidation value v ~ N(pg, Xo).

e Noise traders’ demand is u ~ N(0,02) independent of v.

3But see the insightful discussion in Brunermeier p. 95,96, who points out that because of the continuous un-
bounded support of the Gaussian distribution, off-equilibrium strategies need not be considered, and the order in
which players act does not seem crucial in the Kyle model, which quite different from standard signalling models.
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e The insider observes the realization of v, but not of u, and submits her market order z.*

e The risk-neutral market makers observe only total order flow, the net demand from both
insider and noise traders, denoted y = = + u. Market makers absorb the net demand y at
a price so that they break-even. Assuming Bertrand competition the set price so as to have

zero expected profits, i.e., E[—y(v — p1)|y] = 0 which implies p; = E[vl|y].

e An equilibrium then is a trading strategy x that maximizes the expected profits of the insider

and a price p that satisfies the zero-expected-profit condition of the market maker:

(i) maxy El(v — p1)zx|v],
(i) p1 = Evly].

e To solve this equilibrium Kyle proceeds in three steps: First, conjecture that (the market
maker conjecture) the insider chooses a trading strategy of the form x(v) = B(v — pg). Given

this conjecture, the market maker will set prices to be linear in order flow:
p1 = Evly = B(v —po) +u] = po + Ay

where

_coo(v,y) _ A%

Varly] — B2%0 + o2

Second, conjecture that (the insider conjectures) that price responds linearly to order flow,

i.e., p1 = po + A\y. Given this conjecture the insider will choose her demand to
max E[(v — p1)z] = max E[(v — po — AM(z + u))z]
x x

This implies an optimal trading strategy of the insider of the form (from the FOC):

_U—DPo
2

4Kyle assumes the insider does not observe noise traders’ order flow when submitting her order (Rochet Vila
(1994) study the extension where she can and show that the model implications are very similar). Kyle also assumes
that the market maker only sees total order flow. Instead, Holden and Subrahmanayam show that if the market
maker can see the two order flows separately, without knowing which is informed versus uninformed, the equilibrium
is unchanged (in equilibrium the insider’s demand ‘mimics’ the noise trading distribution).
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The second order condition for a maximum is satisfied iff X > 0.

Lastly, find X a fixed point so that both conjectures are indeed consistent, i.e, such that:

plugging in the expression for A we find that the equilibrium values satisfy:

2
5 O 1 o
b 0 o 23 20y

e We can then derive the ex-ante expected profit of the insider:

1 1
E[(v—po)x — /\xz] = 56220 = 50320

and the amount of information that is incorporated into prices due to the information conveyed

by order flow:

1
Vvpi] = V[vly] = So — Nop = S — \*(8°50 + o)) = 220

The model shows:

— Prices respond linearly to order flow.

— Kyle’s lambda measures the sensitivity of prices to order flow: it is a signal to noise
ratio. The more noise trading the less the adverse selection faced by market makers, the

less prices move in reaction to incoming orders.

— Half of the prior ‘fundamental uncertainty’ is incorporated into prices with one single

trading round.

— Insider profits are increasing in the amount of prior uncertainty about fundamentals and

the amount of noise (which offers camouflage for her trading).

e We now turn to the dynamic multi-auction model to see (i) how insiders will split their orders

when they can trade over multiple rounds, and (ii) how this ability to dynamically trade will
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8.2

affect price dynamics and market liquidity. The continuous time limit will be treated below

using stochastic calculus.

The discrete time dynamic model

Kyle assumes that the insider can trade n times at dates 0 =ty < t1,..., <ty =1T.

each round of trading the insider trades Az, so that her cumulative position after ¢ auctions

is S | Aw,, starting from 2 = 0.
The insider maximizes maxag, E[Y n_; (v — pp)Azy)
Noise traders demand is Au, ~ N(0,02At) to approximate a discrete Brownian motion.

At each auction round, the market maker absorbs total order flow Ay, = Ax, + Au, and

sets the auction price to break-even: p, = E,_1[v|Ays,].

We will seek a linear equilibrium where p, = pp—1 + A\ Ay, and the optimal demand of the

insider is of the form Ax,, = B,At(v — pp—1).

The proof is recursive. We start by defining the expected future profit value function of
the insider J, = maxag, E[Zi\inﬂ(v — p¢)Azy] and posit that J, = an(v — p,)? + 0, for
two constants «,, d, which we seek to determine recursively (and with boundary conditions

ay =0y =0).

By backward induction we can compute the value function of the insider by solving J,_1 =

maxag, El(v — pn)Azy, + Jp] recursively from starting from n = N.

At some round n the insider’s demand solves maxa,, E[(v — pp—1 — MAxy) Ay, + ap(v —

Pr-1 — (A + Auy))? + 6,
The first order condition gives: Az, = ,At(v — p,—1) where

1—2a,\,

S )

The second order condition gives A, (1 — apA,) > 0.
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e Plugging back the first order condition and solving we find that indeed J,,—; is quadratic and

obtain a recursive solution for é,_1, a,—1 given by equation 3.15 and 3.16 in Kyle (1985).

e Given the conjecture about the insider’s trading strategy that Az, = 3,At(v — p,—1), the

market maker will set prices to satisfy:

Pn = nfl[U‘Al‘n + Aun] = Ppn-1+ )\n(A:En + Aun)

with
covy1[Azy + Aup,v] BnXn_1

M Y Bt Ay BEA, 1o )

where we have defined the variance of the fundamental at the beginning of the n" auction

Yno1=En1[(v — pn_1)?] (note also that E,_1[Az, + Au,] = 0).

e By the Gaussian projection theorem the posterior variance of the asset value after the n'”

auction becomes:

Y =Sn 1 — NAHBALS, 1 +02) =S 1 — T 1 Bt

e It is left to show that there exists a unique fixed point (A, 5,,) that satisfies the two equations
(%), (x%) as well as the second-order condition. Then a numerical solution requires starting at
T with boundary conditions ay = §y = 0 and ¥ = € and iterating back using the difference
equations for o, d,, 2, as well as the solutions for f3,, A,. An equilibrium is found if the
recursion matches the initial condition . Kyle shows that one can always find a terminal

condition e such that this works.

e We will study the economic implications of the model when we consider the continuous time
solution of the Kyle model as derived by Back (1992), which is obtained in closed-form and

easy to interpret. In particular, we shall show that in the continuous time limit:

— Traders will split their orders so as to trade, in expectation, a constant number of shares

per unit time.

— Kyle’s lamba is twice as large when the insider can trade continuously.
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— All of the private information is ultimately revealed to the market and prices become

fully revealing, that is Y7 = 0.

e Extensions and follow-up of the Kyle model are numerous and include:

Uniqueness of the Kyle equilibrium: existence of non-linear equilibria?

— Non-Gaussian distribution for the noise and asset value.

Multiple competing insiders.
— Risk-averse insider and residual risk.
— Activism (the insider can affect the asset value at a cost).
— Stochstic noise trader volatility.
— Stochastic horizon.
— Strategic noise traders.
e Kyle’s lambda has become a central empirical measure of stock illiquidity, which can be
estimated at various frequencies by regressing price changes (or returns) on order flow. Even

the very popular Amihud measure if illiquidity is based on Kyle’s insight. See Goyenko,

Holden, Trzcinka (2009) for a recent empirical comparison of different liquidity measures.

9 Continuous-time Kyle Model

Here we show the continuous time derivation of the Kyle (1985) model. We follow the derivation
in Collin-Dufresne and Fos (2017), who extend the kyle model to allow for stochastic noise trader
volatility but retain the assumption that the terminal asset value is normally distributed. This
allows to use standard Kalman-Filtering techniques. Instead, Back (1992) allows for arbitrary
distribution of the terminal price, which requires more complex techniques. We will see his approach

below.

9.1 Continuous time Kyle (1985) model with a finite horizon T’

Let’s suppose that at T the liquidation value of the firm v will be announced. v is drawn from a

prior distrbution v ~ N (vg, ¥g) at time 0. Only the insider gets to obseve v.
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The insider accumulates a total number of shares X; by choosing an admissible trading rate
0; € A with dX; = 6,dt, so as to maximize the expected value of her trading profits. As shown in
Back (1992) it is actually optimal for the insider to trade in an absolutely continuous time fashion
prior to the announcement. Indeed, note that, assuming zero interest rates, the dynamics of wealth
of the insider is dW; = Xydp;. Further X7v = X7 Pr = XoPy + fOT(Xtdpt +ped X +d[ X, plt). Thus
Wr = Wo+ []| Xedp, = Wo— XoPo+ Jf (v—p)dX, — [ d[X,pls. Since d[X,p]; > 0 in equilibrium,
it is optimal to choose an absolutely continuous trading strategy. it follows that the insider will

maximize:

T

J(t,p,v) = maXE[/ (v —ps)Bsds | FY 0] (5)
0, A t

We define the set of admissible trading strategies A = {6; s.t. E[(v — p¢)?] < oo V#]}.° The

equilibrium price p; is set by the competitive risk-neutral market maker so as to break-even on

average. Specifically, the zero-profit condition for the market maker implies that
pe = E[v| 7] (6)

where we denote by F} the filtration of the market maker generated by observing the cumulative

order flow ¢, which is the sum of the informed order flow and noise trading:
dyt = tht + O'tdZt (7)

The cumulative order flow of noise traders is driven by a Brownian motion Z; with determinstic
volatility o.

Thus an equilibrium is defined by a price process p; and an admissible trading strategy 6, that
maximizes the profits of the insider in equation (5), while satisfying the market-maker break-even
condition equation (6).

To solve the equilibrium, we first conjecture that the trading strategy of the insider is of the
form:

0 = 51:(1) - Pt) (8)

5This technical condition is sufficient to insure that the wealth process of the insider is well-behaved and, in
particular, to rule out ‘doubling-strategies’ as discussed in Dybvig and Huang (1988).
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for some deterministic trading speed S;. Given this conjecture the market maker’s filtering problem

is a standard conditionally Gaussian problem:

dpr = MdY; 9)
)

a = B (10)
o

Ay, = —XoZdt (11)

where ¥; = E[(v — p;)? | F/] is the conditional posterior variance of the Market maker conditional
on observing the continuous order flow.

