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This paper presents a dynamic asset-pricing model under asymmetric information. Investors
have different information concerning the future growth rate of dividends. They rationally extract
information from prices as well as dividends and maximize their expected utility. The model has
a closed-form solution to the rational expectations equilibrium. We find that existence of uninfor-
med investors increases the risk premium. Supply shocks can affect the risk premium only under
asymmetric information. Information asymmetry among investors can increase price volatility
and negative autocorrelation in returns. Less-informed investors may rationally behave like price
chasers.

1. INTRODUCTION

In this paper, we present a model of dynamic asset pricing under asymmetric information.
We consider an economy endowed with a given quantity of equity. The dividends on
the equity grow at a stochastic rate. The investors in the economy can be either informed
or uninformed: the informed investors know the future dividend growth rate, while the
uninformed investors do not. All the investors observe current dividend payments and
stock prices. Since the growth rate of dividends determines the rate of appreciation of
stock prices, changes of prices provide signals about the future growth of dividends.
Uninformed investors rationally extract information about the state of the economy from
prices as well as dividends. Since we assume an incomplete market structure, the signals
do not fullv reveal the true values of all the state variables. In equilibrium. investors with
access to different information will anticipate different expected returns from investing
in stocks.

We explore the implications of our model for the behaviour of stock prices, price
volatility, risk premia, serial correlation in stock returns and investors’ trading strategies.

One application of our model is to examine the relation between the information
structure of the market and price variability. Several authors have argued that a typical
asset pricing model with identical investors cannot reconcile the large volatility of stock
prices observed in the market with the history of smooth dividends.! Campbell and Kyle
(1988) suggest that the existence of noise trading in the market can help explain the high
volatility of stock prices.” Using our model, we show that the imperfect information of
some investors can cause stock prices to be more volatile than in the case where all
investors are perfectly informed. Two factors contribute to price volatility: changing

1. See LeRoy and Porter (1981) and Shiller (1981). See also Flavin (1983), Kleidon (1986), Marsh and
Merton (1986), Mankiw, Romer and Shapiro (1985), Campbell and Shiller (1988) and West (1988).
2. In this paper, we use the terminology “‘supply shocks” instead of “noise trading”.
249
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expectations about future cash flows and noise trading. When investors are less informed
about the true growth rate of dividends, their expectation about future cash flows becomes
less variable. This has the effect of reducing price volatility. On the other hand, there is
more uncertainty in the stock’s future cash flows. Investors demand higher premium in
accommodating the noise trading and prices become more sensitive to supply shocks.
This has the effect of increasing price volatility. The net change in price volatility depends
on which of the two effects dominates. When noise trading is important, prices become
more volatile as investors become less informed.

Furthermore, we find that information asymmetry among investors can cause price
volatility to increase. Under information asymmetry, more-informed investors trade on
superior information against less informed investors. Hence, less-informed investors face
an adverse selection problem when they respond to noise trading. They demand additional
premium for the risk of trading against better informed investors. This results in increasing
price elasticity to supply shocks and price volatility.

Another application of our model revolves around the understanding of equity
premia. We show that the existence of uninformed investors can lead to risk premia
much higher than that under symmetric and perfect information. When more investors
are less informed, prices contain less information about the fundamentals of the stocks.
There is more uncertainty in the stocks’ future cash flows (for the less-informed investors).
Higher premia are required by the less informed investors to invest in stocks. Hence, as
the fraction of uninformed investors in the economy increases the risk premia on stocks
also increase.’

De Long et al. (1990) have suggested that noise trading in the market can increase
price volatility, hence the risk of investing in the stock market and the risk premia. The
key assumption that leads to their result is that some investors have finite investment
horizons. The current model assumes an infinite horizon for all investors. It is shown
that the unconditional expected excess returns on the stocks only depend on the risk in
the stocks’ future cash flows (the stocks’ “fundamental risk™”). Even though noise trading
does move prices and increase price volatility, without information asymmetry it does
not affect the risk premia since it does not change stocks’ fundamental risk. However,
when there is information asymmetry in the market, noise trading will affect the informa-
tion quality of prices in revealing private information about the stocks’ future cash flows.
More noise trading makes prices less informative about future dividend growth. This
increases the uncertainty of future cash flows to the less informed investors, hence the
required return. Therefore, in our model noise trading affect risk premia only under
information asymmetry.

Recent empirical studies suggest that there may exist significant negative serial
correlation in long-horizon stock returns.* Due to mean reversion in the underlying state
variables that affect the expected excess returns, stock returns can be negatively serially
correlated. However, when information asymmetry is present, the less-informed investors
can only learn about these state variables from realized returns. This increases the
dependence of their expected future returns on past returns and may enhance the negative
serial correlation in stock returns. ,

We also apply our model to analyze the trading strategies of investors with different
information sets. When information asymmetry is present, the informed investors’ stock

3. We do not explore the implications of information asymmetry on the connection between aggregate
consumption and risk premia (see, for example, Grossman and Shiller (1981) and Mehra and Prescott (1985)).
A discussion along this line would be more directly related to the Mehra-Prescott “equity premium puzzle”.

4. See Fama and French (1987), Lo and MacKinlay (1988) and Poterba and Summers (1988).
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holdings not only depend on the value of underlying state variables but also depend on
the reaction of uninformed investors. Informed investors take advantage of the errors
made by less-informed investors to make profits. The uninformed investors trade based
on information extracted from prices and dividends. We find that in some cases, the
uninformed investors rationally adopt trading strategies that look like trend chasing: they
buy stocks when prices go up and sell when prices go down. A number of studies present
evidence consistent with this type of trend-chasing strategy.” Our results show that
trend-chasing-like behaviour can be rational for less-informed investors under asymmetric
information while informed investors behave as contrarians.

There are two major obstacles in tackling the problem of dynamic asset pricing under
asymmetric information. One is the notion of “no trading” and/or “fully revealing”
(Grossman (1981), and Milgrom and Stokey (1985)) and the other is the mathematical
difficulty involved in deriving the equilibrium. The ‘“‘no-trading theorem” states that if
asymmetric information is the only motivation for trading, then an investor reveals his
information to the market by his willingness to trade. Hence, information asymmetry is
eliminated in equilibrium and no trade actually occurs as new information comes in.
This result crucially depends on the market structure of the economy (see, e.g., Grossman
(1977, 1981)). Under incomplete markets, there can be motivations other than the arrival
of new information that cause investors to trade. In this case, the argument for the
irrelevance of heterogeneous information breaks down. When information asymmetry is
coupled with an incomplete market structure, the problem becomes mathematically
involved.® The current model, to our knowledge, is the first dynamic asset pricing model
under asymmetric information which provides a closed-form solution.”

We organize the paper as follows. The formal model is spelled out in Section 2. In
Section 3, we consider the simple situation in which investors have homogeneous and
perfect information about the economy. This provides a benchmark case for our economy.
A rational expectations equilibrium of the full model is obtained in Section 4 by sequen-
tially solving the problems of investors’ rational learning, optimization and market
equilibrium. In Section 5, we investigate how the underlying information structure of
the economy, especially information asymmetry, affects risk premia, price volatility and
serial correlation in returns. In Section 6, we analyze the optimal investment strategies
of investors with different information. Some further comments are provided in
Section 7. Section 8 concludes.

2. THE ECONOMY

We consider a simple economy with a single physical good. The economy is defined as
follows.

Assumption 1. The economy is endowed with a certain amount of risky equity.
Each unit of the risky equity generates a flow of output (dividend) at an instantaneous

5. See, Anderassen and Kraus (1988), Case and Shiller (1988), Frenkel and Froot (1988) and Shiller
(1987). See also Soros (1987).

6. See Duffie and Huang (1986) and He and Pearson (1988).

7. The information structure in this paper is similar to the one considered by Townsend (1981). Singleton
(1985), Carino (1986) considered models in which all private information becomes public after a short period
(one or two periods) so that effectively the less-informed investors’ learning problem becomes a static one. In
this paper, we allow private information to remain private. Therefore, the less-informed investors’ learning
problem becomes dynamic which generates interesting results concerning their optimal investment strategies
and equilibrium prices.
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rate D. D is governed by the diffusion process:

dD = (I1 - kD)dt + bpdw, (2.1)
where II is a state variable following an Ornstein-Uhlenbeck (O-U) process

dIl = ap(TT—TI)dt + bydw. (2.2)

w is a (3x 1) vector of independent standard Wiener processes, a(>0), II, k(=0) are
constants, and bp, by are (1x3) constant matrices.®

Clearly, (I1 — kD) gives the expected growth rate of dividends. When k>0, IT/k can
be interpreted as the short-run steady-state level of the dividend rate D, and it fluctuates
around a long-run steady-state level II/k. When k=0, II is simply the dividend growth
rate. Hence, when k>0 and ap > 0 the dividend (and price) is stationary around a fixed
mean while when k=0, the dividend (and price) becomes non-stationary. bpdw and
brdw respectively give the innovations in D and I1. (D, II) is a Gaussian Markov system.

Assumption 2. Let the total amount of risky equity be 1+®. O satisfies the stochastic
differential equation:

d® =—ag0dt+bedw, (2.3)

where ag is a positive constant and be is a (1x3) constant matrix.’

