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1. INTRODUCTION

This paper analyzes how a competitive market serves to communicate
information between the market participants. The communication process
in a market is usually described by the phrase that the equilibrium price
“reflects all the available information in the market” and communicates it
to the participants (Fama, 1970).

If there is only one piece of information to consider, the meaning of this
phrase is unambiguous. Thus the simple news of higher firm profits will be
“reflected” in a higher share price because the demand for shares has gone up.

Problems arise when there are many agents with different pieces of informa-
tion, and the vector of market prices has a smaller dimension than the vector
of information available to different agents. In this case the equilibrium price
vector corresponds to some aggregate of all the individual pieces of informa-
tion. Then the question arises how this aggregate is formed.

In two recent papers, Grossman (1976, 1978) proposed a remarkable
solution to this problem. In a model of the capital market, he argues that
the equilibrium price aggregates the available information perfectly. If
agents i =1, 2,...., n take their information from the market price, the
economy achieves the same allocation as if each trader knew the whole
vector ([ ,..., I,) of informations available to individual agents. Any aspect
of the information vector (I, ,..., I,,) that is not reflected in the price is not
woth communicating because it would merely be treated as noise.

However, this approach involves some conceptual difficulties. In Gross-
man’s model the aggregation of information through the price depends only
on the statistical properties of the information vector (I ,..., I,,) and is
independent of agents’ preferences. This is quite surprising. Intuitively one
would expect that the weight with which agent i’s information I, affects the
equilivrium price should depend on the strength of agent i’s reaction to this
information, which in turn should depend on his preferences. Presumably
it should make a difference whether the news of an increase in a firm’s profits
is passed to somebody who is almost risk neutral and responds by buying a
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large number of shares, or whether this piece of news is passed to a risk
averter who hardly responds at all.

In Grossman’s model this intuition fails because agents do not use their
own information at all. The point is that if the price reveals all that is worth
knowing about the vector (I} ,..., I,), agents will neglect their individual
informations and look at the price only. Any aspect of the information I;
that is not contained in the price is regarded as noise. If agent i uses the
information contained in the price, he can afford to disregard the informa-
tion I; .

However, if agents do not act on their own informations at all, it is unclear
why the price should reflect the informations 1, ,..., I, in the first place.
Grossman’s proposition does not seem to capture the original idea that
individual agents react to their individual informations and therefore the
equilibrium price reflects some aggregate of the informations 7, ,..., 7, .
Instead, it must be presumed that the ‘“auctioneer” somehow happens to
know the vector [, ,..., I, , in which case perfect aggregation of information
through the price induces agents to disregard their individual informations
and therefore is consistent with market clearing.

Against this objection, Grossman (1975) suggests that in fact there does not
exist an equilibrium in which the information that is contained in the equilib-
rium price can itself be traced back to the demand decisions of those agents
who had obtained the information originally.!

The equilibrium in which price aggregates information perfectly is unique.

Grossman’s argument on this point makes heavy use of agents’ awareness
that their own information and the information contained in the price are
statistically dependent. In particular, agents take account of the covariance
between “noise”” in their own information and “noise” in the price. It is this
covariance which makes them neglect their own information when they pay
attention to the information contained in the price.

But then, Grossman’s agents are slightly schizophrenic. The covariance
between “‘noise” in individual information and “noise” in the price is nonzero
because the number of agents is finite, and each agent exerts a nonnegligible
influence on the price.2 Therefore one should expect that agents who are
aware of this covariance will also notice the effect they have on the price.
Yet, Grossman’s agents are price takers. They do not attempt to manipulate
the price and the information content of the price.

In order to avoid these difficulties, the present paper will study the aggrega-
tion of information in a large market, in which individual agents have no

1 This is proved as a theorem under the additional restriction that the equilibrium price
depend linearly on the vector of information.

* The alternative interpretation of a finite number of types and a unit mass continuum
of agents of each type would fail to capture the notion that each agent has different in-
formation.
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influence on the price. This analysis will lead to an alternative view of the
aggregation of information through the price.

First, it will be seen that in a large market the relative importance of the
information available to agent i depends on his preferences. In particular, 7;
is relatively the more important, the less risk averse agent 7 is.

Second, in a large market, the equilibrium price will reflect only those
elements of information that are common to a large number of agents.
Because an individual agent does not affect the price, his information enters
the price only to the extent that it is shared by other agents.

This second result suggests that the market is a good aggregator of informa-
tion, if there are many agents with many independent sources of information.
In this case, “noise” in the information available to any individual agent is
filtered out and does not affect the price.

The plan of the paper is as follows: Sections 2 and 3 introduce a generalized
version of Grossman’s model with a finite number of agents. In particular, I
shall allow for the presence of exogenous noise in the price system.? Section 4
analyses equilibrium with a finite number of agents and amplifies the fore-
going critique of Grossman’s approach. The aggregation of information
in a large market is studied in Section 5 by means of a competitive sequence
of economies. This section contains the main results of the paper.