We can get some intuition for these updating dynamics from the discretized version of the model
where we use dy; ~ Yrrar — ys = Bi(v — pr)dt + ope/dt with € ~ N(0,1). Then piq = Ey[v|dy;] =
Eiv] + M (dy; — E[dy:]) where

N Cov(v,dy;)  Cov(v,dy;) B2 dt
YT Vdy) T Vidy) BN + oZdt

Simplifying by dt and taking the limit as dt — 0 gives the expression for \;.% Further, the posterior
variance Xy qr = E[(v—pirar)?|dys] = L= A2V (dy). In the limit as dt — 0 we have V (dy,) = o2dt,
which gives the desired equation.

Note that given our conjecture on 6, price impact \; is itself deterministic. Given the price
dynamics in (9) we turn to solving the insider’s optimization problem. First, note that his value

function can be rewritten as:

T
= E — Ps)VUs y’ 12
J(t,p,v) (5?2,)4( {/t (v — ps)Bsds | Fi v} (12)
The HJB equation is:
1
max {Jt + inp/\?a? + JpAib + (v — pt)Q} = 0. (13)

S A rigorous derivation of the continuous time Kalman filter equations can be found in Liptser and Shiryaev classic
textbook ”statistics of Random Processes.”
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It follows that the first order condition is:

JpAt + (v —p) = 0. (14)
We thus guess a quadratic form:
2
v—p
s = U2 gy (15)
2

Using this guess in the HJB equation we find

A 1
f/—(’U—P)Qﬁ‘Fi)\tUtZ =0 (16)
t
Thus the guess is consistent if:
o= e? 17
= 9 t0¢ ( )
A, =0 (18)

Thus A must be constant in equilibrium (otherwise the risk-neutral insider would shift all her
demand into states where there is lower price impact). Further, we can solve the equation for f(¢)

(subject to f(T') = 0) to get :

T
£(t) = %)\ /t o2ds (19)

R
92X

where the second line follows from the explicit solution for the posterior variance given by:
t
¥ =%0— )\2/ olds (21)
0

It remains to pin down the optimal trading strategy of the insider and, in particular, to show
there exists a strategy of the form conjectured by the market maker that is indeed optimal for the
insider. First, we conjecture that an optimal strategy for the insider must be such that lim; .7 p; =

v, so that there is no money left on the table. Otherwise, there would be an incentive for the insider
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to deviate from the trading strategy (e.g., trade a little more aggressively) to benefit from that
price gap.
Thus suppose the insider chooses a strategy as conjectured by the market maker with

2
Ao;

B = 5,

for some constant A chosen such that ¥ = 0, i.e, such that

2o

)\2
fT o2ds

(22)

Then from (21) the posterior variance converges to zero at maturity (37 = 0) which implies
that pr = v (convergence in L?, which can be shown to imply a.s. convergence). As we show next
any strategy with that property is actually optimal for the insider.

Suppose that price is linear in order flow, that is dp; = A(6idt + 04dZ;). Then consider an
arbitrary admissible trading strategy 6; € A and apply Itd’s lemma to the candidate quadratic

value function (39):

T
J(T,pT,’U) - J(07p07v) = / dJ(t,pt,U)
0

T
= / —(U — pt)(tht + O'tdZt)
0

Taking expectation we find that for any admissible trading strategies:”
T
50.0,0) =& [ITpro) + [ (0= po] (23)
0
Now, note that by definition J (T, pr,v) = m > 0, thus

J(0,po,v) > E [/OT(U —pt)tht] (24)

"The fact that the strategy is admissible guarantees that the stochastic integral is a martingale, since E[ fo -
pi)?oidt] < oo for any 6; € A.
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for all 6;.
Further, if we can find an admissible trading strategy such that pp = v a.s. then J(T,pp,v) =
0 a.s. and we obtain an equality in equation (24) which proves the optimality of the strategy. Thus

we have shown:

THEOREM 1: For X given by equation (22) and ¥ given by (21) we have limy_yp Xy = 0. Thus an

equilibrium exists where the equilibrium price process follows:

dP;, = I{t(’U — Pt)dt + AodZ; (25)
N2
= 26
=g (26)
In that equilibrium the informed investor trades as in equation (8) with f; = %’;2

We see that in the filtration of the insider the price follows a mean-reverting process with mean-
reversion rate equal to k;. For example we have that E[p; — v] = e~ Jy reds (po — v). Note further
that dz—ztt = Kedt, so that

t
St = Soe ™ Joreds,

It follows that the expected trading rate of the informed investor in her own filtration is:

2
— [T ksds U= g
E[6; | v, FY] = (v — po)Bre Jo #sds = (v —po) i

0

(27)

To analyze the implications of our findings it is helpful to define the fundamental uncertainty

in terms of its annualized volatility ¥y = 02T. We see that in equilibrium:

e Price impact, Kyle’s lambda, is constant and can always be interpreted as an average signal
to noise ratio. When noise trading volatility is constant then A = 2. The reason is that since
the informed investor is risk-neutral she would otherwise concentrate her trading in those
states where she knows for sure that price impact will be lowest. Interestingly this result does

not hold when noise trading volatility becomes stochastic (Collin-Dufresne and Fos (2017)).

e The equilibrium price is a martingale in the filtration of the market maker (since E[dy,|F}] =

0), but it is mean-reverting in the filtration of the insider with mean-reversion rate x; with
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lim; 7 Ky = oo. This is a Brownian-bridge type process which converges almost surely to v

at maturity 7. When noise trading volatility is constant then k; = ﬁ

e All the information is revealed at T" where prices become fully revealing, as 7 = 0. When

noise trading volatility is constant ¥; = o2(T — t).

e The optimal trading strategy of the insider is to trade more aggressively in states where noise
trading variance is relatively highest (where she can hide best). When noise trading volatility

is constant note that 3; = ﬁ which goes to infinity as maturity approaches, so as to profit

from any remaining ‘inefficiency’ (p; # v). In expectation the insider trades at a constant

rate given by: E[f; |v, F}] = (U/:;O), which has a nice interpretation.

e Price volatility is op(t) = Aoy that is more information is revealed to the market in states
where noise trading volatility is highest (which is where the insider trades more). Price
volatility is constant and equal to op(t) = 0, when noise trading volatility is constant (and

information is revealed at a constant rate).

e The value function of the insider is J(0) = % + ¢ which implies that this unconditional

expected profit is given by: % =1/20 fOT o2dt which is increasing in both prior fundamental

uncertainty and noise trading variance.

9.2 Continuous time Kyle (1985) model with a random poisson distributed

horizon T

Let’s suppose there is a random announcement time 7 > 0 which has a deterministic intensity
pt > 0. At 7 the liquidation value of the firm v will be announced. v is known only to the insider,
but has a prior distribution perceived by the market maker of v ~ N (vg, Xp).

The insider accumulates a total number of shares X; by choosing an admissible trading rate
0; € A with dX; = 0:dt on t < 7, so as to maximize the expected value of her trading profits:

Tt.p0) = g B (0 = p)0st s | .0 (28)

.. . . _ _ fT psds 2 8
We define the set of admissible trading strategies A = {6; s.t. E[(e” /o pr)°] < oo VT]}.° The

8This technical condition is sufficient to insure that the wealth process of the insider is well-behaved and, in
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equilibrium price P, is set by the competitive risk-neutral market maker so as to break-even on

average. Specifically, the zero-profit condition for the market maker implies that

P =pils +vl<, (29)

that is the price jumps on the announcement date to the value v from the pre-announcement price
P given by:
pe = E|F, 7> 1] (30)

where we denote by F} the filtration of the market maker generated on 7 > ¢ by observing the

cumulative order flow y;, which is the sum of the informed order flow and noise trading:

dyt = tht + O'tdZt (31)

The cumulative order flow of noise traders is driven by a Brownian motion Z; with determinstic
intensity oy < 0.

Thus an equilibrium is defined by a pre-anouncement price process p; and an admissible trading
strategy 6;, that maximizes the profits of the insider in equation (28), while satisfying the market-
maker break-even condition equation (30).

To solve the pre-announcement equilibrium, we first conjecture that the trading strategy of the
insider (on {7 > t}) is of the form:

0; = Be(v — pr) (32)

for some deterministic trading speed f;. Given this conjecture the market maker’s filtering problem

is a standard conditionally Gaussian problem on the set {7 > t}:

dpr = A\dYy (33)
by

- Bt2t (34)
O

Ay = —Moldt (35)

where ¥; = E[(v — p;)? | F/] is the conditional posterior variance of the Market maker conditional

particular, to rule out ‘doubling-strategies’ as discussed in Dybvig and Huang (1988).
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on observing the continuous order flow. Note the crucial fact that the announcement date is

unpredictable and independent of v, hence knowing 7 > ¢ does not improve the learning of the

market maker, i.e., py = E[v | F{,7 > t] = E[v | F}].

Note that given our conjecture on 6, price impact \; is itself deterministic. Given the price

dynamics in (33) we turn to solving the insider’s optimization problem. First, note that his value

function can be rewritten as (on the set 7 > ¢):

J(t,p,v) = g@iE [/t e Ir Pudi(yy — p)Byds |.7-'ty,v]

The HJB equation is:
max {Jt - %Jpprat? + I\ — ped + (v — pt)ﬁ} =0.
It follows that the first order condition is:
JpAt + (v —p) = 0.

We thus guess a quadratic form:

(v —p)?
¢ = 4 f@
It,p,0) = 5P+ 1)
Using this guess in the HJB equation we find
A1 (v —p)?
!/ _ _ 2 t - 2 _ S =
fr=(=p) 72)\%4‘2/\1501& Pt( 2 +f(t)) =0

Thus the guess is consistent if:

1
0 = f’—i—i)\taf —pef(t)

)\/
2 —p
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Solving the equation for A we obtain:
A = Age Jo pudu (43)

Solving the equation for f(¢) (subject to f(oo) = 0) gives the solution:

o) s 1
f(t) = )\t/t e 2 p“du§agds (44)
e — X%
— tTtOO (45)

Solving for the posterior variance we find:

We can then show the following Theorem:

THEOREM 2: If we can find a constant Ao such that lim;_oo 3 = 0 where A\, X are given in

equations (43) and (46), then there exists an equilibrium where the price process follows:

dP; = /@t(v — Pt)dt + M\eordZy + (Q} — Pt)d]-rgt (47)
idi
= 48
=g (48)
In that equilibrium the informed investor trades as in equation (32) with By = /\g’;? The expected

trading rate of the informed investor in her own filtration is:

(v —po) Aoe™ Jy peds 2

E[0, |7 > t,v, FY] = (v — eff(f’isds: o 49
[t| t] ( pﬂ)ﬁt \/270 \/270 t ( )

Proof. First we note that if the insider follows the strategy listed in the theorem, then the price
P, = p41,;5¢ + v1l,<¢, where p; is defined in equation (6). That is the price is consistent with the
equilibrium zero-profit condition of the market maker. It remains thus to show that 6; given in
the theorem, is an optimal trading strategy for the insider, i.e., that it solves the optimization
problem (12) on 7 > t.