By Assumption 2, the total supply of the risky capital is stochastic. It has a long-run
stationary level which is normalized to 1. @ gives the deviation of the current supply
from its long-run stationary level.

Assumption 3. Each unit of the risky capital is represented by one perfectly divisible
share of stock held by the investors in the economy. Shares are traded in a competitive
stock market with no transactions costs. The stock is the only security that is traded in
the market. Let P be the equilibrium price of the stock.'

Assumption 4. There is a risk-free storage technology available to the economy with
a constant rate of return 1+ r(r>0). All investors have access to the storage technology
at no cost."!

In order to have incomplete markets, we have introduced an additional state variable
by assuming the aggregate quantity of the risky capital to be stochastic. This is only for
simplicity in exposition. The incompleteness of the market can be modelled in a rational,
self-contained framework without making ad hoc assumptions about the stock supply or
investors’ behaviour. In particular, Wang (1990) has generated the same result by assuming

8. With this form of the dividend process, D can take negative values. However, one can make the
probability of D reaching negative values as small as any given positive number by choosing the parameter
values (see, for example, Campbell and Kyle (1988)). One interpretation for negative dividends is that investors
have to put back some investments to maintain the future cash flow.

9. An equivalent interpretation to the stochastic supply is the existence of noise traders with their demand
of the stock being —©.

10. We do not allow free disposal of the stock. Therefore, the shares in this model do not have the
property of limited liability. Hence, it is possible for the price of the stock to take negative values since the
stock’s future cash flow can be negative.

11. A general equilibrium justification for a constant interest rate in an economy with CARA preferences
is given by Sundaresan (1983).
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rational investors, fixed stock supply and possibilities of risky production. Furthermore,
we have restricted the stock to be the only security traded in the market.'?

Assumption 5. There are two types of investors in the economy: the informed and
the uninformed. %'(t)={D,, P,,I1.: r=1} is the informed investors’ information set at
time t and #"(t) ={D,, P,: v =t} is the uninformed investors’ information set. Let w be
the fraction of the uninformed investors.

Assumption 6. The structure of the economy is common knowledge.

By Assumption 5, we have assumed that investors’ information about the state
variables can be imperfect.'®> In addition, we allow investors to differ in their information
about the economy. The informed investors have perfect private information about the
state variable I, while the uninformed investors have no private information. All investors
observe the price of the stock and dividends. Although the informed investors do not
directly observe @, the equilibrium price reveals it to them."* Hence, in the rest of the
paper we will utilize this effective equivalence: %'(t)={D,, P, II,:7=t}=
{D,, P.,1I,, ©,: 7= t}. Given the structure of the market and the economy, P and D are
not sufficient to reveal the value of IT and ® to the uninformed investors. Therefore,
information asymmetry persists in equilibrium.

The variable o, the fraction of uninformed investors, is the key parameter in our
model in characterizing the information structure. It captures both imperfect information
and asymmetric information. When w =0, all investors are informed and have perfect
information about the state of the economy. When o =1, all investors are uninformed
and have imperfect information about the economy. But there is no information asym-
metry among investors. When o €(0, 1), both imperfect information and asymmetric
information are present in the economy and investors are heterogeneous.

Assumption 7. Investors choose consumption and investment policies in order to
maximize expected utilities conditioned on their respective information set,
E[fu(c(r), r)dr|- 1. All investors have preferences exhibiting constant absolute risk
aversion (CARA):

u(c(t), t)y=—e? ", (2.4)

where p is the time-impatience parameter and c(t) is the consumption rate at time '’

The CARA preferences are assumed so that a closed-form solution to the model can
be obtained. With CARA preferences, an investor’s asset demand is independent of his
wealth.'® This implies that the equilibrium price of the stock will be independent of the
wealth distribution of the investors as well as the level of aggregate wealth. This indepen-
dence greatly simplifies our problem.

12. This assumption makes the capital market dynamically incomplete in the sense of Harrison and Kreps
(1979).

13. For earlier work on the optimal portfolio choice and asset prices under imperfect information, see,
e.g. Merton (1971), Dothan and Feldman (1986), Detemple (1986), Gennotte (1986).

14. This is true if the equilibrium price is a monotonic function of ®, which is the case in the linear
equilibrium we consider in this paper. Also see the discussion in Section 4. Alternatively, we can assume that
0 is directly observable to the informed investors.

15. Here, we have assumed that all investors have the same risk aversion with an Arrow-Pratt measure
of 1. This is because we want to focus solely on the effect of information on stock prices. This assumption
can be easily relaxed as long as we remain in the CARA class. See the discussion in Section 7.

16. With CARA utility, negative consumption and negative wealth are possible. In this paper, we do not
impose non-negativity constraints to rule out negative wealth.
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For simplicity in exposition, let by = (0p,0,0), by = (0, oy, 0), and bg = (0, 0, o).
Since w is a (3 x 1) vector of independent standard Wiener processes, innovations in D,
IT and @ are independent from each other given the assumed form of b matrices. The
three components of dw represent respectively the instantaneous shocks to D, IT and O.

A comment about our notation is in order. We use upper-case letters, Greek or
Roman, for state variables and lower-case letters for constants. The upper-case Roman
letters usually represent publicly observable variables like price P and dividend rate D,
while upper-case Greek letter represent variables that are not publicly observable, such
as the supply shock @. Forinvestors’ choice variables such as consumption, stock holdings
and wealth, we follow conventional notation.

3. THE BENCHMARK CASE: PERFECT INFORMATION

Before we solve the full model specified in the previous section, let us first consider the
special case in which all investors are informed (i.e. @ =0). This is similar to the case
considered by Campbell and Kyle (1988). The equilibrium price under perfect information
provides a benchmark about the value of the stock.

Under perfect information, the price of the stock depends only on the primary state
variables D, IT and ®. Given the CARA preferences and the linear processes governing
D, II and O, the price is a linear function of the state variables. Let P* be the equilibrium
stock price under perfect information. We have the following result:"’

Theorem 3.1. Under perfect information, the equilibrium price of the stock is

P*=®+(pg+pb0), (3.1)
where
=<} *ﬁ
q>=E,H e_”D(s)ds]=¢+p"5D+pi‘—‘IH, ¢=“—”’:—“—. (3.2)
t
Here,
phH= ! pi= P5 p&=—[(pH)’op+(pi)’onl<0 and pE<0.
r+k’ r+ag’

@ gives the present value of expected future cash flows discounted at the risk-free
rate. Risk aversion of the investors increases the expected return to the stock by a simple
discount on the price rather than by increasing the discount rate. This is shown by
Campbell and Kyle (1988) in a similar set-up. Indeed, (p&+ p§0) (p&, p§ <O0) represents
the discount on the price of the stock to compensate for the risk in its future cash flow.
This discount increases with 0, the supply shock of the risky capital, because ® determines
the total amount of aggregate risk the economy is exposed to. As @ increases, each
investor has to bear more of the market risk in equilibrium. The price of the stock has
to adjust to give a higher expected return in order to induce investors to hold more stocks.

Given the equilibrium price of the stock, the excess return to one share is dP + Ddt —
rPdt, which we denote by dQ. Its conditional expectation, i.e. the expected excess return
to a share of stock is

E,[dQ]=[ef —(r+ae)p50]ds, (3.3)

17. This is a special case derived from our general model. The proof of this result can be obtained from
the solution to the general case, which is provided in the following section.
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where ef = —rp. ef is the unconditional expected excess return on one share of stock.
e depends only on op and oy which characterize the risk associated with future cash
flows of the stock. Note that ef is independent of og. Therefore, the variance of the
supply shocks does not affect the unconditional expected excess return, even though it
does affect the price volatility. This result contrasts with the result of De Long et al
(1990). It is assumed in De Long et al. that rational investors have finite horizons and
have to liquidate their positions at the end of their lifetimes. Since supply shocks cause
temporary shifts in price from its “fundamental value”, investors with finite lifetime face
additional risk in price due to supply shocks when they have to liquidate their stock
positions. Hence, they demand extra premium for the additional risk in liquidation prices
due to supply shocks. For investors with longer horizons, the effect of the additional risk
in liquidation prices due to supply shocks becomes smaller. When investors have infinite
horizons, the unconditional expected excess return is determined only by the fundamental
risk of the stock which is the risk in its future cash flows. More volatile prices caused
by temporary shocks in supply do not change the risk of investing in the stock and the
risk premium. As we will see later, this is no longer the case under asymmetric information.

The innovation variance of the stock price (i.e. the variance of instantaneous stock
return) is a constant given by o5« = p%’oh + pEloh+ pE’os. A constant variance of prices
implies that the variance of the percentage returns increases as the price of the stock
decreases and vice versa (see Campbell and Kyle (1988)). This phenomenon has been
noted in U.S. stock market data (see Black (1976), Nelson (1987)).

When both informed and uninformed investors are present in the economy, the
situation becomes more complicated. However, we may still expect that the equilibrium
price will somewhat resemble the functional form of the price in the benchmark case due
to the underlying linearity in the model.

4. EQUILIBRIUM OF THE ECONOMY

In this section, we solve for the equilibrium of the economy defined in Section 2. The
equilibrium concept is that of rational expectations developed by Lucas (1972), Green
(1973), Grossman (1976), and Kreps (1977). The way we obtain an equilibrium of the
economy is similar in essence to that of Grossman (1976) and others in static settings.'®
We first conjecture an equilibrium price function. Based on the assumed price function,
we solve the investors’ learning and optimization problem. Market clearing is then
imposed to verify the conjectured price function.'

