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Market Fragmentation†

By Daniel Chen and Darrell Duffie*

We model a simple market setting in which fragmentation of trade 
of the same asset across multiple exchanges improves allocative effi-
ciency. Fragmentation reduces the inhibiting effect of price-impact 
avoidance on order submission. Although fragmentation reduces 
market depth on each exchange, it also isolates cross-exchange 
price impacts, leading to more aggressive overall order submis-
sion and better rebalancing of unwanted positions across traders. 
Fragmentation also has implications for the extent to which prices 
reveal traders’ private information. While a given exchange price is 
less informative in more fragmented markets, all exchange prices 
taken together are more informative. (JEL D47, D82, G14)

In modern financial markets, many financial instruments trade simultaneously 
on multiple exchanges (Budish, Lee, and  Shim 2019; Gresse 2012; Pagnotta 
and Philippon 2018). This fragmentation of trade across venues raises concerns over 
market depth. One might therefore anticipate that fragmentation worsens alloca-
tive efficiency through the strategic avoidance of price impact, which inhibits ben-
eficial gains from trade (Vayanos 1999, Du and Zhu 2017). Fragmentation might 
seemingly, therefore, lead to less aggressive trade, which could in turn impair the 
informativeness of prices, relative to a centralized market in which all trade flows 
are consolidated. Perhaps surprisingly, we offer a simple model of how fragmen-
tation of trade across multiple exchanges, despite reducing market depth, actually 
improves allocative efficiency and price informativeness.

In the equilibrium of our market setting, the option to split orders across different 
exchanges reduces the inhibiting effect of price-impact avoidance on total order 
submission. Though market depth on each exchange decreases with fragmentation, 
the common practice of order splitting allows traders to shield orders submitted to a 
given exchange from the price impact of orders submitted to other exchanges. This 
effect is sufficiently strong that fragmentation increases overall order aggressiveness. 
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This in turn leads to a more efficient redistribution of unwanted positions across 
traders and causes prices, collectively across all exchanges, to better reflect traders’ 
private information. Once fragmentation is sufficiently severe, however, any addi-
tional fragmentation can cause trade to become too aggressive, from the perspective 
of allocative efficiency. However, at least in the simple one-period version of our 
model, any degree of fragmentation is welfare-superior to a centralized market.

Our model abstracts from some important aspects of functioning financial mar-
kets. In particular, we do not consider the impact of fragmentation on exchange 
competition or transaction fees.1 We also ignore the adverse impact of sniping by 
fast traders (Budish, Cramton, and Shim 2015; Malinova and Park 2019; Pagnotta 
and Philippon 2018). Given these and other limitations of our model, we avoid tak-
ing a policy stance on fragmentation. Our primary marginal contribution is to iden-
tify a potentially important distinct economic channel for the welfare implications 
of market fragmentation.

We now briefly summarize our model and the main results. A single asset is 
traded by ​N​ strategic traders participating on ​E​ exchanges. Before each round of 
trade, each strategic trader has a quantity of the asset which is privately observed. 
Each trader submits a package of limit orders (forming a demand function) to each 
of the exchanges, simultaneously. As in common practice (Wittwer 2021), orders to 
a given exchange cannot be made contingent on clearing prices at other exchanges. 
The objective of each strategic trader, given the conjectured order submission strate-
gies of the other traders, is to maximize the total expected discounted cash compen-
sation received for executed orders, net of the present value of asset holding costs 
that are quadratic in the trader’s asset position, as in the one-exchange model of Du 
and Zhu (2017).

At each exchange, “liquidity traders” submit nondiscretionary market orders. The 
aggregate quantities of market orders submitted by liquidity traders to the various 
exchanges are exogenous random variables, independently and identically distrib-
uted across exchanges and periods. In a one-period setting, we also consider a ver-
sion of the model with no liquidity traders, and a version in which liquidity traders 
who are local to each exchange are strategic with respect to order quantities. In 
any version of the model, because agents’ preferences are quasilinear in cash and 
because total cash payments net to zero by market clearing, an unambiguous mea-
sure of allocative efficiency is the expected discounted sum of strategic traders’ 
asset holding costs.

Price impact is increased by market fragmentation because of cross-exchange 
price inference, by which traders choose order submissions in light of the positive 
equilibrium correlation between exchange prices. For example, conditional on a 
clearing price on a given exchange that is lower than expected, a buyer expects to be 
assigned higher quantities on all exchanges. This effect dampens the aggressiveness 
of order submissions, which reduces market depth and heightens market impact, 
relative to a single-exchange setting. Despite this reduction in market depth, the 
ability to split orders across exchanges ensures that, in equilibrium, each strategic 
trader’s overall order submission is more aggressive, resulting in a more efficient 

1 As shown by Budish, Lee, and Shim (2019), transaction fees are economically small.
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allocation.2 This natural implication of fragmentation is novel to this paper, as far 
as we know.

We solve both static and dynamic versions of the model. In the static model, 
as the number of exchanges increases, the equilibrium allocation becomes more 
efficient until a point at which trade becomes “too aggressive.” We find that the 
socially optimal number of exchanges depends only on (i) the number of strategic 
traders and (ii) the ratio of the variance of the endowments of strategic traders to the 
variance of liquidity trade. We show that when there are more exchanges, the price 
on any individual exchange is less informative of the aggregate asset inventory of 
strategic traders, the key “state variable” of our model, yet the exchange prices taken 
together are more informative. Although allocative efficiency is maximal for a finite 
number of exchanges, price informativeness always improves with the number of 
exchanges.

In the dynamic version of the model, we show that market fragmentation still 
allows efficient trade, despite the associated cross-period cross-exchange price 
impact and despite within-period price impact that is even higher than in the static 
model. We do not solve for an equilibrium of the dynamic model for an arbitrary 
number ​E​ of exchanges, given the difficult-to-solve infinite regress of beliefs about 
beliefs concerning the aggregate asset inventory of strategic traders. Rather than 
addressing equilibria for general ​E​, we instead construct an equilibrium for a spe-
cific number ​E​ of exchanges with the property that the associated equilibrium is per-
fect Bayesian and implements efficient trade. This equilibrium is tractable because 
efficient trade dramatically simplifies the inference problem of each trader, given 
that the sum of exchange prices perfectly reveals the aggregate inventory after each 
round of trade. We find that the efficient number of exchanges is invariant to trading 
frequency, and is the same as that of the static model.

The remainder of the paper is organized as follows. Section I provides additional 
background on exchange market fragmentation and related research. Section  II 
gives the setup of the most basic version of our model. Section  III characterizes 
properties of the equilibrium. Section IV presents the implications of fragmentation 
on price impact, allocative efficiency, and price informativeness. Section V studies 
a formulation of the model in which traders observe the aggregate asset endowment 
before order submission. Section VI solves for the efficient number of exchanges 
in a dynamic formulation of the model with cross-period cross-exchange inference. 
Section VII summarizes the results of various model extensions. Section VIII offers 
some concluding remarks and discusses some potentially important effects that 
are not captured by our model. The online Appendix contains proofs and model 
extensions.

I.  Background

We focus in this paper on “visible fragmentation,” that is, fragmentation across 
different lit exchanges (meaning trade venues at which market-clearing prices 
are set), rather than fragmentation between lit exchanges and size-discovery  

2 A precise degree of market fragmentation that we characterize can even achieve a perfectly efficient allocation.
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venues, which cross buy and sell orders at prices that are set on lit exchanges  
(Körber, Linton, and Vogt 2013; Zhu 2014; Degryse, de Jong, and van Kervel 2015; 
Duffie and Zhu 2017; Antill and Duffie forthcoming).

In Europe and the United States, exchange trading is highly fragmented. Budish, 
Lee, and  Shim (2019) document that in the United States, as of early 2019, 
annual trade of about one trillion shares is split across 13 US exchanges, and that 
cross-exchange shares of total exchange-traded volume are stable over time, with 
5 exchanges each handling over 10 percent of total exchange volume. Essentially 
all equities trade on every exchange, with significant volumes of each equity exe-
cuted on multiple exchanges.3 Broadly speaking, similar patterns apply to European 
financial markets (Gresse 2012; Degryse, de Jong, and van Kervel 2015; Foucault 
and Menkveld 2008). This high degree of trade fragmentation is in part a conse-
quence of regulations such as Regulation NMS in the United States and MiFid II in 
Europe, which encourage exchange entry and competition.

There has been a longstanding debate (Stoll 2001) over whether fragmenting 
trade across exchanges harms market efficiency, in various respects. Empirical find-
ings have been mixed (O’Hara and Ye 2011, Gomber et al. 2017). Some researchers 
find that fragmentation has generally been beneficial. For example, O’Hara and Ye 
(2011), using data from US trade reporting facilities, find that execution speeds are 
faster, transaction costs are lower, and prices are more efficient when the market 
is more fragmented. Degryse, de Jong, and van Kervel (2015) analyze a sample 
of Dutch stocks and measure the degree of visible fragmentation. They find that 
liquidity, when aggregated over all lit trading venues, improves with fragmentation. 
Foucault and Menkveld (2008) analyze Dutch stocks and arrive at a similar conclu-
sion. Boehmer and Boehmer (2003) find evidence of improved liquidity when the 
NYSE began trading ETFs that are also listed on the American Stock Exchange. 
Gresse (2017); De Fontnouvelle, Fishe, and Harris (2003); Aitken, Chen, and Foley 
(2017); Hengelbrock and Theissen (2009); Félez-Viñas (2017); and Spankowski, 
Wagener, and  Burghof (2012) generally find that visible fragmentation reduces 
bid-ask spreads.