To that effect, consider an arbitrary admissible trading strategy 6; € A and apply [t6’s lemma
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to the candidate quadratic value function (39):

T t
e foT deSJ(T7pta ’U) - J(07p07 U) = / e fo pods (d‘](t>pt7 1}) - pt‘](t7pt7 U)dt)
0

T t
= — / e o deS(U — pt)(0dt + 0¢dZy)
0

Taking expectation we find that for any admissible trading strategies:?

ffT ds T — [ psds

J(O7p07 U) =E e Jo P J(T) Dbt, U) =+ e~ Jobe (’U - pt)etdt (50)
0

Now, note that by definition J(T, p¢, v) > 0, thus

T t
7(0,po,v) > E [ / e I3 ovds —ptwtdt] (51)
0

for all 0; and all T'. In particular, taking the limit as T' — oo we have by bounded convergence:
o0 t
J(0,pg,v) > E |:/ e Jo pst(v — pt)@tdt] (52)
0

Further, if we can find an admissible trading strategy such that limp_, E [e‘ Jo psds g (T,pr,v)| =
0 then we obtain an equality in equation (52) which proves the optimality of the strategy. Now,

note that

Ele™ fOT deSJ(T, pT,U)] - E [6_ fOT psds{(v;)\pT)z + f(T)}:|
T

Y 7prds
- =T sds f(
L)
257 — Yo

2Xo

Clearly a sufficient condition for a the right-hand side to go to zero and a strategy to be optimal is

9The fact that the strategy is admissible guarantees that the stochastic integral is a martingale, since
E[fOT e Jo 2pads (y — p,)202dt] < oo for any 6; € A.

39



that limp_, X7 = 0 as stated in the theorem. ]

Below we give the explicit solution to the equilibrium when intensity and and noise trading
volatility are constant. See Collin-Dufresne, Fos, Muravyev (2019) for an application with increasing
intensity and noise-trading volatility to explain the information linkages between equity and option

markets. Presentation slides are posted on moodle.

9.2.1 Constant intensity and noise trading volatility

Here we explicitly compute the equilibrium when o, p are both constant.
Solving for the posterior variance and imposing the terminal condition lim; , X(t) = 0 we

obtain:

2 2
>‘00- 672pt

(="

(53)

Then an equilibrium exists if we can find A\g such that we satisfy the initial condition ¥(0) = Xy.

Indeed, we find that the solution is:

vV 2,020

g

Ao = (54)

wich corresponds to the price impact that would obtain in a finite horizon economy with a fixed

horizon of T' = Qip. The corresponding posterior variance is:
Y(t) = Sge 2! (55)

Further, we can compute the equilibrium trading strategy:

B 2peft
=

¢ (v—p1) (56)
and the price process starts from Py = vy and has jump-diffusion dynamics:

AP, = 2p(v — P)dt + \/2pS0e "'dZ; + (v — Pr)d1 < (57)

We note that the equilibrium price prior to the announcement is a Gaussian mean-reverting
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process in the filtration of the insider with mean-reversion strength equal to twice the announcement
intensity and an exponentially decreasing volatility.

We can compute its expectation and variance, conditional on the insider’s information:

Eipr —vlv,7 >T] = e 20(T—t) (pt — ) (58)

Vilpr —vlo,7 > T] = e 271 — e 22Tt x, (59)

And we see that p; converges in L? to v when t goes to infinity.

The expected trading rate becomes
El |7 > t,0, FY] = PO o (60)
AO%

which starts at time 0 at the same rate one would expect in an economy with a fixed time horizon

equal to 1/(2p) and then decreases at the constant intensity rate.

9.3 Continuous time Kyle (1985) model with stochastic noise trading volatility

and stochastic horizon

See presentation slides posted on moodle along with the papers Collin-Dufresne and Fos (2017).
The setup is identical to the one seen in the previous section. The only addition is that now the

noise trading volatility process is stochastic driven by it own independent Brownian motion shock

W;. That is:

e The liquidation value of the firm v will be announced at T'.v ~ N (vg, £o) at time 0. Only the

insider gets to observe v at t = 0.

e The insider chooses his trading strategy dX; = 6:dt to maximize J(t) = maxgp,c4 F| ftT(v —

ps)lsds | Ff 0]

e Market Makers set price competititely:p; = E[v|F}] where we denote by F} the filtration of

the market maker generated by observing the cumulative order flow y; (and noise-trading
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volatility o), which is the sum of the informed order flow and noise trading

dyt = tht + O'tdZt

doy = m(o,t)dt + v(o,t)dW;

To solve the equilibrium, we first conjecture that the trading strategy of the insider is of the

form:

0 = Be(v — pr) (61)

for some stochastic trading speed process 5;, which may in particular depend on the noise
trading volatility process. Given this conjecture the market maker’s filtering problem is a

standard conditionally Gaussian problem:

dpe = MdYy (62)
by

N = ﬁt2t (63)
O

Ay = —MoZdt (64)

where ¥; = E[(v — p;)? | F/] is the conditional posterior variance of the Market maker condi-

tional on observing the continuous order flow.

Note that given our conjecture on 6y, price impact \; is itself a stochastic process (possibly

depending on t and the history of oy).

Then s Given the price dynamics in (62) we turn to solving the insider’s optimization problem.
Given the deterministic volatility solution we guess that the value function of the insider is

of the form
(v—p)? + %

I(t) = J(t,py) =

Given this guess we not that

1

dJ = —(v —p)(0ydt + 0,dZ;) + (v — p)* + z,f)dA —
t

(v —p)d[p, fracl];

Integrating and rearranging and taking expectation, we see that if:
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(i) Market depth is a martingale, that is £ [d)\%] =0

(ii) Market depth is independent of the price process d/\%dpt =0.

Then

T
J(0) = B[ /0 (v — po)fedt + J(T)

Now, since J(T') > 0, we see that (i) for any admissible § we have J(0) > E[fOT(v — pt)0,dt]
and (ii) If the exists a 0 such that pp = v a.s. (i.e. there is no money left on the table) then
J(0) = E| fOT (v — p¢)0dt], which establishes the optimality of the trading strategy for that

price proces.

/\taf
¢

It remains to find ¢, ¥y so that given a trading strategy pinned down by (63) that is 8; =
the price process satisfy the Bridge property that lim; .7 P; = v a.s.. Equivalently we look for
a process ¥ such that limy_,7 ¥; = 0. So we need to solve the forward backward system (on

the filtration generated by oy, note that this will automatically satisfy condition (ii) above):

- Bl |77 =0

— d¥; = —\202dt with limy_,7 2y — 0.

Motivated by the deterministic case, we conjecture that \; = ‘/% which decouples the
forward backward system:

2
t

- BdVGIF7) = —Fht

d¥e
2t

2
—%dt with lim;_,7 ¥ — 0.

The solution is then
2
_ [t ot

Y = 2pe 0 a4

where G; solves the backward (recursive) equation

2

T .
VG =Bl S
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e Collin-Dufresne and Fos (2017) establish under what conditions a solution to G exists such
that X7 = 0 and pp = v a.s.. This implies tha the equilibrium exists with \; = ,/% where

the price process follows:

dPt = /ﬁ}t('l) — Pt)dt + )\tO’tdZt (65)
2
9t

_ o 66

Kt G, (66)

In that equilibrium the informed investor trades as in equation (61) with 8 = ft.

We see that in this model

— Price impact is in general stochastic that it tends to increase on average (because its
inverse, market depth) is a martingale. Liquidity deteriorates over the trading day in
equilibrium so that the insider is willing to trade early and give up her option to delay
trading to wait for better liquidity states. (Stochastic noise trading volatility gives the
insider a liquidity timing option.)

— The optimal trading strategy of the insider is to trade more in states where price impact
it lowest as well as in states where noise trading volume is highest (relative to the average

level of uninformed noise trading).

— Price volatility is stochastic driven by noise trading volatility. In states where noise

trading volatility is high, the insider trades more and more information gets into prices.

9.4 Continuous time Kyle (1985) with non-normally distributed terminal value:

Back (1992)

e Given a price function P(t,Y;), insider maximizes

T
mng[/O (v — P(t,Y:)0rdt | v| . (67)

e Market Maker has prior v ~ F(z) = Prob(v < z) (not necessarily normall) and observes

total order flow Y;:
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dY; = 0 dt + odZ,

where Z, is standard Brownian motion and where dX; = 0;dt is the trading strategy of the
insider. Note that it is not a priori obvious why the insider should trade in an absolutely
continuous fashion (i.e., without any dZ; term). However, given that the model assumes that
o is common-knowledge any additional Brownian component would effectively be ‘observed’
by the market maker and lead to price impact that would reduce the profits of the insider.
See the discussion page 393-394 in Back (1992). Here we will proceed with the conjecture

that the insider’s strategy is of that form.

e An equilibrium is a pair (P, 0) s.t. trading strategy 6 maximizes (67) given P and

Pt.Y)=E[v|F)] (68)

e Search for an equilibrium where P(y,t) only depends on aggregate order flow. Then, risk-

neutrality of the market maker implies P(Y;,t) = E[h(Yr) | F}] for some function h(Y").

e Note that in continuous time it is natural to assume that the insider can effectively ‘observe’
total order flow Y; and hence also oZ; and thus she can condition her trades on the noise
trader demand. This is because in equilibrium Y; can be inverted from P(Y;,t). This is
different from the discrete Kyle model where it is assumed that the insider cannot condition
her trades on noise trader demand which it does not observe. But see Rochet and Vila (1992)

who study a one-period Kyle model, where the insider can observe noise trader demand.

e If the insider’s trading strategy is unpredictable (i.e. E[f;|F/] = 0), then
P(y,t) = E[h(y + o(Zr — Z,)) | F{).

So the price function is pinned down by h(-) (given law of Z).
e If the insider leaves no-money on the table at maturity, then hA(Y7) = v a.s..
e To find candidate h(-), we use the fact that Y7 ~ N(0,02T). So we need h=1(v) ~ N(0,0%T),
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which implies Prob(h=(v) < y) = N (#) where N(z) is the standard normal cumulative

distribution function. But we also have by definition Prob(v < h(y)) = F(h(y)). Thus our
candidate

hy) = FH(N(—=))

Y
ovT
. Note that h'(y) > 0 (since N'(z) > 0 and F'(z) > 0).

