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Market Fragmentation’

By DANIEL CHEN AND DARRELL DUFFIE®

We model a simple market setting in which fragmentation of trade
of the same asset across multiple exchanges improves allocative effi-
ciency. Fragmentation reduces the inhibiting effect of price-impact
avoidance on order submission. Although fragmentation reduces
market depth on each exchange, it also isolates cross-exchange
price impacts, leading to more aggressive overall order submis-
sion and better rebalancing of unwanted positions across traders.
Fragmentation also has implications for the extent to which prices
reveal traders’ private information. While a given exchange price is
less informative in more fragmented markets, all exchange prices
taken together are more informative. (JEL D47, D82, G14)

In modern financial markets, many financial instruments trade simultaneously
on multiple exchanges (Budish, Lee, and Shim 2019; Gresse 2012; Pagnotta
and Philippon 2018). This fragmentation of trade across venues raises concerns over
market depth. One might therefore anticipate that fragmentation worsens alloca-
tive efficiency through the strategic avoidance of price impact, which inhibits ben-
eficial gains from trade (Vayanos 1999, Du and Zhu 2017). Fragmentation might
seemingly, therefore, lead to less aggressive trade, which could in turn impair the
informativeness of prices, relative to a centralized market in which all trade flows
are consolidated. Perhaps surprisingly, we offer a simple model of how fragmen-
tation of trade across multiple exchanges, despite reducing market depth, actually
improves allocative efficiency and price informativeness.

In the equilibrium of our market setting, the option to split orders across different
exchanges reduces the inhibiting effect of price-impact avoidance on total order
submission. Though market depth on each exchange decreases with fragmentation,
the common practice of order splitting allows traders to shield orders submitted to a
given exchange from the price impact of orders submitted to other exchanges. This
effect is sufficiently strong that fragmentation increases overall order aggressiveness.
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This in turn leads to a more efficient redistribution of unwanted positions across
traders and causes prices, collectively across all exchanges, to better reflect traders’
private information. Once fragmentation is sufficiently severe, however, any addi-
tional fragmentation can cause trade to become foo aggressive, from the perspective
of allocative efficiency. However, at least in the simple one-period version of our
model, any degree of fragmentation is welfare-superior to a centralized market.

Our model abstracts from some important aspects of functioning financial mar-
kets. In particular, we do not consider the impact of fragmentation on exchange
competition or transaction fees.! We also ignore the adverse impact of sniping by
fast traders (Budish, Cramton, and Shim 2015; Malinova and Park 2019; Pagnotta
and Philippon 2018). Given these and other limitations of our model, we avoid tak-
ing a policy stance on fragmentation. Our primary marginal contribution is to iden-
tify a potentially important distinct economic channel for the welfare implications
of market fragmentation.

We now briefly summarize our model and the main results. A single asset is
traded by N strategic traders participating on E exchanges. Before each round of
trade, each strategic trader has a quantity of the asset which is privately observed.
Each trader submits a package of limit orders (forming a demand function) to each
of the exchanges, simultaneously. As in common practice (Wittwer 2021), orders to
a given exchange cannot be made contingent on clearing prices at other exchanges.
The objective of each strategic trader, given the conjectured order submission strate-
gies of the other traders, is to maximize the total expected discounted cash compen-
sation received for executed orders, net of the present value of asset holding costs
that are quadratic in the trader’s asset position, as in the one-exchange model of Du
and Zhu (2017).

At each exchange, “liquidity traders” submit nondiscretionary market orders. The
aggregate quantities of market orders submitted by liquidity traders to the various
exchanges are exogenous random variables, independently and identically distrib-
uted across exchanges and periods. In a one-period setting, we also consider a ver-
sion of the model with no liquidity traders, and a version in which liquidity traders
who are local to each exchange are strategic with respect to order quantities. In
any version of the model, because agents’ preferences are quasilinear in cash and
because total cash payments net to zero by market clearing, an unambiguous mea-
sure of allocative efficiency is the expected discounted sum of strategic traders’
asset holding costs.

Price impact is increased by market fragmentation because of cross-exchange
price inference, by which traders choose order submissions in light of the positive
equilibrium correlation between exchange prices. For example, conditional on a
clearing price on a given exchange that is lower than expected, a buyer expects to be
assigned higher quantities on all exchanges. This effect dampens the aggressiveness
of order submissions, which reduces market depth and heightens market impact,
relative to a single-exchange setting. Despite this reduction in market depth, the
ability to split orders across exchanges ensures that, in equilibrium, each strategic
trader’s overall order submission is more aggressive, resulting in a more efficient

! As shown by Budish, Lee, and Shim (2019), transaction fees are economically small.
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allocation.? This natural implication of fragmentation is novel to this paper, as far
as we know.

We solve both static and dynamic versions of the model. In the static model,
as the number of exchanges increases, the equilibrium allocation becomes more
efficient until a point at which trade becomes “too aggressive.” We find that the
socially optimal number of exchanges depends only on (i) the number of strategic
traders and (ii) the ratio of the variance of the endowments of strategic traders to the
variance of liquidity trade. We show that when there are more exchanges, the price
on any individual exchange is less informative of the aggregate asset inventory of
strategic traders, the key “state variable” of our model, yet the exchange prices taken
together are more informative. Although allocative efficiency is maximal for a finite
number of exchanges, price informativeness always improves with the number of
exchanges.

In the dynamic version of the model, we show that market fragmentation still
allows efficient trade, despite the associated cross-period cross-exchange price
impact and despite within-period price impact that is even higher than in the static
model. We do not solve for an equilibrium of the dynamic model for an arbitrary
number E of exchanges, given the difficult-to-solve infinite regress of beliefs about
beliefs concerning the aggregate asset inventory of strategic traders. Rather than
addressing equilibria for general E, we instead construct an equilibrium for a spe-
cific number E of exchanges with the property that the associated equilibrium is per-
fect Bayesian and implements efficient trade. This equilibrium is tractable because
efficient trade dramatically simplifies the inference problem of each trader, given
that the sum of exchange prices perfectly reveals the aggregate inventory after each
round of trade. We find that the efficient number of exchanges is invariant to trading
frequency, and is the same as that of the static model.

The remainder of the paper is organized as follows. Section I provides additional
background on exchange market fragmentation and related research. Section II
gives the setup of the most basic version of our model. Section III characterizes
properties of the equilibrium. Section IV presents the implications of fragmentation
on price impact, allocative efficiency, and price informativeness. Section V studies
a formulation of the model in which traders observe the aggregate asset endowment
before order submission. Section VI solves for the efficient number of exchanges
in a dynamic formulation of the model with cross-period cross-exchange inference.
Section VII summarizes the results of various model extensions. Section VIII offers
some concluding remarks and discusses some potentially important effects that
are not captured by our model. The online Appendix contains proofs and model
extensions.

I. Background
We focus in this paper on “visible fragmentation,” that is, fragmentation across

different lit exchanges (meaning trade venues at which market-clearing prices
are set), rather than fragmentation between lit exchanges and size-discovery

2 A precise degree of market fragmentation that we characterize can even achieve a perfectly efficient allocation.



2250 THE AMERICAN ECONOMIC REVIEW JULY 2021

venues, which cross buy and sell orders at prices that are set on lit exchanges
(Korber, Linton, and Vogt 2013; Zhu 2014; Degryse, de Jong, and van Kervel 2015;
Duffie and Zhu 2017; Antill and Duffie forthcoming).

