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1. INTRODUCTION 

This paper analyzes how a competitive market serves to communicate 
information between the market participants. The communication process 
in a market is usually described by the phrase that the equilibrium price 
“reflects all the available information in the market” and communicates it 
to the participants (Fama, 1970). 

If there is only one piece of information to consider, the meaning of this 
phrase is unambiguous. Thus the simple news of higher firm profits will be 
“reflected” in a higher share price because the demand for shares has gone up. 

Problems arise when there are many agents with @@rent pieces of informa- 
tion, and the vector of market prices has a smaller dimension than the vector 
of information available to different agents. In this case the equilibrium price 
vector corresponds to some aggregate of all the individual pieces of informa- 
tion. Then the question arises how this aggregate is formed. 

In two recent papers, Grossman (1976, 1978) proposed a remarkable 
solution to this problem. In a model of the capital market, he argues that 
the equilibrium price aggregates the available information perfectly. If 
agents i = 1, 2 ,...., n take their information from the market price, the 
economy achieves the same allocation as if each trader knew the whole 
vector (I1 ,..., In) of informations available to individual agents. Any aspect 
of the information vector (I1 ,..., 1,) that is not reflected in the price is not 
woth communicating because it would merely be treated as noise. 

However, this approach involves some conceptual difficulties. In Gross- 
man’s model the aggregation of information through the price depends only 
on the statistical properties of the information vector (I1 ,..., In> and is 
independent of agents’ preferences. This is quite surprising. Intuitively one 
would expect that the weight with which agent i’s information Ii affects the 
equilivrium price should depend on the strength of agent i’s reaction to this 
information, which in turn should depend on his preferences. Presumably 
it should make a difference whether the news of an increase in a firm’s profits 
is passed to somebody who is almost risk neutral and responds by buying a 
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large number of shares, or whether this piece of news is passed to a risk 
averter who hardly responds at all. 

In Grossman’s model this intuition fails because agents do not use their 
own information at all. The point is that if the price reveals all that is worth 
knowing about the vector (I1 ,..., I,), agents will neglect their individual 
informations and look at the price only. Any aspect of the information Zi 
that is not contained in the price is regarded as noise. If agent i uses the 
information contained in the price, he can afford to disregard the informa- 
tion Zi . 

However, if agents do not act on their own informations at all, it is unclear 
why the price should reflect the informations Z1 ,..., Z, in the first place. 
Grossman’s proposition does not seem to capture the original idea that 
individual agents react to their individual informations and therefore the 
equilibrium price reflects some aggregate of the informations Z1 ,..., Z, . 
Instead, it must be presumed that the “auctioneer” somehow happens to 
know the vector Z1 ,..., Z, , in which case perfect aggregation of information 
through the price induces agents to disregard their individual informations 
and therefore is consistent with market clearing. 

Against this objection, Grossman (1975) suggests that in fact there does not 
exist an equilibrium in which the information that is contained in the equilib- 
rium price can itself be traced back to the demand decisions of those agents 
who had obtained the information original1y.l 

The equilibrium in which price aggregates information perfectly is unique. 
Grossman’s argument on this point makes heavy use of agents’ awareness 

that their own information and the information contained in the price are 
statistically dependent. In particular, agents take account of the covariance 
between “noise” in their own information and “noise” in the price. It is this 
covariance which makes them neglect their own information when they pay 
attention to the information contained in the price. 

But then, Grossman’s agents are slightly schizophrenic. The covariance 
between “noise” in individual information and “noise” in the price is nonzero 
because the number of agents is finite, and each agent exerts a nonnegligible 
influence on the price.2 Therefore one should expect that agents who are 
aware of this covariance will also notice the effect they have on the price. 
Yet, Grossman’s agents are price takers. They do not attempt to manipulate 
the price and the information content of the price. 

In order to avoid these difficulties, the present paper will study the aggrega- 
tion of information in a large market, in which individual agents have no 

1 This is proved as a theorem under the additional restriction that the equilibrium price 
depend linearly on the vector of information. 

* The alternative interpretation of a finite number of types and a unit mass continuum 
of agents of each type would fail to capture the notion that each agent has different in- 
formation. 
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influence on the price. This analysis will lead to an alternative view of the 
aggregation of information through the price. 

First, it will be seen that in a large market the relative importance of the 
information available to agent i depends on his preferences. In particular, Zi 
is relatively the more important, the less risk averse agent i is. 

Second, in a large market, the equilibrium price will reflect only those 
elements of information that are common to a large number of agents. 
Because an individual agent does not affect the price, his information enters 
the price only to the extent that it is shared by other agents. 

This second result suggests that the market is a good aggregator of informa- 
tion, if there are many agents with many independent sources of information. 
In this case, “noise” in the information available to any individual agent is 
filtered out and does not affect the price. 

The plan of the paper is as follows: Sections 2 and 3 introduce a generalized 
version of Grossman’s model with a finite number of agents. In particular, I 
shall allow for the presence of exogenous noise in the price system.3 Section 4 
analyses equilibrium with a finite number of agents and amplifies the fore- 
going critique of Grossman’s approach. The aggregation of information 
in a large market is studied in Section 5 by means of a competitive sequence 
of economies. This section contains the main results of the paper. 