The equilibrium stock price generally depends on all the state variables of the
economy. The primary state variables are the current dividend rate D, the short-term
stationary level of the dividend IT and the aggregate supply shock of the stock ®. However,
when information asymmetry is present these primary state variables are not sufficient to
fully characterize the state of the economy. The uninformed investors do not directly
observe IT and © but can use dividends and prices to infer the true values of I and ©.
Their demand for the stock will depend on the inferred values (estimates) of I and ©.
Therefore, the existence of the uninformed investors introduces new state variables into
the economy, such as their estimates of the unobserved variables. We call these new state
variables “induced state variables”. We can write P= P(D,II, O, -) where *“-*’ denotes
the induced state variables.

18. Also see Hellwig (1980), Diamond and Verrecchia (1981), and Admati (1985).
19. The uniqueness of equilibrium will not be discussed in this paper.
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The observations of the perfect information case in the previous section suggest the
following proposition.

Proposition. For the economy deﬁned by Assumptions 1-7, there exists a stationary
rational expectations equilibrium. Let = E[II| %] and A= n-m A represents the
uninformed investors’ error in estimating I1. The equilibrium price function has the following
linear form:

P=(¢+po)+pbD+pull+pe®-+psll =0+ (po+pe®)+pad, (4.1)
where py = pii—pa, ® is given by equation (3.2) and pe<0.

Before we proceed with the proof, a few comments about the proposed price function
are in order. First, l'I( t) is the conditional expectation of II(¢) by the uninformed investors.
It depends on the whole history of dividends and prices up to and including time ¢. As
we show later, this dependence is linear. Hence, equation (4.1) gives a condensed and
implicit form of the price function. Second, given the proposed functional form, the
equilibrium price reveals the true value of ® to the informed investors. Third, the
equilibrium price reveals to the uninformed investors the following sum of II and
O:pnll+pe® (since both D and M are in F"). Define A=pyll+peg®. Then, P=
potpED+ pAH+A Hence, A is the variable that captures the information content of
prices. Observing D and P is equivalent to observing D and A. In other words,
FPF = FPA2° Third, since an uninformed investor’s demand of the stock depends on
his estimates of the unobserved state variables, i is in the price function as an induced
state variable. By the same token, one might expect @ the filter for @, to be also in the
price function. However, this is unnecessary due to the following lemma:

Lemma4.1. Given the proposed price function, the filters fland 6 satisfy the condition:
Pull+pe® =pull+pe® or py(ll—11)=—pe(®@—6). (4.2)

Proof. E[A|%*]=pull+pe®. But Ac F*. Hence, E[A(t)| F“(1)]=A(t). |

Therefore, 0 is functionally related to the state variables already included in Eq. (4.1).
The rest of this section provides a proof of the Proposition following the approach
specified earlier.

4.1. The filtering problem of the uninformed investors

An uninformed investor learns about the values of IT and ® from his observations of D
and P. His optimal filter for IT and @ based on his information set #*(¢t) ={D,, P,: 1=t}
are derived in Appendix A. The results are summarized in the theorem below:

Theorem 4.1. 11 and © satisfy the following stochastic differential equations:

an an(ﬁ—fl)} [hnD hnA] TVI/2 4
A = A + *
<d®) [ " add dt hop hos (bb]) (4.3)

(4.4)

dﬁz(bbT)‘”z[ dD - (11— kD)dt ]

dA - anpn(ﬁ _ﬁ)dt + a(.)p@@dt

20. Here, &*v?»~+*» denotes the smallest o-algebra with respect to which {Z,(7), Z,(7),..., Z,(7)} is
measurable.
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where hip(>0), hpa, hop (>0), he, are constants, b, is a (2x3) matrix. The innovation
process of the filters, W, is a standard Wiener process with respect to F“(t)=F>F(t).

Furthermore, the information structure generated by F*(t) is equivalent to that generated
by F2P(1).

Proof. See Appendix A. ||

As specified in equation (2.1), IT governs the expected changes in dividends. Not
observing I, the uninformed investors rationally draw inferences about II from dividends
and prices. They rationally attribute a shock in dividend to reflect partially a change in
I1. This gives rise to the positive contribution of dividend shocks to innovations in f[,
as shown in equation (4.3). Thus, E[df[le.%‘] = hpp >0 even though dwp and dwp
are independent. From equation (4.3), we observe that 0 also positively responds to
dividend shocks. For the uninformed investors, a positive innovation in D suggests an
increase in II. Conditioned on A = pgIl+ pg®, the increase in II must be offset by an
increase in ® (given pe<0). Hence, E[d@)leg"}‘]=h®D>0 although ® and D are
independent. The joint esimation of Il and ® based on both D and P generates the
induced correlation between the filters and dividends and prices. The induced correlation
between the uninformed investors’ estimates and dividends as well as prices are important
in understanding the behaviour of stock prices and returns.

Furthermore, the uninformed investors’ estimation error, A =fl——I'[, follows a stan-
dard O-U process:

dA=—a,Adt+b,dw, (4.5)

where a, is a positive constant and b, is a (1x3) constant matrix given in Appendix A.
The fact that A is mean-reverting to zero implies that the estimation errors of the
uninformed investors are only temporary. As a matter of fact, the continuous flow of
dividends as well as changes in prices provide a flow of new information about the
underlying growth rate of dividends and supply shocks. The uninformed investors
constantly update their estimates about IT (and ®) based on the newly arrived information
and correct the errors made in their previous estimation. Suppose that there has been a
positive shock in D while there has been no shock to II. Not observing I, the uninformed
investors rationally attribute the dividend shock to partially reflect a high value of II,
hence increase their estimate I1. However, the future dividend will not grow as expected
since Il has not increased. When new levels of D are realized, the uninformed investors
will revise their estimate and lower I, eliminating the error in their previous estimation.

4.2. Investment opportunities

Given the process of filter fI, the stock price follows the process:
dP =[ p}(I1—- kD) + anpi(I1 —11) — agpe® — asp,Aldt + bpdw, (4.6)

where bp is a (1 X 3) constant matrix as given in Appendix A. In order to characterize
investment opportunities in the economy, we consider the instantaneous excess return to
one share of stock: dQ = (D —rP)dt+ dP. dQ is also the return on a zero-wealth portfolio
long one share of stock fully financed by borrowing at the risk-free rate. Q gives the
undiscounted cumulative cash flow from the zero-wealth portfolio.
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Theorem 4.2. Given the price process in equation (4.6), Q satisfies the stochastic
differential equation:

dQ=(D—rP)dt+dP =[ey+ ee®+ e Aldt +bpdw, 4.7)

where e, = —rpy, eo = —(r+ae)pe and ex=—(r+as)pa.

To the informed investors, E[dQ|%']/dt=e,+eos®+esA. The expected excess
return on the stock only depends on ® and A. The level of aggregate stock supply affects
the excess return on the stock because it determines the total risk exposure of the economy.
The short-run stationary level of dividend IT does not affect the excess return per se, but
A, the uninformed investors’ error in estimating II, does. When A> 0, the uninformed
investors are over-estimating the future dividend growth, which drives up the price today.
Future corrections are expected when information is revealed through new realizations
of dividends. Hence, a price drop is expected by the informed investors. Therefore, the
return expected by informed investors is negatively related to A (since e, <0). To the
uninformed 1nvestors E[dQ|F']/dt = e+ e@® Their expected excess return on the stock
depends only on @ their estimate of the supply shock.

Theorem 4.2 simplifies the investors’ optimization problems which we turn to next.
Since the expected return on the stock is governed by ® and A, both followmg umvarlate
processes, they fully determine the investment opportunities of the economy.’

4.3. The informed investors’ optimization problem
Let W' be an informed investor’s wealth, X' his holding of the stock and ¢’ his
consumption. His optimization problem is

Maxx.,c.-E[—J e P gy g;’] st.dW' = (W' =c')dt+ X'dQ. (4.8)

Let J'(W'; ©, A; t) be the value function where ® and A are the two state varlables that
govern the investment opportunities. J " satisfies the following Bellman equation:*

0=Max. xi{—e "+ E[dJ'(W'; ©,A; t)| F'(1)]/dt}
s.t.dWi=(rW'—c")dt+ X'dQ,
lim,. o E[J{(W', 0, A; t+7)|F(t)]=0. (4.9)

The solution is provided in the following theorem:**

Theorem 4.3. Equation (4.9) has a solution of the form:
TJ(Wi0,4;1)=—e ' "WVI©8), (4.10)
Here, V(®, A) is a quadratic function: V'(0©,A)=3¥""v"¥’, where ¥'" =(1,11,A). The
optimal demand of the stock is a linear function of ® and A:
=fy (4.11)
Here, v' and f' = (fb, fo, f) are respectively (3% 3) and (1x3) constant matrices.