In Europe and the United States, exchange trading is highly fragmented. Budish,
Lee, and Shim (2019) document that in the United States, as of early 2019,
annual trade of about one trillion shares is split across 13 US exchanges, and that
cross-exchange shares of total exchange-traded volume are stable over time, with
5 exchanges each handling over 10 percent of total exchange volume. Essentially
all equities trade on every exchange, with significant volumes of each equity exe-
cuted on multiple exchanges.? Broadly speaking, similar patterns apply to European
financial markets (Gresse 2012; Degryse, de Jong, and van Kervel 2015; Foucault
and Menkveld 2008). This high degree of trade fragmentation is in part a conse-
quence of regulations such as Regulation NMS in the United States and MiFid II in
Europe, which encourage exchange entry and competition.

There has been a longstanding debate (Stoll 2001) over whether fragmenting
trade across exchanges harms market efficiency, in various respects. Empirical find-
ings have been mixed (O’Hara and Ye 2011, Gomber et al. 2017). Some researchers
find that fragmentation has generally been beneficial. For example, O’Hara and Ye
(2011), using data from US trade reporting facilities, find that execution speeds are
faster, transaction costs are lower, and prices are more efficient when the market
is more fragmented. Degryse, de Jong, and van Kervel (2015) analyze a sample
of Dutch stocks and measure the degree of visible fragmentation. They find that
liquidity, when aggregated over all lit trading venues, improves with fragmentation.
Foucault and Menkveld (2008) analyze Dutch stocks and arrive at a similar conclu-
sion. Boehmer and Boehmer (2003) find evidence of improved liquidity when the
NYSE began trading ETFs that are also listed on the American Stock Exchange.
Gresse (2017); De Fontnouvelle, Fishe, and Harris (2003); Aitken, Chen, and Foley
(2017); Hengelbrock and Theissen (2009); Félez-Viiias (2017); and Spankowski,
Wagener, and Burghof (2012) generally find that visible fragmentation reduces
bid-ask spreads.

Other research, however, suggests less beneficial effects of fragmentation. For
example, Bennett and Wei (2006) find that when equity trading migrated from
NASDAQ to the NYSE, where trade is more consolidated, there was a decrease in
execution costs and an improvement in price efficiency. Chung and Chuwonganant
(2012), show that price impact increased following the introduction of Regulation
NMS.? Gentile and Fioravanti (2011, p. 5) find that MiFID-induced fragmentation
“does not have negative effects on liquidity, but it reduces price information effi-
ciency.” Moreover, in some cases it leads primary stock exchanges to lose their
leadership in the price discovery process.” For small-firm equities, Gresse (2012,
2017) and Degryse, de Jong, and van Kervel (2015) find that market depth declines
with sufficient fragmentation, consistent with our theoretical results. Bernales et al.
(2018) find that the 2009 consolidation of Euronext’s two distinct order books
for the same equities was followed by a reduction in bid-offer spreads. Haslag

3 Pagnotta and Philippon (2018) and Budish, Lee, and Shim (2019) display the striking facts graphically.
4In our model, as we have noted, fragmentation indeed increases price impact, yet also increases allocative
efficiency and overall price informativeness.
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and Ringgenberg (2020) find causal evidence that although fragmentation reduces
bid-offer spreads for the equities of large firms, the opposite applies to small firms.

While the empirical evidence regarding the implications of fragmentation is
mixed, most of the theoretical literature has shown that visible fragmentation
is harmful. For example, Mendelson (1987) shows that fragmentation may iso-
late individuals for whom there are mutually beneficial trades, because they are
located at different venues. Chowdhry and Nanda (1991) show that adverse selec-
tion caused by asymmetric information worsens as markets fragment. Baldauf
and Mollner (2021) find that welfare is harmed by the ability of fast traders to
snipe across fragmented markets. Pagano (1989) shows that fragmented markets
are less stable, in that traders tend to participate at market venues at which liquid-
ity is greatest. However, regulations promoting exchange competition may foster
fragmentation.

There are few theory papers demonstrating that fragmentation may be beneficial.
Of these, Kawakami (2017) shows how splitting investors across multiple exchanges
can improve allocative efficiency because the resulting reduction in correlation in
asset price and asset payoff can in some cases sufficiently improve the hedging
effectiveness of trading. Malamud and Rostek (2017), perhaps the closest paper
to ours, considers a multi-exchange demand function submission game in which
each exchange operates a double auction as in our model. They find that in certain
settings, when agents’ risk preferences are sufficiently heterogeneous, fragmented
markets can produce outcomes that are welfare superior to centralized markets.

A key difference is that Malamud and Rostek (2017) allow traders to condition
their demand schedules at a given exchange on prices at other exchanges on which
they participate (fully contingent demand). Because of this assumption, fragmen-
tation may improve allocative efficiency in their model only if there is limited par-
ticipation by traders across exchanges. In our model, strategic traders are allowed
to submit orders to all exchanges. In their Example 2 and Proposition 4, Malamud
and Rostek (2017) show a benefit of fragmentation for some asset endowments
based on (i) partitioning investors across the economy’s two exchanges and (ii) dif-
ferences in risk aversion. Though they later show that welfare improvements may not
require such an extreme form of limited participation, cross-exchange price infer-
ence, by which traders use the price in one exchange for inference regarding prices
on other exchanges, does not play a role in their work as it does in ours, because
they allow for fully contingent demand. For the special case of no aggregate endow-
ment risk, Proposition 5 of Malamud and Rostek (2017) shows that fragmentation
via limited participation always lowers welfare if there is a single asset (though this
not necessarily the case when there is nonzero aggregate endowment risk or there
are multiple assets and sufficient risk-aversion heterogeneity). In our model, the
allocative efficiency gains from fragmentation arise for different reasons. Namely,
because demand in an exchange can only be made contingent on the price within
the exchange, there is no-cross exchange price impact. Thus, when splitting trade
over more exchanges, the purchase of an additional unit on any given exchange
affects the price on a smaller fraction of the total quantity traded. With imperfectly
correlated prices, the weakening of cross-exchange price inference effects (as dis-
cussed in our introduction) ensures that price impact does not rise quickly enough
with fragmentation to offset this beneficial effect of order splitting.
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In practice, when mitigating price impact, strategic traders use strategies that split
their “parent orders” both across exchanges and also across time.” In equilibrium,
however, the effects of allowing more frequent trade and having more exchanges
are not necessarily substitutes for improving allocative efficiency. For example, in
the models of Vayanos (1999) and Duffie and Zhu (2017), increasing the frequency
of opportunities to split trades worsens allocative efficiency, because equilibrium
trade aggressiveness declines faster than trading frequency grows.d In Section VI,
we allow both cross-exchange and cross-time order splitting. We find that the num-
ber E* of exchanges that achieves an efficient reallocation of the asset at each trad-
ing date is invariant to the frequency of trade. Thus, when there are E* exchanges
(the only case that we are able to solve), more frequent trade improves allocative
efficiency.

The majority of theoretical papers assume that traders are restricted to trade on a
strict subset of all trading venues.’ It seems natural to assume that traders who are
strategic about their price impacts are also aware of the option to trade on multi-
ple exchanges simultaneously. The costs of order splitting are economically small
(Budish, Lee, and Shim 2019). “Smart order routing technology” makes order split-
ting convenient and practical (Gomber et al. 2016). In our model, strategic traders
frictionlessly trade on all exchanges. There is evidence (Malinova and Park 2019,
Menkveld 2008, Chakravarty et al. 2012, Gomber et al. 2016) that some inves-
tors strategically split their orders across multiple exchanges, and also between
exchanges and size-discovery venues such as dark pools.

Methodologically, our model contributes to the literature on demand-function
submission games, including work by Wilson (1979), Klemperer and Meyer (1989),
and Malamud and Rostek (2017). Within this literature, our paper, like Wittwer
(2021) and Rostek and Yoon (2020), addresses markets with multiple exchanges.
While Wittwer (2021) and Rostek and Yoon (2020) focus on the welfare impli-
cations of connecting exchanges through the ability to submit orders contingent
on cross-exchange prices, we consider only the common case in practice of “dis-
connected markets.” As opposed to Wittwer (2021) and Rostek and Yoon (2020),
we focus on the implications for allocative efficiency and price informativeness of
increasing the number of exchanges (fragmentation), and we include a dynamic
analysis that captures the implications of cross-time cross-exchange price impact,
showing that enough fragmentation can achieve allocative efficiency.