It remains to show that (a) there exists a trading strategy 6; such that y; is a Brownian
motion on its own filtration that converges almost surely to h~!(v), and (b) that this strategy

is optimal for the insider.
The insider maximizes

E [/OT(U — P(t,Y}))0: dt | v

HJB equation for value function J(Y%,t) is linear in control §. Obtain:

1
(HJB) 0 = SJyyo’+

(FOC) 0 = Jy+v—P(Y,t)

Using Feynman-Kac we seek (a 'no-trade’) solution of the form J(y, t) = E[g(y+0(Zr—Z¢))|v]

for some function g(-).

To determine g we assume by ‘continuity’ that the second (FOC) equation holds at T (where
P(Y,t) = h(Y)). So g should satisty ¢'(y) + v — h(y) = 0, which leads us to guess a function
of the form g(y) = supy fyg(v — h(z))dz. Optimizing over g leads to the condition § = h~!(v)
and our guess

B (o)
o(y) = / (v — h(2))dz

Clearly we have that g(y) satisfies:
0=gy +v—h(y)

It follows (with sufficient regularity so we can take derivatives inside the expectation) that
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for our candidate value function:
Iy (y,t) = Ee[gy (v + 0(Zr — Zp))|v] = Eu[W(y + o(Zr — Zt)) — v|v] = P(y,t) —v

Thus, the candidate J satisfies the HJB equation and FOC.

It follows that for any 6;:

T
J(Yo,t) = Eo [g<YT> + [ - PO 0)o

Now note that g(y) > 0 and that for the particular strategy 6; such that Y = h=1(v) a.s.
(which is equivalent to h(Y}) = v) we have g(Y}) = 0. This establishes the optimality of

our candidate value function, if indeed we can find the strategy with the desired convergence

property.

To complete the proof it remains to show that we can find a strategy 6; such that dY; =
0;dt + odZ; converges a.s. to h™'(v) at T and such that E[0}|F}] = 0. Note that the
process dY; = = (h~1(v) — Y;)dt + 0dZ; is a Brownian bridge that converges almost surely
to h=1(v) at maturity in the filtration of the insider. Further we have dY; = 0dZ} where Z}

is a standard Brownian motion on FY'. Thus the insider’s trading strategy

1
dX; = m(h_l(v) —Yy)dt

is optimal.

To prove the ‘Brownian bridge property,” note that ¢ = h~'(v) ~ N(0,02T). Consider
dY; = Bi(e — Yy)dt + 0dZ; for some constant ¢ to be the observation equation for the random

variable ¢ and define p; = E[e|FY] and ¥; = E|(e — p;)?|FY]. Then standard Gaussian
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Kalman filtering gives

by
dpe = DAY~ fulpe — Vi)
825 3,5
= ;2 t(e — pt)dt + %Udzt
222
dy; = B SLdt
g

Set 5, = ﬁ, to obtain the following solution :

dpt = (6 — pt)dt + O'dZt

T—t
Y=o} (T —t)

Given initial condition py = Yy = 0 we see that with 6, = ﬁ(e —Y;) we have p, = Y; Vt a.s..
This establishes that Y; is a martingale on its own filtration (E[6;] = 0) that converges almost

surely to € at T (X7 = 0).

9.4.1 The Gaussian case

Suppose that v is normally distributed with mean vy and variance 027. Then F(z) = N ((:7\/0%)),

thus F~1(y) = vo + 0o VTN (y). Tt follows that:

hy) = F7Y(N(—2=)) = v + A
where
N v
o

This implies P(y,t) = E[h(y + 0(Zr — Z¢)] = vo + Ay which implies dP; = AdY;. Further

h_l(v) = ”_/\”0 so 0; =

/\(Tl_ ) (v—vo—AY;)dt = ﬁ(v — P,)dt and we obtain the same equilibrium

as in the continuous time Kyle model
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9.4.2 The Log-Normal case

Suppose that log v is normally distributed with mean vy and variance o2T. Then F(x) = Prob(v <

x) = Prob(logv < logz) = N((kffij%m)), thus F~1(y) = exp(vg + 0, vVTN~1(y)). It follows that:

h(y) = F7'(N(—=)) = exp(vo + \y)

Yy
oVT
where

A= —

o

This implies P(y,t) = E[h(y + 0(Zr — Zt)] = exp(vg + Ay + $A%0*(T — t)) which implies
4 — \(dY;—3Ao%dt). Further h™!(v) = ©255=1 50 6; = s (log v—v9 =AY, )dt = 57— log 5t
and we obtain ’log-normal’ version of the continuous time Kyle model, where prices are log-normally

distributed (consistent with limited liability and empirical return features) and it makes sense to

think of an illiquidity ‘Kyle-lambda’ computed from returns as opposed to price changes.

10 Kyle and Lee When are financial markets strategic?

e Kyle (1989) and Kyle and Lee (2018) provide nice equilibrium models where agents act strate-
gically, in the sense that they take into account the impact of their trading on the equilibrium
price. In so doing, they avoid the problem of the rational expectation equilibrium (REE) dis-
cussed above in the context of Grossman and Grossman-Stiglitz’s models. The issue of trader
‘skizophrenia’, who learn from prices the information of other traders even though they as-
sume that they themselves have no impact on price. The fact that in equilibrium (if noise is
sufficiently small) there may be no incentive to acquire information, since prices reveal that
information ’costlessly’ and therefore free-riding is optimal. If agents act strategically, then
their trading will be less aggressive thus changing the information acquisition incentives. The
papers discuss whether and under what conditions the strategic equilibrium approaches the
competitive REE. The conclusion is that while prices may look similar in the two economies
in many conditions (e.g., when the number of traders increases), quantities rarely look alike
(trading behaviors remain quite different). Further, the incentives with respect to information

acquisition or the organisation of markets are very different across the two equilibrium con-
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cepts. Lastly, the papers show that measures based on Kyle-lambda type of price impact are
only imperfect measures of market illiquidity as they do not properly take into account the
impact of adverse selection on the actual quantity traded in equilibrium. On a technical side,
Kyle (1989) uses a model with exogenous noise traders, whose demand for shares is perfectly
price inelastic, whereas Kyle and Lee (2018) uses trader specific hedging demands driven by
endowment shocks to model noise. The latter is more suitable to think about welfare implica-
tions (every trader has a well-defined utility) and strategic trading equilibria (every trader is
strategic). In a nutshell, Kyle (1989) is the strategic version of the Grossman-Stiglitz (1980)
REE model, whereas Kyle-Lee (2018) is the strategic version of the Diamond and Verrecchia
(1981) REE model.

Asset value v ~ N(0,02).

e n=1,...N agents with CARA utility and absolute risk-aversion A.

Each agent observes a signal i,, = v + e,, where e,, ~ N(0, i—?) All signals are independent.

Note that 77 measures the precision of the signal relative to the prior uncertainty.'’

Each agent receives a certain number of shares of the asset as a random endowment s, ~

N(0,02).

11

Each agent submits symmetric linear demand schedules X (P, ip, sp) = —mp P+ iy — Tssp.

Market clearing ) X (P, iy, sp) = 0.

Study 2 kinds of equilibrium:

(i) Strategic (Bayesian-Nash) equilibrium: each agent chooses her demand curve to maxi-

mize her expected utility, taking as given all other (IV — 1) agents demand curve.

(ii) Competitive REE: each agent chooses her demand curve to maximize her expected utility

taking the price functional as given.

We focus first on the strategic equilibrium

0Kyle (1989) also has M uninformed agents (without signal).
"The paper focuses only on symmetric linear equilibria and does not investigate whether their exists non-linear
equilibria.

50



10.1 Strategic equilibrium

o If agent n is strategic then she considers the residual supply curve

p . Ts 1
=—l p— —8 . p—
woom  (N=1m,

Pn A
where we define s_; = ﬁ Znik Sn-

e So the agent can infer %’pn =v+e_p,— ;r—js_n := v + e’ from the market price, which is a
noisy estimate of the other traders information. note that
T2

o3.

oy
Varle?] = N-D T 72(N—1)

o Agent n maximizes J = E[(X,, + sp)v — Xp P | P,in, Sn)| — %Var[(Xn + 5p)0 | P, in, Sp]

e FOC gives
(E[v]| P, in, sn] — AspVar[v| P, iy, sp] — pn)

Xn = -
2\ + AVar[v | P, iy, sp]

e The SOC is 2\ + AVar[v | P, iy, $p] > 0.
e Note that

. T .
E[U ’ Pip, Sn] = E[U | lpna in, Sn]
Tr

1
- 1—|—T[—|-(N—1)T](p

T .
((N - 1)7'1907??% + T]Zn)

where we define

2
Ty

TN - DrVier]

and

2
v

1+T[+(N—1)T]g0

V = Var[v| P,in, sp] =

e The proof of this relies on the multi-variate Gaussian projection theorem. It follows also

straightforwardly from the result that if one observes n signals s; = v + ¢; with independent
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e; ~ N(0, U?), then the minimum variance portfolio of the signals S =) w;s; = v+ ), wie;

with weights w; = 27?'77_ and precisions 7; = %, is a sufficient statistic for the n signals in the
J - 7

sense that v = 35S + v with 8 = C‘;f((g’)s) = 02+£3w202 satisfies v L s; Vi.

e Plug the solutions into the FOC to obtain :

1

2N+ AV)X,, =
( ) 1+71+(N—=1)1100

T ) N
((N - 1)7_14)07%;])n + Tlln) — As,V — Dn
e Now we use the definition p, = P 4+ AX,, to obtain

1 .
(N = D719 2 (P + AXy,) + 77in) — As,V — P

A+ AVX,, =
( ) 1+T[+(N—1)T[g0 I

rearranging

(1 + 7N+ A0 Xy = Trin — AoZsn — (1 + 77+ (N — Drre(1 — %))P
I

e Matching with the assumed form X, = —m,P + 7ri, — 75, we get three equations for

Tp, s, T -

(L+7)A+ Ao_s)ﬂ_p =147+ (N—-1)r(1 - ?)
I

((1+TI))\+AO’Z)7T]:7‘[

(147X + Ac?)my = Ac?

1
A= —
(N — 1)7Tp
from which it follows that

= (b (N = (- 7))
T T
Ts _ Aag
I N TI
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10.2

and finally:

o4 !

Ui 1+ (N =171
T, Aod?