Proof. See Appendix B. ||

21. The risk-free rate is assumed to be constant.

22. We assume that J' is twice differentiable in its variables.

23. This problem is similar to the one solved by Merton (1971). The difference is that here we have two
state variables governing the excess returns on the stock while Merton considers the single-variable case.
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4.4. The uninformed investor’s optimization problem

Let W* be an uninformed investor’s wealth, X*“ his holding of the stock and c¢* his
consumption. His optimization problem is

Max y« .« E [—J’ e_‘”'”"(s)dslgi‘] st.dW"=(rW*—c")dt+X"dQ. (4.12)
t

The solution to the optimization problem can, in general, be complicated. The uninformed
investor’s consumption-investment policy is a function of their information set, which
contains the whole history of dividends and prices. Given the processes assumed for the
primary state variables as well as the price, however, the information structure generated
by #"(t) has an equivalent representation which is the one generated by w. Here, w is
the innovation process of the filters which is a Wiener process with respect to #“. The
filters provide a sufficient statistic for #"(¢). Using this equivalent representation of the
information structure, we can restate the uninformed investor’s optimization problem as
a standard Markovian one with the filters being the effective state variables and the
innovation process w generating the dynamics. It is then formally similar to the informed
investors’ problem Thus, we have a situation in which the Separation Principle applies.?*

Let J“(W"; @ t) be the value function. Since E[A|%"]=0, from equation (4.7) the
expected excess return of an uninformed investor is determined only by 0. Thus, his
value function only depends on © in addition to his wealth and time. J* satisfies the
following Bellman equation:

0=Max .« xv {—e * "+ E[dJ*(W*; ©; t)| F“(1)]/ dt} (4.13)
st. dW" = (rW" —c*)dt+ X"dQ,
lim, E[J*(W"; ©; t+1)| F*“(¢)] =0.

The solution to equation (4.13) is given in Theorem 4.4.

Theorem 4.4. The program given by equation (4.13) has a solution of the form

TJHW™ 0; 1) =—e P TWVI©®) (4.14)
where V*(0) = 1¥"To“¢* ¥*T = (1,0). The optimal demand of the stock is
=f¥ (4.15)

Here, v* and f* = (fs, fo) are respectively (2%x2) and (1x2) constant matrices.

Proof. See Appendix B. ||

4.5. Market clearing

Under the assumed form of the price function, the demand of stock by individual informed
and uninformed investors is given respectively by equation (4.11) and (4.15). When the
market clears, they must sum to 1+ 0. Thus

(1= ) fi+ o0+ iA]+ o[ fi+fi0]=1+0. (4.16)

24. The Separation Principle states that under certain conditions, the optimal control problem with partial
observed state variables can be solved in two stages: first solve for the optimal estimation problem for unobserved
variables and then solve the control problem using the estimates as the state variables. For a detailed discussion
on the Separation Principle, see Fleming and Rishel (1975).
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Using equation (4.3), we have the following equations:

1=(1-w)fi+ oft, (4.17)
1=(1-w)fy+ofe, (4.18)
0=(1-w)pefs—wpnfe. (4.19)

The solution to equation (4.17-4.19) determines the coefficients p,, pe, pa in the price
function.”> This completes our proof of the Proposition.*®

5. PRICE VARIABILITY, RISK PREMIUM AND RETURN
AUTOCORRELATION

In what follows, we analyze how the underlying information structure affects stock prices,
the risk premium, price volatility and serial correlation in returns.

In the current model, the parameter w characterizes the information structure of the
economy. Most of the comparative static analysis is concerned with the effect of changing
. As discussed in Section 2, w captures two aspects of the information structure of our
model. One aspect is the imperfection in some investor’s information. As w increases,
more investors have imperfect information and the total amount of information in the
market decreases. The other aspect is information asymmetry. As o changes, the extent
to which information is asymmetric among investors also changes. For example, when
o is slightly less than 1 the investors are no longer homogeneous and information is
asymmetric among them. Hence, as we change w we are changing these two aspects of
the information structure at the same time. The net effect will be the sum of the two.
The effect of imperfect information is best illustrated by comparing the two extreme
cases: w =0 and w =1. The former corresponds to the case of perfect information while
the latter the case of pure imperfect information. Comparing the result for @ in the
vicinity of the extreme case (w =0 or 1) with the extreme case illustrates the effect of
information asymmetry.

5.1. Stock prices
As stated in the Proposition in Section 4, the equilibrium price of the stock is
P=®+(py+pe®)+prA. (5.1)

where ® is given in Theorem 3.1.

Two extreme cases deserve our attention: the benchmark case of w =0 in Section 3
and the case when w =1, i.e. when all investors are uninformed. When o =0, the
equilibrium price is P*= (¢ +p&)+pE D+ piIll+p¥O as derived in Section 3. Let P**
be the equilibrium price when w = 1. In this case, IT drops out of the price function since
it is not in any investors’ information set and in equilibrium the price reveals the true
value of ®. P** has the following form:

P** = (¢ +pi*)+phD + pill + p5*0, (5.2)

where pF* and p&* are the solutions to equation (4.17-4.19) when w = 1. It can be shown
that p¥* <p¥ <0 and p¥*<o0.

25. Equation (4.17-4.19) is a set of algebraic equations. The proof of existence of a solution is available
from the author on request.

26. We do not have an analytical form of the solution to equations (4.17-4.19). Numerical solutions are
used in most of the analysis to follow.
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In the general case that w €[0, 1], we can show that po <0 and 0= p, = pf. Figures
1.1-1.3 show respectively the coefficient p,, p» and pe as discussed in Section 3, p,
represents the discount on the price to compensate the risk in future cash flows. p, is
negative and decreases with w. Figure 1.1 further shows that in the limiting case of w =0
or w =1, p, is independent of oe. We will discuss the behaviour of p, in more detail in
Section 5.3.

Ppa monotonically increases with @ as shown in Figure 1.2. It takes the value of 0
when 0 =0. In this case, all investors are informed and A does not enter the price
function. When w =1, p,=pii. II drops out of the price function and only 11 remains.
The pr— w relation shown in Figure 1.2 is robust to changes in values of the parameters.

Pe determines the sensitivity of stock price to supply shocks. As w decreases from
1, there are more informed investors and more information about the stock’s future
payoffs is available in the market. This reduces the uncertainty in investing in the stock.
Less premium is required by the market in absorbing the supply shocks. Hence, |pol
should decrease as w decreases from 1. This is clearly illustrated by the fact that
| p&*|> | p&|. However, the existence of informed investors introduces information asym-
metry among investors. The uninformed investors face the risk of being taken advantage
of by the informed investors. They demand a higher premium in taking positions against
the supply shocks. This causes the price to be more sensitive to changes in aggregate
supply and | pe| to increases as w decreases from 1. The interaction of these two effects

Po

FIGURE 1.1
Po plotted against w. r=0-05, p=0-2, [1=0-85, k=10, op = 1-0, on=06, ag=0-2, ag=0-4
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pa plotted against @. r=0-05, p=0-2, 1=0-85, k=1-0, 0, =10, oy =06, g =30, a;=0-2, ag=0-4

can give rise to a non-monotonic relation between pe and w as shown in Figure 1.3 for
some parameter values.

A few comments are in order on the choice of parameter values in Figures 1.1-1.3
and the figures to follow. The parameter values are chosen somewhat arbitrarily. Our
purpose here is to show the qualitative relation between the behaviour of stock prices
and the underlying information structure. We make no attempt to match the parameters
with historic data.’’ We try to use a consistent set of parameter values for most of the
figures. We also vary the parameter values within a wide range and find that most of the
figures are robust in their qualitative features. In the cases that the pattern does change
with the parameters, different patterns corresponding to different parameter values will
be shown or discussed.”®

The existence of uninformed investors causes deviations in the stock price from its
benchmark value under perfect information P*.

P—P*=p,A+[(po+pe®)—(p§+pEO)]. (53)

27. Campbell and Kyle (1988) estimated a model that is similar to our benchmark case. Using some of
their estimates, we get patterns similar to the ones shown here.

28. In a few figures, we use parameter values different from the ones for most of the other figures. The
only reason for doing so is to make the pattern look somewhat more prominent.
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pe/|pé| plotted against w. r=0-05, p=0-2, 1=0-85, k=10, 0p =1:0, o; =06, ag=0-2, ag=0-4. p¥ is the
value of pg when w =0. p¥=—0-803, —1-080, —1:421 when o =2-0, 3-0, 3-5 respectively.

The difference between P and P* can be broken down into two parts. The first part,
P4, is directly caused by the estimation errors of the uninformed investors. With p,
being positive, the equilibrium price responds positively to the estimation errors of the
uninformed investors. The uninformed investors’ optimism drives the price up and their
pessimism drives the price down. Although the informed investors have perfect informa-
tion about the errors of the uninformed investors, their risk-aversion prevents them from
taking significantly large positions to eliminate these deviations. Since A follows an O-U
process and reverts to a zero mean, p,A represents a temporary component in price
deviations. The second part is given by the difference between (p,+ pe®) and ( p + p%0®).
We pointed out earlier that (p,+ pe®) gives the discount in price in order to compensate
for the risk of investing in the stock. Hence, [(p,+ pe®)—(p&+pE®)] represents a
permanent shift in the stock price from its bench-mark value. Indeed, this second
component has a non-zero long-run stationary level of (p,—p&). As we will see later,
the permanent component in the price deviation has to do with the fact that the imperfect
information of some investors affects the risk of investing in the stock for these investors.