2. THE Basic MODEL

I shall use the following version of Grossman’s model. There are n agents
i = 1---n. Each agent i allocates his initial wealth w,; between a riskless and
a risky asset. For each unit purchased, the riskless asset yields 1 unit, the
risky asset X units of a single consumption good, where X is a random
variable. Using the riskless asset as numeraire, let p be the price of the risky
asset. If agent i holds z; units of the risky asset, his portfolio yields the
return

@y; = wy; + z(X — p).
Agents’ preferences are described by the following assumption:

A.l. Fori=1--n, agent i maximizes the expected utility of consump-
tion Eu,(%,;). The utility function u; exhibits constant absolute risk aversion
pi € (0, o0).

Under this assumption agent i’s demand for the risky asset is independent
of his initial wealth wy; (Pratt, 1965). It depends only on the price p and the

® On the importance of such exogenous noise, see Grossman, 1977; Grossman and
Stiglitz, 1976.
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expectations operator E; , which in turn is determined by the agent’s informa-
tion 7; . If the supply of the risky asset is Z, the market clearing condition
takes the form

Z = Z‘ z{p, ). ¢))

The information I, on which agent i bases his expectation of X, consists
of the market price p and his private information y; . The latter is taken to be
the realization of a random variable #; , which communicates the true return
X perturbed by some noise &;:

Fi=X+¢. ()

Furthermore, the supply Z is taken to be the realization of a random
variable Z. The following distributional assumption will be imposed:

A.2. The random vector (X, Z, ¢, -+ &,) has a normal distribution with
mean (X, Z,0---0) and nonsingular variance-covariance matrix: Y =
(o%, 42, 5,% -+~ 5,2) I,.5 , Where I, is the (n - 2)-dimensional identity.

Substituting for I, = (y;, p) in (1), one finds that the market clearing
price p is given as the realization of a random variable $ which depends on Z
and the vector of signals (#; --- #,). The precise form of this relationjhip
depends on the functions z,(-), in particular on the way in which the informa-
tion I; affects the expectations operator E;. Imposing the hypothesis that
expectations are rational, I shall require:

A3. Fori=1--n, agent { knows the actual joint distribution of the
triple (X, #;, #). For any information I; = (y;, p), he derives the expecta-
tions operator E; from the actual conditional distribution of X given y,, p.

It should be noted that under Assumption A.3 expectations formation
and market clearing cannot be treated separately. The use that agent i makes
of his information depends on the joint distribution of (X, #;, ). This in
turn depends on the price—supply-signals relation that is imposed by market
clearing. Therefore individual expectations formation and demand cannot be
analyzed by themselves; from the beginning, the system as a whole must be
considered, because the market clearing condition determines the information
that agents draw from the market price.

Formally, the determination of equilibrium under the rational expectations
assumption A.3 can be treated as a fixed-point problem in the space of
functions relating the asset price to supplies and signals. Given any function
f: Rt — R, suppose, initially, that agents act on the hypothesis that
$ =f(Z, $, - $,). Then agent i’s asset demand depends on the price p,
the signal y; and the function f, which determines the joint distribution of the
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triple (X, 7;, #) and therefore the conditional distribution of X given any
realization I; = (y;, p). Rewriting the market clearing condition (1) in the form

7z =

M=

Zdp, yi s (1a)

t=1

i

one finds that the market clearing price depends on f as well as on the vector
(Z, y, - y,). With the function f, one can associate a new function If:
R»*1 — R, such that Tf(Z, y, -*- y,) is the market clearing price for the
realization (Z, y, --* y,) given that agents base their expectations on the
hypothesis that $ = f(Z, #, -** #,). In this formulation, expectations are
rational if f is a fixed point of the mapping T, i.e., if f(Z,y, " yn) =
Tf(Z, yy - yn) for all (Z, y, - ya) € R*L

Under Assumptions A.l and A.2, the given fixed-point problem has a
linear solution. To determine this solution, one proceeds as follows. Consider
an arbitrary linear relation:

p=m+ z m¥ — '}’Z- 3
i=1

Define ==Y, #,. Given (2), (3), and Assumption A.2, the triple
(X, 5;, p) has a normal distribution with mean (X, X, =, + nX — yZ)
and variance-covariance matrix:

2

o o wo
V=1 o* 0% + 52 wo? + w52 )
n
wo®  we? + msk wlo? + Ypo milst + '}’2A2

2

From normal distribution theory, the posterior distribution of X given a
realization (y; , p) is again normal, with mean and variance of the form

E(X [ ¥, P) = o + g Yi + ag p, (4a)
Var (XU’“P) =18i7 (4b)

where the values of «y;, ay;, and B; depend on the matrix V.

If expectations are based on relation (3), normality implies that asset
demands under expected utility maximization depend only on the posterior
mean and variance of returns, E(X | y;, p) and Var (X | y;, p). In the particular
case of constant absolute risk aversion given by Assumption A.1, one has
(for a derivation, see, e.g., Grossman (1976, p. 575 {.))