T

1

1 A Ao?)T, = 71(1
(A +7)A+ Aoy)mp = 74( +7'1+(N—1)7'1g0

)

Solving for 7, s, w1 we get the expression for the optimal demand X, of each agent. Imposing

market clearing Zivzl X, = 0 we obtain the market clearing price

T .
P:—E zn——sg Sn
Tp 4

7Tpn

substituting the expression for A into the SOC we get a necessary condition for an equilibrium

to exist.

Putting all the results together we get proposition 1.

The competitive equilibrium
Assume that all agents have demand functions of the form X,, = 7i, — w58, — 7pP.

When agents take prices as given market clearing implies ) X, = 0, that is P = %E — 5
p P

- _ 1
where we define 5= -5 s,.
Of course, given her own signal and endowment (i, S,) the agent can infer from the price
the same signal as in the competitive case %’P — (in, — %sn) =v+e_,— %s,n =v+ef

from the market price, which is a noisy estimate of the other traders information. note that

_ o 2
Var[eP] = e + w%(N—l)O-S'

Agent n maximizes J = E[(X,, + sp)v — X, P | P, iy, Sp| — %Var[(Xn + 5p)0 | P, in, Sp]

FOC gives
(E[v| P, in, sp] — AspVar[v | P, iy, sp] — P)

Xn = :
AVar[v | P, ip, sp]

The SOC is AVar[v | P, ip, s,] > 0 which is always satisfied in this case!
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Note that

1

Elv| P, =
S e

T
(N - 1)7'1907TPP + T1in)
I

where we define
2

UU
Y= (N —1)7[V[eP]
and
= var\ | r, iy, Sn _1+7-I+(N*1)TISO

Plug the solutions into the FOC to obtain :

. 1
AV)X,, =
(AV) 1+7+ (N =119

(N — 1)7’130@]3 + Trip) — Aan - P
I

rearranging we get:

.
Ac’X, = Triy — Ao2s, — (1 + 77+ (N = D1p(1 — 7Tp))p
I

Matching with the assumed form X, = —m,P + 7ri, — 75, we get three equations for

Tp, Ts, T -

(Ao2)my = 1471+ (N = Drrp(1 = 22)
I

(AU?])TF[ =177

(Ac)my = Ac?

o4



which are the same equations as in the strategic case with A = 0! It follows that

s =1
T
T = ——=
! Ac?
Tp 1
p_ 4
T 7+ (N = D71190

e Solving for 7, s, 71 we get the expression for the optimal demand X, of each agent. Imposing

market clearing 27]:/:1 X, = 0 we obtain the market clearing price

Since the ratios % and ;—; are unchanged the equilibrium price is actually identical relative

to the strategic case!
e Putting all the results together we get proposition 2. Note the interesting results:

— Equilibrium always exists in the competitive case, but not in the strategic case (requires

N > 2 and SOC).

— The equilibrium price function is the same in both models. This implies that in equilib-
rium, in the competitie model there is a residual demand curve with a strictly positive

slope (), even though the informed agent assumes it is zero! (the schizophrenia).

— The quantities traded by the agents differ in that
XStrat _ XXComp
n n

where

x= (2~ 20)/(1— )
TI

71 + A20202

Agents trade less in the strategic equilibrium. Kyle and Lee define x as the measure of
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market competitiveness. When x = 1 both equilibria are identical, strategic consider-
ations become insignificant. Note that x depends only on N and on the informational
efficiency ¢ and decreases in both. For strategic markets to become competitive re-
quires both N — oo and ¢ — 0. The latter means that either their signal becomes

uninformative or their hedging motive dwarfs their information motive of trading.

Summarizing, financial markets become perfectly competitive if and only if there
are infinitely many traders and relative informational efficiency ’ approaches
zero, in which case hedging completely dominates speculation. As long as spec-
ulation remains important in financial markets, markets remain imperfectly

competitive.

11 Illiquidity, stock returns, and the role of market making: Grossman-

Miller (1988)

Propose a model of market making and liquidity based on the temporal imbalance of order flow
and demand and supply for immediacy. It is different from the information based theory with risk-
neutral market makers (Glosten-Milgrom (1985)), and more related to the inventory- models where
risk-averse market makers hold risky inventory and provide immediacy to arriving customers. GM
point out that market makers’ supply of immediacy stands in contrast with thin, illiquid markets
(such as housing) where immediacy is not a primary concern and issues regarding moral hazard
and adverse selection lead the 'market makers’ to offer services in marketing, advertising, search

services rather than providing immediacy by acting as principal traders.

e Model has three CARA agents with same risk-aversion a. Agent 1 arrives in period 1 and
wants to sell ¢ units of an asset (e.g., because she is endowed with ¢ units of that asset).
Agent 2 arrives in period 2 and wants to buy 7 units of the same asset (e.g., she has a risky
endowment of —i units). The asset pays a risky dividend in period 3 which is P3 ~ N(u,0?).
If the two agents arrived to the market at the same time, they would trade with each other
and there would be zero trade imbalance. Instead, there are M market makers who are

present in the market at all times and will provide immediacy, buying from agent 1 in period

96



1 and selling to agent 2 in period 2.

Assuming zero risk-free rate, agent 1 starts with By cash and ¢ shares to invest in x; shares
at time 1 so that W, = x1P) + By = iP; + By. Then at time 2 she rebalances her portfolio
so that Wy = x9Py + By = 1P + Bi. Finally W3 = 29P3 + Bs. Combining we find that
W3 = x9(Ps — P2) + x1(P> — P1) + iP) + By which can be rewritten as:

Ws = By+ 21(Py — P1) + 22(P3s — P2) +iPs

with z; = x; — i defining the trade net of the initial exposure.

Proceeding recursively and using the CARA-normal setup maxgz, E2[U(W3)] = maxz, Fao[W3]—

5 Va[Ws3] which gives:
_ B[P - P

AT —1:= D(3)

T2

Now at ¢t = 2 the newly arriving agent 2 has offsetting excess demand #5°* = D(—i), and the
M market makers each demand D(0), thus market clearing (sum of excess demands is zero)
gives:

D(i) + MD(0) + D(—i) = 0

Together this implies
Py = s P3]

and thus &5 = —i = —25°".

It follows that for agent 1, W3 = Bo+§j‘1(P2—Pl)—|—§);(P3—P2)—|—Z'P3 = Bo—l—i'l(PQ—Pl)—l-iPQ.

Thus at date 1, agent 1 seeks 1 to maxz, E1[W3] — §Vi[W3] which gives:

_ w i = EnlPs) — Py
AT Y  aVi[E[ P3|

1

Note that we need some news about the terminal payoff to arrive in period 2 (so that Vi [Ps] =

Vi[E2[Ps]] > 0). for the model to display some interesting properties.

E\[PR)—-P1 _ Ei[P]-P
aV1[P2] - avl[EQ[P3H‘

e Similarly the demand from market makers in period 1 will be 7" =
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Thus market clearing implies : 21 + Mz = 0 which implies

E\[P)] — P _ i om
aVi[Py] 1+M 1
e Define the excess return earned by market makers:
P
Eilr] = El[ﬁ} 1= 2" PraVi[r]

The excess return earned by market makers is increasing in the ‘dollar’ inventory z7*P; held
by market makers, if and only if Vi[r] > 0. The latter requires Vi[P] = Vi[Ex[Ps]] > 0.
That is, there needs to be some risk in the time-2 prices, which in the context of the model
means some news about the terminal payoff P3 must be disclosed at time 2. Else, holding the

inventory from period 1 to period 2 is not risky, and there is no role for providing immediacy.

e How much of the desired customer trade is completed at time 1 versus time 2 (this is an

interesting alternative measure of liquidity that is different from the classic bid-ask spread)?

_MZ'
M+1

% 7

N Mt

] =Ty — 1= and x5 = —i=

Thus only a fraction MLH of the desired trade (—i) is done in period 1. The larger the number
of market makers M, the more liquid the market. Because of limited risk-bearing capacity of
market makers, it is not optimal to execute all of the desired trade rightaway, but rather to

hold on to some exposure.

e What is the equilibrium number of market makers?

Assume that it costs C' to become one. Then free entry implies M solves:
E[U(BQ —C+ xT(PQ — Pl) + xgn(Pg - PQ)] = E[U(Bo)]
using the fact that z3' = 0 and 27" = ﬁ we obtain the following condition:

E[eia[ic‘kM#Jrl(PQiPl)} -1
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where P = E5[Ps]. Assuming that i, P» are independent and normally distributed we obtain:

E[eaC’—&-%(Majrl)2V1[P2]—aﬁE1[P2—P1]] _ E[eaC—%(AﬁlPVl[Pz]] -1

Assuming that ¢ is normally distributed we can compute the expectation using the moment

generating function of a Chi-Squared random variable to obtain:

12
1 ei E1[+]t % = e_ac
1+¢
where
a’Vy [ Py)
t= — =V
1+ M)? ]

If Efi] = 0 (imbalances are zero on average) then ¢ is determined only by ac and is in fact

increasing in ac. So M is larger the smaller ac and the larger the risk to hedge (V[i]V[P]).

Implication of the model for price auto-correlation (an alternative measure of illiquidity,

relative to Bid-ask spread also advocated by Roll (1984)). Define autocorrelation to be

_ Cou(Ba— P, P — Eo[P1])
VVIP, = PVIP — Eg[Py]]

q

Use P, = Ex[Ps] and P, = E) [Pg]—ﬁam [P] and Ey[Py] = Eo[P] (i.e., assuming Ey[i] = 0)
to get that Py—P; = Py—E1[Py)+757aVi[P2] and P —Eo[P1] = E1[Po]— 557aVi[Pa]— Eo[ P2
Further, assume that s? = Vi[P] = Vi[Py — E1[P2]] = V[E1[P2] — Eo[P]]

So that

1= " At

This implies the autocorrelation in price changes is negative and determined solely by the
cost of becoming a market maker. More negative autocorrelation expected the more costlier

it is to become a market maker (the lower the risk-bearing capacity of market makers).