Another feature of the equilibrium price is its history dependence. Since the uninfor-
med investors do not have perfect information about the state of the economy, their
expectations are based upon past as well as present prices and dividends. The private
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information of the informed investors is not fully revealed by the current price. It is
gradually revealed by the path of prices as well as dividends through the continuous
trading among investors. The uninformed investors’ expectation of future returns, and
hence their trading strategies will depend on past prices and dividends. This is a direct
result of information asymmetry in the current model.?

S.2. Price variability

Let us consider how the information structure affects the variability of prices in the
current model. Two measures of price variability are often used: one is the instantaneous
variance of the price (i.e. the innovation variance which is also the variance of instan-
taneous returns) and the other is the unconditional variance (i.e. volatility). The instan-
taneous variance is important in analyzing trading strategies while the unconditional
variance is often used in empirical testing. We will examine the two separately.

As mentioned earlier, there are two aspects of our information structure: imperfect
information and asymmetric information. In order to illustrate how the effect of imperfect
information, we compare the limiting case in which all investors are uninformed (v =1)
with the perfect information case (w =0). There is no information that all investors have
about future cash flow. Hence, the difference in price variability between these two cases
is solely due to the effect of imperfect information. In order to analyze the effect of
information asymmetry, we compare the result for @ close to 1 with the extreme case of
w=1.

Let us first consider the innovation variance of the stock price. The process of the
equilibrium stock price is given in equation (4.6). The innovation variance is constant:

o= (P”B‘*‘hnDPA)ZU%)“‘(l +hnAPA)2(Ti, (5.4)
where o3 = phoh+ piod.
For simplicity, consider the special case when there are no supply shocks, i.e. oo =0.
In the case of perfect information,

1
2 %2 2 2
op*x= opt-——on|.
P*=PD [ D (1+an)2 n]

The innovation variance of the price comes from the contribution of innovations to
dividends and innovations to the dividend growth rate. The two innovatins are indepen-
dent of each other. In the case of purely imperfect information (i.e. w =1), we have

1 2
e [1+ <¢a2n+<aa/o%)>—an>] oy
1+an

Clearly,
O'%)**> 0'%:*. (5.5)

Since now price contains no private information about the stock’s future cash flow,
investors only extract information about dividend growth from realized dividends. A shift
in D not only changes the current dividend payments, but also changes investors’
expectations about future dividend growth which is the information effect of dividends.

29. Brown and Jennings (1989) consider a 3-period model with features similar to the current model and
analyze the information role of past prices in the context of technical analysis. Our model provides a somewhat
more general framework except that its information structure is different from theirs. We have a hierarchic
information structure while Brown and Jennings have a symmetric one.



JIANG WANG INTERTEMPORAL ASSET PRICES 265

In this case, innovations to dividends and innovations to expected dividend growth rate
are perfectly correlated. Since the stock price increases with both current and expected
future dividend growth, the information impact of dividends enhances the sensitivity of
the price to changes in the current dividend. Small changes in the current dividend can
generate large changes in the price. This increases the innovation variance of the price.
Therefore, in the current model when investors have more information about the stock’s
future cash flow the instantaneous price variability increases.

Now let us consider the effect of information asymmetry on the innovation variance
of the price. Note that as w increases, o» does not always increase monotonically. As
shown in Figure 2, 07 may peak at some w in the interior of [0, 1]. Since the instantaneous
variance of price monotonically decreases with the amount of public information in our
model, the non-monotonicity in the 0% —w relation reflects the effect of information
asymmetry.

It has often been argued in the literature that rational investors with superior
information should always stabilize prices.*® The basic reason is that better informed

o%/ok.

0’9:2.0

0e=3.0
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FIGURE 2

a%/a%« plotted against w. r=0-05, p=0-2, [1=0-85, k=10, op =10, o =06, ag=0-2, ag=0-4. o3 is the
conditional variance of price when w =0. o%.=8-710, 16:635, 30-875 when o =2-0, 3-0, 3-5 respectively.

30. De Long et al. (1990) argue that if there exist investors in the market who follow, by assumption,
certain positive feedback strategies, the introduction of rational speculators can actually destabilize prices. Our
model differs from theirs in that here all investors’ investment strategies are directly derived from utility
maximization. Information asymmetry is explicitly modelled to generate the result.
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investors take profitable positions whenever price deviates from the fundamentals. By
doing so, they partially reveal their private information to the market and move the price
towards its ““fundamental value”. The more of these informed investors, the larger the
impact they have on the price and the less it can deviate from its “fundamental value”.
Hence, increasing the fraction of informed investors should reduce price variability.

Given the current information structure, it is not the case that informed investors
always stabilize prices and reduce price variability. To see why, let us look at the vicinity
of w =1. When w =1, investors are homogeneous and all uninformed. The absence of
information asymmetry enables investors to perfectly infer the level of supply shock from
the equilibrium price. In other words, the fact that “nobody knows anything” enables
everybody to know something. Now suppose that a small fraction of informed investors
is introduced into the market (i.e. w is slightly less than 1). On the one hand, the informed
investors bring in more information about dividend growth through their demand and
prices. This has the effect of reducing instantaneous price variability since the uninformed
investors now have better information about IT and are less reliant on dividends in learning
about I. Also, better information about IT reduces the uncertainty in future cash flows.
Hence, the premium demanded by the uninformed investors in accommodating supply
shocks decreases, which also reduces the instantaneous price variability. On the other
hand, since the uninformed investors use prices to filter future dividend growth rate,
innovations to the aggregate supply will be correlated with innovations to the dividend
growth expected by the uninformed investors. An increase in price due to a decrease in
O (po<0) is rationally interpreted as partially reflecting an increase in II. This is fed
back into the price through the uninformed investors’ demand and causes the price to
increase further. Furthermore, when there exist informed investors, the uninformed
investors face the adverse selection problem in accommodating the supply shocks. They
bear the risk of trading with those investors with superior information. Higher premia
are required by the uninformed investors to absorb supply shocks.>' This also causes
price to be more sensitive to changes in aggregate supply and increases instantaneous
price variability. The net effect of increasing the fraction of informed investors is
determined by these two off-setting forces. For some parameter values, the efnect of
information asymmetry dominates. When more informed investors are introduced in the
market, the price can become more volatile. Figure 2 gives examples of this situation.

We now examine the relation between information structure and the unconditional
variance of the stock price. When ay;, ae and k are strictly positive, the price of the stock
has a finite unconditional variance. The unconditional variance of P, Var [ P], is calculated
in Appendix C.

In order to consider the effect of imperfect information on price volatility, compare
again the two extreme cases: w =0 and w =1.

First, suppose that there are no supply shocks (0.e. 0 =0). When w = 1 (all investors
are uninformed), P = P** and

Var [ P**] = Var [ p5 D + p#11]. (5.6)
When w =0 (all investors are informed), P = P*. Note that
P} =E[ P¥| #/1-pi(11, - 1T1,). (5.7)
Hence,
Var [ P*] = Var [ P**]+ p}’ Var [A] = Var [ P**]. (5.8)

31. As shown in Figure 1.3, pg can become more negative as w decreases from 1.
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The price becomes more volatile when investors have more information about the stock’s
cash flow. This case is closely related to the discussion of West (1988). Figure 3 shows

that the unconditional variance of the price monotonically decrease with w when oy is
small.*?

When there are supply shocks, the situation is different. Supply shocks contribute
to price volatility since they affect the price. When investors are less informed, there is
more uncertainty in the stock’s future cash flow and investors demand higher premium
on the stock. Therefore, | p$*|>|p¥| as shown by Figure 1. The price is more sensitive
to supply shocks when investors have less information. Increasing price elasticity to
supply shocks causes the price to be more volatile. Formally, we have

Var [ P*]— Var [ P**] = p? Var [A] — (p%** — p¥?) Var [0]. (5.9)

Since p§**—p&*>>0, Var [ P*]— Var [ P**] can be negative when Var [0] is large.”
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FIGURE 3
Var [ P]/Var [ P*] plotted against w. r=0-05, p=0-2, [1=0-85, k=10, op =1-0, oy =06, a; =0-2, ag=0-4.
Var [ P*] is the unconditional variance of price when w =0. Var [P*]=31-2, 47-1, 64:9 when og =2-0, 3-0, 3-5
respectively

32. The similar monotonic pattern is obtained when oy or ag is large. The former case corresponds to
high variability in II. The later case corresponds to short lived supply shocks.

33. In the case that og is large, or ag small,or ay small, the price volatility becomes monotonically
increasing with w.
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It is shown in Figure 3 that Var [ P] can behave in a similar fashion to o5 when
changes. The non-monotonicity in the Var [ P] — w relation is partially due to information
asymmetry among investors as discussed in the case of conditional variance.