2. THE BANC MODEL 

I shall use the following version of Grossman’s model. There are n agents 
i = l***n. Each agent i allocates his initial wealth wOi between a riskless and 
a risky asset. For each unit purchased, the riskless asset yields 1 unit, the 
risky asset x units of a single consumption good, where R is a random 
variable. Using the riskless asset as numeraire, let p be the price of the risky 
asset. If agent i holds zi units of the risky asset, his portfolio yields the 
return 

z& = w()i + z&t+ - p). 

Agents’ preferences are described by the following assumption: 

A.l. For i = 1 *** n, agent i maximizes the expected utility of consump 
tion Eiui(r&). The utility function ui exhibits constant absolute risk aversion 
pi E (0, 00). 

Under this assumption agent i’s demand for the risky asset is independent 
of his initial wealth w,,~ (Pratt, 1965). It depends only on the price p and the 

s On the importance of such exogenous noise, see Grossman, 1977; Grossman and 
Stiglitz, 1976. 
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expectations operator Ei , which in turn is determined by the agent’s informa- 
tion Ii . If the supply of the risky asset is 2, the market clearing condition 
takes the form 

2 = i zt(p, Ii). (1) 
i=l 

The information Ii , on which agent i bases his expectation of x, consists 
of the market price p and his private information yi . The latter is taken to be 
the realization of a random variable Jji , which communicates the true return 
3 perturbed by some noise &: 

yi = x + E”* . (2) 

Furthermore, the supply 2 is taken to be the realization of a random 
variable 2. The following distributional assumption will be imposed: 

A.2. The random vector (2, 2, .?i *a. &,) has a normal distribution with 
mean (X, Z, 0 *** 0) and nonsingular variance-covariance matrix: C = 
(US, 42, s12 *-- sn2) I,+, , where L,, is the (n + 2)-dimensional identity. 

Substituting for Ii = (yi , p) in (I), one finds that the market clearing 
price p is given as the realization of a random variable J which depends on 2 
and the vector of signals ( y1 *.e 7%). The precise form of this relationjhip 
depends on the functions zi(*), in particular on the way in which the informa- 
tion & affects the expectations operator Ei . Imposing the hypothesis that 
expectations are rational, I shall require: 

A.3. For i = 1 **a n, agent i knows the actual joint distribution of the 
triple (k: Pa , a). For any information Ii = (ri , p), he derives the expecta- 
tions operator Ei from the actual conditional distribution of x given yi , p. 

It should be noted that under Assumption A.3 expectations formation 
and market clearing cannot be treated separately. The use that agent i makes 
of his information depends on the joint distribution of (Y?, yi, p). This in 
turn depends on the price-supply-signals relation that is imposed by market 
clearing. Therefore individual expectations formation and demand cannot be 
analyzed by themselves; from the beginning, the system as a whole must be 
considered, because the market clearing condition determines the information 
that agents draw from the market price. 

Formally, the determination of equilibrium under the rational expectations 
assumption A.3 can be treated as a fixed-point problem in the space of 
functions relating the asset price to supplies and signals. Given any function 
f: lw+1 + R, suppose, initially, that agents act on the hypothesis that 
$ =f(g, g, a+* y,J. Then agent i’s asset demand depends on the price p, 
the signal yi and the functionS, which determines the joint distribution of the 
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triple (2, pi , $) and therefore the conditional distribution of X given any 
realization Ii = ( yi , p). Rewriting the market clearing condition (1) in the form 

z = i %(P, Yi ; f>, 
i=l 

(14 

one finds that the market clearing price depends on f as well as on the vector 
K Yl *a* y,). With the function f, one can associate a new function 7’f: 
llP~+l-+ R, such that T’(Z, y, .** y,J is the market clearing price for the 
realization (Z, y1 a** yn) given that agents base their expectations on the 
hypothesis that 5 =f(z, J, *** yn). In this formulation, expectations are 
rational if f is a fixed point of the mapping T, i.e., if f(Z, y1 *a* yn) = 
Tf CC YI ---yn) for all (Z, y1 **.y.,) f UP+l. 

Under Assumptions A.1 and A.2, the given fixed-point problem has a 
linear solution. To determine this solution, one proceeds as follows. Consider 
an arbitrary linear relation: 

n 
p = ?To + 1 Triyi - YZ. 

i=l 
(3) 

Define 7~ = Cr=, iri . Given (2), (3), and Assumption A.2, the triple -- 
(X, Ji , j) has a normal distribution with mean (X, X, 7r0 + 7~r - yz) 
and variance-covariance matrix: 

i 

u2 02 m2 
vi = u2 o2 + si2 m2 + rrisi2 

rro2 rrcT2 + rr&2 rr2a2 + C;=, nk2sx2 + y2A2 1. 

