WILEY

Equilibrium Block Trading and Asymmetric Information
Author(s): Duane J. Seppi
Source: The Journal of Finance, Mar., 1990, Vol. 45, No. 1 (Mar., 1990), pp. 73-94

Published by: Wiley for the American Finance Association

Stable URL: https://www.jstor.org/stable/2328810

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

and Wiley are collaborating with JSTOR to digitize, preserve and extend access to The Journal
of Finance

JSTOR

This content downloaded from
128.178.67.107 on Thu, 17 Sep 2020 13:15:28 UTC
All use subject to https://about.jstor.org/terms


https://www.jstor.org/stable/2328810

THE JOURNAL OF FINANCE e VOL. XLV, NO. 1 ¢« MARCH 1990

Equilibrium Block Trading and Asymmetric
Information

DUANE J. SEPPI*

ABSTRACT

This paper investigates the existence of equilibria with information-based block trading
in a multiperiod market when no investor is constrained to block trade. Attention is
restricted to equilibria in which a strategic uninformed institution (i.e., one which is
forced to rebalance its portfolio but is free to choose an optimal rebalancing strategy)
is willing to trade a block rather than “break up” the block into a series of smaller
trades. Examples of such equilibria are found and analyzed.

A STRIKING FACT ABOUT the New York Stock Exchange is that roughly half of
the volume is traded in blocks of over 10,000 shares.! However, despite the
obvious importance of block trading, the types of market microstructures which
generate block trades are not well understood. This paper provides a theoretical
rationale for block trades by modeling an equilibrium in which blocks are
endogenously traded. In particular, we show that, even when a block can be
“broken up” into a sequence of small trades, blocks may still be traded as part of
both informed and uninformed investors’ optimal trading strategies.

The analysis is conducted in a simple market in which there are competitive
dealers and specialists, a group of small “noise” traders, and a strategic institution
which trades either to exploit private information or because it is constrained to
rebalance its portfolio. The main results about block trading in this setting are
as follows:

(1) For any size block there is a market parameterization with a “separating”
equilibrium in which the institution optimally trades a block to rebalance
and trades dynamically using market orders when informed.

(2) Increasing the amount to be rebalanced (holding fixed the rest of the
“separating” parameterization) leads to a “partial-pooling” equilibrium in
which the institution still trades blocks to rebalance but randomizes
between block trades and dynamic strategies when informed. In this second
equilibrium, block trades are “large enough” to have the sort of “perma-

* Graduate School of Industrial Administration, Carnegie Mellon University. This paper is based
on the second chapter of my dissertation from the University of Chicago. This research benefitted
greatly from the advice of my dissertation committee, Douglas Diamond (chairman), Robert Hol-
thausen, Merton Miller, George Constantinides, Kenneth French, and Robert Vishny. I also want to
thank Maria Herrero, Paul Pfleiderer, Chester Spatt, Sanjay Srivastava, and especially René Stulz
(editor) and an anonymous referee for their comments and suggestions.

1 See the New York Stock Exchange Fact Book 1989, p. 73. Also, 43 percent of the 1988 NASDAQ
volume consists of block trades.
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74 The Journal of Finance

nent” price effect found in Kraus and Stoll (1972) and Holthausen, Lef-
twich, and Mayers (1987).2

(3) The model is consistent with the observation that, in addition to being
“large”, blocks are typically executed in “lumpy” trading strategies which
also include periods of no trade.

These results extend recent work on block trading by Easley and O’Hara (1987)
and Gammill (1985) in three directions. First, the set of admissible trading
strategies is expanded to include dynamic strategies. This is unavoidable if the
model is to explain why blocks are not “broken up” and why “lumpy” strategies
are used.® Second, the uninformed institution is not forced to trade a block but
is instead allowed to follow an optimal trading strategy for executing its portfolio
rebalancing.? In particular, the timing of its rebalancing is made flexible enough
to permit dynamic strategies as alternatives to block trading. Third, dealers and
specialists provide competing market-making mechanisms.® This feature allows
the model to capture the fact that block trades are typically executed via off-
exchange “block positioning” through a network of dealers which coexists along-
side the specialist system on the exchange floor. From our perspective, the most
significant difference between these two market-making mechanisms is that
dealers negotiate block trades with investors whose identities are known. This is
in sharp contrast to the comparatively anonymous execution of orders by spe-
cialists.