In various price volatility tests of stock market efficiency (e.g. LeRoy and Porter
(1981), Shiller (1981)), equilibrium stock prices are obtained by assuming the existence
of a representative investor with homogeneous information. The effect of information
asymmetry has not been taken into consideration. Our model shows that information
asymmetry can cause price to be more variable. The traditional models of homogeneous
investors may understate price volatility.**

5.3. Risk premium

The risk premium on the stock is given by £ = e/ P where we only consider the situation
when P> 0. e is the expected excess return on the stock given by

e=¢eytee®+esA. (5.10)

Clearly, ¢ is not constant over time and its instantaneous level depends on all the state
v_ariables. Let us look at t_he “long-run level” £ defined by £ =é&/P, where é= ¢, and
P=(¢+py)+(pk/k+pHII are, respectively, the long-run stationary level of e and P.
Then,

Il

=r 11
H+ rkD(\ § (5 )

£ =
The information structure affects the long-run stationary level of risk premium only
through the long-run level of price, P. Given the values of the underlying state variables
governing the stock’s future cash flows, the price of the stock decreases as the fraction
of uninformed investors increases (see Figure 1). The same result holds for the long-run
level of the price. Therefore, we conclude that the risk premium on the stock increases
with the fraction of uninformed investors. As shown in Figure 4, £ is an increasing
function of w.

This result is quite intuitive. As we discussed earlier, the risk premium only depends
on the fundamental risk of the stock perceived by the investors. When the fraction of
uninformed investors increases, the price contains less information about future dividend
growth. This increases the perceived uncertainty about future cash flows by the uninfor-
med investors, hence the risk of investing in the stock. In the equilibrium, a higher
premium for the stock is required. It should be clear that this result is mainly driven by
the imperfect information the market has about the fundamentals. The information
asymmetry plays little role here.

Given that price volatility also increases with the fraction of uninformed investors,
we may also want to look at the premium normalized by price volatility, £/ Var [ P], i.e.
the premium per volatility. Different patterns can be obtained, depending on the para-
meter values. £/Var [P] either increases monotonically with w, or decreases with w first
and then increases.

From equation (4.7), the unconditional expected excess return from the stock is given
by e, As discussed in Section 3, e, is independent of o under perfect information
(w =0). Similarly, one can show that the same result holds when o =1, i.e. when all
investors are uninformed. Hence, the variability of supply shocks does not affect the

34. See, for example, Mankiw and De Long (1989).
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unconditional expected excess return without information asymmetry. However, Figure
5 illustrates that when there is information asymmetry o will affect the unconditional
expected excess return. This is because under asymmetric information, less informed
investors rely on prices and dividends to learn about the future dividend growth. As o
increases the uncertainty in future cash flows perceived by the uninformed investors
increases. Consequently, they demand a higher return.

5.4. Special correlation in stock returns

Recent empirical studies (Fama and French (1987), Lo and Mackinlay (1988), Poterba
and Summers (1988)) have found significant negative serial correlation in stock returns
over long horizons of 3-5 years. Negative autocorrelation in returns suggests the existence
of stationary components in stock prices (Summers (1986)). In this section, we employ
our model to study the behaviour of stock returns. For convenience, we consider the
returns to the zero-wealth portfolio defined in Section 4, or equivalently, the excess return
to one share of stock.

Under asymmetric information, the return to the zero-wealth portfolio is derived in
Theorem 4.2:

dQ =[ey+ eg®+ e Aldt+bpdw. (5.12)
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E[dQ)/dt

w=1.0

FIGURE 5
E[dQ)/dt plotted against gg. r=0-05, p=0-2, 1=0-85, k=1:0, 0, =10, oy =06, az=0-2, ag=0-4

Let yo=(1+r/ae)pe, and yo=(1+r/as)pa. Q has the following solution (see, e.g.
Arnold (1974)):

Q(1) = Q(to) + eo(t — to) + vo[ O (1) — O(1o) 1+ yal A(2) — A(20)]

+J (bp — Yobo — ¥aba)dw(s), (5.13)

to
In order to look at the serial correlation in stock returns, let us consider the following
ratio:

_Cov[Q(t+7)-Q(1), Q) ~ Qi =1)]
Var [Q(t)— Q(t —7)] '

B(r) is calculated in Appendix C. The numerator in Equation (5.14) is the unconditional
covariance between the returns from two consecutive holding periods of length 7:

B(7) (5.14)

Cov [Q(t+7)—Q(t), Q() = Q(t—1)]

1, ., r2) [1 ae ] )
=—— —— ) x| =+ .
o Pe0o6 (1 el X 2 agta, Pahna | [8(7, ae)], (5.15)
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where g(7,a)=1—e"*. The covariance is negative if r<ae and positive if r> aq.*

Consider the case when r<ae, i.e. the covariance is negative. The strong mean-
reversion in © generates negative serial correlation in stock returns even under symmetric
information. Under asymmetric information, however, the negative serial correlation can
be enhanced by the information effect of dividends and prices on the behaviour of
uninformed investors. Consider the simple case in which the current dividend turns out
to be low (i.e. lower than expected), while IT and ® have remained the same. In the case
of symmetric information, the drop in dividend gives a low return for the current period
but has no effect on the future expected returns with ® being constant.>®* When there is
information asymmetry, however, the low dividend causes the uninformed investors to
decrease their estimate of IT and © (see Theorem 4.1). The expected return on the stock
will be low which causes them to sell their shares. The price drops more than in the case
of symmetric information. As new information arrives, the uninformed investors update
their expectations which leads to a correlation in price which gives rise to a reversal in
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35. When r> ag, fluctuations of ® from its stationary level take long time to diminish. The return on
the zero-wealth portfolio is dominated by its financing cost. This leads to a positive serial correlation.

36. Note that a change in the current dividend does affect the expected future cash flow of the stock.
But this effect is fully incorporated into the current price. Hence, it has no effect on the expected future excess
return under symmetric information. See also the discussion in Section 3.
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price changes. Figure 6 shows how information asymmetry can significantly enhance the
negative serial correlation in returns.*’

6. OPTIMAL INVESTMENT STRATEGIES

In this section, we examine the trading strategies of both the informed and the uninformed
investors. We have seen in the previous sections that in equilibrium, investors with
different information expect different returns from the stock. Hence, they follow different
investment policies.

Given the equilibrium price, Theorem 4.3 gives the optimal stock holding of an
informed investor:

X '=fi+fo®+fiA. (6.1)

As shown in Section 4, the informed investors’ expected excess return is determined by
two factors: aggregate supply of the stock ® and the uninformed investors’ estimation
error A. Knowledge about expected future revisions in the uninformed investors’ estimates
does not provide the informed investors with arbitrage opportunities. However, the
informed investors do take advantage of their superior information to make profits by
positioning themselves against expected changes in A. Due to risk-aversion, the informed
investors will not take positions large enough to completely eliminate the price deviations
caused by the uninformed investors.

The optimal investment policy of the uninformed investors is given by Theorem 4.4.
We rewrite it as

X"=fo+f60. (6.2)
0 is the only state variable that affects the excess return on the stock anticipated by an
uninformed investor, hence the variable that determines his stock holding. f§ is positive.*®
Intuitively, equation (6.2) states that the uninformed investors hold their optimal share
of the market. They trade only when they perceive a change of the total market which
is not directly observed. Their expectation of the market changes when new information
arrives.
Consider now how an uninformed investor’s demand for stock responds to changes

in prices, which is characterized by the conditional covariance between dX"“ and
dP: E[dX“dP|%"]. Given the demand schedule in equation (6.2),

E[dX“dP|F*]=fLE[dPd®| F*]=flo ps. (6.3)

f4 is positive and the sign of E[dX“dP| "] is the same as that of E[dPdO®]| #"]. As we
show in Figure 7, E[dPd (:)| F"] can be positive for certain parameters values.”® This sets
forth the case where changes in the uninformed investors’ stock holdings are positively
correlated with changes in prices. They buy when the price goes up and sell when it goes

37. The result that information asymmetry can enhance serial correlation may be somewhat counter-
intuitive. One might argue that if there is serial correlation in returns, why do uninformed investors not take
advantage of it by simply following contrarian strategies which would reduce the serial correlation? Such
strategies cannot be optimal for uninformed investors due to the following reason. The uninformed investors
know more than just returns. They know dividends and prices separately. Their optimal strategy is conditioned
on both dividends and prices. It may not “look” optimal conditioned on a coarser information set such as
past returns. Also see the discussion in the following section.

38. f&>0 supports the following intuition. When informed investors infer that @ is high, their holding
should also increase. Otherwise, it must be the informed investors who are holding more, which cannot be an
equilibrium situation for the uninformed investors.

39. Figure 7 is not the dominating pattern observed in the parameter space. The situation that opg is
always negative is often observed when we move in the parameter space, especially when r is small.
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down. Figure 8 shows examples in which the uninformed investors behave as trend
chasers while the informed investors act like contrarians.

In order to understand the trend-chasing-like behaviour, consider how unexpected
priceAchanges affect the uninformed investors’ expectation about the aggregate supply
(i.e. ®) since they only trade when they perceive a change in the supply. Unexpected
price changes are caused either by cash-flow related shocks (e.g. unexpected dividend
changes) or by supply shocks. Under symmetric information (w =1 or w =0), the
equilibrium price fully reveals ®. Cash-flow related shocks like innovations in dividends
have no impact on investors’ expectation of the aggregate supply. Since price responds
to supply shocks negatively (p%* <0 in the case of w =1), E[dX"dP|F"]=fép&*a6 <0
Hence, investors behave like contrarians.