Other research, however, suggests less beneficial effects of fragmentation. For 
example, Bennett and  Wei (2006) find that when equity trading migrated from 
NASDAQ to the NYSE, where trade is more consolidated, there was a decrease in 
execution costs and an improvement in price efficiency. Chung and Chuwonganant 
(2012) show that price impact increased following the introduction of Regulation 
NMS.4 Gentile and Fioravanti (2011, p. 5) find that MiFID-induced fragmentation 
“does not have negative effects on liquidity, but it reduces price information effi-
ciency.” Moreover, in some cases it leads primary stock exchanges to lose their 
leadership in the price discovery process.” For small-firm equities, Gresse (2012, 
2017) and Degryse, de Jong, and van Kervel (2015) find that market depth declines 
with sufficient fragmentation, consistent with our theoretical results. Bernales et al. 
(2018) find that the 2009 consolidation of Euronext’s two distinct order books 
for the same equities was followed by a reduction in bid-offer spreads. Haslag 

3 Pagnotta and Philippon (2018) and Budish, Lee, and Shim (2019) display the striking facts graphically.
4 In our model, as we have noted, fragmentation indeed increases price impact, yet also increases allocative 

efficiency and overall price informativeness.
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and Ringgenberg (2020) find causal evidence that although fragmentation reduces 
bid-offer spreads for the equities of large firms, the opposite applies to small firms.

While the empirical evidence regarding the implications of fragmentation is 
mixed, most of the theoretical literature has shown that visible fragmentation 
is harmful. For example, Mendelson (1987) shows that fragmentation may iso-
late individuals for whom there are mutually beneficial trades, because they are 
located at different venues. Chowdhry and Nanda (1991) show that adverse selec-
tion caused by asymmetric information worsens as markets fragment. Baldauf 
and Mollner (2021) find that welfare is harmed by the ability of fast traders to 
snipe across fragmented markets. Pagano (1989) shows that fragmented markets 
are less stable, in that traders tend to participate at market venues at which liquid-
ity is greatest. However, regulations promoting exchange competition may foster 
fragmentation.

There are few theory papers demonstrating that fragmentation may be beneficial. 
Of these, Kawakami (2017) shows how splitting investors across multiple exchanges 
can improve allocative efficiency because the resulting reduction in correlation in 
asset price and asset payoff can in some cases sufficiently improve the hedging 
effectiveness of trading. Malamud and  Rostek (2017), perhaps the closest paper 
to ours, considers a multi-exchange demand function submission game in which 
each exchange operates a double auction as in our model. They find that in certain 
settings, when agents’ risk preferences are sufficiently heterogeneous, fragmented 
markets can produce outcomes that are welfare superior to centralized markets.

A key difference is that Malamud and Rostek (2017) allow traders to condition 
their demand schedules at a given exchange on prices at other exchanges on which 
they participate (fully contingent demand). Because of this assumption, fragmen-
tation may improve allocative efficiency in their model only if there is limited par-
ticipation by traders across exchanges. In our model, strategic traders are allowed 
to submit orders to all exchanges. In their Example 2 and Proposition 4, Malamud 
and  Rostek (2017) show a benefit of fragmentation for some asset endowments 
based on (i) partitioning investors across the economy’s two exchanges and (ii) dif-
ferences in risk aversion. Though they later show that welfare improvements may not 
require such an extreme form of limited participation, cross-exchange price infer-
ence, by which traders use the price in one exchange for inference regarding prices 
on other exchanges, does not play a role in their work as it does in ours, because 
they allow for fully contingent demand. For the special case of no aggregate endow-
ment risk, Proposition 5 of Malamud and Rostek (2017) shows that fragmentation 
via limited participation always lowers welfare if there is a single asset (though this 
not necessarily the case when there is nonzero aggregate endowment risk or there 
are multiple assets and sufficient risk-aversion heterogeneity). In our model, the 
allocative efficiency gains from fragmentation arise for different reasons. Namely, 
because demand in an exchange can only be made contingent on the price within 
the exchange, there is no-cross exchange price impact. Thus, when splitting trade 
over more exchanges, the purchase of an additional unit on any given exchange 
affects the price on a smaller fraction of the total quantity traded. With imperfectly 
correlated prices, the weakening of cross-exchange price inference effects (as dis-
cussed in our introduction) ensures that price impact does not rise quickly enough 
with fragmentation to offset this beneficial effect of order splitting.
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In practice, when mitigating price impact, strategic traders use strategies that split 
their “parent orders” both across exchanges and also across time.5 In equilibrium, 
however, the effects of allowing more frequent trade and having more exchanges 
are not necessarily substitutes for improving allocative efficiency. For example, in 
the models of Vayanos (1999) and Duffie and Zhu (2017), increasing the frequency 
of opportunities to split trades worsens allocative efficiency, because equilibrium 
trade aggressiveness declines faster than trading frequency grows.6 In Section VI, 
we allow both cross-exchange and cross-time order splitting. We find that the num-
ber ​​E​​ ⁎​​ of exchanges that achieves an efficient reallocation of the asset at each trad-
ing date is invariant to the frequency of trade. Thus, when there are ​​E​​ ⁎​​ exchanges 
(the only case that we are able to solve), more frequent trade improves allocative 
efficiency.

The majority of theoretical papers assume that traders are restricted to trade on a 
strict subset of all trading venues.7 It seems natural to assume that traders who are 
strategic about their price impacts are also aware of the option to trade on multi-
ple exchanges simultaneously. The costs of order splitting are economically small 
(Budish, Lee, and Shim 2019). “Smart order routing technology” makes order split-
ting convenient and practical (Gomber et al. 2016). In our model, strategic traders 
frictionlessly trade on all exchanges. There is evidence (Malinova and Park 2019, 
Menkveld 2008, Chakravarty et  al. 2012, Gomber et  al. 2016) that some inves-
tors strategically split their orders across multiple exchanges, and also between 
exchanges and size-discovery venues such as dark pools.

Methodologically, our model contributes to the literature on demand-function 
submission games, including work by Wilson (1979), Klemperer and Meyer (1989), 
and Malamud and  Rostek (2017). Within this literature, our paper, like Wittwer 
(2021) and Rostek and Yoon (2020), addresses markets with multiple exchanges. 
While Wittwer (2021) and Rostek and  Yoon (2020) focus on the welfare impli-
cations of connecting exchanges through the ability to submit orders contingent 
on cross-exchange prices, we consider only the common case in practice of “dis-
connected markets.” As opposed to Wittwer (2021) and Rostek and Yoon (2020), 
we focus on the implications for allocative efficiency and price informativeness of 
increasing the number of exchanges (fragmentation), and we include a dynamic 
analysis that captures the implications of cross-time cross-exchange price impact, 
showing that enough fragmentation can achieve allocative efficiency.

Since the work of Hamilton (1979), the literature has explored the key ten-
sion between the benefit of fragmentation associated with increased competition 
between exchanges and between specialists, which drives down bid-offer spreads 
and trading fees, as suggested by the theory of Rust and Hall (2003), versus the cost 
of fragmentation associated with decreased market depth.8 Although fragmentation 
does indeed reduce market depth in our model, consistent with earlier work, we 

5 On this point, we interviewed experts in order execution strategies at two large asset managers. Van Kervel, 
Kwan, and Westerholm (2020) provide evidence on order splitting behavior, by which traders with large parent 
orders learn over time about the presence of large parent orders of other traders.

6 In a somewhat different setting, Du and Zhu (2017) show there can be a welfare-optimal trade frequency.
7 For instance, Mendelson (1987), Pagano (1989), Kawakami (2017), Malamud and Rostek (2017), and many 

others make this assumption.
8 For a recent empirical contribution exploring this trade-off, see Haslag and Ringgenberg (2020).
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believe that we are the first to point out the benefit of fragmentation associated 
with increased aggregate order aggressiveness, arising from the ability of strategic 
traders to shield orders on a given exchange from price impacts incurred on other 
exchanges.

II.  Baseline Model

This section presents the setup of our baseline model. All primitive random vari-
ables are defined on a complete probability space ​​(Ω, , Pr)​​. There is a single asset 
with a payoff, denoted ​π​, that is a finite-variance random variable with mean ​​μ​π​​​.

We model a market whose agents, called “traders,” are of two types: “liquid-
ity” and “strategic.” For notational simplicity, we let ​N​ denote both the finite set 
of strategic traders and its cardinality, which is assumed to be at least 3. The only 
primitive information available to strategic trader ​i​ is the trader’s own endowment 
of the asset, ​​X​i​​  ∼  N​(0, ​σ​ X​ 2 ​)​​. We assume that endowments are independently and 
identically distributed (i.i.d.) across traders.

Trade of the asset takes place in a single period on each of a finite number of 
identical exchanges. For notational simplicity, we let ​E​ denote both the set and num-
ber of exchanges. Each exchange runs a double auction. Strategic trader ​i​ submits a 
measurable demand schedule ​​f​ie​​ : ​ℝ​​ 2​  →  ℝ​ to exchange ​e​ specifying the quantity 
​​f​ie​​​(​X​i​​, p)​​ of the asset demanded by trader ​i​ at any given price ​p ∈ ℝ​ on exchange ​e​. We 
emphasize that the demand schedule submitted to a given exchange cannot depend 
on prices (or any other information) emanating from the other exchanges. A demand 
schedule can be viewed as a package of limit orders, each of which is an offer to 
purchase or sell a given amount of the asset at a given price.9 Liquidity traders col-
lectively submit an exogenously given quantity ​​Q​e​​  ∼  N​(0, ​σ​ Q​ 2 ​ / E)​​ of market orders 
to exchange ​e​.

We assume that the supply of market orders is i.i.d. across exchanges and that ​​
{​X​i​​  |  i  ∈  N}​​, ​​{​Q​e​​  |  e  ∈  E}​​, and ​π​ are independent. We relax these distributional 
assumptions in Section V and in extensions considered in online Appendix Section 
H . An interpretation of these assumptions on liquidity trade is that a large set of 
liquidity traders, not depending on the number of exchanges in operation, are spread 
evenly across exchanges and trade independently of one another.