From normal distribution theory, the posterior distribution of x given a 
realization (yi , p) is again normal, with mean and variance of the form 

E(~/Y, ,P> = aoi + WY, + a,ip, (44 

Var (Jf I yi , P> = A , W9 

where the values of aoi , olli , and pi depend on the matrix Vi . 
If expectations are based on relation (3), normality implies that asset 

demands under expected utility maximization depend only on the posterior 
mean and variance of returns, E(T I yi , p) and Var (x I yi , p). In the particular 
case of constant absolute risk aversion given by Assumption A.l, one has 
(for a derivation, see, e.g., Grossman (1976, p. 575 f.)) 

= aoi + “1iYi + (%i - 1)p 
PiPi 
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Substituting for Zi in (la) and solving for p, one has 

[ 

n 1 - c$.( -1 
P= c n aoi + %iYi 

c - z *4 
i=l P&i I [ i=l 

pipi 
I 

(lb) 

Thus the market clearing price-supply-signals relation (1 b) that is induced 
by the hypothesis (3) is again linear. Expectations based on (3) are rational, 
if and only if the coefficients no, ri , y in (3) are the same as the correspond- 
ing coefficients in (1 b). This yields the following conditions: 

[ 
n 1 - a.& -l Y= c 

i=l 1 Pi& ’ 

(5b) 

To analyze Eqs. (5), remember that the coefficients olli , azi , cool , and & 
arise from the formulas for the conditional mean and variance of a given 
yi , p. Under Assumption A.3, these coefficients will in turn depend on 
=o 7 7~~) y as they affect the joint distribution of (x, yi, fi). Before writing out 
the formulas for these coefficients, T need the following: 

LEMMA 2.1. Assume A. 1-A.3. Then the equilibrium price-supply-signals 
relation (3) has y # 0, and the matrices Vi , i = 1 mm* n, are nonsingular. 

Proof. Suppose that y = 0. Then (5b) and (5~) imply ri = 0, i = 1 *** n, 
and rr, = 0, hence $ = 0. In this case, the coefficients in (4a) and (4b) are 
calculated as: 

oloi = Si”/(U” + Si2), Olli = U”/(U’ + Si2)y ol2i = 0, 

& = CJ~S,~/(~~ + si2). Then (5a) implies y # 0, a contradiction. Non- 
singularity of the matrices Vi follows directly from the fact that y # 0. 

Q.E.D. 

Given that the matrices Vi are nonsingular, the coefficients ollf , (yzi , aoi 
and /3, are given by the formulas (Raiffa and Schlaifer, 1961, p. 250) 

4 Given that d* > 0, the implicit assumption that & [(l - ~&/p&] # 0 is harmless. 
If C:,, [(I - &/&] = 0, variations in p have no effect on excess demand. Then there 
is no way to clear the market for different realizations of k Since .? has positive variance, 
by Assumption A.2, one cannot have an equilibrium with rational expectations. The 
existence of a rational expectations equilibrium with CT-‘_, [(l - ~&/&J # 0 is discussed 
separately in Proposition 3.3. 
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c72 n 
%i = z 

[ 
C rrk2sk2 + y2A2 - 7~~~s~~ 

k=l 1 , 

2 n aoi = 8 si c r 2s 2 
bi [ 

k k + y2A2 - ri2Si2 - Q(~cI k=l 1 
/tii = $$ [ f nk2sk2 + r2A2 - r:si2], 

k=l 

bi = (CT” + si2) 
[ 

i nk2sk2 + y2A2 - rri2si2 
k=l 1 + u2&yn - ?r$. 

- 
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(64 

Y% (64 

W-Q 

(64 

Now Eqs. (5) and (6) form a nonlinear system of equations in rOi , 7~~ , y, 
% 9 (yzi , olOi , & . The solutions to this system correspond to the equilibria 
of the economy under Assumptions A.l-A.3. The problem is to analyze (5) 
and (6) in detail so as to obtain some insight into the way in which the price p 
aggregates and communicates the information contained in the signals 
Yl "'JJn * 

3. PRELIMINARY RESULTS 

To analyze equilibrium under Assumptions A.l-A.3, I shall first use 
Eqs. (6) to eliminate the coefficients ali , cyzi , CX,,~ and & from (5). As a result 
one has 

Ti = 
y k-l 

xn 
> i= 1 ..*n, (74 

C 7Tk2sk2 $ y2A2 - rri2Si2 
k=l (n- - 7ri)2 - (?T - 7ri) 2 71k2Sk2 + y2A’ - ~~2~~2 1 

, 
k=l 

0) 

lr - 52-i 
(7c) 

Tk2sk2 + y2A2 - rri2si2 1 
Now Eqs. (7a) can be analyzed independently of (7b) and (7~). To see this, 



484 MARTIN F. HELLWIG 

define the new variables Qi = rrJy, i = 1 ... n, Q = rr/y = zr=, rri/y, and 
reqrite (7a) as 

n 
C Qk2sk2 + A2 - Qisi2 2 Qk 

Qi = & lesl n 
k=l 

3 i= 1 ".jf. (84 

c Qk2Sk2 + A2 - Qi2si2 
k==l 

Equations (8a) serve to determine the variables Q, .** Qe regardless of 
y and n0 . One has: 

LEMMA 3.1. Under Assumptions A.1 and A.2, Eqs. (8a) have a solution. 
Any solution Q, a-* Qn to @a) satisfies 

0 < Qi < I/piSi2. 