Since the work of Hamilton (1979), the literature has explored the key ten-
sion between the benefit of fragmentation associated with increased competition
between exchanges and between specialists, which drives down bid-offer spreads
and trading fees, as suggested by the theory of Rust and Hall (2003), versus the cost
of fragmentation associated with decreased market depth.” Although fragmentation
does indeed reduce market depth in our model, consistent with earlier work, we

5On this point, we interviewed experts in order execution strategies at two large asset managers. Van Kervel,
Kwan, and Westerholm (2020) provide evidence on order splitting behavior, by which traders with large parent
orders learn over time about the presence of large parent orders of other traders.

%In a somewhat different setting, Du and Zhu (2017) show there can be a welfare-optimal trade frequency.

7For instance, Mendelson (1987), Pagano (1989), Kawakami (2017), Malamud and Rostek (2017), and many
others make this assumption.

8 For a recent empirical contribution exploring this trade-off, see Haslag and Ringgenberg (2020).
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believe that we are the first to point out the benefit of fragmentation associated
with increased aggregate order aggressiveness, arising from the ability of strategic
traders to shield orders on a given exchange from price impacts incurred on other
exchanges.

II. Baseline Model

This section presents the setup of our baseline model. All primitive random vari-
ables are defined on a complete probability space (Q,]—",Pr). There is a single asset
with a payoff, denoted 7, that is a finite-variance random variable with mean fi,.

We model a market whose agents, called “traders,” are of two types: “liquid-
ity” and “strategic.” For notational simplicity, we let N denote both the finite set
of strategic traders and its cardinality, which is assumed to be at least 3. The only
primitive information available to strategic trader i is the trader’s own endowment
of the asset, X; ~ N(O, 0’%). We assume that endowments are independently and
identically distributed (i.i.d.) across traders.

Trade of the asset takes place in a single period on each of a finite number of
identical exchanges. For notational simplicity, we let E denote both the set and num-
ber of exchanges. Each exchange runs a double auction. Strategic trader i submits a
measurable demand schedule f,, : R? — R to exchange e specifying the quantity
fie(Xi, p) of the asset demanded by trader i at any given price p € R on exchange e. We
emphasize that the demand schedule submitted to a given exchange cannot depend
on prices (or any other information) emanating from the other exchanges. A demand
schedule can be viewed as a package of limit orders, each of which is an offer to
purchase or sell a given amount of the asset at a given price.” Liquidity traders col-
lectively submit an exogenously given quantity O, ~ N (0, 02Q /E ) of market orders
to exchange e.

We assume that the supply of market orders is i.i.d. across exchanges and that
{X;|i € N}, {Q.|e € E}, and 7 are independent. We relax these distributional
assumptions in Section V and in extensions considered in online Appendix Section
H. An interpretation of these assumptions on liquidity trade is that a large set of
liquidity traders, not depending on the number of exchanges in operation, are spread
evenly across exchanges and trade independently of one another.

The independence of liquidity trade across exchanges ensures that equilibrium
prices are not perfectly correlated across exchanges, which is crucial for our results.
If prices are perfectly correlated across exchanges, there would be no beneficial
effects of fragmentation. From a practical viewpoint, the assumption that liquid-
ity trade is not perfectly correlated across exchanges can be motivated by assum-
ing that liquidity traders are local to an exchange, in the sense that they do not
have the sophistication or trading accounts necessary to split their orders across all
exchanges. Online Appendix Section H shows that it is enough for our main results
to assume imperfect correlation of liquidity demands across exchanges, a weakening

In this sense, f(X,-, p), if positive, is the aggregate quantity of the limit orders to buy at a price of p or higher,
and if negative is the aggregate quantity of the limit orders to sell at price of p or lower. The space of linear combi-
nations of limit orders is dense, in the sense of Brown and Ross (1991), in the space of technically regular demand
functions.
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of independence. In a multiperiod setting, the key requirement that prices are not
perfectly correlated across exchanges might be motivated by the notion that liquid-
ity trades are not perfectly synchronized across exchanges.

Given a collection f = { fieli € Nye € E} of demand schedules, the price on
exchange e, if it exists and is unique, is the solution'? p/ to the market-clearing
condition

(1) _GZNﬁe(Xi’p‘g = Q..

If there does not exist a unique market clearing price, we assume that no trades are
executed. We restrict attention to equilibria consisting of demand schedules with the
property that p/ is uniquely determined.'! Based on (1), trader i is able to determine
the impact of his own demand on the market-clearing price given the conjectured
demand schedules of the other traders.

The preferences of the strategic traders are quasilinear in cash compensation, with
a quadratic holding cost. Specifically, given a collection f = { fieli € Nye € E} of
demand schedules, the payoff of trader i is

UlF) = (Xi+ 2 felXpd) = b (X 3 fulXupD)) = 2 pfelXipd),

for some b > 0. The quadratic term represents a cost for bearing the risk or other
costs associated with holding a post-trade position in the asset. Preferences of
this form are popular in the market microstructure literature (Vives 2011, Rostek
and Weretka 2012, Du and Zhu 2017, Sannikov and Skrzypacz 2016). Sannikov
and Skrzypacz (2016) provide a microfoundation.

An equilibrium is defined as a collection f = {f,|i € N,e € E} of demand
schedules with the property that, for each strategic trader i, the demand sched-
ules f; = {fi.]e € E}solve

SQPE[U,-(ﬁf_,-)],

where as usual f_; denotes the collectlon { filJ # z} of other traders’ demand sched-
ules. This is a typical demand-function submission game in the sense of Wilson
(1979) and Klemperer and Meyer (1989), extended to allow for multiple exchanges.
Multi-exchange demand function submission games were earlier analyzed by
Malamud and Rostek (2017) and Wittwer (2021).

We conclude this section with an interpretation of the distinction between stra-
tegic and liquidity traders. A strategic trader may be viewed as an agent who is
sophisticated, internalizes price impact, is able to easily split orders across multiple
trading venues, has a relatively low aversion to owning assets, and has a relatively
large initial endowment of the asset. A liquidity trader, on the other hand, may be
viewed as an agent who is not sophisticated about price impacts, has high aversion
to holding assets (thus exercising no discretion in the liquidation of the assets), and

19 That is, p/ is a random variable such that for each state w € €,y ,-‘,( Hw), X(w)) = QO w).
"'For this, it suffices that, for each x € RY, the aggregate demand function p — Y_; f,, p.x;), which is mono-
tone, is strictly monotone, continuous, and unbounded below and above.
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has a small initial asset holding, and who therefore submits market orders with no
price sensitivity. Liquidity traders are a typical modeling device for settings such
as ours in which one wishes to avoid perfect inference of fundamental information
from price observations. In our case, the fundamental information to be inferred
does not concern asset payoffs but rather the aggregate endowment of strategic trad-
ers. Traders have payoff-relevant private information about their own endowments
but no private information about asset payoffs. We will show that our main results
are not driven by the effect of “donations” from liquidity traders to strategic traders.

III. A Symmetric Affine Equilibrium

We will demonstrate the existence and uniqueness of a symmetric affine equilib-
rium defined by demand schedules of the form

(2) fie(vai) = Ap—agX; — (gD,

for constants Ag, o, and ( that do not depend on the trader or particular exchange,
but do depend on the number E of exchanges.