The independence of liquidity trade across exchanges ensures that equilibrium 
prices are not perfectly correlated across exchanges, which is crucial for our results. 
If prices are perfectly correlated across exchanges, there would be no beneficial 
effects of fragmentation. From a practical viewpoint, the assumption that liquid-
ity trade is not perfectly correlated across exchanges can be motivated by assum-
ing that liquidity traders are local to an exchange, in the sense that they do not 
have the sophistication or trading accounts necessary to split their orders across all 
exchanges. Online Appendix Section H shows that it is enough for our main results 
to assume imperfect correlation of liquidity demands across exchanges, a weakening 

9 In this sense, ​f ​(​X​i​​, p)​​, if positive, is the aggregate quantity of the limit orders to buy at a price of ​p​ or higher, 
and if negative is the aggregate quantity of the limit orders to sell at price of ​p​ or lower. The space of linear combi-
nations of limit orders is dense, in the sense of Brown and Ross (1991), in the space of technically regular demand 
functions.
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of independence. In a multiperiod setting, the key requirement that prices are not 
perfectly correlated across exchanges might be motivated by the notion that liquid-
ity trades are not perfectly synchronized across exchanges.

Given a collection ​f  = ​ {   ​f​ie​​  |  i  ∈  N, e  ∈  E}​​ of demand schedules, the price on 
exchange ​e​, if it exists and is unique, is the solution10 ​​p ​ e​ f ​​ to the market-clearing 
condition

(1)	 ​​ ∑ 
i∈N

​ 
 
 ​​ ​ f​ie​​​(​X​i​​, ​p ​ e​ f ​)​  = ​ Q​e​​.​

If there does not exist a unique market clearing price, we assume that no trades are 
executed. We restrict attention to equilibria consisting of demand schedules with the 
property that ​​p ​ e​ f ​​ is uniquely determined.11 Based on (1), trader ​i​ is able to determine 
the impact of his own demand on the market-clearing price given the conjectured 
demand schedules of the other traders.

The preferences of the strategic traders are quasilinear in cash compensation, with 
a quadratic holding cost. Specifically, given a collection ​f  = ​ { ​f​ie​​  |  i  ∈  N, e  ∈  E}​​ of 
demand schedules, the payoff of trader ​i​ is

	​ ​U​i​​​(  f )​  = ​ (​X​i​​ + ​∑ 
e
​ 
 
 ​​ ​ f​ie​​​(​X​i​​, ​p ​ e​ f ​)​)​π − b ​​(​X​i​​ + ​∑ 

e
​ 
 
 ​​ ​ f​ie​​​(​X​i​​, ​p ​ e​ f ​)​)​​​ 

2
​ − ​∑ 

e
​ 
 
 ​​ ​ p ​ e​ f ​ ​f​ie​​​(​X​i​​, ​p ​ e​ f ​)​,​

for some ​b  >  0​. The quadratic term represents a cost for bearing the risk or other 
costs associated with holding a post-trade position in the asset. Preferences of 
this form are popular in the market microstructure literature (Vives 2011, Rostek 
and Weretka 2012, Du and Zhu 2017, Sannikov and Skrzypacz 2016). Sannikov 
and Skrzypacz (2016) provide a microfoundation.

An equilibrium is defined as a collection ​f  = ​ {​ f​ie​​  |  i  ∈  N, e  ∈  E}​​ of demand 
schedules with the property that, for each strategic trader ​i​, the demand sched-
ules ​​f​i​​  = ​ { ​f​ie​​  |  e  ∈  E}​​ solve

	​ ​sup​ 
​ f ˆ ​
​ ​  피​[​U​i​​​( ​ f ˆ ​, ​f​−i​​)​]​,​

where as usual ​​f​−i​​​ denotes the collection ​​{​f​j​​  |  j  ≠  i}​​ of other traders’ demand sched-
ules. This is a typical demand-function submission game in the sense of Wilson 
(1979) and Klemperer and Meyer (1989), extended to allow for multiple exchanges. 
Multi-exchange demand function submission games were earlier analyzed by 
Malamud and Rostek (2017) and Wittwer (2021).

We conclude this section with an interpretation of the distinction between stra-
tegic and liquidity traders. A strategic trader may be viewed as an agent who is 
sophisticated, internalizes price impact, is able to easily split orders across multiple 
trading venues, has a relatively low aversion to owning assets, and has a relatively 
large initial endowment of the asset. A liquidity trader, on the other hand, may be 
viewed as an agent who is not sophisticated about price impacts, has high aversion 
to holding assets (thus exercising no discretion in the liquidation of the assets), and 

10  That is, ​​p ​ e​ f ​​ is a random variable such that for each state ​ω  ∈  Ω​, ​​∑ i∈N​   ​​  ​f​ie​​​(​p ​ e​ f ​​(ω)​, ​X​i​​​(ω)​)​  =  ​Q​e​​​(ω)​.​
11 For this, it suffices that, for each ​x  ∈  ​ℝ​​ N​​, the aggregate demand function ​p  ↦  ​∑ i​   ​​ ​f​ie​​​(p, ​x​i​​)​​, which is mono-

tone, is strictly monotone, continuous, and unbounded below and above.
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has a small initial asset holding, and who therefore submits market orders with no 
price sensitivity. Liquidity traders are a typical modeling device for settings such 
as ours in which one wishes to avoid perfect inference of fundamental information 
from price observations. In our case, the fundamental information to be inferred 
does not concern asset payoffs but rather the aggregate endowment of strategic trad-
ers. Traders have payoff-relevant private information about their own endowments 
but no private information about asset payoffs. We will show that our main results 
are not driven by the effect of “donations” from liquidity traders to strategic traders.

III.  A Symmetric Affine Equilibrium

We will demonstrate the existence and uniqueness of a symmetric affine equilib-
rium defined by demand schedules of the form

(2)	 ​​f​ie​​​(p, ​X​i​​)​  = ​ Δ​E​​ − ​α​E​​ ​X​i​​ − ​ζ​E​​ p,​

for constants ​​Δ​E​​​, ​​α​E​​​, and ​​ζ​E​​​ that do not depend on the trader or particular exchange, 
but do depend on the number ​E​ of exchanges.

Using (1) it can be shown that the slope of the inverse residual supply curve fac-
ing each agent on each exchange is

(3)	 ​​Λ​E​​  ≡ ​   1 _ 
​(N − 1)​ ​ζ​E​​

 ​.​

We refer to ​​Λ​E​​​ as inverse market depth, or simply as “price impact.” Each strate-
gic trader is aware that by deviating from the equilibrium demand schedule and 
demanding an additional unit on a given exchange, the trader will increase the 
market-clearing price on that exchange by ​​Λ​E​​​. Price impact is a perceived cost to 
each strategic trader, but is not a social cost because the payment incurred by any 
trader is received by another. As emphasized by Vayanos (1999), Rostek and Weretka 
(2015), and Du and Zhu (2017), the strategic avoidance of price impact through the 
“shading” of demand schedules is socially costly because it reduces the total gains 
from the beneficial reallocation of the asset.

Taking price impact as given, in equilibrium trader ​i​ selects a demand schedule 
for exchange ​e​ such that the quantity purchased equates his marginal benefit with his 
marginal cost for each realization of the price ​​p​e​​​ on the exchange, in that

(4)	 ​​μ​π​​ − 2b​
(

​X​i​​ + ​f​ie​​​(​X​i​​, ​p​e​​)​ + 피​[​ ∑ 
k≠e

​ 
 
 ​​ ​ f​ik​​​(​X​i​​, ​p​e​​)​ | ​X​i​​, ​p​e​​]​)​  = ​ p​e​​ + ​Λ​E​​  ​f​ie​​​(​X​i​​, ​p​e​​)​.​

Condition (4) would be different if each trader ​i​ could condition his demand on 
the realizations of prices on all exchanges on which ​i​ participates, as in Malamud 
and Rostek (2017). Firstly, there would be cross-exchange price impact, so the mar-
ginal cost of purchasing more of the asset would account for the effect of price 
impact for all units traded, as opposed to just those units traded on exchange ​e​. 
Secondly, given all exchange prices, the choice by trader ​i​ of how much to purchase 
on exchange ​e​ would be made with perfect foresight of the quantities that he will 
purchase on the other exchanges. In contrast, when trader ​i​ can condition demand 
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only on the price on exchange ​e​, he is uncertain about the total quantity purchased 
on the other exchanges, provided that the variance ​​σ​ Q​ 2 ​​ of liquidity trade is not zero. 
In order to evaluate the marginal benefit of purchasing an additional unit, he must 
form a conditional expectation of this quantity. As we will soon show, this gives 
rise to significant implications of fragmentation that are not present in a model 
in which demands can be conditioned on contemporaneous cross-exchange price 
information.

Based on the demand schedule (2), the final asset position of strategic trader ​i​ is

(5)	 ​​(1 − E ​α​E​​)​ ​X​i​​ + E ​α​E​​ ​ 
​∑ j∈N​   ​​ ​ X​j​​ ______ 

N ​  + ​ ​∑ e∈E​   ​​ ​ Q​e​​ _______ 
N ​ .​

As the market setting changes to one in which ​E​α​E​​​ is higher, traders retain less 
of their own endowments and absorb more of the aggregate endowment. Because 
of this, we refer to ​E​α​E​​​ as order aggressiveness. Indeed, increasing ​E​α​E​​​ in a 
multi-exchange setting is allocatively equivalent in a single-exchange setting to a 
perception by traders of lower price impacts.