Proof. I shall prove the last statement first. Let Q, *a* Qn be a solution to 
@a) and define the index set I = {i I Qi < 0). Suppose that I # ia. Then there 
exists i0 E 1, such that for all k E 1, Qi,siO 2 Qksk2. Therefore, for A2 > 0, 

Now (8a) implies Qi, > 0, hence i0 # 1, a contradiction. Therefore, Qi > 0 
for all i, implying Qi Ct==, Qk > Qi2. Then (8a) implies Qi < l/p,si2, 
i = 1 **a n. 

The existence of a solution to @a) is shown by a fixed-point argument. 
Let Y = ny=, [0, l/pisi2] C lR+” and define mappings T,: Y -+ R”, T,: Y + Y 
by the conditions 

2 Qk2Sk2 + A2 - 
U’oQ)i = & ‘=l n 

Qisi2 kgl Qk 
----, i = ] ... n, 

C Qk2sk2 + A2 - Qi2si2 
k=l 

(TlQ>i = 0 if (T,Q), < 0 

(GQh = (GQ)i if 0 < (ToQ)i < l/pisi’, 

(TlQ)i = llpisi2 if (ToQ)i > l/pisi2. 

i = 1 ... n, 

Under Assumptions A.1 and A.2, Y is compact, and TI is continuous. By 
Brouwer’s theorem, TI has a fixed point Q*. It remains to show that 0 < 
QT < 1/pisi2 for all i, SO that Q* = ToQo * . By way of contradiction, suppose 
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first that Qf = 0 for some i. Then (T,Q*)i = l/p&, hence (7’1Q*)i = 
l/pisi2 # Q: , a contradiction. Hence QT > 0 for all i, implying (T,Q*)( < 
1 /pi$ and hence (TIQ*)i < l/p& for all i. Thus Q* is a fixed point of T,-, 
and, hence a solution to (8a). Q.E.D. 

For future reference, it is useful to state explicitly the following obvious: 

COROLLARY 3.2. Any solution Q, +*. Q,, to (8a) satisfies 

A2 > QiSi2 i Qk - k$l Qk2sk2, j = 1 1.1 n. 

k=l 

Further, one now has: 

PROPOSITION 3.3. Under Assumptions A.1 and A.2, Eqs. (5) and (6) have a 
solution. 

Proof. It suffices to show that (7) has a solution. Substituting for 7ri = 
YQi, i = 1 ... n, and solving for y and rTTo , one rewrites (7b) and (7~) as 

1+5 Q - Qi 
i=l pi 5 Qk2sk2 + 42 - Qi"si 

( 
Y= 

k=l ) 

<Q - QJ2 ' 
(8b) 

pi (k<l Qk2sk2 + A2 - Qi2si2) 

- Q - Qi 
i=l pi 5 Qk2sk2 + 42 - Q3, 

( I<=1 1 
770 = <Q - Qi)' . (8~) 

'=l pi 2 Qk2sk2 + 42 - Q& 
( k=l 1 

The proposition now follows immediately from Lemma 3.1. Q.E.D. 

Most of the subsequent analysis will be based on Lemma 3.1. But for some 
purposes, I shall need a sharper bound on the Qi . This is given by the follow- 
ing lemma, which is proved in the Appendix. 

LEMMA 3.4. Let Q, *** Qn be a solution to (8a), and let Q = CL==, Qk . Then 

+ > I kgl $ + gl $-I-‘, i = 1 .I. n. 
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4. THE AGGREGATION OF INFORMATION IN A SMALL COMPETITIVE MARKET 

I shall now turn to the question how the equilibrium price under Assump- 
tions A.l-A.3 aggregates information. In particular, I shall be concerned 
with the relative strength of the weights 7ri , rj with which the signals yi and 
yj affect the equilibrium price. From (8a) and the definition Qi = 7rJy, one 
has 

n 

k-l 

ni _ = $ _ ;“$ kgl Qk2G2 + A2 - Qi2h2 
rri 3 isa ;I Qk2sk2 + A2 - Q,Qs," * 

II 

(9) 

,c, Qk2sk2 + A2 - Qj2sj2 

In the Appendix, I prove the following: 

PROPOSITION 4.1. Assume A.l--A.3 and let vr,, , ri , i = 1 1.. n, y be the 
coeficients of an equilibrium price function. 

(a) If pi > pj and si2 > sj2, then ~6 < TT~ . 

(b) Ifpi > pj and si2 = SC, then pini > pjrj . 

(c) If pi = pj and si2 3 SF, then SITE Q S?T~ . 

If one of the inequalities in the premises of statements (a)-(c) is strict, the 
inequality in the corresponding conclusion is also strict. 

Proposition 4.1 shows the dependence of ni/rj on the risk aversions pi , pj 
and the variances si2, sj2. The first part of the proposition expresses the 
simple fact that a precise signal available to a risk neutral agent affects the 
price more than an imprecise signal available to a risk averse agent. This is so 
because the sensitivity of agent i’s demand to the signal yi increases with the 
precision of the signal and decreases with the agent’s risk aversion. 