Under information asymmetry, however, price does not reveal the aggregate supply.
Both type of shocks affect the uninformed investors’ expectations of the aggregate supply
but in very different directions. If an unexpected price increase is due to good news on
cash flow such as an unexpectedly high dividend, the uninformed investors will infer that
their previous estimate of I is too low and so is that of ©.*° This implies that they have

40. Note that observing A = pIl+ pg®, the uninformed investors know the weighted difference between
IT and O (since py>0 and pe <0). Hence, if IT is underestimated so is II.
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been holding less than the optimal share of the market since they have underestimated
0. Hence, they will update their expectation by increasing their estimate of the market,
0, and buy more stock shares.*’ If an unexpected price increase is not due to cash-flow-
related information, it must be due to a decrease of the aggregate supply (i.e. ®). In this
case, the uninformed investors will lower ® and sell their shares accordingly.

Therefore, under information asymmetry the uninformed investors’ reaction to an
unexpected price increase is positive (to buy) if it is due to cash-flow related shocks and
negative (to sell) if it is not. The overall response to price changes is the net of these
two effects. As shown by Figure 8, for some parameter values the information effect of
cash-flow-related shocks can dominate. In this case, opg > 0 and the uninformed investors
buy the stock when the price rises and sell when the price drops. Clearly, the trend-chasing
behaviour is associated with information asymmetry. This point becomes obvious as we
compare with the limiting case of @ =1 when all investors are uninformed and there is
no information asymmetry.

Several empirical studies suggest that some investors in the market behave like price
chasers: they buy when the price rises and sell when the price drops.*> We have just

41. The fact that hp, > 0 in the filtering equation proves the point that d Ois positively correlated with dD.
42. See the discussion in De Long et al. (1990) and the references therein.
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shown that trend-chasing can be the rational behaviour of less informed investors under
asymmetric information in the current model.

7. FURTHER DISCUSSIONS AND COMMENTS

In the current model, we have assumed the aggregate stock supply to be stochastic. This
is purely for simplicity in exposition as mentioned earlier. One can easily think of ways
of introducing additional state variables instead of assuming stochastic supply. Wang
(1990) develops a model with only rational investors, risky production and a constant
stock supply. Most of the results are formally the same as here.

We have made many simplifying assumptions. Some of these assumptions can be
relaxed quite easily.

For example, we can allow investors to have different degrees of risk aversion as
long as they remain in the CARA class. The aggregation theorems (see e.g. Rubinstein
(1974)) enable us to reduce the economy to an effective two-person setup as used in this
paper. We should point out that the results in this paper depend on the assumption of
risk-aversion among all investors. It is the risk aversion of the informed investors that
prevents them from taking very large positions to take advantage of the uninformed
investors’ estimation errors. If the informed investors were risk neutral, the only equili-
brium in the current competitive set-up would be a fully revealing one. It can be interesting
to look at how the risk aversion of the two types of investors affect the results.

As for the information structure, one can assume that in addition to dividends and
prices the uninformed investors receive other exogenous signals, which also have the
same linearity as dividends. In addition, we may extend the model to include more than
two classes of differently informed investors. When the information sets of different
classes of investors have a complete ranking in terms of statistical dominance, the extension
would be straightforward. However, if the ranking is not complete, the situation becomes
more complicated.

We have modelled the information structure of the economy in a discrete fashion.
There are a finite number of signals available to the investors (e.g. D, P,II, ®). Aninvestor
either does or does not have access to each signal. This may introduce certain instabilities
into the equilibrium of the economy in terms of the information structure. To illustrate
this, let us consider the case in which the population of informed investors is very small.
The price contains certain information that only the informed investors have and hence
provides a valuable source of information to the uninformed investors. This is true no
matter how small the informed investors’ population is as long as it is not exactly zero.
The structure of the economy as well as the values of all the parameters are common
knowledge. Even though the informed investors only have a very small impact on the
price, the uninformed investors would have no trouble in identifying the exact perturbation
on the price caused by the informed investors.*> The absolute magnitude of the signal
has nothing to do with its information content. Hence, the uninformed investors can still
extract the same amount of information from the price. However, when the population
of the informed investors is exactly zero, the price does not convey any information held
by the informed investors. Therefore, the information content may change abruptly when
o reaches 1. This implies that the limiting equilibrium as w -1 can be very different
from the equilibrium when w = 1.

43. This is the result of the competitive assumption and may not be true if investors are allowed to behave
strategically.
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In the current model, however, the instability suggested above is not present. The
reason is that when w = 1, price remains a valuable source of information to the uninformed
investors because it fully reveals the supply of the stock. The information content is
continuous in some sense as w approaches 1. But we have found examples of instabilities
in a variant model in which prices become informationally valueless when w is 1.** The
existence of instabilities in the information structure becomes an important issue if we
try to endogenize the information structure.

8. CONCLUSION

This paper presents an equilibrium model of asset pricing under asymmetric information.
The model involves investors who are differently informed about the state of the economy.
Investors rationally extract information from all the available signals including prices.
They trade competitively in the market to maximize expected utility. We obtain a
closed-form solution to the rational expectations equilibrium of the economy.

We employ the model to investigate the impact of asymmetric information on
equilibrium asset prices, price variability, risk premia, serial correlation in returns and
optimal trading strategies. We illustrate that the existence of investors with imperfect
information increases the risk premia on stocks. Stock prices can become more variable
when investors have less information about future cash flows. We also find that the
informed investors can destabilize the price and information asymmetry can increase the
price volatility and negative serial correlation in returns. Another implication of our
model is that although supply shocks do make price more volatile, only under asymmetric
information can the variability of supply shocks affect the unconditional expected excess
return. It is also shown that under asymmetric information, investors with different
information adopt different investment strategies. Less informed investors may rationally
act like trend chasers.

In a separate paper (Wang (1991)), we use a variant form of the current model to
study the behaviour of trading volume and its relation to price dynamics.

APPENDIX A. SOLUTION TO THE UNINFORMED INVESTORS’
FILTERING PROBLEM

In this appendix, we solve the filtering problem of the uninformed investors. Our result is a special case of the
following Lemma.*®

Lemma A.1. Suppose that
dz(t)=[a,o+a,.z(t) + a,;s(t)]dt + b.dw(t), (A1)
ds(t) =[a,o+a,z(1)+a,s(t)]dt + bdw(t), (A2)
where z(t) is an n-vector of state variables, s(t) is an m-vector of signals, w(t) is a k-vector standard Wiener
process, a,, @y, A, 4, @, A, b, and b, are respectively (nx 1), (mx1), (nxn), (mxn), (nxXm), (mxm),
(nxk) and (m x k) matrices of constants. Let q,,=bb!, q.;=bbT and q,,=b,bT. Suppose that the prior is

2(ty) ~ N (2o, 0,). Conditioned on the observations of s(t), the posterior mean of z(t), i.e. the filter 2(t) = E[z| %],
is given by the stochastic differential equation:

dz(t) =[a,o+a,2(t)+a,s(t)dt+[o(t)al, +q, 195 dW(1). (A3)
Here o(t) = E[(£—2z)(£—2)"] is a positive definite symmetric matrix given by the solution to the Riccati equation:
o(1) = a.0(1) +o(t)al +q,, —[o(t)a] + 4,145 [b.0(1) + ¢ ] (A4)

44. In Wang (1990), hedging against changes in private investment opportunities plays the role of supply
shocks. One can show that there exists a disruptive change in equilibrium as w approaches 1.
45. For a complete treatment of the filtering problem, see Liptser and Shiryayev (1977).
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(A5)

The innovation process, w(t), defined by
di(1) = ds(t) —[a,+ a,2(t) —a,s(1)]dt
is a Wiener process with respect to F*(t).
In the filtering problem of the uninformed investors, the signals are D and A, where A = pyIl+ pe®. A
(A.6)

follows the process:
dA =[agpn(IT—T1) — aepe®]dt + b, dw,
where b, = (0, ppoy, peoe) and o5 = b,b1. Lets™(t) =[ D(t), A(t)] be the vector of signals, z7 (¢) = [TI(¢), ©(¢)]
the vector of state variables and w” (¢) =[wp(t), w(2), wg(t)]. Define the parameter matrices accordingly:
11 - 0 b,
zl.)=<arI )s azzz( an )9 azs=os bz=( n)s
0 0 -—ag be
0 1 0
() e ) o ne(®)
~anPn  —AePe b,

agppll
Applying Lemma A.1 by substituting the parameter matrices into equation (A.3) and (A.4), we obtain the

equations for the filters of the uninformed investors.
In this paper we are only interested in the steady-state solution of the economy.*® We look for the

steady-state solution to the Riccati equation, denote by
011 012
022/

0=
\012
0., satisfies the following equation:
a,,0,t ocoasz +q,, - hqssh T= 0, (A'7)
where
h h
h= (omafz+qn)q;‘E( e "A>.
hep hea
From Lemma 4.1 in Section 4, pn(l'I—fI) = —p@(G)—(:)). This leads to the following steady state solution
of the Riccati equation:
0_2
o e | (anrbod +aepioh) o TR AR T PR |, (A
oat(ag—ae)’pho
fon rZ
012=—""10q, 032 =775 0q3. (A9)
Da 2
The filters are expressed as
dii n-1 hup  h
[ ] = [““( N )] dt+[ o "A] (b,bT)2aw, (A.10)
de —ae® hep hea
dD - ap, (1 - kD)dt
an( ) ] (A11)

di=(bbT —1/2[ _Oh A
W= (bb;) dA - app(T1-T)dt + agpe®dt

Let by = (hpop, huaPuom, huaPedse), be = (hepap, grPuc, heaPede). Then, of=babk and o3 =bebl
Let A=II—-1II. A follows an O-U process:
dA=—a,Adt+b,dw, (A.12)

where a, = ag+ hgp +(ae — ay) pryhn, and by = by — byy. It can be shown that a,> 0.
Define bp = pbp + piiby+ pebe + paba. Then, from the Proposition in Section 4 the price follows the process:
dP =[p5(I1— kD) + appE(I1 —1I) — agpe® — aspaAldt + bpdw. (A.13)
(A.14)

The excess return on one share of stock is given by
dQ =[ey+eg®+e,Aldt + bpdw

where ey = —1py, eg = —(r+ ag)pe and e, = —(r+a,)p,.
Equation (A.14) completes the proof of Theorem 4.1 and 4.2. In the remaining part of this sub-section,

we define some notation for future use.
46. Since our initial point is —oo, the convergence of the filters to their steady state solution is guaranteed

under mild conditions. See, for example, Anderson and Moore (1979).