Nice discussion of different market structures p. 620-622, where they compare (i) highly
liquid stocks, where there is a lot of order-flow and where the specialist can play the role of

an ”auctionneer”, (ii) for smaller stocks role of the specialist becomes more prevalent, there
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are fewer market makers who need to take the stocks on their books (where the minimum tick
size rule plays a role in preventing exercise of monopoly power) and where illiquidity can arise
if too large an order comes to the market, (iii) the upstairs market which functions like a search
market for larger ”block-size” trades, (iv) the pure OTC search markets, with no obligation
to maintain any continuous market making presence. Suggests many interesting questions:
What is the ‘optimal’ market structure? Does it depend on security characteristics? Does
it depend on client/customer characteristics and needs? What is interaction between market

structure, liquidity and efficiency?

e Discussion of the relation to the literature on Bid-ask spreads and on the role of market
makers in the 1987 Krash. In general, the idea of this paper is that Market maker risk-
bearing capacity and fluctuations therein can explain (time-varying) market liquidity in ways
that simply looking at bid-ask spreads may be mis-leading. Also, this is a different source of
illiquidity than the information cost discussed previously. See also the interesting discussion

of GM by Whitcomb, posed on moodle.

12 Illiquidity and Stock Returns: Amihud Mendelson (1986)

Why do investors hold different portfolios? How does illiquidity affect asset returns? AM envision
that both investors demand is shaped by different liquidity needs (they have different trading
horizons, maybe are subject to different liquidity shocks). Further assets have different liquidity
characteristics (their bid-ask spreads differ, which might reflect a cost of immediacy or informational
frictions). AM propose a theory where in equilibrium different liquidity clienteles choose portfolios
with different liquidity characteristics, and where in equilibrium the expected return on individual
assets will be increasing in the bid-ask spread. That is, the cross-section of stocks’ expected returns

will be affected by illiquidity characteristics.

Our model predicts that higher-spread assets yield higher expected returns, and that
there is a clientele effect whereby investors with longer holding periods select assets with
higher spreads. The resulting testable hypothesis is that asset returns are an increasing
and concave function of the spread. The model also predicts that expected returns net

of trading costs increase with the holding period, and consequently higher-spread assets
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yield higher net returns to their holders. Hence, an investor expecting a long holding

period can gain by holding high-spread assets.
AM also test their theory empirically and find support for it:

We test the predicted spread-return relation using data for the period 1961-1980, and
find that our hypotheses are consistent with the evidence: Average portfolio risk-
adjusted returns increase with their bid-ask spread, and the slope of the return-spread
relationship decreases with the spread. Finally, we verify that the spread effect persists
when firm size is added as an explanatory variable in the regression equations. We
emphasize that the spread effect is by no means an anomaly or an indication of mar-
ket inefficiency; rather, it represents a rational response by an efficient market to the

existence of the spread.

AM’s paper is one of the first to link microstructure with more traditional asset pricing and suggest
that illiquidity could be ‘priced,” and affect the cross-section of expected returns. It is interesting
that their mechanism is not related to the traditional risk-premium explanation (unlike the Acharya-
Pedersen ‘liquidity risk-premium’ model we will see next). Further, their model is one of different
clienteles, i.e., effectively of segmented markets, where in equilibrium, there is not necessarily one
common pricing kernel that prices all assets consistently (arbitrage is ruled out, because shorting

is not allowed). In their own words:

This study highlights the importance of securities market microstructure in determining
asset returns, and provides a link between this area and mainstream research on capital
markets. Our results suggest that liquidityincreasing financial policies can reduce the
firm’s opportunity cost of capital, and provide measures for the value of improvements
in the trading and exchange process. In the area of portfolio selection, our findings
may guide investors in balancing expected trading costs against expected returns. In
sum, we demonstrate the importance of market-microstructure factors as determinants

of stock returns.

12.1 The theory

e We consider a slightly simpler version of the AM model first.
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Investor A is risk-neutral and has random trading horizon 7 with intensity A4.

Each security pays continuous dividend ¢ and is in finite supply (e.g., 1 unit). Note that AM

assume that each security pays different dividend stream d;.

Each security quoted by market makers at fixed bid-ask spread [P; — C;d, P;]. Note that AM

use a proportional spread instead i.e., assume that the Bid is (1 — S;)P;.
Exogenous risk-free rate r, infinite supply, no trading costs.
No short-sales.

Equilibrium price is P;(0) = E[f e™"*ddt+e~""(P;(1) — C;6)], so that the expected return on

asset ¢ is equal to the risk-free rate and the risk-neutral agent is indifferent between investing

in the risky asset or holding the risk-free asset.
Note that at any time ¢, (dropping the i subscript for simplicity) we have P;1,~; = Ey] ftoo e "1 ods+

[ e (Pym — C8)d1,<s) s0 that e " Plrsy + [) €501, 5ds + [1 e (Pye — C8)d1, <

is a martingale. Using the fact that Ei[dl,<;] = Al;s¢dt and Ei[d1l,;>:] = —Al;5.dt and

assuming that ‘no-common-jumps’ (i.e., dP,d1,;~; = 0) we get the expression:
1,5t {dP — (r + N\ Pidt + 6dt + (P, — Co)Adt} =0

which implies :
dP, 4+ 6(1 — C)N)dt

— rdt
P, "

We recognize on the LHS the expected return on the stock at time ¢ conditional on having not
sold prior to t. Looking for a stationary solution with a constant P, = P, we easily solve for P
(note that we could also directly solve the expectation for P;(0) above under the assumption

of a constant F;).

Solution P, = 3(1 — AsC;) =: P,

)

If A is marginal holder of security i then it trades at a discount D;A = A4 C; to the friction-less

value, that accounts for the NPV of expected future transaction costs.
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Note:

- Df‘ = A4 (] increasing in C;  — liquidity premium effect.
Df

— - = A4 is decreasing in E[r4] = ﬁ — liquidity clientele effect.

Consider now what happens if there are two clienteles A4 < Ap (that is A has a longer average

horizon than B) and two types of assets C1 < Cj.

If A has unlimited capital she will hold both assets (since F? > ?fg Vi = 1,2 because A has

a longer horizon)
There should be no liquidity clientele effect (only a liquidity premium).
Clientele effects should be more prevalent when funding is restricted (crisis?).

If A has limited capital and cannot buy all the bonds, then we expect that B will be marginal
in bond 1 (the low cost asset, which is B’s comparative advantage since B has a shorter

horizon). So P = ?{3.

Further, since A must choose not to buy (all of) security 1 at this price, A must earn more

than the risk-free rate on security 2 in equilibrium. So we expect P, < Pg‘.

Indeed, in equilibrium A must be indifferent between security 1 and 2:

dPy + odt B C10M4
Py Py

dPy + odt B Co0M 4 .

B[ - 2 = B

dt] > rdt

This implies that P, = =¢34 Py = £(1 — Dy) where Dy = 1 — =142 (1 — CaA4)

It is then easy to show that DB = Codg > Dy > Cody = Digl. This implies that B does not
want to hold the high t-cost asset 2 in equilibrium, wheras A is indifferent between holding
asset 2 or asset 1 and earns a return higher than the risk-free rate for holding the most illiquid

assets.
It is easy to show that in equilibrium:

— Dy > D (liquidity premium effect). Securities with higher transaction costs will have

3 6 _ _r r __ 4
higher gross expected returns as 5 =1D, > 10 — P
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- g—; < g—ll (liquidity clientele effect). Controlling for the security specific trading cost (i.e.,
the measured bid-ask spread) high t-cost firms have lower expected ” gross returns”. This
is because higher t-cost firms are held by longer horizon investors who effectively amortize
the t-cost over a longer horizon. So the selection mechanism implies that gross-returns
seem less sensitive to t-costs in the cross-section.

% > % (clientele equilibrium rents effect). Since long-horizon investors need to
be compensated to hold higher transaction costs assets (and not flock to the lower
transaction cost assets which are held by the short-horizon investors), they earn extra-

rents on these assets in equilibrium.

e In addition this model has implications for the cross-section of portfolio holdings:

— Credit (Funding) Market conditions should affect the empirical results: clientele effects

should be stronger when funding market conditions are tight.

— In equilibrium long-horizon investors are indifferent between high and low liquidity as-
sets (so might expect their portfolios to be less informative than those of short-horizon

investors).

— Long-horizon investors should extract rents in equilibrium. So one should see higher

average returns net of trading costs for them.

This could potentially be tested by normalizing spreads by the expected transaction

costs (turnover x bid-ask spread) of the marginal investor.

e The AM theory relies on strong assumptions (risk-neutrality, no short-sales, limited funding

resources, exogenous T-costs and exogenous trading horizon...)

e The AM theory is entirely about exogenous trading costs and exogenous horizon. But what

determines asset illiquidity (the C; parameters)?
e AM actually derive a richer model with M securities and N investors and show that:

The ensuing equilibrium has the following characteristics: (i) market-observed av-

erage returns are an increasing function of the spread: (ii) asset returns to their
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holders, net of trading costs, increase with the spread: (iii) there is a clientele ef-
fect, whereby stocks with higher spreads are held by investors with longer holding
periods: and (iv) due to the clientele effect, returns on higher-spread stocks are less

spread-sensitive. giving rise to a concave return-spread relation.

In particular, they prove the two propostions:

— Proposition I (clientele effect). Assets with higher spreads are allocated in equilibrium

to portfolios with (the same or) longer expected holding periods.

— Proposition 2 (spread-return relationship). In equilibrium, the observed market (gross)

return is an increasing and concave piecewise-linear function of the (relative) spread.

They proceed to test this using empirical data.

12.2 Empirical test

e Use CRSP data.

e Measure illiquidity using as proxy for the trading cost the average of the beginning and

end-of-year relative bid-ask spreads for each of the years 1960-1979.

e Divide the data into twenty overlapping periods of eleven years each, consisting of a five-year
estimation period E,, a five-year portfolio formation period F},, and a one-year cross-section

test period T), (n = 1,2,...,20).
e For each F,, estimate CAPM beta.

e For each F,, rank all stocks in seven portfolios based their end of F),-year bid-ask spread.
Then within each of the seven portfolios rank on their F,,-3 and split into seven portfolios.

This procedure results in 7 x 7 = 49 equal-sized portfolios ranked on bid-ask spread and beta.

e Then for each of the 49 portfolios estimate their CAPM beta and their average bid-ask spread

during the E, period.
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e Lastly they run a pooled time-series and crossectional regression of the average monthly excess
portfolio returns Ry, in each T}, periods on the portfolio Sp, and their bid-ask spreads Spy,

as in equation (8) in their paper.
e Results summarized in section 3.3. lend support to their theory. They find in particular:

The coefficient of Sp,, implies that a 1% increase in the spread is associated with
a 0.211% increase in the monthly risk-adjusted excess return. The coefficient of /3
declines when the spread variable is added to the equation, indicating that part of

the effect which could be attributed to [ may, in fact, be due to the spread.