The other statements of Proposition 2 give some indication of the extent 
of the dependence of rilnj on risk aversions and the variances si2, sj2. 

To see the significance of these statements, consider the situation when 
agents condition only on their own signals yi without drawing information 
from the price. In this situation one has ripisi2 = vrjpjsj2 for all i, j, i.e., ri 
is just inversely proportional to the factor pisi2. In contrast, if agents condi- 
tion on both signals and price, the ratio ni/ri is relatively less sensitive to 
agents’ risk aversions and relatively more sensitive to the variances si2, si2 
(Proposition 4.1 b, c)). 

These effects arise mainly because agents take account of the covariance 
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between their own signal and the price.5 The signal yi affects agent i’s expecta- 
tion about 8 both directly and indirectly, through the price p. To avoid 
“double counting” and compensate for his indirect reaction to yi through 
the price, he reduces his direct reaction to yi . For this reason, the 
coefficient rr( depends less strongly on agent i’s risk aversion. 

fn contrast, the variances si2 and sj2 become relatively more important 
because they enter into the covariance between signals and the price. The 
larger the variance si2, the larger the covariance between noise in yi and 
noise in p, and the greater the need to scale down one’s direct reaction to the 
signal yi . 

If the exogenous noise in supplies is large, this covariance effect is insignifi- 
cant. In this case, variations in price reflect variations in supply rather than 
variations in signals. Therefore agents draw only little information from the 
price. In the limit as A2 -+ co the system goes back to the situation when 
agents condition only on their own signals. Formally, one has 

PROPOSITION 4.2. Assume A.l-A.3 and let A2 + co. Then: 

(a) the equilibrium price converges to 

j&= l 
02B + A 

where 

(b) the conditional expectation of 8 given yi , p converges to 
(S,ZX + U2yi)/(U2 + Si”); 

(c) the conditional variance of 3 given yi , p converges to u%~~/(G~ + st). 

Proof. Tmmediate from (8a)-(8c) and (6). 

The other limit as A2 -+ 0 is of greater interest. Here one has 

Q.E.D. 

PROPOSITION 4.3. Assume A.l-A.3 and let A2 -+ 0. Then 

(a) the equilibrium price converges to: 

’ Formally, the entry cov(r, , p) = 1r9 + T& in the matrix Vi is responsible for the terms 
~~rr.s~~ and ~~‘5,” in (7), which lead to the inequality ni/y c 1/pis,2. 

642/22/3-S 
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where 

(b) the conditional expectation of 8 given ( yi , p) converges to 

02z 
A(02C + 1) + ” 

(c) the conditional variance of Xgiven ( yi , p) converges to 02/(a2C + 1). 

Proof. Given A2 -+ 0, let Ql(02) --- Qn(d2) be a solution to (8a) and with 
Q(A2) = zT=, Q,(A2). From Corollary 3.2 one has 

n QdA2) 
Q;2)2 a k;l e(d”> [ 

Q@“) Q&J 2, 
-& ‘i2 - - Q(A”) sk2 ’ 1 j = 1 1.. n, 

and therefore, by Lemma 3.4, 

(104 
where 

4 = min 1 [ g$$+ il$]” >o 

is the smallest of the lower bounds in Lemma 3.4. Further, from (Sa) and 
Lemma 3.4, one has 

lim Qi(A’) = 0 
A**0 

if and only if: (lob) 

The proposition now follows from two intermediate steps: 

step 1. lim&,o Qi(A2) = 0, i = 1 **a n. 
By way of contradiction, suppose that for some i, there exists E > 0 and a 

subsequence (Am2} --+ 0, such that Qi(Am2) > E for all m. Since Q(Am2) > 
Qi(Am2), one has lim&, Am2/Q(Am2) = 0, and (lOa) implies 

lim Qc(Am3 S’ - Qk(Am’) Sk2 = 0 

m-m 1 Q(fL2) I 
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for all i, k. Given that 

one has 

In consequence, 

Qk(Am2)2 sk2 + A,2 Qi(Am3 
Q(4n2)2 Q&2)2 - Q&2) ‘i2 

I 
= ‘2 

and, by (lob), lim,,, Qi(Am2) = 0 , c n o t rary to the assumption that Qi(An2) > 
E > 0 for all m. Hence lim,,2+0 Qi(A2) = 0. 

Step 2. limAe,O [QiV2YQ(A31 = Wi2. 
From (1 Ob) and the fact that Qi(A2) -+ 0, for all i, one has 

hence 

lim Qi(A2> st2 _ Q,(A3 s,2 
4% [ Q(A”) Q(A2) = *’ I for all i, ,j. 

The desired result now follows from the fact that 

n Qi(A2> ---= <; Q(A3 ** 
These two steps and (lob) further imply that limds+o A2/Q(A2)” = 0. 