Optimal rebalancing strategies receive particular attention in our analysis.
Given the adverse selection problem in trading with a potentially informed
institution, dealers set block prices so that probabilistically their expected losses
on trades with an informed institution are offset by expected gains on trades
with an uninformed one. However, for the uninformed institution to be willing
to trade a block, its expected loss on the block’' must be less than the expected
loss on any available alternative trading strategy that also satisfies its rebalancing
constraint.

2 Seppi (1988) provides evidence that permanent price changes are partially due to information
revelation by documenting a positive correlation between earnings forecast errors and block trade
price changes during the week before quarterly earnings announcements. This correlation is inter-
preted as a specific example of the type of information blocks reveal.

3Two alternative explanations are transaction costs and risk aversion. Constantinides (1986)
shows that transaction costs can lead to “lumpy” trading. The argument for risk aversion is less
clear. If the probability of exogenous resolution of uncertainty (leading to price changes) increases
with time, then dynamic strategies over very short intervals should dominate block trades. The
question of whether price volatility due to the endogenous revelation of information through trading
can induce block trading is the central question in this paper.

4 Admati and Pfleiderer (1987) and Foster and Viswanathan (1987) also examine the equilibrium
implications of allowing uninformed investors to trade optimally. Their intent, however, is to explain
pricing and volume patterns in daily and weekly data.

5 Gammill (1985) considers a market with a monopolistic market maker and two potentially
informed investors and shows that there are noncooperative equilibria with block trading. In these
equilibria the market maker executes the first block at a loss as a way of inducing the first investor
to become informed to reveal its information. The market maker can then (because of its monopoly
power) set subsequent prices so as to recoup this loss and earn positive profits on later trades by
liquidity traders. With competitive market makers as in this paper (and Easley and O’Hara (1987)),
this market-making strategy is not feasible.
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Equilibrium Block Trading and Asymmetric Information 75

Block trades in this paper are intended to resemble actual block trades in
which a brokerage house acts as a principal (i.e., takes at least part of the other
side on its own account rather than “shopping the block” to other investors).
Such block trades account for a significant proportion of observed block trades.
In 1988, total off-exchange member trading (of which block positioning was the
most significant component) equalled half of the total block trade volume.® Such
trades typically involve implicit commitments between dealers and investors.
One common understanding is that the investor initiating the block should not
trade the stock again soon (i.e., while the block is still on the dealer’s inventory).
Failure to keep this commitment is called “bagging the street” and can lead to a
refusal by brokerage houses to use their own capital in executing future trades
for a frequent offender. (See Glynn (1983) and Smith (1985).)

Such commitments provide a natural way to endogenize “lumpy” trading
strategies. The economic interpretation of a binding “no bagging” commitment
is that it allows the dealer to condition his or her price quote both on the
institution’s current block order and on knowledge of the institution’s future
market orders (i.e., given a binding “no bagging” commitment, the dealer knows
that for the relevant future the institution will make no additional trades). In
contrast, the specialist can condition quotes only on past and current aggregate
orders.

This paper is organized as follows: Section I describes the basic market
structure used in the block trading model, defines a “fair price” equilibrium, and
proves that one always exists for this model. Section II finds sufficient conditions
under which a market has an equilibrium with block trades and binding “no
bagging” commitments. Section III discusses some empirical implications of the
model. Section IV contains a summary.