13 Illiquidity and Stock Returns: Acharya Pedersen (2005)

AM (1986) showed theoretically and empirically that illiquidity can affect the cross-section of
measured stock returns. AP (2005) present a simple model where illiquidity risk will be priced
and carry a risk-premium. Their focus in on liquidity risk, i.e., the fact that illiquidity may change
over time in ways that agents care about and thus may want to hedge against. In equilibrium,
liquidity betas will be priced characteristics of stock returns. Their idea is a simple extension of
the CAPM logic and indeed in their model the CAPM holds exactly, but for returns defined net of

(exogenously specified) t-costs.

13.1 The Model

e Overlapping generations of agents who live for 2 periods. Agent n = 1,..., N of generation
born at time ¢ has CARA utility with risk-aversion A, is endowed with e, (¢), trades at time
t, and then sells all of her shares at time ¢ + 1 (to generation ¢ 4+ 1) in order to consume at

t+1.

e There are a total of I risky securities with total supply of S; Vi = 1,...,1 of each risky

security. Each security pays a dividend D;(¢ + 1), it has an illiquidity cost of C;(t+ 1) (when
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sold) and has price P;(t). C;(t) and D;(t) follow stochastic processes:

Ci(t+1) = C+ pc(Ci(t) — C) +ni(t + 1)

Di(t+1) =D+ pp(Di(t) — D) + €;(t + 1)
where €;(t), n;(t) are jointly normally distributed with zero mean and variance matrices V[e] =
Yp,V[n] = Sc, E[en'] = Xpe and covariance matrices and uncorrelated across time.
Short-selling is not allowed.
There is a risk-free asset with rate of return Ry > 1 in infinite supply (a risk-free technology).

Assuming that generation t-agent n’s wealth will be conditionally normally distributed, the
CARA assumption implies that she chooses the vector of risky asset holdings y in order to

maxy E[W; 1] — %V[Wtﬂ], where terminal wealth is given by

Wit = (et —y PRy +y' (Dis1+ Piy1 — Ciy1)

The first-order conditions implie:
Yn(t) = (A V[Di1 + Prp1 — Cipa]) "1 (Bi[Dig1 + Pt — Crpa]) — PiRy)

Market Clearing implies that in equilibrium ), y,(t) = S, which implies a market clearing

price vector:

1
P = Rif (Et[Diy1 + Pryr — Ci1] — AV[Dyy1 + Pryr — Ciyal)

where the aggregate risk-aversion is A= =" A%L
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We look for a stationary equilibrium of the form P, = py 4+ pgD; — pcCy. Note that :

Ey[Di1+ Pryr — Cipa] = po + E[Dey1(1+ pa) — (1 + pe)Crya]

= po + (1 +pa)(D + pp(D(t) — D)) = (1 +p)(C + pc(C(t) - C))

Vil D1 + Pip1 — Cep1) = VI + pp)ert1 — (1 + po)ne+1]

So the coefficients must satisfy

Rypg = (14 pa)pp
Rspc = (14 pe)pp

Rpo = po+ (14 pa)(1 — pp)D — (1 + pc)(1 — pc)C — AV[(1 + pp)eri1 — (14 pe)net]

e With this solution we see that indeed W, is normally distributed. It follows that the CAPM
holds in every period (every agent will optimally choose to hold a long position in risky assets
consisting of a fraction A%L of the market portfolio S (this follows from comparing the market
clearing condition and the FOC) and a long position in the risk-free asset. In particular, note
there is no shorting in equilibrium. Thus for any asset i its net return satisfies the CAPM

equation:

EfRi(t+1) —ci(t+1)] = Ry + Bi(Ey[Rp(t + 1) — epr(t + 1)) — Ry)
Cov[Ri(t+1) —ci(t+ 1), Ry(t + 1) — epr(t+ 1))

fi = Vi[Rar(t+ 1) — car(t + 1)]
Ri(t n 1) _ Pl(t + 113;;))1‘(15 + 1)
ci(t+1) = ng(—l_)l)
Mm(t+1) sz
Sipi( )
“itt) =S50
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e AP derive 2 additional propositions that show that (i) the conditional expected excess return
on a portfolio is typically increasing in its illiquidity when illiquidity is persistent (pc > 0)
that is persistence in illiquidity implies return predictability, and (ii) the covariance between

a portfolio’s return and its cost of trading is typically negative.

e Expanding the CAPM equation we get the main equation (8) of the AP paper, which expresses
measured excess returns in terms of the illiquidity premium (similar to AM1986), a traditional
CAPM market beta, and three additional illiquidity betas. It is this equation that they

proceed to test empirically.

e A good summary of their findings is on page 377 and 378. Based on average rate of turnover
the main component of the risk-premium due to liquidity seems to be the AMB86 liquidity
level premium (estimated at 3.5% per year). The three liquidity risk-premium component
contribute an additional 1.1% per year to a stock’s measured ”gross” risk-premium. The most
significant beta seems to be the Cov(c¢;, Rys) beta, which contributes 0.86% of the liquidty
risk-premium and suggests investors care to hold securities who are liquid when the market

returns are low.

e They test the 4-beta CAPM in five steps, see page 11
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14 Differences in Beliefs and short-sale constraints: Miller (1977)

So far we considered models where agents are differentially informed, but share the same priors so
that if they had access to the same signals they would come to the same conclusion (i.e., posterior).
Instead we will now consider a series of papers where agents have different priors and ‘agree to
disagree’ (see Aumann (1976) for a theoretical discussion of the impossibility for rational agents
with common-knowledge to ’agree to disagree’).

Miller (1977) is one of the first to realize that combining differences in beliefs with short-sale

1

constraints can explain many economic phenomena,'? including:

e why stocks with highest risk have low returns (the volatility anomaly of Ang, Hodrick, Xing,
Zhang (1996)),

e the poor long run results on new issues of stocks (the new issuance anomaly of Daniel adn

Titman (2006)),

e the presence of discounts from net value for closed end investment companies (the closed-end

fund discount of Lee, Schleifer, and Thaler (1991)), and

e the lower than predicted rates of return for stocks with high systematic risk (the betting

against beta anomaly of Black (1978) and Frazzini-Pedersen (2014)).

His idea rests on the simple insight that if investors have enough resources to buy all the shares
of a company and there are short-sales constraints, then the equilibrium valuation will reflect the
beliefs of the most optimistic investors. Thus stocks will tend to be overvalued. This effect will be
more prevalent amongst stocks which are riskier (where the differences in beliefs are largest). Thus
riskier stocks will tend to be more overvalued and underperform. New issues and younger stocks
are more likely to present large disagreement, etc....

To illustrate his basic idea in a simple framework we present a static model from Kerry Back’s
textbook. Then we will consider a dynamic setting due to Harrison and Kreps (1978) and a

continuous time setting due to Scheinkman and Xiong (2011).

12Note that this is Edward Miller and not Merton Miller!
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15 The static Model

This simple model is based on Back’s chapter18.4 description of the Chen, Hong and Stein (2002)

paper.

e A continuum of CARA agent of mass 1 indexed by h with risk-aversion coefficient 7 trade

one risky asset with payoff Py ~ N (u,02).
e There exists a risk-free rate Ry.
e Each agent’s demand is zj = “h;#
e Each agent is endowed with 1 unit of stock.

e Assume py, is uniformly distributed on (p* — A, p* + A)

e In the absence of short-sales then the aggregate demand of all investors is

1 [#H2 — PR *— PoR
D, / pu— Fo fdM:M ol y
n

N Ax ~yo? yo?
and market clearing imposes that D,, = 1. It follows that the unconstratined equilibrium

price is
punc ,u* — 702
0 Rf

e Suppose instead that there are short-sales constraints. Then investor h’s optimal demand

. _ prh—PoRy
becomes : xj = T]‘#hZPORf

e If the unconstrained price is such that the short-selling constraint will never bind for any
investor, then the market clearing price will be unchanged. This will be the case if up >

w* —~yo? Vh, or equivalently if A < y0? (that is if there is not much dispersion in beliefs).

e Consider now the case where A > ~02 then there is a positive mass of investors (with

pn < p* —~vo?) who would like to short the stock and cannot. Thus the equilibrium demand
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is:
Do 1/‘”A p— PRy
=
2A J,—pr ~yo?
1 nHA

Lu>PoRsdp

— PR
- 'uigfdu
24 PyRy o
(" +A— P()Rf)2

4A~yo?

e Then market clearing imposes D,,, = 1 which gives the market clearing price:

1
Po=— (0" +A—2y/Av0?)
Ry
e Note in particular that the price with short-sale constraints is always greater than the un-

constrained price:

R;(P5o" — Py"™°) = vo? + A =2 Avo? = (/o2 — \/K)2 >0

e We see that short-selling constraints indeed increase the equilibrium price if A > o2 and

that more dispersion in beliefs lead to higher prices a];% > 0.

16 Speculative behavior in a dynamic setting (Harrison and Kreps

(1978))

HK propose a model where agents have heterogeneous beliefs and where they can dynamically trade
a stock and where in equilibrium they will display speculative behavior in the sense that they will
be willing to pay more for a stock if they can retrade than the most optimistic investor would be
willing to pay if she were obliged to hold on to the stock forever. In a sense they show that all
agents are willing to pay more to exploit the option to resell to the most optimistic investor in any
given state. So crucially for this effect to operate it has to be that agents are heterogeneous and

that the ranking of investors’ optimism may change across states.

72



16.1 An example

e two types of risk-neutral agents a = {1,2} who trade
e one stock which pays a dividend d; € {0,1} which follows a continuous time Markov chain.

e The transition probability Matrix perceived by agent a is Q* with elements ¢;' ;, which denotes

the probability of transitionning from state i to state j.
e for agent 1 we assume ¢}, = 1/2 ¢, = 2/3
e for agent 2 we assume ¢3; = 1/3 ¢3, = 1/4
e There is one risk-free rate Ry so that the gross risk-free discount rate is y = 1/R; = 0.75.
e Short sales are not allowed.

e What it the value to agent a of holding the stock forever?

Define p{ the value to a of holding the stock forever starting in state 7. Clearly we have

pi = v(aipi + 4;p5)

which a system of two equations and 2 unknowns which can be solved for the two values for

agent a. Using the numerical values we find:

po = 1.33 pi = 1.22 whereas pg = 1.45 p? = 1.91

e Based on these values one might think that agent 2 should always hold the stock. However, HK
shows that the prices p? cannot be an equilibrium. Indeed, suppose that agent 1 anticipates
these prices, then consider the strategy where she buys the stock in state 0 in order to sell it

in state 1 at 1.91. Agent 1’s expected value of this strategy in state 0 is then

Vo = (g1 (1 + 1.91) + gg0) (vgor (1 + 1.91) + qgo (vapy (1 + 1.91) + ...