Using (1) it can be shown that the slope of the inverse residual supply curve fac-
ing each agent on each exchange is

- 1

(3) Ag N=1)¢
We refer to Ay as inverse market depth, or simply as “price impact.” Each strate-
gic trader is aware that by deviating from the equilibrium demand schedule and
demanding an additional unit on a given exchange, the trader will increase the
market-clearing price on that exchange by Ag. Price impact is a perceived cost to
each strategic trader, but is not a social cost because the payment incurred by any
trader is received by another. As emphasized by Vayanos (1999), Rostek and Weretka
(2015), and Du and Zhu (2017), the strategic avoidance of price impact through the
“shading” of demand schedules is socially costly because it reduces the total gains
from the beneficial reallocation of the asset.

Taking price impact as given, in equilibrium trader i selects a demand schedule
for exchange e such that the quantity purchased equates his marginal benefit with his
marginal cost for each realization of the price p, on the exchange, in that

(4) Mg — 2b (Xl +ﬁ€<Xi’p€) + E ]; ﬁk(Xi’pe) |Xi’pe]> = De + AEfie(Xi’pe>'

Condition (4) would be different if each trader i could condition his demand on
the realizations of prices on all exchanges on which i participates, as in Malamud
and Rostek (2017). Firstly, there would be cross-exchange price impact, so the mar-
ginal cost of purchasing more of the asset would account for the effect of price
impact for all units traded, as opposed to just those units traded on exchange e.
Secondly, given all exchange prices, the choice by trader i of how much to purchase
on exchange ¢ would be made with perfect foresight of the quantities that he will
purchase on the other exchanges. In contrast, when trader i can condition demand
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only on the price on exchange e, he is uncertain about the total quantity purchased
on the other exchanges, provided that the variance 02Q of liquidity trade is not zero.
In order to evaluate the marginal benefit of purchasing an additional unit, he must
form a conditional expectation of this quantity. As we will soon show, this gives
rise to significant implications of fragmentation that are not present in a model
in which demands can be conditioned on contemporaneous cross-exchange price
information.

Based on the demand schedule (2), the final asset position of strategic trader i is

2en Xi Yeer O.

N TN

(5) (1-Eap)X;+Eag

As the market setting changes to one in which Eay is higher, traders retain less
of their own endowments and absorb more of the aggregate endowment. Because
of this, we refer to Eay as order aggressiveness. Indeed, increasing Eay in a
multi-exchange setting is allocatively equivalent in a single-exchange setting to a
perception by traders of lower price impacts.

Generically in the parameters of the model, the equilibrium allocation is ineffi-
cient. Given the nondiscretionary liquidation ) .. Q, by liquidity traders, the effi-
cient allocation is one in which each strategic trader receives an equal share of the
aggregate supply of the asset, which is

ecE ieEN
Inspecting (5), this efficient sharing rule corresponds to the case of Eay = 1. By
Jensen’s inequality, Eay = 1 yields the efficient allocation because traders have
symmetric convex holding costs. Because preferences are quasi-linear in cash com-
pensation, this is also the welfare-maximizing allocation, in that any other allocation
would be strictly Pareto dominated by this efficient sharing rule, after allowing vol-
untary initial side payments.

The equilibrium allocation defined by (5) becomes less efficient as |Eap — 1|
increases. This is so because replacing E oy in (5) with a number farther from 1
results in a mean-preserving spread in the cross-sectional distribution of the asset
to strategic traders, state by state. Jensen’s inequality, applied cross-sectionally in
each state w € (2, then implies an increase in the sum across traders of quadratic
holding costs.

The following theorem collects several properties of symmetric affine equilibria.
Of primary interest is the property that in the presence of non-trivial liquidity trade,
the allocation becomes more efficient as market fragmentation E increases, up to
the point at which Eay = 1, and then becomes increasingly less efficient. We will
explore this issue in more depth in Section I'V. Our proof of the theorem, found in
online Appendix Section B, uses equations (2), (3), and (4) to derive a candidate
set of equilibrium demand coefficients (A 5agC E) and then applies the calculus of
variations to verify that these candidate coefficients do in fact uniquely correspond
to an equilibrium.

THEOREM 1: For each positive integer number E of exchanges, there exists a
unique symmetric affine equilibrium. The associated demand-function coefficients
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(Ap, ap, Cg) form the unique solution to equations (B6), (B7), and (B8) in online
Appendix Section B. Moreover:

(&)

(i)

(iii)

(iv)
(v)

(vi)

(vif)

For any E, the market-clearing price on exchange e is
* N—-1
(6) Pe = N AE[NAE_Qe_aEZXi]'
ieN
For any E, the price impact is
2b(1 + v5(E — 1))

(7) AE = N — 2 >
where
®) by = Eagox(N—1)

EOéEax(N— 1) +UQ

If E > 1, g is the correlation between the prices on any two distinct
exchanges from the perspective of any strategic trader i, conditional on X;.

For any E, the final asset position of strategic trader i is given by (5).

If there is no liquidity trading, in that aQ 0, then the equilibrium alloca-
tion does not depend on the number E of exchanges.

IfE = 1lor O'é = 0, then the final asset position of strategic trader i is

X BEEQE
A T N];V *

where Ay = 2b/(N — 2).

Suppose there is liquidity trading, in that 02Q > 0. Then the order aggressive-
ness E oy is strictly monotone increasing in E and converges to N/ (N — 1).
In particular, a market with only one exchange is strictly dominated, from
the viewpoint of allocative efficiency, by a market with any larger number of
exchanges.

Part (vi) of Theorem 1 implies that with a single exchange, the fraction of the
endowment retained by a trader is increasing in the price impact A;. In a centralized
market, price impact avoidance is the only source of allocative inefficiency.'? As we
have described and will later elaborate, the effect of price impact avoidance on alloc-
ative efficiency can be mitigated by increasing the degree of market fragmentation.
In the next section, we analyze the forces behind this and other effects of market
fragmentation. But, as stated in part (vii) of Theorem 1, any degree of fragmentation
is socially preferred to concentrating all trade on a single exchange.

12Otherwise, the proof of the First Welfare Theorem applies.
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IV. The Effects of Fragmentation

We present several predictions of our model, beginning first with the effects of
fragmentation on price impact.

A. Price Impact

Part (ii) of Theorem 1 provides the equilibrium relationship between price impact
and the correlation between exchange prices. This relationship reflects the effect
on trade demand of cross-exchange inference from prices. As seen from (4), the
quantity f;(X;p,) purchased by trader i on exchange e at the price p, depends on
the probability distribution of the quantities that trader i will execute on the other
exchanges, conditional on X; and p,.

To illustrate, suppose for example that in state w € € trader i is a buyer of the
asset at the equilibrium price on exchange e. If the observed price outcome pe(w)
was lowered, trader i would assign a higher conditional likelihood to lower prices
on the other exchanges because strategic traders’ demands are positively correlated
on any two exchanges (which implies a positive cross-exchange price correla-
tion, ). But trader i submits demands to the other exchanges before observing p,.
Thus, the lower is pe(w), the higher is the conditional expected quantity executed
by trader i on the other exchanges. As pe(w) declines, the marginal utility of trader i
per unit purchased on exchange e is also reduced. Due to cross-exchange inference,
the quantity purchased by trader i on exchange e in response to a decrease in price
pe(w) is smaller than would be the case if there was no cross-exchange correla-
tion. Analogous reasoning can be applied to show that, due to cross-exchange
inference, the quantity purchased by trader i optimally on exchange e in response
to an increase in the price pe(w) is smaller than it would be if there was no
cross-exchange correlation. Overall, cross-exchange price inference reduces the
steepness (absolute slope) of the demand schedule of trader i on each exchange.
The result, by (3), is that price impact rises. Because this channel does not exist
with a single centralized exchange, price impact is always higher in a fragmented
market than in a centralized market.