Using all these results to take limits in (8b) and (gc), one has 

lim y(A2) = lim ,rr,(A2) = co; 
A%.,, A=-0 

lii y(A2) Q(A2) = cu2 
1 + Cd ’ 

and therefore, 

lim r,(A2) = Ii: &12) Q(A2) # = O2 ’ . 
AZ+,, 1 + cV’~* 

lim [r,(Az) - y(A2) Z] = “(g~co~~ , 
AZ-r0 
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as was to be shown. Statements (b) and (c) of the proposition are obtained 
in a similar way by taking limits in (6). Q.E.D. 

Proposition 4.3 is basically Grossman’s result. As the supply-induced 
noise in the market disappears, the equilibrium price of the risky asset 
becomes a sufficient statistic for the vector of signals. Variations in the price 
reflect and communicate variations in the precision weighted sum ~~=, yi/si2 
of the signals. 

The key to this result is the disappearance of the risk aversion coefficients 
pr from the weights 7~~ . As A2 becomes small, it hardly makes a difference 
whether a favorable signal is given to a risk averse or a risk neutral agent. 

This is an extreme consequence of the agent’s awareness of the covariance 
between the price and their own signal. As A2 becomes small, the price fi 
becomes a more reliable predictor of the return x. Therefore agents pay more 
attention to the price. Because of the price-signal covariance, this is compen- 
compensated by paying less attention to their own signal. In consequence, the 
weight 7ri of the signal yi becomes less dependent on the particular properties 
of agent i. This effect is to some extent self-enforcing: As A2 becomes small, 
price becomes a more reliable predictor ofk: both because it reveals xy=, rriyi 
more precisely and because, with disappearance of the coefficients pi from 
the weights 7ri, CT=, n,yi becomes a more efficient predictor of g. In the 
limit as A2 + 0, the price reveals xi”=, niyi perfectly, and, moreover, 
Cr=, niyi becomes a sufficient statistic for the vector (yl a.* y,). 

However, if 42 = 0, the model is no longer well specified. If the price is a 
sufficient statistic, agents no longer even look at their own information, 
because the pair (p, yi) is no better than the price alone. But if demands are 
independent of the signals yi , there is no reason why the price should vary 
with the sum Cy=, yi/si2. 

One can also see this difficulty by considering price formation in a Walras- 
ian tatonnement. The auctioneer begins the auction by calling a price p 
“au hasard.” Individual agents know their own signals and announce their 
desired asset demands knowing that trade at p will take place if and only if p 
clears the market. Therefore the demand announcement must take account 
of the information carried by p, if it happened to clear the market. From 
the formula 

qp, yi ; no , Tl ... n, , y) = 
~(mYi~P) -P 
pi Var(x I yiT P) 

and Proposition 4.3, this revealed demand is calculated as 
Z&p, yi ; 7~~) 7r1 *** TV, r) = Z/&, regardless of p, J’i . But then 
Ch(P, Yi , rll , Tl -** n, , r) = z regardless of p, yr -a. Y,~ . No matter 
where the auctioneer begins the auction, and what signals agents have 
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received, the market will clear. There is no mechanism by which the 
auctioneer can, for given yi a+. yn , find the price prescribed by Grossman’s 
formula. 

In summary, Grossman’s result gives an approximate description of com- 
munication through the market when the supply-induced noise is small. It 
should not be regarded as an exact result for the case A2 = 0. In this case, the 
communication process simply is not well defined. 

5. THE AGGREGATION OF INFORMATION IN A LARGE MARKET 

The preceding model of communication in a finite market is a bit schizo- 
phrenic. On the one hand agents are aware of the covariance between the 
price and their own signals and actions. On the other hand they behave as 
price takers. To remove this difficulty I shall now look at the aggregation of 
information in a competitive sequence of economies. 

Let (Q, g’, V) be a probability space and Jlr the set of normal random 
variables on Q. An economy d is defined by a finite set d of economic 
agents, a mapping e: & -+ R+2, and two random variables 2 E N, ,Z? E N 
with the following interpretation: 

(i) J? is the per-unit return, .? the supply of the risky asset. 
(ii) For i E zJ, proj, e(i) = pi , agent i’s coefficient of risk aversion 

under A. 1. 
(iii) For i E &, proj, e(i) = si2, the variance of the error Zi = yi - x 

in agent i’s signal, where the vector (2, 2, Zi *.* El,) satisfies Assumption A.2. 

The characteristic distribution of the economy B = (-Qz, e, x, 2) is a 
measure ~8 E .,~%‘([w+~), defined by the usual formula, p&(B) = #e-‘(@I#&‘, 
for every Bore1 subset B of R+2. 

A sequence of economies 8, = {J@, e’“, xn, *} will be called competitive, 
if it satisfies the following conditions: 

(B.1) #s@’ = n + co. 

(B.2) There exist two random variables x E JV, 2 E JV, such that 
for all n, xn = ?? and zn/n = 2. 

(B.3) There exists a closed rectangle [_p, Is] x [$ , P] in the interior 
of lR+2, such that for all n, e”(&“) C [_p, p] x (s2, $21. 

(B.4) The sequence of characteristic distributions {pm) converges 
weakly to a measure p E ~?‘([w+~). 