Generically in the parameters of the model, the equilibrium allocation is ineffi-
cient. Given the nondiscretionary liquidation ​​∑ e∈E​ 

  ​​ ​ Q​e​​​ by liquidity traders, the effi-
cient allocation is one in which each strategic trader receives an equal share of the 
aggregate supply of the asset, which is

	​ ​   q ​  = ​  1 _ 
N ​​(​ ∑ 

e∈E
​ 

 
 ​​ ​ Q​e​​ + ​ ∑ 

i∈N
​ 

 
 ​​ ​ X​i​​)​.​

Inspecting (5), this efficient sharing rule corresponds to the case of ​E ​α​E​​  =  1​. By 
Jensen’s inequality, ​E ​α​E​​  =  1​ yields the efficient allocation because traders have 
symmetric convex holding costs. Because preferences are quasi-linear in cash com-
pensation, this is also the welfare-maximizing allocation, in that any other allocation 
would be strictly Pareto dominated by this efficient sharing rule, after allowing vol-
untary initial side payments.

The equilibrium allocation defined by (5) becomes less efficient as ​|E ​α​E​​ − 1|​ 
increases. This is so because replacing ​E ​α​E​​​ in (5) with a number farther from 1 
results in a mean-preserving spread in the cross-sectional distribution of the asset 
to strategic traders, state by state. Jensen’s inequality, applied cross-sectionally in 
each state ​ω  ∈  Ω​, then implies an increase in the sum across traders of quadratic 
holding costs.

The following theorem collects several properties of symmetric affine equilibria. 
Of primary interest is the property that in the presence of non-trivial liquidity trade, 
the allocation becomes more efficient as market fragmentation ​E​ increases, up to 
the point at which ​E ​α​E​​  =  1​, and then becomes increasingly less efficient. We will 
explore this issue in more depth in Section IV. Our proof of the theorem, found in 
online Appendix  Section B, uses equations (2), (3), and (4) to derive a candidate 
set of equilibrium demand coefficients ​​(​Δ​E​​, ​α​E​​, ​ζ​E​​)​​ and then applies the calculus of 
variations to verify that these candidate coefficients do in fact uniquely correspond 
to an equilibrium.

THEOREM 1: For each positive integer number ​E​ of exchanges, there exists a 
unique symmetric affine equilibrium. The associated demand-function coefficients ​​
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(​Δ​E​​, ​α​E​​, ​ζ​E​​)​​ form the unique solution to equations (B6), (B7), and (B8) in online 
Appendix Section B . Moreover:

	 (i)	 For any ​E​, the market-clearing price on exchange ​e​ is

	 (6)	 ​​p​ e​ ⁎​  = ​  N − 1 _ 
N  ​ ​Λ​E​​​[N ​Δ​E​​ − ​Q​e​​ − ​α​E​​ ​ ∑ 

i∈N
​ 

 
 ​​ ​ X​i​​]​.​

	 (ii)	 For any ​E​, the price impact is

	 (7)	 ​​Λ​E​​  = ​ 
2b​(1 + ​γ​E​​​(E − 1)​)​

  _____________  
N − 2  ​,​

		  where

	 (8)	 ​​γ​E​​  = ​ 
E ​α​ E​ 2 ​ ​σ​ X​ 2 ​​(N − 1)​

  _______________  
E ​α​ E​ 2 ​ ​σ​ X​ 2 ​​(N − 1)​ + ​σ​ Q​ 2 ​

 ​.​

	 (iii)	 If ​E  >  1​, ​​γ​E​​​ is the correlation between the prices on any two distinct 
exchanges from the perspective of any strategic trader ​i​, conditional on ​​X​i​​​.

	 (iv)	 For any ​E​, the final asset position of strategic trader ​i​ is given by (5).

	 (v)	 If there is no liquidity trading, in that ​​σ​ Q​ 2 ​  =  0​, then the equilibrium alloca-
tion does not depend on the number ​E​ of exchanges.

	 (vi)	 If ​E  =  1​ or ​​σ​ Q​ 2 ​  =  0​, then the final asset position of strategic trader ​i​ is

	​ ​  ​Λ​1​​ _ ​Λ​1​​ + 2b
 ​ ​X​i​​ + ​  2b _ ​Λ​1​​ + 2b

 ​ ​ 1 _ 
N ​ ​ ∑ 

j∈N
​ 

 
 ​​ ​ X​j​​ + ​ ​∑ e∈E​   ​​​ Q​e​​ ______ 

N ​ ,​

		  where ​​Λ​1​​  =  2b / ​(N − 2)​​.

	 (vii)	 Suppose there is liquidity trading, in that ​​σ​ Q​ 2 ​  >  0​. Then the order aggressive-
ness ​E ​α​E​​​ is strictly monotone increasing in ​E​ and converges to ​N / ​(N − 1)​​. 
In particular, a market with only one exchange is strictly dominated, from 
the viewpoint of allocative efficiency, by a market with any larger number of 
exchanges.

Part (vi) of Theorem 1 implies that with a single exchange, the fraction of the 
endowment retained by a trader is increasing in the price impact ​​Λ​1​​​. In a centralized 
market, price impact avoidance is the only source of allocative inefficiency.12 As we 
have described and will later elaborate, the effect of price impact avoidance on alloc-
ative efficiency can be mitigated by increasing the degree of market fragmentation. 
In the next section, we analyze the forces behind this and other effects of market 
fragmentation. But, as stated in part (vii) of Theorem 1, any degree of fragmentation 
is socially preferred to concentrating all trade on a single exchange.

12 Otherwise, the proof of the First Welfare Theorem applies.
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IV.  The Effects of Fragmentation

We present several predictions of our model, beginning first with the effects of 
fragmentation on price impact.

A. Price Impact

Part (ii) of Theorem 1 provides the equilibrium relationship between price impact 
and the correlation between exchange prices. This relationship reflects the effect 
on trade demand of cross-exchange inference from prices. As seen from (4), the 
quantity ​​f​ie​​​(​X​i​​, ​p​e​​)​​ purchased by trader ​i​ on exchange ​e​ at the price ​​p​e​​​ depends on 
the probability distribution of the quantities that trader ​i​ will execute on the other 
exchanges, conditional on ​​X​i​​​ and ​​p​e​​​.

To illustrate, suppose for example that in state ​ω  ∈  Ω​ trader ​i​ is a buyer of the 
asset at the equilibrium price on exchange ​e​. If the observed price outcome ​​p​e​​​(ω)​​ 
was lowered, trader ​i​ would assign a higher conditional likelihood to lower prices 
on the other exchanges because strategic traders’ demands are positively correlated 
on any two exchanges (which implies a positive cross-exchange price correla-
tion, ​​γ​E​​​). But trader ​i​ submits demands to the other exchanges before observing ​​p​e​​​. 
Thus, the lower is ​​p​e​​​(ω)​​, the higher is the conditional expected quantity executed 
by trader ​i​ on the other exchanges. As ​​p​e​​​(ω)​​ declines, the marginal utility of trader ​i​ 
per unit purchased on exchange ​e​ is also reduced. Due to cross-exchange inference, 
the quantity purchased by trader ​i​ on exchange ​e​ in response to a decrease in price 
​​p​e​​​(ω)​​ is smaller than would be the case if there was no cross-exchange correla-
tion. Analogous reasoning can be applied to show that, due to cross-exchange 
inference, the quantity purchased by trader ​i​ optimally on exchange ​e​ in response 
to an increase in the price ​​p​e​​​(ω)​​ is smaller than it would be if there was no 
cross-exchange correlation. Overall, cross-exchange price inference reduces the 
steepness (absolute slope) of the demand schedule of trader ​i​ on each exchange. 
The result, by (3), is that price impact rises. Because this channel does not exist 
with a single centralized exchange, price impact is always higher in a fragmented 
market than in a centralized market.

We now discuss comparative-static effects for price impact associated with 
a change in the variance ​​σ​ Q​ 2 ​​ of liquidity trade and the number ​E​ of exchanges.  
As ​​σ​ Q​ 2 ​​ increases, prices at different exchanges become less correlated, so price impact 
declines, eventually converging to that of a single exchange market as ​​σ​ Q​ 2 ​​ tends to 
infinity. Thus, price impact is lower in markets with noisier liquidity trader supply 
because the cross-exchange inference channel is weaker. The following proposition 
characterizes the dependence of price impact on the number of exchanges.

PROPOSITION 1: The price-impact coefficient ​​Λ​E​​​ is strictly monotone increas-
ing in the number ​E​ of exchanges. If the variance ​​σ​ Q​ 2 ​​ of liquidity trade is zero, 
then ​​lim​E→∞​​ ​Λ​E​​  =  ∞​. If ​​σ​ Q​ 2 ​  >  0​, then

	​ ​ lim​ 
E→∞

​​ ​Λ​E​​  = ​   2b _ 
N − 2 ​​(1 + ​  ​N​​ 2​ ​σ​ X​ 2 ​ _ 

​(N − 1)​ ​σ​ Q​ 2 ​
 ​)​,​
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and for ​E  >  1​, cross-exchange price correlation ​​γ​E​​​ declines strictly monotonically 
as ​E​ increases and converges to zero as ​E  →  ∞​.

Proposition 1 states that market fragmentation increases price impact and (with 
nontrivial liquidity trade) reduces cross-exchange price correlation. Without liquid-
ity trade (​​σ​ Q​ 2 ​  =  0​), price impact diverges as the number of exchanges diverges, 
because ​​γ​E​​​ is equal to 1. But with liquidity trade (​​σ​ Q​ 2 ​  >  0​), price impact converges 
to a finite value. Because price impact depends on ​​γ​E​​​(E − 1)​​, this follows from the 
fact that ​​γ​E​​​ declines at a rate proportional to ​1 / E​. The intuition is that as the number 
of exchanges increases, the expected quantity traded on a given exchange decays 
at rate ​1 / E​, which in turn causes the variability in prices due to strategic traders’ 
orders to decay at a rate proportional to ​1 / ​E​​ 2​​. Since the variability in prices due to 
exchange-specific liquidity trade is ​​σ​ Q​ 2 ​ / E​, this implies that ​​γ​E​​​ must decline at the 
rate ​1 / E​, so that price impact converges.