1. Basic Market Structure

This section presents a simple model of a multiperiod asset market in which
optimal trading strategies and pricing rules can be calculated.” This model is
then used in Section II to solve for an equilibrium with block trading.

The model represents a security market as a finite horizon game. The structure
of the game is presented in the following order: first, the traded assets are
described; second, the market participants are introduced; third, the information
sets available to the market at each trading date are described; and fourth, a “fair
price” equilibrium is formally defined for this structure, and optimal trading
strategies, equilibrium beliefs, and prices are characterized. The section ends
with an existence result.

Traded assets—There is a risky stock and a numeraire in terms of which the
stock price is quoted (i.e., cash). The terminal value of the risky stock 0 is a

8 In 1988, 22.3 billion shares were traded on the NYSE in blocks of 10,000 shares or more. Total
off-floor member trading was 11.2 billion shares. NYSE Fact Book 1989, pp. 73, 75.

7”The model is most closely related to Kyle (1985). Easley and O’Hara (1987) use an alternate
modeling strategy based on Glosten and Milgrom (1985). The advantage of Kyle’s approach is that it
allows for dynamic strategies of trade through the specialist. A discrete-space specification is used
here because mixed strategies are more tractable in this setting.
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Figure 1. Timing of events in a simple multiperiod market.

random variable with unconditional expected value u. To abstract from issues of
time preference, the risk-free interest rate is assumed to be zero.

Market participants—There are four risk-neutral market participants: 1) a
group of N small (price-taking) uninformed investors with random exogenous
trading needs, 2) a single large (non-price-taking) institutional investor with
either an exogenous portfolio rebalancing shock or private information, 3) a
group of competitive specialists on an organized exchange, and 4) a group of
competitive off-exchange dealers. Knowledge of the game structure and of the
parameters of the joint distribution of the investor state variables (i.e., trading
shocks and private information) is referred to as the market parameterization M
and is common to all market participants. Knowledge of the realized values of
the investor state variables is private to each individual investor and cannot be
communicated in a verifiable manner to other market participants except to the
extent that it is revealed in equilibrium by trading actions. Figure 1 illustrates
the timing of events in the market.

Market makers (i.e., dealers and specialists) facilitate trading by small investors
and the institution by receiving orders, clearing markets, and setting prices. At
time 0, dealers stand ready to trade a block on their own account.® At times
1, .-, T, specialists execute any market orders sent to the floor of the exchange.
Imbalances between buy and sell orders are offset by specialists on their own
account, and all market orders are executed at the price at which the specialists
clear the market. Market orders are submitted anonymously to the exchange. In
a block trade, however, the dealer knows the identity of the institution. This
allows the dealer and the institution to enter into additional commitments beyond
simply agreeing to the terms of the trade (i.e., the price and quantity). The
particular commitment examined in Section II is a “no bagging” commitment
prohibiting subsequent trading by the institution.

Trading by small investors—Small investors have no discretion over the timing
or size of their trades. At datest =1, .- -, T, each individual small trader i = 1,
..+, N submits a market order to trade a random number of shares é; (e; > 0
indicates a buy order) for reasons that are exogenous.

8 By restricting block trades to time 0, the timing of block trading is potentially suboptimal. This
prejudices the model against the existence of an equilibrium with block trading. However, in the
context of a later example, this timing is shown to be optimal.
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Equilibrium Block Trading and Asymmetric Information 77

The process generating small investors’ orders is assumed to satisfy three
conditions. First, the individual orders é; are jointly distributed such that the
net order e, has a binomial distribution:

€ = Efil €t ={

where e, > 0 > e,. The net order ¢, is identically distributed at each trading date
t and is independent of all other variables in the model. Second, there is always
one individual (without loss of generality i = 1) who sells e;, = e, shares. The
remaining N — 1 individual orders take one of only three possible values e, — e,,
e, — ey, and 0. Trades of these sizes are referred to as “round lots”. Third, the
number of small investor crosses 7. (i.e., pairs of offsetting buy and sell orders
for nonzero round lots submitted by small investors at date t) is assumed to be
independently and identically distributed with an arbitrary probability distribu-
tion over the integers 0, - - -, (N — 2)/2. For convenience,” the number of small
traders N is assumed to be an even integer = 4.