If one writes pi(n), x$“(n) for the characteristics e”(i) of agent i E sP, one 
obtains: 
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PROPOSITION 5.1. Let (8,) be a competitive sequence of economies. Any 
solution Q&z), i E &+ of Eqs. (Ba) for economy 8, satisfies 

Proof: See the Appendix. 
Further let Z(n), d2(n) denote the mean and variance of total supply Zn, 

and let Z*, 4*2 denote the mean and variance of per capita supply 2. 
Clearly, (B.2) implies z(n) = nZ* and A2 = n2 d*2. 

With obvious notation, write the market-clearing price for economy b, 
under the rational expectations hypothesis A.3 as 

In the Appendix, I prove: 

PROPOSITION 5.2. Let {a,,} be a competitive sequence of economies and let 
( p”“) be a corresponding sequence of market-clearing prices under A.3. Then 
the sequence { j} converges in probability to p* = z-t + rr*8 - y*z, where 

*= 
XA*2A* + a2Z*A*B* 

TO A*A*2 + ,ZB*A*Z + a2,4*B*2 ' 

cGB*A*~ + 02A*Be2 
+ = A*A *2 + 02B"A *2 + *2A*B*2 ' 

ORALS + 02A*B* 
Y *= 

A*‘,*2 + ,ZB*A*Z + ,,2A*B*2 ' 

A* E s;dp, B* s 
I 

As the number of agents becomes large, the weights ri(n) converge to zero. 
Individual agents can no longer affect the price. This has two important 
consequences: First, the relative weights 

ri(n) Pi(n) 
-=eicn> r,(n) 

of signals given to two agents i, j become approximately equal to pi(n) si2(n)/ 
pi(n) si2(n). As 7ri(n) converges to zero, the covariance between the noise 
zin and the equilibrium price fin disappears. The relative importance of an 
agent’s information becomes inversely proportional to his degree of risk 
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aversion. The aggregation of information in a large market depends on 
agents’ preferences as well as on the precision of their signals. 

Second, as the number of agents increases, the equilibrium price comes 
to depend only on the actual return 2, which is the common element in all 
the signals yi . The noises EIin disappear from the equilibrium price, by the 
weak law of large numbers. This is an instance of the well known result that 
individual uncertainty does not affect the equilibrium price in a large economy 
(see, e.g., Malinvaud (1972)). In the more general case where the common 
element in the individual signals yi involves some noise 8, so that Ji = 
8 + 8 + Ei , the equilibrium price will depend on 8 as well as x, but the Ci 
will still cancel out. 

Jn summary, Propositions 5.1 and 5.2 suggest that communication through 
the market relies on the presence of a large number of independent sources 
of information. Because of differences in preferences, the equilibrium price is 
not, in general, an “efficient” aggregator of information. However, this 
inefficiency is irrelevant, if the market draws on many independent sources 
of information, so that individual errors cancel out. 

Even so, individuals cannot actually read 2 off the equilibrium price. 
Because of the noise in supplies, they cannot distinguish whether a high 
price is due to a high realization of x or a low realization of 2. Therefore, 
they find it worthwhile to draw information from their own signal as well as 
the price. Formally one has: 

PROPOSITION 5.3. Let j* be the equilibrium price as in Proposition 5.2, 
and let g = 2 $ C E JV be a signal with EE” = 0, EC2 = s2, EE”z = 0. Given 
a realization (y, p) of the random pair (y, $*) the posterior mean and variance 
of returns are 

E@ I Y, PI = ; [$ s2x + 
A *ZZ 
8*2 U”Y + 22P- 0 s 

7i-; + y*z* 1 ?r* ’ 

1 A*2 
VarGf I Y, P> = z B*2 s202, 

where 

D= 
A*2 

-jjzz a2 + 
A*2 

B*2 s2 + ov, 

and T$, TT* , y*, B* are the coeficients dejined in Proposition 5.2. 

Proposition 5.3 shows the importance of preferences for the communica- 
tion of information through the market. The distribution of degrees of risk 
aversion and of signal variances determines the coefficient B* = l (l/ps2) dp. 
This coefficient is equal to the ratio r*/y* of the weights of k and .? in the 



494 MARTIN F. HELLWIG 

equilibrium price. For given variances u2, ,4*2, this ratio determines the 
relative contributions of 2 and 2? to variations in the equilibrium price. 
The point is that the strength of agents’ reactions to their signals-and 
implicitly to x-is inversely related to both their degree of risk aversion and 
the level of noise in their signal. If agents are less risk averse, variations in &? 
will lead to larger variations in asset demands, which in turn induce larger 
variations in the equilibrium price. 

The larger the coefficient B*, the more reliable the market as a means of 
communication. If variations in the equilibrium price arise mainly from 
variations in the return, there is little chance that a given price change will 
reflect a change in supply rather than a change in return. Therefore, agents 
can rely heavily on the price as a source of information. 