Figure 1 illustrates the relationship between price impact and the number of 
exchanges, for different cases of the number ​N​ of strategic traders. As illustrated, 
price impact converges faster when there are more strategic traders. For instance, 
consider the case of ​b  =  1 / 2​, ​N  =  5​, and ​E  =  100​. Without liquidity trade, price 
impact is roughly ​​Λ​E​​  =  33​. However, with ​​σ​ Q​ 2 ​  >  0​ and strategic traders whose 
endowments are 10 times more uncertain (in terms of variance) than aggregate 
liquidity trader supply (in that ​​σ​ X​ 2 ​ / ​σ​ Q​ 2 ​  =  10​), price impact drops to approximately 
10. As ​​σ​ X​ 2 ​ / ​σ​ Q​ 2 ​​ falls below 10, ​​γ​E​​​ is reduced and, because of this, price impact is 
further reduced.

B. Allocative Efficiency

We have just shown that price impact is higher in more fragmented markets. 
However, Theorem 1 tells us that, provided there is no liquidity trade (​​σ​ Q​ 2 ​  =  0​), even 
though price impact diverges as ​E​ tends to infinity, total trade aggressiveness is unaf-
fected and the equilibrium allocation remains constant. Moreover, when ​​σ​ Q​ 2 ​  >  0​, 
even though price impact increases with fragmentation, total trade aggressiveness 
actually increases. One might have expected that the rise in price impact would lead 
to a reduction in trade aggressiveness and thus lower allocative efficiency, but this is 
not the case. We turn now to a resolution of this superficial paradox.

As fragmentation rises, price impact rises but traders are better able to evade the 
overall cost of price impact by splitting their orders across exchanges. This is so 
because traders bear the cost of price impact on a given exchange only to the extent 
of the trades executed on that exchange. By order splitting, a trader can shield an 
order on a given exchange from the price impact of units executed on the other 
exchanges. When there are more exchanges, the purchase of an additional unit on 
a given exchange affects a smaller fraction of the total quantity traded. When there 
is no liquidity trade (​​σ​ Q​ 2 ​  =  0​) this effect exactly offsets the rise in price impact, 
leaving the overall aggressiveness of a trader’s demand invariant to the number of 
exchanges. When ​​σ​ Q​ 2 ​  >  0​, price impact does not rise quickly enough to offset the 
effect of increased aggressiveness through order splitting.

As a source of intuition, suppose that trader ​i​ purchases ​q / E​ additional units of 
the asset on each exchange, for a total of ​q​ units. Because there is no cross-exchange 
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price impact, this increases the price on each exchange by ​​Λ​E​​ q / E​. Thus, the overall 
price-impact cost to trader ​i​ is ​​Λ​E​​ ​q​​ 2​ / E​. If the price impact coefficient ​​Λ​E​​​ were to 
remain constant, an increase in the number of exchanges would reduce the overall 
cost of price impact, because of order-splitting. Price impact in fact rises with ​E​, but 
overall order aggressiveness depends on ​​Λ​E​​ / E​. By part (ii) of Theorem 1,

	​ ​ ​Λ​E​​ _ 
E

 ​  = ​   2b _ 
N − 2 ​​(​γ​E​​ + ​ 1 − ​γ​E​​ _ 

E
  ​)​.​

If the equilibrium cross-exchange price correlation, ​​γ​E​​​, is imperfect and 
non-increasing in ​E​, then ​​Λ​E​​ q / E​ is decreasing13 in ​E​. In fact, Proposition 1 states 
that if ​​σ​ Q​ 2 ​  >  0​, then ​​γ​E​​​ is strictly decreasing in ​E​ and ultimately converges to zero. 
Intuitively, when prices are imperfectly correlated, the effects of cross-exchange 
inference discussed in Section IVA are weakened by market fragmentation, so that 
price impact rises less quickly than the number of exchanges. Thus, the dominant 
effect on overall aggressiveness is order-splitting, and overall price impact costs 
decline with ​E​. As a result, agents trade more aggressively in more fragmented 
markets.

At low levels of fragmentation, increases in trade aggressiveness are beneficial for 
allocative efficiency. But when markets become sufficiently fragmented, additional 

13 The assumption that liquidity trade is independent across exchanges ensures ​​γ​E​​  <  1​. If liquidity trades were 
instead perfectly correlated across exchanges, then ​​γ​E​​​ would be 1 and fragmentation would have no effects on 
allocative efficiency.
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Figure 1. Price Impact

Notes: Variation of price impact ​​Λ​E​​​ with the number ​E​ of exchanges, for various cases of ​N​, the number of stra-
tegic traders. In all cases, the variance-aversion coefficient is ​b  =  1 / 2​ and the ratio ​​σ​ X​ 2 ​ / ​σ​ Q​ 2 ​​ of the variance of 
strategic-trader asset endowment to total liquidity trade quantity is 10.
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increases in aggressiveness are inefficient, in that ​E​α​E​​​ increases past the point of 
efficiency, at which ​E​α​E​​  =  1​, rising with ever larger ​E​ to the limit ​N / N − 1​. We 
emphasize, however, that trade never becomes so aggressive that fragmentation leads 
to a loss of allocative efficiency relative to that of a market with a single exchange.

By equation (5), the number of exchanges that maximizes allocative efficiency is 
that for which ​E​α​E​​​ is closest to 1.

PROPOSITION 2: Suppose ​​σ​ Q​ 2 ​  >  0​. Let

(9)	 ​​E​​ ⁎​  =  2 + ​  2 _ 
N − 2 ​ + ​ N − 1 _ 

N − 2 ​ ​ N ​σ​ X​ 2 ​ _ 
​σ​ Q​ 2 ​

 ​.​

If ​​E​​ ⁎​​ is an integer, the unique symmetric affine equilibrium for a market with ​​E​​ ⁎​​ 
exchanges achieves an efficient allocation of the asset, by allocating an equal amount ​​
q ¯ ​​ of the asset to each strategic trader. In general, the number of exchanges that max-
imizes allocative efficiency is ​⌊​E​​ ⁎​⌋​ or ​⌈​E​​ ⁎​⌉​.

By Proposition 2, the optimal number of exchanges is finite, is at least 2, and 
depends crucially on the ratio of the variance of the endowment of strategic traders 
to the variance of the total amount of liquidity trade, ​​σ​ X​ 2 ​ / ​σ​ Q​ 2 ​​. This ratio determines 
the cross-exchange price correlation ​​γ​E​​​, as seen in equation (8), which in turn deter-
mines price impact. As ​​σ​ X​ 2 ​ / ​σ​ Q​ 2 ​​ rises, price impact is higher, so more fragmenta-
tion necessary to offset the adverse effect of price impact with the beneficial effect 
of increasing the number of exchanges over which strategic traders can split their 
orders.

It is perhaps surprising that the socially optimal number of exchanges is finite. 
For any finite ​E​, price impact costs are positive and only disappear in the limit, in 
that ​​lim​E→∞​​ ​Λ​E​​ / E  =  0​. It turns out, however, that fragmentation introduces an addi-
tional inefficiency beyond price impact. For intuition, consider again equation (4), 
which determines the demand of trader ​i​ at a given price, ​​p​e​​​ on exchange ​e​. To eval-
uate the marginal benefit of purchasing additional units, trader ​i​ must form a con-
ditional expectation of the quantities that he will purchase on the other exchanges. 
To form this expectation, trader ​i​ must in turn form a conditional expectation of 
the prices on the other exchanges. If prices at distinct exchanges are perfectly cor-
related, then ​피​[​p​k​​ | ​X​i​​, ​p​e​​]​  = ​ p​e​​​ for each exchange ​k​. However, if exchange prices are 
imperfectly correlated, then, using (6), it can be shown that

(10)	 ​피​[​p​k​​  |  ​X​i​​, ​p​e​​]​  =  − ​(1 − ​γ​E​​)​​ N − 1 _ 
N  ​ ​Λ​E​​ ​(​α​E​​ ​X​i​​ − N ​Δ​E​​)​ + ​γ​E​​ ​p​e​​,​

for an arbitrary exchange ​k  ≠  e​. That is, trader ​i​ must use his own endowment ​​X​i​​​ 
to forecast prices on the other exchanges. The effect of using ​​X​i​​​ for cross-exchange 
inference is an increase in ​​α​E​​​, the sensitivity of demand with respect to ​​X​i​​​.

The intuition behind this is analogous to that of Section IVA, where we explained 
why cross-exchange inference leads to a rise in price impact. Holding ​​p​e​​​ fixed, 
if ​​X​i​​​ is lowered, trader ​i​ would expect prices on the other exchanges to rise, as 
seen by (10), and thus would expect to purchase less on the other exchanges. The 
marginal benefit of purchasing an additional unit on exchange ​e​ would then rise.  
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As a result, the sensitivity of the quantity purchased by trader ​i​ to reductions 
in ​​X​i​​​ is increased by cross-exchange inference. That is, total order aggressiveness ​​α​E​​​ 
increases because of the role of ​​X​i​​​ in cross-exchange inference. This force is not 
present in a market with a single exchange. With a single exchange, the allocation 
would be efficient if traders ignored their price impact. In contrast, if ​​σ​ Q​ 2 ​  >  0​, then 
as ​E​ tends to infinity, even though price impact disappears, trade eventually becomes 
overly aggressive from a welfare perspective.

Figure 2 illustrates the results of this section. As shown, ​E​α​E​​​ is strictly increasing 
in fragmentation and can exceed the socially efficient level. The socially efficient 
number of exchanges increases with ​​σ​ X​ 2 ​ / ​σ​ Q​ 2 ​​.