EX|yi,p)—p

p: Var(X | y;, p)

_ it iy (s — Dp
PiBi

Zi(p’ Yis Wo, T """ Ty, '}’) =
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Substituting for Z; in (1a) and solving for p, one has

R SN I

i=1 i=1

Thus the market clearing price-supply-signals relation (1b) that is induced
by the hypothesis (3) is again linear. Expectations based on (3) are rational,
if and only if the coefficients =, ,, y in (3) are the same as the correspond-
ing coefficients in (1b). This yields the following conditions:

o b — oy, ]’1
= , Sa
4 [El pifi (52)
Y % .
7 = - , i=1:"-n, 5b
o B: (5b)
S
o . 5¢
[} Y Lgl o:B: (5¢)

To analyze Eqs. (5), remember that the coefficients oy; , oy, o9 , and B;
arise from the formulas for the conditional mean and variance of X given
¥:, p. Under Assumption A.3, these coefficients will in turn depend on
7y , T , ' as they affect the joint distribution of (X, #; , §). Before writing out
the formulas for these coefficients, I need the following:

LEMMA 2.1. Assume A.1-A.3. Then the equilibrium price-supply—signals
relation (3) has v = 0, and the matrices V;, i = 1 - n, are nonsingular.

Proof. Suppose that y = 0. Then (5b) and (5¢) imply 7; =0, =1 ---n,
and m, = 0, hence p = 0. In this case, the coefficients in (4a) and (4b) are
calculated as:

ay = 52/(0% + 52), 0y = *(® + 57), oy =0,

B; = o2s2/(o? + 5.2). Then (5a) implies y % 0, a contradiction. Non-
singularity of the matrices V; follows directly from the fact that y = 0.
Q.E.D.

Given that the matrices V; are nonsingular, the coefficients oq;, gy, s
and B; are given by the formulas (Raiffa and Schlaifer, 1961, p. 250)

4 Given that 4* > 0, the implicit assumption that X;_; [(1 — as)/p:8:] # 0 is harmless.
If 371 [(1 — a)/p:iB:] = 0, variations in p have no effect on excess demand. Then there
is no way to clear the market for different realizations of 2. Since 2 has positive variance,
by Assumption A.2, one cannot have an equilibrium with rational expectations. The
existence of a rational expectations equilibrium with ¥7_; [(1 — «.)/p:f;] # O is discussed
separately in Proposition 3.3.
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aTn

oy = % [Z miis? + y24% — 1T,~1rsi2], (6a)
i Le=1
2

ay = - (m — m) 2, (6b)

:2 L —
Og; == X— sz [ szskz “I" '}’ZA2 —_ Wizsiz] _ azi(ﬂo —_ ’}/Z), (60)

i k=1
o’ [ < 2. 2 2 42 2,2
Bi: b kzﬂksk +VA — TS, (6d)
1 =1

b; = (0 + 59 [Z mst + y24? — 77,:2s1~2:|
k=1
+ osA(m — m;)*. (6¢e)

Now Egs. (5) and (6) form a nonlinear system of equations in my; , 7y, ¥,
Qg Ogg » %, Bi - The solutions to this system correspond to the equilibria
of the economy under Assumptions A.I-A.3. The problem is to analyze (5)
and (6) in detail so as to obtain some insight into the way in which the price p
aggregates and communicates the information contained in the signals

Y17 Vn -

3. PRELIMINARY RESULTS

To analyze equilibrium under Assumptions A.1-A.3, I shall first use
Eqgs. (6) to eliminate the coefficients «,; , as; , o and B; from (5). As a result
one has

n
> mlst + Y2A2 — mwSss

Y k=l .
T = pisE 2 ) f=1-n, (7a)
Y mdst + AR — mps?
k=1

i:n02+si2+z (m — m): — (m — m)

, (7b)

r2¢.2 n
Voo PO = op; [El mis? + yR4R — m-ZSiz]
Mo = "2 & 5 Y(m — vZ) Y, n . (70)
=1 Pt =1 p; [kz mist + y?A% — 7Ti2si2]
=1

Now Egs. (7a) can be analyzed independently of (7b) and (7¢). To see this,
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define the new variables Q; = mjy, i=1--n, Q = ajy = Y, mly, and
reqrite (7a) as

1 S OBt 4 42— Q2 Y Oy
0; = =3 k=1 - k=1 R i=1-n (8a)
pisi Y Oulsit + 42 — Q%2
k=1

Equations (8a) serve to determine the variables @, -+ O, regardless of
y and 7, . One has:

LemMMA 3.1. Under Assumptions A.1 and A.2, Egs. (8a) have a solution.
Any solution Q, -+ Q,, to (8a) satisfies

0 < Q; < 1/pss

Proof. I shall prove the last statement first. Let Q, - Q,, be a solution to
(8a) and define the index set I = {i | Q; <C 0}. Suppose that 7 = &. Then there
exists i € I, such that for all ke I, Qiosgo > Oy5:2. Therefore, for 42 >0,