We now discuss comparative-static effects for price impact associated with
a change in the variance aé of liquidity trade and the number E of exchanges.
As aé increases, prices at different exchanges become less correlated, so price impact
declines, eventually converging to that of a single exchange market as 02Q tends to
infinity. Thus, price impact is lower in markets with noisier liquidity trader supply
because the cross-exchange inference channel is weaker. The following proposition
characterizes the dependence of price impact on the number of exchanges.

PROPOSITION 1: The price-impact coefficient A is strictly monotone increas-
ing in the number E of exchanges. If the variance aé of liquidity trade is zero,
then limg_,  Ap = oo. IfUZQ > 0, then

. 2b N?o%
lim A = 1+ ,
E=ootF N_2< (N—1)02Q>
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and for E > 1, cross-exchange price correlation g declines strictly monotonically
as E increases and converges to zero as E — oc.

Proposition 1 states that market fragmentation increases price impact and (with
nontrivial liquidity trade) reduces cross-exchange price correlation. Without liquid-
ity trade (02Q = 0), price impact diverges as the number of exchanges diverges,
because 7y is equal to 1. But with liquidity trade (02Q > 0), price impact converges
to a finite value. Because price impact depends on ny(E — 1), this follows from the
fact that -y, declines at a rate proportional to 1 /E. The intuition is that as the number
of exchanges increases, the expected quantity traded on a given exchange decays
at rate 1/FE, which in turn causes the variability in prices due to strategic traders’
orders to decay at a rate proportional to 1,/E>. Since the variability in prices due to
exchange-specific liquidity trade is o*é /E, this implies that vz must decline at the
rate 1 /E, so that price impact converges.

Figure 1| illustrates the relationship between price impact and the number of
exchanges, for different cases of the number N of strategic traders. As illustrated,
price impact converges faster when there are more strategic traders. For instance,
consider the case of b = 1/2, N = 5,and E = 100. Without liquidity trade, price
impact is roughly Ay = 33. However, with 02Q > 0 and strategic traders whose
endowments are 10 times more uncertain (in terms of variance) than aggregate
liquidity trader supply (in that 0%/0p = 10), price impact drops to approximately
10. As 0)2(/ 02Q falls below 10, ~ is reduced and, because of this, price impact is
further reduced.

B. Allocative Efficiency

We have just shown that price impact is higher in more fragmented markets.
However, Theorem 1 tells us that, provided there is no liquidity trade (02Q = 0),even
though price impact diverges as E tends to infinity, total trade aggressiveness is unaf-
fected and the equilibrium allocation remains constant. Moreover, when O'é > 0,
even though price impact increases with fragmentation, total trade aggressiveness
actually increases. One might have expected that the rise in price impact would lead
to a reduction in trade aggressiveness and thus lower allocative efficiency, but this is
not the case. We turn now to a resolution of this superficial paradox.

As fragmentation rises, price impact rises but traders are better able to evade the
overall cost of price impact by splitting their orders across exchanges. This is so
because traders bear the cost of price impact on a given exchange only to the extent
of the trades executed on that exchange. By order splitting, a trader can shield an
order on a given exchange from the price impact of units executed on the other
exchanges. When there are more exchanges, the purchase of an additional unit on
a given exchange affects a smaller fraction of the total quantity traded. When there
is no liquidity trade (02Q = 0) this effect exactly offsets the rise in price impact,
leaving the overall aggressiveness of a trader’s demand invariant to the number of
exchanges. When 02Q > 0, price impact does not rise quickly enough to offset the
effect of increased aggressiveness through order splitting.

As a source of intuition, suppose that trader i purchases ¢/E additional units of
the asset on each exchange, for a total of ¢ units. Because there is no cross-exchange
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FIGURE 1. PRICE IMPACT

Notes: Variation of price impact Ay with the number E of exchanges, for various cases of &, the number of stra-
tegic traders. In all cases, the variance-aversion coefficient is » = 1/2 and the ratio 0%/ (ré of the variance of
strategic-trader asset endowment to total liquidity trade quantity is 10.

price impact, this increases the price on each exchange by Apg/E. Thus, the overall
price-impact cost to trader i is Apg*/E. If the price impact coefficient A, were to
remain constant, an increase in the number of exchanges would reduce the overall
cost of price impact, because of order-splitting. Price impact in fact rises with E, but
overall order aggressiveness depends on Az /E. By part (ii) of Theorem 1,

AE_ 219( 1‘%5)
E T N-2\ETTE )

If the equilibrium cross-exchange price correlation, ~g, is imperfect and
non-increasing in E, then Agq/E is decreasing!? in E. In fact, Proposition 1 states
that if aé > (0, then vz is strictly decreasing in E and ultimately converges to zero.
Intuitively, when prices are imperfectly correlated, the effects of cross-exchange
inference discussed in Section IVA are weakened by market fragmentation, so that
price impact rises less quickly than the number of exchanges. Thus, the dominant
effect on overall aggressiveness is order-splitting, and overall price impact costs
decline with E. As a result, agents trade more aggressively in more fragmented
markets.

Atlow levels of fragmentation, increases in trade aggressiveness are beneficial for
allocative efficiency. But when markets become sufficiently fragmented, additional

13 The assumption that liquidity trade is independent across exchanges ensures v < 1. If liquidity trades were
instead perfectly correlated across exchanges, then vz would be 1 and fragmentation would have no effects on
allocative efficiency.
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increases in aggressiveness are inefficient, in that Eay increases past the point of
efficiency, at which Eaz = 1, rising with ever larger E to the limit N/N — 1. We
emphasize, however, that trade never becomes so aggressive that fragmentation leads
to a loss of allocative efficiency relative to that of a market with a single exchange.

By equation (5), the number of exchanges that maximizes allocative efficiency is
that for which Eay is closest to 1.

PROPOSITION 2: Suppose 02Q > 0. Let

. 2 N—1Nok
9) E *2+N—2+N—202Q'

If E* is an integer, the unique symmetric affine equilibrium for a market with E*
exchanges achieves an efficient allocation of the asset, by allocating an equal amount
q of the asset to each strategic trader. In general, the number of exchanges that max-
imizes allocative efficiency is |E*| or [E™].

By Proposition 2, the optimal number of exchanges is finite, is at least 2, and
depends crucially on the ratio of the variance of the endowment of strategic traders
to the variance of the total amount of liquidity trade, o/ azQ. This ratio determines
the cross-exchange price correlation 7, as seen in equation (8), which in turn deter-
mines price impact. As o/ 02Q rises, price impact is higher, so more fragmenta-
tion necessary to offset the adverse effect of price impact with the beneficial effect
of increasing the number of exchanges over which strategic traders can split their
orders.

It is perhaps surprising that the socially optimal number of exchanges is finite.
For any finite E, price impact costs are positive and only disappear in the limit, in
thatlimg_,, Ag/E = 0.Itturns out, however, that fragmentation introduces an addi-
tional inefficiency beyond price impact. For intuition, consider again equation (4),
which determines the demand of trader i at a given price, p, on exchange e. To eval-
uate the marginal benefit of purchasing additional units, trader i must form a con-
ditional expectation of the quantities that he will purchase on the other exchanges.
To form this expectation, trader i must in turn form a conditional expectation of
the prices on the other exchanges. If prices at distinct exchanges are perfectly cor-
related, then E[pk\X,-, pe] = p, for each exchange k. However, if exchange prices are
imperfectly correlated, then, using (6), it can be shown that

(10) E[Pk | the} = —(1 - VE)N]; 1 AE<aEXi - NAE) + YEPes

for an arbitrary exchange k # e. That is, trader i must use his own endowment X;
to forecast prices on the other exchanges. The effect of using X; for cross-exchange
inference is an increase in oy, the sensitivity of demand with respect to X;.