278 REVIEW OF ECONOMIC STUDIES

Let ¥'7 =(1,0,A) and e, = (e, €o, €4). Then, W' is the variable that determines the informed investors’
expected excess return on the stock: E[dQ| %] = e, ¥'dr. ¥' is governed by the following linear process:

0 0 0 0
d¥'=alVidt+bidw wherealb=[0 —-ag 0 |, b =| be |. (A.15)
0 0 —a, by

Also define ¥*T = (1, @). The uninformed investors’ expected excess return on the stock can then be expressed
as E[dQ| F"(1)]= ey¥"dt, where e =(e,, eg). ¥* is governed by the process:

0 0 0o 0
d¥" = a4V dt+bYd where a:‘v=< ) bl‘p=( ) (A.16)
0 —ae hep hea

We can re-express the excess return in terms of ¥’ and ¥*:
dQ = e[ ¥idt+ bidw
=eoUdt+ bgaw,
where by, =bp and b= (pH+pahup, 1 + Pahma)-

Let x;, k=1, 2, be any two variables such that dx, = E[dx,| .@"]dt+bxkdw. The conditional convariance
E[dx,dx,| 1= o,,,, can be easily calculated: o, , = b, bl . For example, o =bybd, ope=bpbd. If x;, k=

1X2 1X2 x2°

1,2, is also F*-measurable, then E[dx,dx,| ‘1= E[dx,dx,| F*].

APPENDIX B. SOLUTION TO INVESTORS’ OPTIMIZATION PROBLEM

In this appendix, we solve the optimal investment and consumption problem of the informed and uninformed
investors respectively.

B.1. Optimization problem of the informed investors

The informed investor’s optimization problem is stated by equation (4.9) in Section 4. Using the notation
developed in Appendix A, we rewrite the Bellman equation in the following form:

0=Max, x' [—e ™+ Ji (rW' — ¢+ X 'eLU') +3bLb T X 2Ty, + X blob T Ty ]
—pJ +(ay ) Ty +3b4 Ty by . (B.1)

Here, we have used the notation:

Ji (aJ" aJ! aJ")T 4 Ui { T }
=\ T an =\"T—"T"¢(-
Y \ow i ow i oW YT o¥ 00,

Assume that the value function has the following form:
TH(W'0,4;1)=—e oW T (B.2)

where v’ is a (3x3) symmetric matrix. The first-order conditions of the optimization problem leads to the
optimal consumption and investment policies:

=rWi+lvTpiwi—In(r), X'=fiv (B.3)

where f'=(rb3 b,) (e, — bL,bT v').* Substitute the optimal policies into the Bellman equation, we obtain
ebo e~ bo p
the following equation for v‘:

0=0v'bybyv' —(bobG) (el —bibT v') (el —bobY v')
+ro —(abv'+v'al) +2k'md (B.4)

47. The second-order condition for optimality is b3 bioJiw <0, which is satisfied given the form of the
value function.
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Here, k' =[(r—p)—rIn (r)]-Tr (b biv'). m{?) is the (nx n) index matrix which has all its elements being
0 except element {kk'} being 1. Equation (B.4) is a set of quadratic equations to which a solution exists.*®

It can be shown that E[dJ'(W' ¥ t)|F (ty)]=—rE[J(W' ¥ t)| Fi(t,)1dt(t>1t,). Then,
lim,_ o, E[J'(W!;, ¥'; t)| F(t,)] =0. Hence, the above solution satisfies the given transversality condition when
r>0.

B.2. Optimization problem of the uninformed investors

The uninformed investor’s optimization problem is stated by equation (4.13). As discussed in Appendix A, the
information structure generated by 2 (t) iis equivalent to that generated by the innovation process w. Since
W is a Wiener process with respect to #*(t), the system (H ©) is a Gaussian Markov with respect to 9"‘ (or
F%). The uninformed investors’ conditional distribution of the state variables is fully characterized by (11, 6)
with innovations generated by w. Using the w-representation of the information structure, the optimization
problem of the uninformed investors becomes a Markovian one. Formally, it is similar to that of the informed
investors except that filters are the effective state variables. This is an application of the Separation Principle
in solving optimal control problems with partially observed state variables.*®
Employing the notation defined in Appendix A, we rewrite the Bellman equation as follows:

0=Max,« x«[—e P~ + T (rW" — c* + X “ey¥*) +3b5be X 2T iyw + X “bbY Thyg]
—pJ*+(ay )T +3b5 T4 by (B.5)
Assume the value function to have the following form:
TJHWH; 65 1) = —emet=r W TN (B.6)

where v* is a (2 x 2) symmetric matrix. The first-order conditions of the optimization problem gives the optimal
consumption and investment policies:
c =rWw*+1¢*Tp*¥* —In (r), X" =y (B.7)

where f“ = (rb"QTb'(‘))“(e"Q—b"Qb\';,Tv“). Substitute the optimal policies into the Bellman equation, we obtain
the following equation for v*:

0=v"bl4biTv" — (b7 ) (el — bisbuTv*)T (et — bihb4T v*)
+rv* —(a% v v* +a%) +2k*m? (B.3)

where k* =[(r—p)—rin(r)]—Tr (b4Tb%v*). It is easy to show that a solution exists for v*

APPENDIX C. SOME MOMENTS OF RETURNS AND PRICES

In this appendix, we calculate the serial correlation in excess returns and the unconditional variance of stock price.

Let
dé 0 eg N bp
Yo=—¢o/ A0, Ya=—¢€a/as,dY=|dO |, ay=|0 —ae 0 | by=| be |,
dA 0 0 -—a, b,

where dé= dQ — eydt is the abnormal excess return on one share of stock. Then, Y satisfies the stochastic
differential equation:

dY = a,Ydt+ bydw. (C.1)

48. The proof is available from the author upon request.

49. For a more detailed discussion of the Separation Principle, see Fleming and Rishel (1975), Whittle
(1981), Bensoussan and van Schuppen (1985). See also Dothan and Feldman (1986), Detemple (1986), Gennotte
(1986).

50. The solution satisfies the transversality condition. See the discussion for the case of the informed
investors.
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Equation (C.1) has the solution (see, e.g. Arnold (1974)):

Y(1)= ew<'-'o>r<to>+f e bydw(r). (€2)
Explicitly, we have
O(1) = O(t,)e %"~ + J't e~ =p dw(7), (C3)
A(t) = A(tg)e %00+ J ' e~ %U=Dp, dw(r), (C4)
G(1) = G(1) + e[ O(1) — O (1) 1+ yA[A<t)—A<zo>]+J (bp — Yobo — aby)dw(r). (C.5)

Let g(7,a)=1—€"", Ypo = YoOUpe, Ypa=YaTpa, Yoo = 7@"@; Yaa= VAT, Yea = YoYaOea- Then,

) 2
Var[Q(t+17) - Q()| F()]=(cp+ Yoo+ ‘)’AA_27P9—2YPA+2'YGA)T—a_ (Yoo~ Yrot+ Yoa)g(7, ag)
®

—=(yaa—Ypa*t You)&(7, ay)+ 2 g(1, 2a)
A 2ae

Yaa
+——g(7,2a,)+
ra Ag( a) ®+

g(7, ag+a,).

Furthermore,

Yoo

Var[Q(¢t+7)—Q(8)]=Var [Q(t+7)— Q(1)| 9‘(t)]+— [g(m ae)]2+ [g(T ay)P

Yoa

+a ta g(f ae)8(7, aa). (C.6)
From equation (C.5), we also have
Cov [Q(t+7)-Q(1), Q1) — Q(t —7)]1=—nelg(r, ae)’, (cm
where
ne=aie(vp@—%~/ee—r::—a; 7m)~ (c.7m

Given the equilibrium price, its unconditional variance is:

2

%;, 1 02 2 é o)
Var [P +— oy +pi—=>
[P1=rb [Zk k(an+k)2an] Thlg, TPog, TP,
2pbpt ok 2PEPA[ Tna ] Ima ) Tea
42l I, o DTe +—28 | 4 opk +2 (o}
k+tapg 2ag k+a, 7pa ap+a, pnpAaH+aA pepAa@+aA (C8)
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