Z kask2 + AZ - QioQSiZo > Z kaskz - Qiosz?o 2 Qk

k=1 kel kel

= Z Qk(kaIc2 - onszo) =
kel

Now (8a) implies Q; > 0, hence i, ¢/, a contradlctlon Therefore, @, >0
for all z, implying Q; Yr, Ox > 02 Then (8a) implies Q; < 1/p;52,
i=1-

The existence of a solution to (8a) is shown by a fixed-point argument.
Let Y = [1i, [0, 1/p;52] C R,” and define mappings 7,: Y —>R*, T;: Y > Y
by the conditions

1 Z 0252 + 42 — Q52 3 Ox
(T4Q) = ——5 *2 L =1,

piss® 2 0252 + 42 — Q%72
(T1,9); = 0 if (T,Q) <0
(11Q); = (T,Q); if 0 <(ThQ): < 1/pssi®, i=1-n,

(T1Q); = 1/piss® if (ToQ) > 1/piss.

Under Assumptions A.1 and A.2, Y is compact, and T; is continuous. By
Brouwer’s theorem, 7, has a fixed point Q*. Tt remains to show that 0 <
OF < 1/pys for all i, so that Q* = T,0F . By way of contradiction, suppose
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first that QF = 0 for some i. Then (T7,0*); = 1/p;s%, hence (710*); =
1/p;s2 # QF , a contradiction. Hence QF > 0 for all i, implying (T,0*); <
1/p;s:® and hence (T,0%*); < 1/p;s,2 for all i. Thus Q* is a fixed point of T,
and, hence a solution to (8a). Q.E.D.

For future reference, it is useful to state explicitly the following obvious:

COROLLARY 3.2. Any solution Q, -+ Q, to (8a) satisfies
42 > Qs Z Or — Z 02513, i=1:n
k=1 k=1
Further, one now has:

PROPOSITION 3.3. Under Assumptions A.1 and A.2, Egs. (5) and (6) have a
solution.

Proof. 1t suffices to show that (7) has a solution. Substituting for m; ==
yQ;, i =1 --n, and solving for y and =,, one rewrites (7b) and (7c) as

B (3 0 + 40— o)
N =y 3 @
Z 3 + 2 3

(Z Oi®si? + 4% — Qizsiz)

X a1 - &
=1 P -t (Z Qs 2 4 42 — Qi25i2)
Ty = 3 5 — =1 . (8¢c)

2 §; (Q — Q)
i=z1 Pi02Si2 + 7231 " 2, 2 2 2.2
pi(]Elesk + 4 _“Qisz‘)

The proposition now follows immediately from Lemma 3.1. Q.E.D.

Most of the subsequent analysis will be based on Lemma 3.1. But for some
purposes, I shall need a sharper bound on the Q; . This is given by the follow-
ing lemma, which is proved in the Appendix.

LemMMA 3.4. Let Q, -+ Q, be asolution to (8a), and let Q = Yx_, Oy . Then

n o271
[Z stz Z Szz] , i=1"-n

i PESE” r=1 Sk
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4. THE AGGREGATION OF INFORMATION IN A SMALL COMPETITIVE MARKET

I shall now turn to the question how the equilibrium price under Assump-
tions A.1-A.3 aggregates information. In particular, I shall be concerned
with the relative strength of the weights =, , ; with which the signals y, and
y; affect the equilibrium price. From (8a) and the definition Q; = m;/y, one
has

T 0% + 42 — 0058
5 Qs piS;® k§1 Qs + 42 — 02
™0 e pas oy om o ©)
Z Qk Sg + A - QjQSj

k=1

i Qisit + 4% — Qs

k=1

In the Appendix, I prove the following:

PRrOPOSITION 4.1. Assume A.1-A.3 and let =y, m;, i =1+-n, y be the
coefficients of an equilibrium price function.

@) Ifp; = p;and s? > s?, then w; < m;.
(b) pri = Pi and Siz = sz, then PiT; = PiT; .
(C) I_fp'i = p; and Siz = sz, then Siz'ﬂ',: < szﬂj .

If one of the inequalities in the premises of statements (a)-(c) is strict, the
inequality in the corresponding conclusion is also strict.

Proposition 4.1 shows the dependence of #;/w; on the risk aversions p; , p;
and the variances s, s2 The first part of the proposition expresses the
simple fact that a precise signal available to a risk neutral agent affects the
price more than an imprecise signal available to a risk averse agent. This is so
because the sensitivity of agent i’s demand to the signal y; increases with the
precision of the signal and decreases with the agent’s risk aversion.

The other statements of Proposition 2 give some indication of the extent
of the dependence of w,/m; on risk aversions and the variances s?, 52

To sec the significance of these statements, consider the situation when
agents condition orly on their own signals y; without drawing information
from the price. In this situation one has m;p;5% = m;p;s, for all i, j, i.e., m;
is just inversely proportional to the factor p;s;%. In contrast, if agents condi-
tion on both signals and price, the ratio m,/m; is relatively less sensitive to
agents’ risk aversions and relatively more sensitive to the variances 52, s
(Proposition 4.1b, c¢)).