C. Price Informativeness

Our finding that trade aggressiveness increases with market fragmentation 
has natural implications for price informativeness. By price informativeness, we 
mean the degree to which prices reveal information about the average endowment 
​​X ̄ ​  = ​ ∑ i∈N​   ​​ ​ X​i​​ / N​ of strategic traders. This notion is especially relevant when view-
ing our model as though a snapshot of a dynamic market in which liquidity trade 
is serially uncorrelated and the aggregate strategic endowment is a persistent 
Markov process. In such a setting, the aggregate endowment of strategic traders 
is a sufficient statistic for inference regarding future prices and future aggregate 
endowments.

Because of the joint normality of prices and endowments in our model, the con-
ditional variance of ​​X 

–
 ​​ given exchange prices is an unambiguous metric for price 

informativeness. Our results are summarized in Proposition 3.

PROPOSITION 3: Suppose that the variance ​​σ​ Q​ 2 ​​ of liquidity trade is not zero. Then:

	 (i)	 For any exchange ​e​, ​var​(​X 
–
 ​ | ​p​ e​ ⁎​)​​ is strictly monotone increasing in the num-

ber ​E​ of exchanges and converges to ​var​(​X 
–
 ​)​​ as ​E​ goes to ​∞​.

	 (ii)	​ var​(​X 
–
 ​ | ​{​p​ e​ ⁎​  :  e  ∈  E}​)​​ is strictly monotone decreasing in ​E​.

That is, as market fragmentation rises, the informativeness of the price on any 
individual exchange worsens, but overall price informativeness, taking into consid-
eration information from all exchange prices, improves.

V.  The Case of Observable Aggregate Endowment

This section presents a simplified version of the model in which the aggregate 
endowment of strategic traders is publicly observable. This allows a demonstration 
of the welfare benefits of fragmentation in a setting that requires neither liquidity 
traders nor Gaussian asset endowments. As before, the equilibrium price on a given 
exchange is linear with respect to the aggregate endowment and exchange-specific 
liquidity trade. Thus, conditional on the aggregate asset endowment which we now 
assume is publicly observable, prices on any two exchanges are uncorrelated, so 
traders do not make cross-exchange inferences from prices. This shuts down the 
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cross-exchange inference channel, allowing an isolated analysis of the welfare ben-
efits of order splitting.

We retain the model setup of Section II with the exceptions that, for any exchange ​e​ 
and any trader ​i​, (i) ​​Q​e​​​ and ​​X​i​​​ are of finite variance but not necessarily normally 
distributed (though ​​Q​e​​​ still has mean zero) and (ii) trader ​i​ observes14 the private 
endowment ​​X​i​​​ and the average endowment ​​X 

–
 ​​. The following theorem characterizes 

the equilibrium of this model.

THEOREM 2: For each number ​E​ of exchanges, there exists a symmetric affine 
equilibrium. If, in addition, for each ​e​, ​​Q​e​​​ has full support on ​핉​, then the equilibrium 
is unique in the class of symmetric affine equilibria, and:

	 (i)	 The price-impact coefficient ​​Λ​E​​  =  2b / ​(N − 2)​​ does not depend on the num-
ber ​E​ of exchanges.

14 That is, the demand submitted by trader ​i​ on exchange ​e​ is a measurable function ​​f​ie​​  :  ​ℝ​​ 3​  →  ℝ​ that, at any 
price ​p​, determines the demand ​​f​ie​​​(​X​i​​, ​X 

–
 ​, p)​​.
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Figure 2. Allocative Inefficiency

Notes: We plot equilibrium allocative inefficiency as measured by ​| 1 − E​α​E​​|​ against the number of exchanges for 
different values of the ratio ​​σ​ X​ 2 ​ / ​σ​ Q​ 2 ​​ of the variance of the endowment of a strategic trader to the variance of the total 
amount of liquidity trade. In all cases, the number ​N​ of strategic traders is 10. Allocative inefficiency, ​|1 − E ​α​E​​|​, 
does not depend on the variance-aversion coefficient ​b​.
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	 (ii)	 For each fixed number ​E​ of exchanges:

		  (a) The price on exchange ​e​ is

	​ ​p​ e​ ⁎​  =  − 2b​(​X 
–
 ​ + ​  ​Q​e​​ _ 

N − 2 ​ ​ N − 1 _ 
N  ​)​ + ​μ​π​​.​

		  (b) The final asset position of trader ​i​ is

	​ ​  ​Λ​E​​ _ ​Λ​E​​ + 2bE
 ​ ​X​i​​ + ​  2bE _ ​Λ​E​​ + 2bE

 ​ ​X 
–
 ​ + ​ ​∑ e∈E​   ​​ ​ Q​e​​ ______ 

N ​ .​

	 (iii)	 Allocative efficiency is increasing in the number ​E​ of exchanges. As ​E​ 
diverges, the allocation converges to the efficient allocation, ​​q –​​ to each strate-
gic trader.

	 (iv)	 The total expected equilibrium payment ​− 피​[​∑ e∈E​   ​​ ​ p​ e​ ⁎​ ​Q​e​​]​​ of liquidity traders 
is invariant to the number ​E​ of exchanges and is equal to

	​​ 
2b var​(​∑ e∈E​ 

  ​​ ​ Q​e​​)​  __________ 
N − 2 ​  ​ N − 1 _ 

N  ​.​

In this setting, price impact is a constant that does not depend on the level of frag-
mentation because there is no cross-exchange inference effect. By part (iii) of the 
theorem, more fragmentation is unambiguously beneficial in this setting. In the limit 
as ​E​ tends to infinity, the fully efficient allocation obtains. The benefits here of frag-
mentation arise entirely from the beneficial effects of increased order aggressiveness 
associated with order splitting. An equilibrium exists with the properties stated in 
the theorem even if there is no liquidity trade, in that ​​Q​e​​  =  0​ for each ​e​. However, 
liquidity trade is still needed for equilibrium uniqueness. Even in the presence of 
liquidity traders, the total expected payment of liquidity traders is invariant to mar-
ket fragmentation. Thus, the beneficial effect of fragmentation is not related to the 
exploitation of liquidity traders by strategic traders.15 In the model of Section II, 
the liquidity traders are only a convenient modeling device for breaking the perfect 
correlation in exchange prices. In an alternative high-frequency multiperiod setting, 
Budish, Cramton, and Shim (2015) note that the prices of similar assets on different 
exchanges are virtually uncorrelated, empirically. We explore a multi-period setting 
in the next section.

VI.  A Dynamic Model

One might guess that market fragmentation would not support allocative effi-
ciency as well in a dynamic setting as in a static setting. In our static setting, the 

15  In the setting of Section IV, our results are not driven by donations from liquidity traders, but liquidity traders 
do pay more in expectation as fragmentation increases. The total expected payment to strategic traders is 

(11)	​ 피​[​ ∑ 
e∈E

​ 
 
 ​​ ​ p​ e​ ⁎​ ​Q​e​​]​  = ​  N − 1 _ 

N  ​ ​Λ​E​​ ​σ​ Q​ 2 ​​ ,

which is strictly increasing in ​E​ since ​​Λ​E​​​ is strictly increasing.
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price impact of a trader’s orders on exchange ​e​ does not increase trading costs on 
other exchanges, because of the simultaneity of trade. In a dynamic setting, however, 
when submitting a trade on exchange ​e​ at period ​t​, a trader internalizes the resulting 
impact on the prices on all exchanges in period ​t + 1​, given the inference about 
aggregate inventory that is drawn by other traders from observing ​​p​et​​​. Nevertheless, 
in this section, we show that market fragmentation allows efficient trade even in a 
dynamic setting, despite the associated cross-period cross-exchange price impact 
and higher within-period price impact. Moreover, the efficient number of exchanges 
is invariant to trading frequency, and is the same as that of the static model.

A. Setup

Trade occurs at each of a discrete set of times separated by some duration ​Δ​. 
A positive integer ​t​ denotes the ​t​ th trading date. As in the baseline static model, ​E​ 
exchanges operate separate double auctions for a single asset at each trade time. 
The asset pays ​​π​t​​​ at date ​t​, post-trade, where ​​π​1​​, ​π​2​​, …​ are independent with com-
mon mean ​​μ​π​​ Δ​. Liquidity traders supply a Gaussian quantity ​​Q​et​​​ of the asset to 
exchange ​e​ at trade date ​t​, independent across exchanges and dates, with common 
mean zero and variance ​​σ​ Q​ 2 ​ Δ​. Immediately prior to trade at date ​t​, trader ​i​ receives 
a Gaussian inventory shock ​​ϵ​it​​​ that has mean zero and variance ​​σ​ X​ 2 ​ Δ​, independent 
across trading dates and traders. The inventory shocks, liquidity trader supplies, and 
the asset payoffs are independent.

The pre-trade inventory of trader ​i​ at period ​t​ is

(12)	 ​​X​it​​  = ​ X​i,t−1​​ + ​ ∑ 
e∈E

​ 
 
 ​​ ​ q​ie,t−1​​ + ​ϵ​it​​,​

where ​​q​iet​​​ is the quantity purchased by trader ​i​ on exchange ​e​ at period ​t​. For ​t  =  0​, 
we set ​​X​i,t−1​​ + ​∑ e∈E​   ​​ ​ q​ie,t−1​​  =  0​. Note that since the equilibrium we construct has 
efficient trade, the variance of ​​ϵ​it​​​, ​​σ​ X​ 2 ​ Δ​, is also the conditional variance of ​​X​it​​​ from 
the perspective of each trader following trade at date ​t − 1​. It is not, however, the 
unconditional variance of ​​X​it​​​ for ​t  >  0​.