The intuition behind this is analogous to that of Section IVA, where we explained
why cross-exchange inference leads to a rise in price impact. Holding p, fixed,
if X; is lowered, trader i would expect prices on the other exchanges to rise, as
seen by (10), and thus would expect to purchase less on the other exchanges. The
marginal benefit of purchasing an additional unit on exchange e¢ would then rise.
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As a result, the sensitivity of the quantity purchased by trader i to reductions
in X, is increased by cross-exchange inference. That is, total order aggressiveness o
increases because of the role of X; in cross-exchange inference. This force is not
present in a market with a single exchange. With a single exchange, the allocation
would be efficient if traders ignored their price impact. In contrast, if aé > 0, then
as E tends to infinity, even though price impact disappears, trade eventually becomes
overly aggressive from a welfare perspective.

illustrates the results of this section. As shown, Eq is strictly increasing
in fragmentation and can exceed the socially efficient level. The socially efficient
number of exchanges increases with 0%/ aé.

C. Price Informativeness

Our finding that trade aggressiveness increases with market fragmentation
has natural implications for price informativeness. By price informativeness, we
mean the degree to which prices reveal information about the average endowment
X = ) ienX;/N of strategic traders. This notion is especially relevant when view-
ing our model as though a snapshot of a dynamic market in which liquidity trade
is serially uncorrelated and the aggregate strategic endowment is a persistent
Markov process. In such a setting, the aggregate endowment of strategic traders
is a sufficient statistic for inference regarding future prices and future aggregate
endowments.

Because of the joint normality of prices and endowments in our model, the con-
ditional variance of X given exchange prices is an unambiguous metric for price
informativeness. Our results are summarized in Proposition 3.

PROPOSITION 3: Suppose that the variance Ué of liquidity trade is not zero. Then:

(i) For any exchange e, Var(X | pj) is strictly monotone increasing in the num-
ber E of exchanges and converges to Var(X) as E goes to oo.

(i) Var(}? {pi:e € E}) is strictly monotone decreasing in E.

That is, as market fragmentation rises, the informativeness of the price on any
individual exchange worsens, but overall price informativeness, taking into consid-
eration information from all exchange prices, improves.

V. The Case of Observable Aggregate Endowment

This section presents a simplified version of the model in which the aggregate
endowment of strategic traders is publicly observable. This allows a demonstration
of the welfare benefits of fragmentation in a setting that requires neither liquidity
traders nor Gaussian asset endowments. As before, the equilibrium price on a given
exchange is linear with respect to the aggregate endowment and exchange-specific
liquidity trade. Thus, conditional on the aggregate asset endowment which we now
assume is publicly observable, prices on any two exchanges are uncorrelated, so
traders do not make cross-exchange inferences from prices. This shuts down the
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FIGURE 2. ALLOCATIVE INEFFICIENCY

Notes: We plot equilibrium allocative inefficiency as measured by |1 — Ec;| against the number of exchanges for
different values of the ratio 0%/ o5 of the variance of the endowment of a strategic trader to the variance of the total
amount of liquidity trade. In all cases, the number N of strategic traders is 10. Allocative inefficiency, |1 — Eayl,
does not depend on the variance-aversion coefficient b.

cross-exchange inference channel, allowing an isolated analysis of the welfare ben-
efits of order splitting.

We retain the model setup of Section II with the exceptions that, for any exchange e
and any trader i, (i) Q, and X; are of finite variance but not necessarily normally
distributed (though Q, still has mean zero) and (ii) trader i observes“ the private
endowment X; and the average endowment X. The following theorem characterizes
the equilibrium of this model.

THEOREM 2: For each number E of exchanges, there exists a symmetric affine
equilibrium. If, in addition, for each e, Q, has full support on R, then the equilibrium
is unique in the class of symmetric affine equilibria, and:

(i) The price-impact coefficient Ay = 2b /(N — 2) does not depend on the num-
ber E of exchanges.

4That is, the demand submitted by trader i on exchange e is a measurable function f;, : R? — R that, at any
price p, determines the demand f,e(X,-, X, p)‘
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(ii) For each fixed number E of exchanges:

(a) The price on exchange e is

*x v Qe N—l)
P, = _2b<X+N—2T + fone

(b) The final asset position of trader i is

AE 2bE Xv T ZeeE Qe.

A+ 26BN T A, + 2bE N

(iii) Allocative efficiency is increasing in the number E of exchanges. As E
diverges, the allocation converges to the efficient allocation, q to each strate-
gic trader.

(iv) The total expected equilibrium payment —E[Eee EDs Qe] of liquidity traders
is invariant to the number E of exchanges and is equal to

2bvar(Y. e Q.) N — 1
N-—-2 N -~

In this setting, price impact is a constant that does not depend on the level of frag-
mentation because there is no cross-exchange inference effect. By part (iii) of the
theorem, more fragmentation is unambiguously beneficial in this setting. In the limit
as E tends to infinity, the fully efficient allocation obtains. The benefits here of frag-
mentation arise entirely from the beneficial effects of increased order aggressiveness
associated with order splitting. An equilibrium exists with the properties stated in
the theorem even if there is no liquidity trade, in that O, = 0 for each e. However,
liquidity trade is still needed for equilibrium uniqueness. Even in the presence of
liquidity traders, the total expected payment of liquidity traders is invariant to mar-
ket fragmentation. Thus, the beneficial effect of fragmentation is not related to the
exploitation of liquidity traders by strategic traders.'> In the model of Section II,
the liquidity traders are only a convenient modeling device for breaking the perfect
correlation in exchange prices. In an alternative high-frequency multiperiod setting,
Budish, Cramton, and Shim (2015) note that the prices of similar assets on different
exchanges are virtually uncorrelated, empirically. We explore a multi-period setting
in the next section.

VI. A Dynamic Model

One might guess that market fragmentation would not support allocative effi-
ciency as well in a dynamic setting as in a static setting. In our static setting, the

!5 In the setting of Section IV, our results are not driven by donations from liquidity traders, but liquidity traders
do pay more in expectation as fragmentation increases. The total expected payment to strategic traders is

(11) E[Lpie] = M5tasdh,

ecE

which is strictly increasing in E since Ag is strictly increasing.
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price impact of a trader’s orders on exchange e does not increase trading costs on
other exchanges, because of the simultaneity of trade. In a dynamic setting, however,
when submitting a trade on exchange e at period #, a trader internalizes the resulting
impact on the prices on all exchanges in period 7+ 1, given the inference about
aggregate inventory that is drawn by other traders from observing p,,. Nevertheless,
in this section, we show that market fragmentation allows efficient trade even in a
dynamic setting, despite the associated cross-period cross-exchange price impact
and higher within-period price impact. Moreover, the efficient number of exchanges
is invariant to trading frequency, and is the same as that of the static model.

A. Setup

Trade occurs at each of a discrete set of times separated by some duration A.
A positive integer ¢ denotes the rth trading date. As in the baseline static model, E
exchanges operate separate double auctions for a single asset at each trade time.
The asset pays m, at date ¢, post-trade, where 7,7, . .. are independent with com-
mon mean u,A. Liquidity traders supply a Gaussian quantity Q,, of the asset to
exchange e at trade date ¢, independent across exchanges and dates, with common
mean zero and variance O'2Q A. Immediately prior to trade at date 7, trader i receives
a Gaussian inventory shock ¢;, that has mean zero and variance oA, independent
across trading dates and traders. The inventory shocks, liquidity trader supplies, and
the asset payoffs are independent.

The pre-trade inventory of trader i at period ¢ is

(12) Xy = Xiy1+ Z Gies—1 1 €irs
ecE

where ¢,,, is the quantity purchased by trader i on exchange e at period ¢. Fort = 0,
we set X;, | + Y ek Gier—1 = 0. Note that since the equilibrium we construct has
efficient trade, the variance of ¢, 0% A, is also the conditional variance of X;, from
the perspective of each trader following trade at date ¢+ — 1. It is not, however, the
unconditional variance of X, for > 0.