These effects arise mainly because agents take account of the covariance
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between their own signal and the price.® The signal y; affects agent i’s expecta-
tion about X both directly and indirectly, through the price p. To avoid
“double counting” and compensate for his indirect reaction to y; through
the price, he reduces his direct reaction to y,. For this reason, the
coefficient 7; depends less strongly on agent i’s risk aversion.

In contrast, the variances s;2 and s, become relatively more important
because they enter into the covariance between signals and the price. The
larger the variance s, the larger the covariance between noise in y; and
noise in p, and the greater the need to scale down one’s direct reaction to the
signal y; .

If the exogenous noise in supplies is large, this covariance effect is insignifi-
cant. In this case, variations in price reflect variations in supply rather than
variations in signals. Therefore agents draw only little information from the
price. In the limit as 42 — oo the system goes back to the situation when
agents condition only. on their own signals. Formally, one has

PropoSITION 4.2. Assume A.1-A.3 and let 42 — oo. Then:

(a) the equilibrium price converges to

...v o 1 LY 2 c y~z .2
P = FB T A [AX + o 1; s o Z:',
where
21 A |
A = T B = ;
tgl Pi 2:1 pisid

(b) the conditional expectation of X given y;, p converges to
(52X + *y)l(a® + 53);
(c) the conditional variance of X given y, , p converges to o?s3/(c* + s:2).

Proof. Tmmediate from (8a)—(8¢c) and (6). Q.E.D.

The other limit as 4% — 0 is of greater interest. Here one has

PROPOSITION 4.3. Assume A.1-A.3 and let 42 — 0. Then

(a) the equilibrium price converges to:

y~i _ 022
52 AF

~ 1 - i
P0:02C+1[X+02¢§

® Formally, the entry cov(y;, p) = mo® + m;5,2 in the matrix V; is responsible for the terms
=752 and =252 in (7), which lead to the inequality =,/y < 1/p;s.2.

642/22(3-8
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where

1P s

2

) L=
I
M=

1

1

(b) the conditional expectation of X given (y; , ) converges to

oZ
AACE T P
(c) the conditional variance of X given (y; , p) converges to o*/(c®C + 1).

Proof. Given 4% — 0, let 0,(4?) - 0,(4? be a solution to (8a) and with
0(4% = ¥;, 0(42). From Corollary 3.2 one has

4 3 Qudy [Q,(Az) _ 94 s¢],  i=1-n
o(4%? > Q(Az) (4% o * ’
and therefore, by Lemma 3.4,
045 ,  0udd
o > 1 L ot — G o) (102)

where

7 o271
q“mln[z Pisi +Z'ﬁ‘2~] >0

Pl 2 S RO

is the smallest of the lower bounds in Lemma 3.4. Further, from (8a) and
Lemma 3.4, one has

lim 044% =0  if and only if: (10b)
4°>0

0,4y 4 0.(49)
Lim [2 "o *F + oy T ol ] 0

The proposition now follows from two intermediate steps:

Step 1. limya,o Q4% =0,i=1--n

By way of contradiction, suppose that for some i, there exists ¢ >0 and a
subsequence {4,,2} — 0, such that Q,(4,,2) > ¢ for all m. Since 0(d4,,2) >
04,2, one has lims, 4,,2/0(4,,?) = 0, and (10a) implies

[ Qi(Amz) 8% — Qk(Amz) S ] =0
o(4,%)

lim

m-—>c0
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for all i, k. Given that

o 044,
2, 0
one has

0(4,H _ 1
W20 T

In consequence,
v | @i 4,2 (4 )
im %, | G o + g S 5 =0

and, by (10b), lim,,,..., 9(4,,%) = 0, contrary to the assumption that Q(4,,%) >
€ > 0 for all m. Hence lim ., Q4% = 0.

Step 2. lim g, [Q(4%)/0(4%)] = 1/Cs2.

From (10b) and the fact that Q,(42) — 0, for all i, one has

lim [Z Q) ) W2+ 4 044Y ] =0, foralli,

O ol

0 L o * 0(4%? o4
hence
: 044 52 (4% s . -
51121:1:’ [ oy T o } =0, for all i, j.
The desired result now follows from the fact that
04>
%G -

These two steps and (10b) further imply that lim ., 42/Q(42)% = 0.
Using all these results to take limits in (8b) and (8c), one has

lim y(4%) = lim 7,(4?%) = oo;
220 220

) Co?
‘12?) y(4%) Q(4?) = IR

and therefore,

. . 0y _ ot 1
X — 0?Z/4
BCET

lim (m(4%) — p(4) Z]
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as was to be shown. Statements (b) and (c) of the proposition are obtained
in a similar way by taking limits in (6). Q.E.D.

Proposition 4.3 is basically Grossman’s result. As the supply-induced
noise in the market disappears, the equilibrium price of the risky asset
becomes a sufficient statistic for the vector of signals. Variations in the price
reflect and communicate variations in the precision weighted sum ;. , y,/s2
of the signals.