During the time interval ​​[tΔ, ​(t + 1)​Δ)​​, the net payoff to trader ​i​, discounted to 
the beginning of the interval at the rate ​r  >  0​, is the total initial payoff from asset 
holdings, net of asset purchase costs, plus discounted inventory holding costs, given 
by

(13)	 ​​F​it​​​(​q​it​​)​  = ​ π​t​​​(​X​it​​ + ​ ∑ 
e∈E

​​​ ​q​iet​​)​ − ​ ∑ 
e∈E

​​​​p​et​​ ​q​iet​​ − ​∫ 
0
​ Δ​​​e​​ −rs​​b ̃ ​​​(​X​it​​ + ​ ∑ 

e∈E
​​​ ​q​iet​​)​​​ 

2
​ds 

	 = ​ π​t​​​(​X​it​​ + ​ ∑ 
e∈E

​​​ ​q​iet​​)​ − ​ ∑ 
e∈E

​​​​p​et​​ ​q​iet​​ − b ​​(​X​it​​ + ​ ∑ 
e∈E

​​​ ​q​iet​​)​​​ 
2
​,​

where ​​q​it​​  = ​ (​q​i1t​​, …  , ​q​iEt​​)​​ and

	​ b  = ​ b ̃ ​ ​ 1 − ​e​​ −rΔ​ _ r  ​.​

Our formulation is in the spirit of Vayanos (1999), differing mainly in that 
we allow multiple exchanges, introduce liquidity traders, and assume a different 
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inventory preference model. For tractability, a significant part of the analysis in 
Vayanos (1999) focuses on the case in which ​​σ​ X​ 2 ​​ tends to zero. Our analysis applies 
to arbitrary ​​σ​ X​ 2 ​​.

We do not solve for an equilibrium of the model for an arbitrary number ​E​ of 
exchanges because of the problem of infinite regress of beliefs, as described in the 
conclusion of Vayanos (1999). In the presence of liquidity traders, strategic traders 
choose their trades based on their beliefs about the aggregate market asset inven-
tory, as well as beliefs about other traders’ beliefs about aggregate inventory, beliefs 
about the beliefs of other traders about their own beliefs, and so on, causing the state 
space to explode. To our knowledge, there has been no analysis of demand-function 
submission games in which traders filter information from prices so as to discern 
strategic trading from liquidity trading. Rather than addressing equilibria for gen-
eral ​E​, we instead construct an equilibrium for a specific number ​E​ of exchanges 
with the property that the associated equilibrium is perfect Bayesian and imple-
ments efficient trade. This equilibrium is tractable because efficient trade dramati-
cally simplifies the inference problem of each trader, given that the sum of exchange 
prices perfectly reveals the aggregate inventory after each round of trade.

B. An Equilibrium with Efficient Trade

In this section we briefly derive an efficient equilibrium and characterize its key 
properties, including the associated number ​E​ of exchanges. A proof is given in 
online Appendix Section E .

To start, we conjecture that there exists a number ​E​ of exchanges such that in 
equilibrium each trader ​i​ submits the demand schedule to exchange ​e​ given by

(14)	 ​​f​iet​​​(​X​it​​, ​p​et​​, ​B​t​​)​  =  − ​ 1 _ E ​ ​X​it​​ − ζ ​p​et​​ + ρ ​B​t​​ + χ,​

for some constants ​ζ​, ​ρ​, and ​χ​ to be determined, where ​​B​t​​​ is defined recursively 
by ​​B​0​​  =  0​ and

(15)	 ​​B​t​​  =  NEρ ​B​t−1​​ + NEχ − ζN​ ∑ 
e∈E

​ 
 
 ​​ ​ p​e,t−1​​.​

We later interpret ​​B​t​​​ as a variable related to trader beliefs about the aggregate supply 
of the asset. Given the conjectured form (14) of the demand function, market clear-
ing implies that the equilibrium price on exchange ​e​ is

(16)	 ​​p​et​​  = ​ 
Nρ ​B​t​​ + Nχ − ​Q​et​​ − ​ 1 _ E ​ ​∑ j∈N​   ​​​ X​jt​​   _____________________  ζN

 ​ .​

The post-trade aggregate inventory of strategic traders at date ​t​ is

	​ ​W​t​​  = ​  ∑ 
j∈N

​ 
 
 ​​ ​ X​jt​​ + ​ ∑ 

e∈E
​ 

 
 ​​ ​ Q​et​​.​

Substituting (16) into (14) and summing across ​e  ∈  E​, we verify that the final inven-
tory of trader ​i​ at date ​t​ is efficient and equal to ​​W​t​​ / N​. By substituting (16) into (15) 
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we see that, along the equilibrium path, ​​B​t​​​ is equal to ​​W​t−1​​​. If any given trader were 
to deviate from the equilibrium strategy prior to date ​t​, it is possible that ​​B​t​​  ≠ ​ W​t−1​​​. 
Nonetheless, even if traders had deviated prior to date ​t​, any trader who has not devi-
ated must believe that ​​W​t−1​​  = ​ B​t​​​ with probability 1 because the Gaussian liquid-
ity trading and inventory shocks ensure that deviations are undetectable. Thus, any 
given trader ​i​ must believe that any other trader ​j​ believes that ​​W​t−1​​  = ​ B​t​​​, and so on 
with respect to higher-order beliefs. Thus, ​​B​t​​​ is a sufficient statistic for higher-order 
beliefs. This allows for a tractable equilibrium construction.

We now provide intuition for the role of the key state variable ​​B​t​​​ in traders’ 
demand schedules. If trader ​j​ follows the equilibrium strategy, (15) and (14) imply 
that

	​ ​X​j,t−1​​ + ​ ∑ 
e∈E

​ 
 
 ​​ ​ q​je,t−1​​  = ​  1 _ 

N ​ ​B​t​​.​

Summing across ​j  ≠  i​,

	​​ ∑ 
j≠i

​ 
 
 ​​​ (​X​j,t−1​​ + ​ ∑ 

e∈E
​ 

 
 ​​ ​ q​je,t−1​​)​  = ​  N − 1 _ 

N  ​ ​B​t​​.​

Thus for trader ​i​, ​​B​t​​​ is a sufficient statistic for the total post-trade inventory of 
other traders at date ​t − 1​. This in turn implies that ​​B​t​​​ is sufficient information for 
trader ​i​ to conduct inference about the residual supply that he will face on each of 
the exchanges at time ​t​. This explains the role of ​​B​t​​​ in the demand schedule (14).

In a perfect Bayesian equilibrium, any given trader ​i​, conjecturing that other 
traders submit demand functions according to (14), solves the stochastic control 
problem

(17)	 ​​sup​ 
​{ ​f​iet​​}​

​ ​ 피​[​ ∑ 
t=0

​ 
∞

 ​​ ​e​​ −rΔt​ ​F​it​​​(​q​it​​)​ ​|​​ ​X​i0​​]​,​

with demands that are measurable16 with respect to the history of inventory 
levels ​​​{​X​is​​}​​s≤t​​​, trades ​​​{​q​ies​​}​​e∈E,s<t​​​, and prices ​​​{​p​es​​}​​e∈E,s<t​​​, and satisfy17

(18)	 ​​ lim​ 
t→∞​​ ​e​​ −rΔt​ 피​[​X​ it​ 2 ​]​  =  0,​

ruling out “Ponzi schemes” that are based on explosive growth in asset positions. 
An equilibrium is characterized by optimal demands determined by the same func-
tion ​​f​iet​​​( ⋅ )​​ of (14).

In solving the optimization problem (17), trader ​i​ correctly considers the impacts 
of his trades on current and future prices. These impacts occur directly through 
the formation of the clearing price on the exchange to which an order is submitted 
and also through the recognition by trader ​i​ that other traders draw inference from 

16 Although the objective function involves second moments of ​​X​it​​​, we allow strategies that do not have finite 
second moments and show that any such strategy is strictly suboptimal.

17 This condition is implied by the square-integrability condition ​피​[​∑ t=0​ ∞ ​​​e​​ −rΔt​ ​∑ e∈E​   ​​  ​q​ iet​ 2  ​]​  <  ∞​.
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market prices about the aggregate market supply of the asset, which affects future 
prices at all exchanges. This impact occurs through the “beliefs” state variable ​​B​t​​​, 
through the dynamic equation (15).

In online Appendix Section E , we use Bellman’s principle of optimality to calcu-
late the required number ​​E​​ ⁎​​ of exchanges, which is given by (9), the same as that for 
the static model. Solutions for the equilibrium demand coefficients ​ρ​, ​ζ​, and ​χ​ are 
reported at the end of online Appendix Section E .

From the demand schedule (14), the within-period price impact on any exchange 
is

(19)	 ​​  1 _ 
ζ​(N − 1)​ ​  = ​ 

2b​(1 + Γ​(E − 1)​)​
   ________________________    

N − 2 − ​e​​ −rΔ​ ​ 2N − 2 _ E  ​​(1 + Γ​(E − 1)​)​
 ​,​

which is higher than in the associated static model. We also compute the cross-period 
cross-exchange price impact

(20)	 ​​ 
d​p​e,t+1​​ _ 
d​q​jkt​​

 ​   =  − Nρ ​  1 _ 
​(N − 1)​ζ ​  = ​  1 _ E ​ ​ 

2b​(1 + Γ​(E − 1)​)​
   ________________________    

N − 2 − ​e​​ −rΔ​ ​ 2N − 2 _ E  ​​(1 + Γ​(E − 1)​)​
 ​,​

which is a fraction ​1 / E​ of the within-period within-exchange price impact. (Our 
differential notation for this price sensitivity involves a transparent abuse of nota-
tion.) The marginal impact of the quantity traded by any trader on any exchange 
on the sum of exchange prices in the next time period is equal to the within-period 
within-exchange price impact.

C. Summary of Results

The following theorem summarizes the results of our analysis of the dynamic 
model.