From this point of view, the ratio d*2/B*2 in Proposition 5.3 is a natural 
measure of the level of noise in the market communication process. The 
smaller the ratio A *2/B *2, the more attention agents pay to the price and the 
less to their own signals. Then also the posterior variance of returns decreases. 
There is no noise in the market, if either A*2 = 0 or B*2 = co. The latter 
situation arises when a positive set of agents is risk neutral and reacts SO 

strongly to its information that variations in supplies have no effect on the 
price (y* = 0). In this case all agents can actually infer the realization of 
returns from the price.6 

APPENDIX 

Proof of Lemma 3.4 

By Lemma 3.1, 

Hence, from (8a), 

k=l 

B However, one again has the paradox that agents inferring the realization of Z% from the 
price pay no attention to their own signals, so that the question is, Why should the price 
reveal the realization of x in the first place. 
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where the last inequality is based on the fact that xk+i Qk2skz > 
<Q - Qd2L,i lbk2.’ 

Multiplying by 

and rearranging terms, one has 

and the lemma follows immediately. 

Proof of Proposition 4.1 

Define L : ~~==, Qk2sk2 + A2 and rewrite (9) as 

Qipisi2 _ CL - QiQsi2)(L - Q,“$) -- 
Qipisi2 (L - Qi2s:)(L - Q,Qsi”) - 

Further, define 

Q.E.D. 

(9’) 

M = (L - Q,Q@)(L - Q&q”) - (L - Q&2)(L - QjQsj2) 

and note that, by Lemma 3.1 and Corollary 3.2, 

as M 2 0. (9”) 

(a) Let pi 3 pj , si2 3 sj2 and suppose that Qi > Qj . Then one 
calculates 

M == Qj(Q - Qj)(sj” - s?)L + (Qj - Qi)[(Q - Qi - Qf) si2L + Q~Q~Qs~s~“] < 0. 

Now (9”) implies Qipis: < Qjpjsi2, hence Qi < Qj , a contradiction. There- 
fore, Qi P Qj , hence rri/y < 7~Jy. From (8b), y > 0, hence vri < rrj. 

7 To see this, minimize C” *+ Qr2sk2 subject to xi,, Qk = Q - Qi . 
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(b) Let pi 3 pj , si2 = s,~ and suppose that piQc < pjQj . Then 
Qj > Qi , hence M > 0 and by (91, piQi > pjQj , a contradiction. Therefore 
PiQi 4: pjQj and piri > pi~j because y > 0, again by (8b). 

(c) Let pi = pj , si2 > sj2 and suppose that si2Qi > sj2Qj . Rearranging 
terms in the expression for M, one has 

M = (Qj,’ - Qisi2)(Q - Qj) L - (Qj - Qi)(L - QjQsj”) Q,s,’ < 0, 

because Qi > Qi , by (a), and L > QjQsj2, by Corollary 3.2. Now (9”) 
implies Q,si2 < Qjsj2, a contradiction. Therefore si2Qi > .sj2Qj and si2ri < 
sj2rj, because y > 0 by (8b). 

The sharpening of the conclusions when the inequalities in the premises 
are strict is proved by the same argument. Q.E.D. 

Proof of Proposition 5.1 

From (8a) and Lemma 3.1 one has 

>I- c 1 
&..?p PkW Sk2(4 I Pi(n) d 204 by (9 

1 
,d----- 

n p2s2Ll*2 ’ 
by (B.2) and (B.3). 

Q.E.D. 
Proof of Proposition 5.2 

For any n, define 

Using (B.2) and Proposition 5.1 to substitute for z(n) = nZ*, d2(n) = n2 d *2 
and Qi(n) = l/pi(n) $(n) + 0(1/n) in (8b) and (8c), one has, by elementary 
algebra 

u2Ll*2 + GA(n) B(n) 
nr(n) = A *2A(n) + c?B(n) A”2 + GA(n) B(n)2 + o(“n)7 

am(n) A*2 + &z*A(n) B(n) 
ror,(n) = A *2/l(n) + 02B(n) A *2 + GA(n) B(n)2 + o(l’n)- 

Note that 

A(n) = J f dp, and B(n) = f + b,, , 
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so that (B3) and (B4) imply lim,,, A(n) = A* and lim,,, B(n) = B*. Then 
one has lim,,, r&z) = $, lim,,, r(n) = y*, and lim,, Cioan ?r&z) = 
lim n-fm Cicdn Q&)y(n) = lim,,, IL&- Qdn) lim,,, n&9 = B*y*, by 
Lemma 5.1. 

Rewriting the equation for jP as 

one sees that the proposition follows, if Ciedn rri(n) gin converges to zero in 
probability. To prove the latter statement, it suffices to note that Ciedfl ni(n)Zi” 
has mean zero and variance 

which converges to zero as n + co. 

Proof of Proposition 5.3 

Q.E.D. 

The proposition follows from normal distribution theory (Raiffa and 
Schlaifer, 1961, p. 250) after noting that the triple (3, 7, a*) is normally -- 
distributed with mean (X, X, n$ + r*x - y*Z*) and variance-covariance 
matrix: 

u2 U‘J 7r*u2 
02 CT2 + s2 rr*u2 Q.E.D. 

%-*a2 7i-*a2 ,+2a2 + y*2A*2 
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