The key to this result is the disappearance of the risk aversion coefficients
p: from the weights 7; . As 42 becomes small, it hardly makes a difference
whether a favorable signal is given to a risk averse or a risk neutral agent.

This is an extreme consequence of the agent’s awareness of the covariance
between the price and their own signal. As 4% becomes small, the price p
becomes a more reliable predictor of the return X, Therefore agents pay more
attention to the price. Because of the price-signal covariance, this is compen-
compensated by paying less attention to their own signal. In consequence, the
weight 7, of the signal y; becomes less dependent on the particular properties
of agent i. This effect is to some extent self-enforcing: As A% becomes small,
price becomes a more reliable predictor of X, both because it reveals S Ve
more precisely and because, with disappearance of the coefficients p, from
the weights m;, 3, m:y; becomes a more efficient predictor of X. In the
limit as 42— 0, the price reveals Y, =;»; perfectly, and, moreover,
Y&, 7;y: becomes a sufficient statistic for the vector (y, *-* y,.).

However, if 42 = 0, the model is no longer well specified. If the price is a
sufficient statistic, agents no longer even look at their own information,
because the pair (p, y;) is no better than the price alone. But if demands are
independent of the signals y, , there is no reason why the price should vary
with the sum Y;_; yi/s:2.

One can also see this difficulty by considering price formation in a Walras-
ian tAtonnement. The auctioneer begins the auction by calling a price p
“au hasard.” Individual agents know their own signals and announce their
desired asset demands knowing that trade at p will take place if and only if p
clears the market. Therefore the demand announcement must take account
of the information carried by p, if it happened to clear the market. From
the formula

_EX|yi.p)—p
Pi Var(X | y;, p)

ZAP, Yis Mo T Ty Y)

and Proposition 4.3, this revealed demand is calculated as
zdp, yi; my, m 7w, v) = Z|p;A, regardless of p, y;. But then
S Zdp, Vis o, ™t Ta,y) = Z regardless of p, y, - y,. No matter
where the auctioneer begins the auction, and what signals agents have
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received, the market will clear. There is no mechanism by which the
auctioneer can, for given y, -** y, , find the price prescribed by Grossman’s
formula.

In summary, Grossman’s result gives an approximate description of com-
munication through the market when the supply-induced noise is small. It
should not be regarded as an exact result for the case 42 = 0. In this case, the
communication process simply is not well defined.

5. THE AGGREGATION OF INFORMATION IN A LARGE MARKET

The preceding model of communication in a finite market is a bit schizo-
phrenic. On the one hand agents are aware of the covariance between the
price and their own signals and actions. On the other hand they behave as
price takers. To remove this difficulty I shall now look at the aggregation of
information in a competitive sequence of economies.

Let (£2, #, v) be a probability space and .4 the set of normal random
variables on 2. An economy & is defined by a finite set &/ of economic
agents, a mapping e: &/ — R.,2, and two random variables X e 4", Ze #"
with the following interpretation:

(i) X is the per-unit return, Z the supply of the risky asset.
(i) For ie o, proj, e(i) = p;, agent i’s coefficient of risk aversion
under A.1.
(ili) For i€ .o, proj, e(i) = s, the variance of the error & = 7, — X
in agent i’s signal, where the vector (X, Z, &, --- &,) satisfies Assumption A.2.

The characteristic distribution of the economy & = (o7, ¢, X, 7) is a
measure pe € #(R.2%), defined by the usual formula, pg(B) = #e Y(B)/# -,
for every Borel subset B of R, 2.

A sequence of economies &, = {7, e, X", Z"} will be called competitive,
if it satisfies the following conditions:

(B.1) #o" = n-> oo,

(B.2) There exist two random variables X e 4", Ze 4", such that
for all n, X» = X and Znjn — Z.

(B.3) There exists a closed rectangle [p, p] x [s*, 5] in the interior
of R,2, such that for all n, e"(/™) C [p, p] X (s, 52].

(B.4) The sequence of characteristic distributions {me } converges
weakly to a measure € A(R,2).

If one writes p,(n), 5;%(n) for the characteristics (i) of agent i € &7", one
obtains:
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PRrRoOPOSITION 5.1. Let {£,} be a competitive sequence of economies. Any
solution Q,(n), i € /" of Egs. (8a) for economy &, satisfies

Qin) = ! ) + o(l/n), iesIn

pdn) s;

Proof. See the Appendix.