THEOREM 3: If ​​E​​ ⁎​​ of (9) is an integer, then there exists a perfect Bayesian equi-
librium in symmetric affine demand schedules for the dynamic market with ​​E​​ ⁎​​ 
exchanges such that:

	 (i)	 Trade is allocatively efficient along the equilibrium path.

	 (ii)	 Traders submit the demand schedule given by (14), with ​ρ​, ​ζ​, and ​χ​ given by 
(E23), (E24), and (E25), respectively.

	 (iii)	 Beliefs about the aggregate market inventory evolve according to (15).

	 (iv)	 Trades on each exchange have nonzero price impact at each exchange in the 
next period, given by (20).

	 (v)	 The within-period within-exchange price impact (19) is higher than that for 
the associated static model.
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In the equilibrium, by deviating, traders can manipulate other traders’ beliefs 
about the aggregate market asset inventory. Following a one-shot deviation, trade 
returns to efficiency in the next period, and beliefs become “corrected.”

Our analysis shows that in our dynamic model, as for the associated static model, 
a precise and nontrivial amount of market fragmentation achieves allocative effi-
ciency. Relative to the static model, our dynamic model allows a clearer character-
ization of how fragmentation improves price discovery. A weakness of our analysis 
of the dynamic setting is that, because of the need to incorporate the infinite regress 
of beliefs about beliefs, we are able to characterize equilibrium only for the num-
ber of exchanges that is associated with an efficient allocation. A notable impli-
cation of Theorem 3 is that this efficient number of exchanges is invariant to the 
frequency of trade and is identical to that of the static model. Though the presence 
of multiple periods of trade increases price impact relative to the static model, it also 
amplifies the role of traders’ asymmetric information, which, as we saw in the static 
model, leads to more aggressive order submission. This is so because traders rely on 
their privately observed inventories to conduct inference that is relevant not only to 
current-period trade prospects, but also to future-period trade prospects. This effect 
on trade aggressiveness precisely offsets the effects of the rise in price impact on 
each exchange.

Our analysis has side implications for the optimal trading frequency. We show 
in online Appendix Section E that our model is essentially equivalent to a setting 
in which traders’ inventories are continually shocked by independent Brownian 
Motions. In that setting, since Theorem 3 also applies, for the efficient number ​​E​​ *​​ 
of exchanges, allocative efficiency increases as trade frequency increases. This con-
trasts with Vayanos (1999) and Du and Zhu (2017), who show that with a single 
exchange, allocative efficiency may decline as trade frequency increases.

VII.  Discussion of Model Extensions

In this section we summarize the results of three extensions of the main model 
that are provided in the online appendices.

A. Endogenous Liquidity Trade, Exchange by Exchange

In our first model extension, found in online Appendix Section F , liquidity 
traders, who are local to each exchange and conduct no cross-exchange trade, 
choose the sizes of their trades. Liquidity traders are assumed to have the same 
preferences as strategic traders, with the exception of a potentially different qua-
dratic holding cost parameter, ​c​. They are also each endowed with a Gaussian 
distributed quantity of the asset prior to trade. Thus, the baseline model is equiv-
alent to the case in which ​c  =  ∞​, in that liquidity traders liquidate their entire 
endowed positions as though without discretion. Relaxing this baseline extreme 
assumption to the case of finite ​c​, we find for any positive integer ​​E 

–
 ​  >  1​, there 

exists a cutoff ​​c –​​ such that if ​c  > ​ c –​​, then a market with ​1  <  E  ≤ ​ E 
–
 ​​ exchanges 

is welfare superior to a centralized market, in that the expected sum of all agents’ 
holding costs is lower.
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B. Private Information about Asset Payoff

In a second extension, found in online Appendix Section G , agents have differing 
private information about the asset’s final payoff. In this case, allocative efficiency 
is not necessarily improved by fragmenting a centralized market. This is so because 
fragmentation leads agents to trade more aggressively for two reasons: not only 
to mitigate holding costs, but also to exploit payoff-relevant private information. 
While the former motive leads fragmentation to improve allocative efficiency, as 
we demonstrated in Section IV, the latter effect can cause fragmentation to reduce 
allocative efficiency, because the efficient allocation of the asset does not depend on 
agents’ payoff-relevant private information. Whether fragmentation is beneficial or 
harmful is shown to depend on the relative magnitudes of these two effects.

C. Correlated Trade Motives

In a third extension, found in online Appendix Section H , we relax the assump-
tion that the asset endowments ​​(​X​1​​, …  , ​X​N​​, ​Q​1​​, … , ​Q​E​​)​​ are jointly independent. We 
retain the assumption that these random variables are jointly Gaussian, but allow for 
an essentially arbitrary covariance matrix, subject to the condition that the traders’ 
endowments ​​X​1​​, …  , ​X​N​​​ are symmetrically distributed and that the liquidity-trade 
quantities ​​Q​1​​, …  , ​Q​E​​​ are symmetrically distributed.

If a strategic trader’s endowment ​​X​i​​​ does not covary more negatively with aggre-
gate liquidity trader supply ​​∑ e​ 

  ​​ ​Q​e​​​ than it covaries positively with the aggregate 
endowment ​​∑ j​ 

  ​​ ​X​j​​​, then there is an interior optimal level of fragmentation which, up 
to the integer constraint on ​E​, achieves the efficient allocation.18

In this setting, however, an arbitrary level of market fragmentation need not coin-
cide with an unambiguous improvement in allocative efficiency over a centralized 
market. Whether this is so depends on the covariances of endowments. With some 
parameters, agents may trade even more aggressively than they do in the baseline 
model, which we have shown has the property that trade already becomes “too 
aggressive” for sufficiently large ​E​. Moreover, if a strategic trader’s endowment 
covaries more negatively with the aggregate liquidity trader supply than it cova-
ries positively with the aggregate endowment, fragmentation is harmful. This is so 
because the inefficiency associated with the inferior trading technology associated 
with disconnected fragmented markets dominates the beneficial effect of reducing 
the strategic avoidance of price impact. This follows from the fact that, ex ante, with 
this correlation structure, traders expect that the residual supply on each exchange 
is on average relatively favorable for offsetting their positions. This, however, leads 
to less aggressive trade than is socially efficient since agents are less willing to trade 
large quantities at unfavorable prices on any given exchange because they expect 
that prices on the other exchanges will be more favorable.

18 Positive definiteness of the covariance matrix ensures, for each ​i​, ​​X​i​​​ is positively correlated with ​​∑ j​ 
  ​​ ​X​j​​​.
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VIII.  Concluding Discussion

We have presented a simple market setting in which fragmentation of trade 
across multiple exchanges improves allocative efficiency and price informative-
ness. Our main marginal contributions are (i) a newly identified channel by which 
cross-exchange price inference exacerbates price impact, and (ii) a demonstration of 
the beneficial effects of cross-exchange order-splitting on allocative efficiency and 
price informativeness. We find that although fragmentation reduces market depth on 
any given exchange, this need not be a sign of worsening overall liquidity or mar-
ket inefficiency. We characterize the number of exchanges that achieves allocative 
efficiency, and show that this “optimal” degree of fragmentation is invariant to the 
frequency of trade and indeed the same as that of the static version of the model.

Our stylized model abstracts from many important practical considerations. We 
do not consider some of the direct frictional costs of trade and order splitting, such 
as trading fees and subsidies, minimum tick sizes, and bid-offer spreads, which 
are endogenous to market structure, particularly through the role of competition 
among exchange operators, specialists, and market makers (Baldauf and Mollner 
2020; Chao, Yao, and  Ye 2018; Colliard and  Foucault 2012; Malinova and  Park 
2019; Foucault and Menkveld 2008; Chlistalla and Lutat 2011; Clapham et al. 2021; 
Hengelbrock and Theissen 2009; Parlour and Seppi 2003). For example, Foucault 
and  Menkveld (2008) show that, with nonzero tick sizes, adding an additional 
limit-order market increases market depth by allowing limit-order submitters to jump 
the queue of posted orders on one exchange by posting orders on another exchange, 
due to the absence of cross-exchange time-priority rules. Foley, Jarnecic, and Liu 
(2020) show that liquidity providers increasingly fragment their activities amongst 
alternative venues, attempting to jump long queues on larger venues by increasing 
submissions to venues with short (or empty) queues. This reduces adverse selection 
costs faced on alternative venues and helps explain the increase in fragmentation for 
jurisdictions with trade-through prohibitions.

We also do not consider the endogenous entry of exchanges, a common theme in 
the literature going back to Glosten (1994), as reviewed by Pagnotta and Philippon 
(2018). Our model does not capture the effect of high-frequency traders who can 
take advantage of slight discrepancies in order execution times across different 
exchanges (Budish, Lee, and  Shim 2019; Gresse 2012; Pagnotta and  Philippon 
2018). We also ignore the role of trade-through rules such as Regulation NMS, 
which effectively forces all US lit exchanges to recognize the best bid or offer avail-
able across all order books in the market. While Reg NMS has the effect of consol-
idating markets for small trades, trade-through rules do not play a significant role 
in price-impact costs, which are only pertinent for large trades. The inefficiencies 
associated with price-impact cost avoidance through order splitting are the main 
concern in this paper.

Because we have abstracted from these and other potentially important realistic 
effects, we make no normative claims or policy recommendations. The mechanisms 
that we identify do, however, appear to have a natural basis and to be worthy of 
serious consideration in policy discussions.

Our model also has implications for the welfare impact of innovation of trading 
technologies. For example, the beneficial welfare effects of order splitting that we 
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have described rely crucially on the realistic assumption that orders submitted to 
one exchange cannot condition on prices at other exchanges. If, instead, trading 
technology were to allow orders to condition on cross-exchange prices, then trades 
on a given exchange would have impact on prices at other exchanges, which could 
eliminate the beneficial effect of order-splitting in fragmented markets, an issue 
considered by Wittwer (2021) and Rostek and Yoon (2020).
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