Detailed assumptions about the joint distribution of individual orders are
necessary'® if, as in this model, the specialist is allowed to observe individual
orders in addition to the aggregate order flow.!' These particular assumptions
greatly improve the mathematical tractability of the model by simplifying the
optimal trading strategy for the institutional investor. For example, an immediate
consequence of these assumptions about small investors’ orders is that any
institutional order x; other than a round lot is immediately apparent to market
makers. As a result, the institution will (endogenously) submit only round lot
market orders in the equilibria examined below. This fact also suggests the
quantity |e, — e,| as a metric of block size. If | B| > |e, — €|, then a block B is
economically “large” in the sense that it could have alternatively been broken up
into a sequence of buy (or sell) round lot market orders.

Trading by the institution—The institution has two possible reasons for trad-
ing: either it must rebalance its portfolio due to an exogenous noninformative
shock or it wants to exploit private information about the terminal stock value
v. Let g denote a random portfolio rebalancing shock taking values g, g, or g. A
realization g, indicates a constraint to buy g, > 0 shares of stock by a deadline at
date T.'% A realization g, indicates an analogous sell constraint. For example, the

e with probability w(ep), 1)
e, with probability 7(e;) = 1 — 7w(es),

9 The assumption that the number of small trades N is an even integer greater than or equal to
four is motivated by the following considerations. First, N > 2 means that at least one cross is
possible. Second, if N is not even, then the number of small investor crosses n, and the net small
investor order e, may not be independent. For example, if N is odd and n, = (N-1)/2 (i.e., the
maximum number of small investor crosses), then the net small investor order must be e, = ¢;.

2 These assumptions provide a minimum level of buying and selling “noise” for the institution. In
defense of the fact that these (and subsequent) assumptions lead to only a limited number of order
sizes being traded in equilibrium, we note that actual transactions are far more discrete than would
follow from a simple integer constraint (e.g., trades of 50 round lots appear to be much more common
than trades of 49).

1 Kyle (1985) assumes that the specialist observes only the net order flows but not the crosses.
However, although brokers may “bunch” orders of the same sign for execution on the NYSE, all
offsetting buys and sells must be crossed with the specialist.

12 A deadline on (or alternatively before) date T precludes trivial equilibria in which the uninformed
institution avoids any costs of being confused with an informed institution by deferring trade until
after the resolution of uncertainty.
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institution might be an insurance company which needs to invest incoming
premiums or liquidate part of its portfolio to pay a claim on a known future date.
A realization g, indicates that there are no such constraints. Let 6 denote a
private signal about the terminal stock value v taking values 6, 8,4, or 6, indicating
good news, bad news, and no news in the sense that the institution’s resulting
conditional expectations are ranked u, > uo = p > uq.

The institution learns its state (g, 6) before the start of trade. The possible
combinations of (g, 0) are distributed **

(&u,00) must buy g, with probability =(g),
(&s,00) must sell g, with probability =(g,),
(g,0) =7\ (go,00) no news 6, with probability =(6,), (2)
(go,0..) good news 0, with probability =(6,),
(&o,04) bad news 6, with probability =(6,).

The institution can trade by submitting a block order b to a dealer at time 0
and a sequence of anonymous market orders x = (x;, - - -, x7) to the specialists
on the exchange (where b > 0 and x, > 0 indicate buy orders). If informed, the
institution is free to exploit any pricing discrepancies until the terminal stock
value becomes public after time T. If forced to rebalance its portfolio, the
institution is still free to follow any trading strategy which satisfies its deadline
T.