During the time interval [rA,(z + 1)A), the net payoff to trader i, discounted to
the beginning of the interval at the rate » > 0, is the total initial payoff from asset
holdings, net of asset purchase costs, plus discounted inventory holding costs, given
by

A - 2
(13) Fit(%’t) = 7Tt<Xit+ Zqiet> - Zpetqiet - ‘/(; eimb<Xit + Zqiet> ds
ecE ecE ecE

2
= 7Tt<Xit + Z qiet) - Zpetqiet —b (Xit + Z ‘1iet> >
ecE ecE ecE

where ¢g;, = (qm, e e%‘Et) and
_il—e™
b =b—p—

Our formulation is in the spirit of Vayanos (1999), differing mainly in that
we allow multiple exchanges, introduce liquidity traders, and assume a different
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inventory preference model. For tractability, a significant part of the analysis in
Vayanos (1999) focuses on the case in which 0% tends to zero. Our analysis applies
to arbitrary 0.

We do not solve for an equilibrium of the model for an arbitrary number E of
exchanges because of the problem of infinite regress of beliefs, as described in the
conclusion of Vayanos (1999). In the presence of liquidity traders, strategic traders
choose their trades based on their beliefs about the aggregate market asset inven-
tory, as well as beliefs about other traders’ beliefs about aggregate inventory, beliefs
about the beliefs of other traders about their own beliefs, and so on, causing the state
space to explode. To our knowledge, there has been no analysis of demand-function
submission games in which traders filter information from prices so as to discern
strategic trading from liquidity trading. Rather than addressing equilibria for gen-
eral E, we instead construct an equilibrium for a specific number E of exchanges
with the property that the associated equilibrium is perfect Bayesian and imple-
ments efficient trade. This equilibrium is tractable because efficient trade dramati-
cally simplifies the inference problem of each trader, given that the sum of exchange
prices perfectly reveals the aggregate inventory after each round of trade.

B. An Equilibrium with Efficient Trade

In this section we briefly derive an efficient equilibrium and characterize its key
properties, including the associated number E of exchanges. A proof is given in
online Appendix Section E.

To start, we conjecture that there exists a number E of exchanges such that in
equilibrium each trader i submits the demand schedule to exchange e given by

(14) fiet(Xitvpet’ Bt) = _%Xit — (Pt + pB, + X,

for some constants (, p, and x to be determined, where B, is defined recursively
by By = 0 and

(15) By = NEpB.i+NEX = (N)_pes-i.

ec
We later interpret B, as a variable related to trader beliefs about the aggregate supply
of the asset. Given the conjectured form (14) of the demand function, market clear-
ing implies that the equilibrium price on exchange e is

NpB;+ Nx — O, — %ZjeNth
(16) Per = (N :

The post-trade aggregate inventory of strategic traders at date 7 is

W, = ijt + Z Q-

JEN eckE

Substituting (16) into (14) and summing across e € E, we verify that the final inven-
tory of trader i at date ¢ is efficient and equal to W,/N. By substituting (16) into (15)
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we see that, along the equilibrium path, B, is equal to W,_,. If any given trader were
to deviate from the equilibrium strategy prior to date ¢, it is possible that B, # W,_,.
Nonetheless, even if traders had deviated prior to date ¢, any trader who has not devi-
ated must believe that W,_; = B, with probability 1 because the Gaussian liquid-
ity trading and inventory shocks ensure that deviations are undetectable. Thus, any
given trader i must believe that any other trader j believes that W,_; = B,, and so on
with respect to higher-order beliefs. Thus, B, is a sufficient statistic for higher-order
beliefs. This allows for a tractable equilibrium construction.

We now provide intuition for the role of the key state variable B, in traders’
demand schedules. If trader j follows the equilibrium strategy, (15) and (14) imply
that

Xj,t—l + Z Gjes—1 = I\%Bt'

eckE

Summing across j # i,

Z(Xj,t—l =+ Z ‘Zie,t—l) = NT_IBt-
ecE

JAN

Thus for trader i, B, is a sufficient statistic for the total post-trade inventory of
other traders at date # — 1. This in turn implies that B, is sufficient information for
trader i to conduct inference about the residual supply that he will face on each of
the exchanges at time ¢. This explains the role of B, in the demand schedule (14).
In a perfect Bayesian equilibrium, any given trader i, conjecturing that other
traders submit demand functions according to (14), solves the stochastic control

problem
)l

with demands that are measurable'S with respect to the history of inventory
levels {X; }s<,, trades {Gios}ecr.s<r» and prices {p,}ock ;<1 and satisfy'”

(17) supE [Z e_rAtFit(CIit)
{fird  L1=0

(18) lim e ME[X7] = 0,

ruling out “Ponzi schemes” that are based on explosive growth in asset positions.
An equilibrium is characterized by optimal demands determined by the same func-
tion fi( - ) of (14).

In solving the optimization problem (17), trader i correctly considers the impacts
of his trades on current and future prices. These impacts occur directly through
the formation of the clearing price on the exchange to which an order is submitted
and also through the recognition by trader i that other traders draw inference from

16 Although the objective function involves second moments of X;,, we allow strategies that do not have finite
second moments and show that any such strategy is strictly suboptimal.
7 This condition is implied by the square-integrability condition E [Z,ﬁoe”m > eck q,-ze,] < 0.
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market prices about the aggregate market supply of the asset, which affects future
prices at all exchanges. This impact occurs through the “beliefs” state variable B,,
through the dynamic equation (15).

In online Appendix Section E, we use Bellman’s principle of optimality to calcu-
late the required number E* of exchanges, which is given by (9), the same as that for
the static model. Solutions for the equilibrium demand coefficients p, ¢, and x are
reported at the end of online Appendix Section E.

From the demand schedule (14), the within-period price impact on any exchange
is

. 2b(1+T(E - 1))

") (N=1)  N-2-e 2214 T(E-1))

which is higher than in the associated static model. We also compute the cross-period
cross-exchange price impact

(20) Apes1 Ny ] 1 2b(1+T(E—1))
ddjy; (N=1)¢  EN-2- 21 4 T(E-1))

which is a fraction 1/FE of the within-period within-exchange price impact. (Our
differential notation for this price sensitivity involves a transparent abuse of nota-
tion.) The marginal impact of the quantity traded by any trader on any exchange
on the sum of exchange prices in the next time period is equal to the within-period
within-exchange price impact.

C. Summary of Results

The following theorem summarizes the results of our analysis of the dynamic
model.

THEOREM 3: If E* of (9) is an integer, then there exists a perfect Bayesian equi-
librium in symmetric affine demand schedules for the dynamic market with E*
exchanges such that:

(i) Trade is allocatively efficient along the equilibrium path.

(ii) Traders submit the demand schedule given by (14), with p, (, and x given by
(E23), (E24), and (E25), respectively.

(iii) Beliefs about the aggregate market inventory evolve according to (15).

(iv) Trades on each exchange have nonzero price impact at each exchange in the
next period, given by (20).

(v) The within-period within-exchange price impact (19) is higher than that for
the associated static model.
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In the equilibrium, by deviating, traders can manipulate other traders’ beliefs
about the aggregate market asset inventory. Following a one-shot deviation, trade
returns to efficiency in the next period, and beliefs become “corrected.”