Further let Z(#), 4%(n) denote the mean and variance of total supply 27,
and let Z*, 4*2 denote the mean and variance of per capita supply Z.
Clearly, (B.2) implies Z(n) = nZ* and 42 = n2 4*2,

With obvious notation, write the market-clearing price for economy &,
under the rational expectations hypothesis A.3 as

P = my(n) + Z wi(n) §;* — y(n) Zn,
ted”
In the Appendix, I prove:
PROPOSITION 5.2. Let {&,} be a competitive sequence of economies and let

{p" be a corresponding sequence of market-clearing prices under A.3. Then
the sequence { B} converges in probability to p* = =¥ + w*X — y*Z, where

% XA*24% + g2Z*A*B*
To = ix %2 T o2B* A% | oP4*B*2

O.2B*A*2 + 0.2A*B*2
- A*A*Z + 0.2B*A*2 + O.2A*B*2 b4

o2A*2 4 g2A*B*
ATy I T o2B*A*2 1 2A*B*°

A*Ef,l)dp, B*Ef———dy.

As the number of agents becomes large, the weights w,(n) converge to zero.
Individual agents can no longer affect the price. This has two important
consequences: First, the relative weights

m(n) _ Qi)
(1) Qi(n)

of signals given to two agents i, j become approximately equal to pi(n) s(n)/
pi(n) s2(n). As m(n) converges to zero, the covariance between the noise
&m and the equilibrium price " disappears. The relative importance of an
agent’s information becomes inversely proportional to his degree of risk
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aversion. The aggregation of information in a large market depends on
agents’ preferences as well as on the precision of their signals.

Second, as the number of agents increases, the equilibrium price comes
to depend only on the actual return X, which is the common element in all
the signals ;. The noises & disappear from the equilibrium price, by the
weak law of large numbers. This is an instance of the well known result that
individual uncertainty does not affect the equilibrium price in a large economy
(see, e.g., Malinvaud (1972)). In the more general case where the common
element in the individual signals ¥, involves some noise S, so that 7, =
X + § + ¢, the equilibrium price will depend on § as well as X, but the ¢,
will still cancel out.

In summary, Propositions 5.1 and 5.2 suggest that communication through
the market relies on the presence of a large number of independent sources
of information. Because of differences in preferences, the equilibrium price is
not, in general, an “efficient” aggregator of information. However, this
inefficiency is irrelevant, if the market draws on many independent sources
of information, so that individual errors cancel out.

Even so, individuals cannot actually read X off the equilibrium price.
Because of the noise in supplies, they cannot distinguish whether a high
price is due to a high realization of X or a low realization of Z. Therefore,
they find it worthwhile to draw information from their own signal as well as
the price. Formally one has:

PROPOSITION 5.3. Let p* be the equilibrium price as in Proposition 5.2,
and let 5 — X 4 é e & be a signal with E¢ = 0, Ee* = 5%, E¢Z = 0. Given
a realization (y, p) of the random pair (§, p*) the posterior mean and variance
of returns are

*2 *2

E(le,P)zj)«[B*z X + oy 4 o2 2T T Y ]’

X

] A *2
Var(X [y, p) = D B s2q?,

where

A*2 A*Z
D = —B*2 o? + B 52 + 0'252,

and ©¥, w*, y*, B* are the coefficients defined in Proposition 5.2.

Proposition 5.3 shows the importance of preferences for the communica-
tion of information through the market. The distribution of degrees of risk
aversion and of signal variances determines the coefficient B* = [ (1/ps?) dp.
This coefficient is equal to the ratio =*/y* of the weights of X and Z in the
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equilibrium price. For given variances o2, 4*%, this ratio determines the
relative contributions of X and Z to variations in the equilibrium price.
The point is that the strength of agents’ reactions to their signals—and
implicitly to X —is inversely related to both their degree of risk aversion and
the level of noise in their signal. If agents are less risk averse, variations in X
will lead to larger variations in asset demands, which in turn induce larger
variations in the equilibrium price.

The larger the coefficient B*, the more reliable the market as a means of
communication. If variations in the equilibrium price arise mainly from
variations in the return, there is little chance that a given price change will
reflect a change in supply rather than a change in return. Therefore, agents
can rely heavily on the price as a source of information.

From this point of view, the ratio 4*2/B*2 in Proposition 5.3 is a natural
measure of the level of noise in the market communication process. The
smaller the ratio 4*2/B*2, the more attention agents pay to the price and the
less to their own signals. Then also the posterior variance of returns decreases.
There is no noise in the market, if either 4*%2 = 0 or B*2 = oo. The latter
situation arises when a positive set of agents is risk neutral and reacts so
strongly to its information that variations in supplies have no effect on the
price (y* = 0). In this case all agents can actually infer the realization of
returns from the price.®

APPENDIX
Proof of Lemma 3.4
By Lemma 3.1,
z 1
< .
Q 121 pkskz

Hence, from (8a),

i 0% + 4% — Q,0s?
L k=1

k1 PrSk < 20 2 2 . .22
]Z Qk St + A Ql S5
k=1
n 271 ) — ) 5.2
— I:Z stzz:l 1 — B Qz(Q Qz) Si
=1 PrSk S Qs + 4 — Q2
k=1

s However, one again has the paradox that agents inferring the realization of X from the
price pay no attention to their own signals, so that the question is, Why should the price
reveal the realization of X in the first place.
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)
| x=1 PxSE”

>y pisit | 1 — 040 — Q) s
ké:i Qi’si’