= 7(qg1 (1 + 1.91) + g0 Vo)
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from which we obtain that

Vo=1.75>1.45

Thus agent 1 would be willing to bid up the price above p2 to at least 1.75 > max{p}, p3}.
But of course, then p? is too low a price as well, since agent 2 will now want to buy in state
1 to resell to agent 1 whenever state 0 comes around at what she will consider inflated prices

1.75 > 1.45...
What is then the equilibrium price in this market?

HK define the set of consistent prices to satisfy

T
pi(2¢) = max sup £ D V() + 2 pr(Er) & = ) (%)
acs T k=t+1

where & is the (vector)-process that captures all of the information relevant to determine
the dividend process d;(&;) and A is the set of all agents who have different beliefs about the
probability distribution of & and T is a stopping time defined with respect to the filtration
generated by &. This is clearly the maximum value of any trading strategy that can be
followed by any class of agent. If the price were lower, it would imply that there exists a class
of agents a* that has a trading strategy available (buy in state & = x; and sell according to
the stopping time 7*) which would generate a higher valuation. All the other agents a # a*

would like to sell, but because of the short-selling constraint they cannot.

HK’s proposition 1 simplifies the definition of consistent prices to
pe(we) = max B [y{der1(§e+1) + Pea1 () Hee = @] (%)

To prove the equivalence between the two statements, note that if (%) holds then p;(x) >
E*[v{di+1(&+1) + pra1(§e+1) HE = x¢]. Thus using the law of iterated expectation and the
optional stopping theorem we find that () holds as well. Conversely, it is clear that if (%)
holds then clearly pi(z:) > E*[v{di+1(§t+1) + Pe+1(&+1)|& = o). Now suppose that the strict

inequality holds for some x; then using the optional stopping theorem and law of iterated
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expectation we obtain that p;(z;) > max,e 4 supy B¢ [ZZZHI Yty (&) + YT pr(E7)|& = 4]

which contradicts (xx).

HK then give an algorithm to compute the optimal p; following a recursive approach starting

from p? = 0 then define the sequence p} for all n = 1,... that satisfies:
pi(xe) = max B®[y{dy+1(Ee+1) + i (Gl = ]

note that by definition the sequence is increasing so that the (possibly infinite) limit lim,, o p}'(z) =

p; (z) exists

Proposition 2 then shows that pf thus defined is (i) consistent in that it satisfies (%x) and
(ii) minimal in that any other solution to (xx) will be greater or equal. The proof relies on
taking the limit on both sides of the definition of p}’ and using monotone convergence one
sees that p} clearly satisfies (xx). Then one can show recursively that any consistent pricing
scheme p;(z;) > 0 = p°(z;) (since we assume strictly positive dividends) and then we can
show recursively that if a consistent price function p;(x;) > p™(z;) then py(z;) > p"Fi(z)

which implies that p;(z¢) > p*(x).

We note that since T' = oo (i.e., buy and hold) is a feasible trading strategy, the consistent

price must be larger than the maximum buy and hold value perceived by any agent.

Going back to our example looking for a stationary solution p{, p] must satisfy:

po = Y max{qq:pT + oo}

pi = ymax{qiopy + qi1p1}

which gives: the solution p] = 2.07692 and pj = 1.84615. and we can compute the value for

75



each agent in each state and find that

a1P} + q00P6 = Do
a@u Pt + adopl = 1.69231
a1oph + ¢ihpi = 1.69231

aiops + af1pi = P
Thus agent 1 holds the stock in state 0 whereas agent 2 holds the stock in state 1.

e HK’s conclusion page 335 is worth reading. They point out that their analysis requires that
agents have full knowledge of the other investors (different) beliefs and they agree to disagree,

in order to derive the optimal trading strategy.

If one drops this utopian assumption, and further introduces such a real-life phe-
nomenon as privileged information, one gets a world in which investors must turn
to public information, such as prices and trading volume, to discover what their
fellow investors know and how they will react to incoming information. At the risk
of gross overstatement, we suggest that this line of reasoning might lead to a ”legit-
imate” theory of technical analysis. Proponents of the efficient market hypothesis
conclude that the rational portfolio strategy (in view of transaction costs and risk
aversion) is to buy a well-diversified portfolio and hold it. Quite a different view
of "rational” portfolio management emerges from our model. [...] In the general
model, investors can achieve an expected net present value of zero only from stock
bought in certain circumstances and only if they follow certain selling strategies.
(The strategy of selling after one period, which leads to much churning of the
portfolio, always works.) The strategy of buying in favorable circumstances and
holding for many periods typically yields an expected loss. In brief, all investors

must actively manage their portfolios in order to expect a proper return. |[...]

In our model, all investors have complete information from the outset, but still
they arrive at different subjective assessments. Speculation and active portfolio

management follow inevitably.
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17 Continuous time model: Scheinkman and Xiong (2003)

SX propose a continuous time version of the HK model, where disagreement is driven by overcon-
fidence and biased learning. Their purpose is to study the joing dynamics of asset pricing bubbles,

trading volume, and price volatility.

e The risky asset pays a dividend

dD; = fidt + opdZP

dfy = MN(f — fo)dt + o;dZ]

e There are two sets of risk-neutral agents who each observe two signals about the fundamental

driving the dividend process:
ds] = fidt+o09dZ! j = A, B

Investors have to learn f; from the history of Dy, s, sP.

e Investors are over-confident in that the think their own signal s{ for group j is more precise

than what it really is. So for example investors in group A think that:
dsi = fudt + o™ (pdZ! + /1 — ¢2dZ)

So they think their own signal has a correlation ¢ with the true fundamental, but that stB is

(correctly) uncorrelated with f; so that the other investor has an uninformative signal.

e Based on this SX characterize the learning dynamics of each group of investor using standard

Kalman filtering. So for example, for group A lets define f* = EA[f;] and ~; = VA[f;] then
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we have

dff = Nf — fAdt + M (ds — fAdt) + NP (dsP — fAdt) + X7 (dD, — fdt)
A Cov(fy + dfy, dsf) B OO 5P+ Yt

P VR~ =
¢ V{ds{] o?
\B Cov(fi + dfy,dsP) v
t B )
V{dsy] o2
)\D ~ COU(ft + dft,th) M
t B - 2
Vidsy] 9D

and where the posterior variance of the signal has the dynamics:
dy = (07 — ()08 = (A)P0d = (\D) o)t
HK focus on the stationary solution where the posterior variance is y defined as the positive
solution of the quadratic equation dvy; = 0.
HK then compute the dynamics of disagreement: the differences in beliefs process for group

A: g{‘ = ftB — ft“‘ which they charaterize in proposition 1 as a simple mean-reverting process

dgi* = pgidt + ogdW;(t)

This follows directly from the definition of ftA and the analogous expression for ftB , taking

their difference and using the expression for v to simplify the expression for p.

What is the value of the stock if agents A, B can trade with each other, are risk-neutral, and
short-selling is not allowed? SX add the requirement that when an owner sells the asset she
incurs trading costs ¢ (otherwise agents might continuously sell the asset back and forth).
Following HK (compare also with Amihud-Mendelson) they define the value of the stock to

the owner o = A, B as :

t+7 B
P = sup E°| / e " dD, + e (p? — ¢)]
T t

wherep? is defined as the reservation value of the current owner at the next transaction date

78



(which will be the value to the other group).

we can rewrite this expression as:

o0

o0
pf = sup E°| / e dD, — e / e T AD, + e (pl — o))
T t t+T1

Using the definition of the dividend process it becomes:

.f_fto_e—rT([_i_f_fﬂ? o

% OfT —rT
pt:sng[;—i_Tﬁ-)\ r T+)\)+e <pT_C)}

so it is natural to seek a solution of the form

f—f
r+ A

f
ptoz;‘f' +q(9¢)

where the resale option value ¢(gf) will solve the American option pricing problem given by
equation (13) in the paper, namely the value of the resale option satifies:
agf) = sup Bl " (- 1 g(g?) — o)
T r—+ A T
Theorem 2 then establishes that there exists an optimal barrier policy, so that when the
differences in beliefs process becomes large enough ¢2 > k*, then at that time 7 it becomes

optimal to pay the cost ¢ and sell the asset to the second group of investors, at which point

the process g is reset for the new owners at —k* and the process restarts.

The trading volume will depend directly on ¢ (it goes to zero as ¢ becomes very large and to
infinity as it becomes very small and the switch between owners becomes continuous). SX
show that even when ¢ — oo and the asset switches continuously between groups, the resale

option value retains a strictly positive value.

Figure 1 shows comparative statics of the model with respect to increases in the “overconfi-
dence” parameter ¢. Specifically, it shows the impact of overconfidence (which governs the
cross-sectional dispersion in beliefs) on the time between trades (i.e, volume of trading), and

the bubble component (¢(—k*)), and the excess volatility due to the bubble component (i.e.,
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the volatilility of ¢(g?) evaluated at g = k*).

e SX then consider different applications of their model, such as (i) how could it explain a market
Krach (e.g., if there is a small probability that the fundamental value will be revealed to all),
(ii) the impact of introducing a financial transactions’ cost (e.g., raising ¢) on the bubble and

volume dynamics, see figure 3; (iii) negative stub-values, and (iv) IPO underpricing.

From their conclusion:

This allows us to characterize properties of the magnitude of the bubble, trading
frequency, and asset price volatility and to show that the model is consistent with
the observation that in actual historical bubbles, volatility and turnover are also
inordinate. Theoretical results and numerical exercises suggest that a small trading
tax may be effective in reducing speculative trading, but it may not be very effective
in reducing price volatility or the size of the bubble. Through a simple example, we
also illustrate that the bubble can cause the price of a subsidiary to be larger than
that of its parent firm, a violation of the law of one price. It is natural to conjecture
that the existence of a speculative component in asset prices has implications for
corporate strategies. Firm managers may be able to profit by adopting strategies
that boost the speculative component. The underpricing of a firm’s initial public
offering (IPO) has been puzzling. Rajan and Servaes (1997) show that higher initial
returns on an IPO lead to more analysts and media coverage. Since investors may
disagree about the precision of information provided by the media, the increase in
this coverage could increase the option component of the stock. Therefore, IPO
underpricing could be a strategy used by firm managers to boost the price of their

stocks.
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