Our analysis shows that in our dynamic model, as for the associated static model,
a precise and nontrivial amount of market fragmentation achieves allocative effi-
ciency. Relative to the static model, our dynamic model allows a clearer character-
ization of how fragmentation improves price discovery. A weakness of our analysis
of the dynamic setting is that, because of the need to incorporate the infinite regress
of beliefs about beliefs, we are able to characterize equilibrium only for the num-
ber of exchanges that is associated with an efficient allocation. A notable impli-
cation of Theorem 3 is that this efficient number of exchanges is invariant to the
frequency of trade and is identical to that of the static model. Though the presence
of multiple periods of trade increases price impact relative to the static model, it also
amplifies the role of traders’ asymmetric information, which, as we saw in the static
model, leads to more aggressive order submission. This is so because traders rely on
their privately observed inventories to conduct inference that is relevant not only to
current-period trade prospects, but also to future-period trade prospects. This effect
on trade aggressiveness precisely offsets the effects of the rise in price impact on
each exchange.

Our analysis has side implications for the optimal trading frequency. We show
in online Appendix Section E that our model is essentially equivalent to a setting
in which traders’ inventories are continually shocked by independent Brownian
Motions. In that setting, since Theorem 3 also applies, for the efficient number E*
of exchanges, allocative efficiency increases as trade frequency increases. This con-
trasts with Vayanos (1999) and Du and Zhu (2017), who show that with a single
exchange, allocative efficiency may decline as trade frequency increases.

VII. Discussion of Model Extensions

In this section we summarize the results of three extensions of the main model
that are provided in the online appendices.

A. Endogenous Liquidity Trade, Exchange by Exchange

In our first model extension, found in online Appendix Section F, liquidity
traders, who are local to each exchange and conduct no cross-exchange trade,
choose the sizes of their trades. Liquidity traders are assumed to have the same
preferences as strategic traders, with the exception of a potentially different qua-
dratic holding cost parameter, c. They are also each endowed with a Gaussian
distributed quantity of the asset prior to trade. Thus, the baseline model is equiv-
alent to the case in which ¢ = o0, in that liquidity traders liquidate their entire
endowed positions as though without discretion. Relaxing this baseline extreme
assumption to the case of finite ¢, we find for any positive integer E > 1, there
exists a cutoff ¢ such that if ¢ > ¢, then a market with 1 < E < E exchanges
is welfare superior to a centralized market, in that the expected sum of all agents’
holding costs is lower.
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B. Private Information about Asset Payoff

In a second extension, found in online Appendix Section G, agents have differing
private information about the asset’s final payoff. In this case, allocative efficiency
is not necessarily improved by fragmenting a centralized market. This is so because
fragmentation leads agents to trade more aggressively for two reasons: not only
to mitigate holding costs, but also to exploit payoff-relevant private information.
While the former motive leads fragmentation to improve allocative efficiency, as
we demonstrated in Section 1V, the latter effect can cause fragmentation to reduce
allocative efficiency, because the efficient allocation of the asset does not depend on
agents’ payoff-relevant private information. Whether fragmentation is beneficial or
harmful is shown to depend on the relative magnitudes of these two effects.

C. Correlated Trade Motives

In a third extension, found in online Appendix Section H, we relax the assump-
tion that the asset endowments (X Lo s X Oty e ety QE) are jointly independent. We
retain the assumption that these random variables are jointly Gaussian, but allow for
an essentially arbitrary covariance matrix, subject to the condition that the traders’
endowments X, ...,Xy are symmetrically distributed and that the liquidity-trade
quantities Qy, . . ., Qg are symmetrically distributed.

If a strategic trader’s endowment X; does not covary more negatively with aggre-
gate liquidity trader supply Y, Q, than it covaries positively with the aggregate
endowment ) ; Xj» then there is an interior optimal level of fragmentation which, up
to the integer constraint on E, achieves the efficient allocation.'®

In this setting, however, an arbitrary level of market fragmentation need not coin-
cide with an unambiguous improvement in allocative efficiency over a centralized
market. Whether this is so depends on the covariances of endowments. With some
parameters, agents may trade even more aggressively than they do in the baseline
model, which we have shown has the property that trade already becomes “too
aggressive” for sufficiently large E. Moreover, if a strategic trader’s endowment
covaries more negatively with the aggregate liquidity trader supply than it cova-
ries positively with the aggregate endowment, fragmentation is harmful. This is so
because the inefficiency associated with the inferior trading technology associated
with disconnected fragmented markets dominates the beneficial effect of reducing
the strategic avoidance of price impact. This follows from the fact that, ex ante, with
this correlation structure, traders expect that the residual supply on each exchange
is on average relatively favorable for offsetting their positions. This, however, leads
to less aggressive trade than is socially efficient since agents are less willing to trade
large quantities at unfavorable prices on any given exchange because they expect
that prices on the other exchanges will be more favorable.

18 positive definiteness of the covariance matrix ensures, for each i, X; is positively correlated with i Xj-
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VIII. Concluding Discussion

We have presented a simple market setting in which fragmentation of trade
across multiple exchanges improves allocative efficiency and price informative-
ness. Our main marginal contributions are (i) a newly identified channel by which
cross-exchange price inference exacerbates price impact, and (ii) a demonstration of
the beneficial effects of cross-exchange order-splitting on allocative efficiency and
price informativeness. We find that although fragmentation reduces market depth on
any given exchange, this need not be a sign of worsening overall liquidity or mar-
ket inefficiency. We characterize the number of exchanges that achieves allocative
efficiency, and show that this “optimal” degree of fragmentation is invariant to the
frequency of trade and indeed the same as that of the static version of the model.

Our stylized model abstracts from many important practical considerations. We
do not consider some of the direct frictional costs of trade and order splitting, such
as trading fees and subsidies, minimum tick sizes, and bid-offer spreads, which
are endogenous to market structure, particularly through the role of competition
among exchange operators, specialists, and market makers (Baldauf and Mollner
2020; Chao, Yao, and Ye 2018; Colliard and Foucault 2012; Malinova and Park
2019; Foucault and Menkveld 2008; Chlistalla and Lutat 2011; Clapham et al. 2021;
Hengelbrock and Theissen 2009; Parlour and Seppi 2003). For example, Foucault
and Menkveld (2008) show that, with nonzero tick sizes, adding an additional
limit-order market increases market depth by allowing limit-order submitters to jump
the queue of posted orders on one exchange by posting orders on another exchange,
due to the absence of cross-exchange time-priority rules. Foley, Jarnecic, and Liu
(2020) show that liquidity providers increasingly fragment their activities amongst
alternative venues, attempting to jump long queues on larger venues by increasing
submissions to venues with short (or empty) queues. This reduces adverse selection
costs faced on alternative venues and helps explain the increase in fragmentation for
jurisdictions with trade-through prohibitions.

We also do not consider the endogenous entry of exchanges, a common theme in
the literature going back to Glosten (1994), as reviewed by Pagnotta and Philippon
(2018). Our model does not capture the effect of high-frequency traders who can
take advantage of slight discrepancies in order execution times across different
exchanges (Budish, Lee, and Shim 2019; Gresse 2012; Pagnotta and Philippon
2018). We also ignore the role of trade-through rules such as Regulation NMS,
which effectively forces all US lit exchanges to recognize the best bid or offer avail-
able across all order books in the market. While Reg NMS has the effect of consol-
idating markets for small trades, trade-through rules do not play a significant role
in price-impact costs, which are only pertinent for large trades. The inefficiencies
associated with price-impact cost avoidance through order splitting are the main
concern in this paper.

Because we have abstracted from these and other potentially important realistic
effects, we make no normative claims or policy recommendations. The mechanisms
that we identify do, however, appear to have a natural basis and to be worthy of
serious consideration in policy discussions.

Our model also has implications for the welfare impact of innovation of trading
technologies. For example, the beneficial welfare effects of order splitting that we
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have described rely crucially on the realistic assumption that orders submitted to
one exchange cannot condition on prices at other exchanges. If, instead, trading
technology were to allow orders to condition on cross-exchange prices, then trades
on a given exchange would have impact on prices at other exchanges, which could
eliminate the beneficial effect of order-splitting in fragmented markets, an issue
considered by Wittwer (2021) and Rostek and Yoon (2020).
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