Q: & s
1 —
ps | [1 . Q; y Si"] — o ch="1 5°
PiSK? o i pis® (1 o Qi) ’
Ko PeSi? Q

where the last inequality is based on the fact that 3., Qy’s2 >
(Q — Q2w Usi”
Multiplying by

AV}

" n
)
L k=1

5 s (-9

3
k=1 PrSk

and rearranging terms, one has

0; [ < PiSi2 = Siz] 02 ¢ pis®
Li |y P > 1+ > 1,
Q 12‘1 PiSi® kgl 57 0 2 pesid

and the lemma follows immediately. ' Q.E.D.
Proof of Proposition 4.1
Define L - Yy Ou2si + 42 and rewrite (9) as

Qipis® _ (L — Qi0s)L — O)%s®) )
0ip;si® (L — Q&L — 0,052 °

Further, define
M = (L — Q.0s(L — Q) — (L — Q)L — 0;0s7)
and note that, by Lemma 3.1 and Corollary 3.2,
Qipisi® = Qipssi® as M=0. 9"

(a) Let p, =p;, 52 >s52 and suppose that Q, > Q;. Then one
calculates

M= Q[0 ~ 0)(s2 = sAL + (@5 - Q@ - Q: - @) sAL + 0:0;0555,1 < 0.

Now (9”) implies Q,p;s.2 << Q,p;s5,% hence Q; < Q;, a contradiction. There-
fore, O, + @, , hence =,y < m;/y. From (8b), y > 0, hence =, < ;.

“ To see this, minimize Z:;é, Q:%s:? subject to Z:;“ Or =0 — 0.
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(b) Let p;=>p;, 52 =s" and suppose that p,Q0; < p;Q;. Then
Q; > Q. , hence M > 0 and by (9"), p;Q; > p;Q; , a contradiction. Therefore
p:Q: < p;Q; and p;m; > p;m; because y > 0, again by (8b).

(c) Letp;, = p;, 52 = 52 and suppose that 5,2Q; > 5,2Q; . Rearranging
terms in the expression for M, one has

M = (Qis# — QusHNQ — Q) L — (Q; — Q)L — Q,057) Q52 <0,

because Q; = @;, by (a), and L > Q,0s2 by Corollary 3.2. Now (9")
implies Q;s,% << Q;s,2, a contradiction. Therefore 52Q; 3 5,20, and s.%m; <
s;2w; , because y > 0 by (8b).

The sharpening of the conclusions when the inequalities in the premises
are strict is proved by the same argument. Q.E.D.

Proof of Proposition 5.1

From (8a) and Lemma 3.1 one has

() Qi) pul) sm) < 1,
(@) Qi) pi) 5200 = 1 = Q) 55) T Quln)/ %)
keg™
1 . :
Ny L O LR N
1

1
=1— ;_ngzd*z ’

by (B.2) and (B.3).
Q.E.D.

Proof of Proposition 5.2
For any n, define

1 1 1 1
A(n) = - —, B(n) = - e Ty
R I M A I > O )
Using (B.2) and Proposition 5.1 to substitute for Z(n) = nZ*, 4%(n) = n? 4*2
and Q;(n) = 1/p(n) s,2(n) + o(1/n) in (8b) and (8¢c), one has, by elementary
algebra

. a24*2 + 524(n) B(n)
M) = AT + BB A7 -+ oA Bl
_ XA(n) 4% + o*Z*A(n) B(n)
") = A% 4(n) + 2By A7 + o*A(r) B

+ o(1/n),

-+ o(1/n).
Note that

1 1
A(n) = J . dug, and B(n) = J‘;—SE dug, ,
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so that (B3) and (B4) imply lim,_,, 4(n) = A* and lim,,_,, B(n) = B*. Then
one has lim,.. my(n) = #¥, lim,,,, y(n) = y*, and lim, o X sexn m(n) =
lim,, . 2 icarn Qz(n)')’(n) = limy . Yican Qi) lim, ., ny(") = B*'}’*, by
Lemma 5.1.

Rewriting the equation for ™ as

N . VAL
P = my(n) + Z m(n) X+ Z mn) & — y(m) n -
ief® ief”
one sees that the proposition follows, if Y ;.= 7,(n) &" converges to zero in
probability. To prove the latter statement, it suffices to note that 3 o m,(n)é;™
has mean zero and variance

S ) s2n) = o) nf oy T QU 5)

iex/® iedm

~ 60 Y, ey + 0 )

ied™

< (y(m) n)z% [# + o (1)],

n

which converges to zero as n — o0. Q.E.D.
Proof of Proposition 5.3

The proposition follows from normal distribution theory (Raiffa and
Schlaifer, 1961, p. 250) after noting that the triple (X, 7, #*) is normally
distributed with mean (X, X, =¥ + #*X — y*Z*) and variance-covariance
matrix:

o? o2 kol
o o* -+ s? 7¥o? ) Q.E.D.

w*c2 w*c2 w*2g2 + ,},*24*2
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