Price rules—Prices depend on the orders market makers receive because orders
reveal information about possible information-based trading and thus indirectly
about the terminal value v. The raw “trading data” can be compactly described
by the following variables. A block trade is simply described by its size b. Sufficient
statistics for a set of market orders observed on a trading date ¢ are h, = (y,, »,
o(x;)), where y, is the order flow

Ve = € + Xy, (3)

defined as the sum of the N small investors’ orders and the institution’s order, »,
is the total number of “crosses” or pairs of exactly offsetting buy and sell orders,

y_{nt+1 if x,=e;,—e, and e, = ¢,
£ n, otherwise,

(4)

and o(x,) is an indicator variable for non-round lot institutional orders x., where

0 if x €{e,—e,0,e —e} (ie., x;is a round lot),
X otherwise.

o(x) = | ®)

All trades are assumed to be publicly observable so that at each date ¢ the
information set on which prices can be conditioned is the trading history

ht = (b’hl" c ’ht)’ t= O" t ’T' (6)

3 Cross events are not likely to be very interesting or common in practice. For example, an
institution in a “sell with bad news” state (g,, 0,) simply has a lower bound on the number of shares
it must sell. Also, as an empirical matter, one wonders how frequently “sell with good news” or “buy
with bad news” states occur given that real world investors actually have a choice of assets to buy or
sell.
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Equilibrium Block Trading and Asymmetric Information 79

Formally, price rules are functions mapping trading histories h, into transaction
prices.’* Let g(b) be the price at which a dealer will execute a block trade of b
shares. Let p = {py,- - -, pr} be a series of functions p; where p,(h,) is the price at
which market orders are executed at time ¢ given the current and past orders.

Commitment rules—Commitments entered into by trading a block are repre-
sented as a penalty function c(hr) specifying additional terminal payments to
the dealer from the institution as a function of the final observed trading history
hr'® One particular commitment, the “no bagging” commitment, is discussed
further in Section II.

Equilibrium—A “fair price” equilibrium (FPE) consists of an optimal trading
strategy for the institution and competitive price rules and consistent beliefs for
market makers.

The institution’s trading strategy is a comprehensive description of how the
institution would trade at each date given any previous “play of the game” when
facing fixed price and commitment rules ¢, p, and c. Formally, a strategy is a
series of probability distributions ¥ = {ys, ---, ¥z} over possible trade quantities.
Yo(b:g,0) is the probability with which an institution in state (g,d) trades a block
b. Similarly, given any mathematically possible series of previous trades b, x;, - -
., x,—; and history h.;, ¥(x.: g 0, b, x1, - -+, X—1, he—1) is the probability with
which the institution submits a market order for x,.'¢

At each trading date an optimal strategy assigns positive probability only to
blocks or market orders which maximize the institution’s expected profit over
the remaining rounds of trade (subject, of course, to any unsatisfied rebalancing
constraint). These “optimal” orders are defined as follows:

Definition I: A block trade b is optimal for an institution which must rebalance
by g, or g, if it begins a sequence of orders b, x which solves the dynamic
programming problem:

max [u = q(0)]b + TLifu — E[p(R)|xeherl}xe — Ele(hr)] (7a)

subject to a portfolio rebalancing constraint
b+ Ylix. =g  (where g =g, org). (Tb)

Similarly, a market order x, is optimal given previous trades b, x;, - - -, x,-; and a
history h._, if it begins a series of trades x, ---, x7 which solves a truncated
version of problem (7) starting at date .

Definition 2: A block trade b is optimal for an unconstrained institution with

4 Past prices contain no additional information beyond that in the past trading history. For
empirical evidence on the relation between transactions and prices, see Glosten and Harris (1988).

15 An alternative type of commitment specifies future payments as a function of the realized
terminal stock value c(v) rather than the subsequent trading history. Essentially, this involves the
institution giving the dealer a “warranty”. (See Grossman (1981).) There is some anecdotal evidence
of implicit warranties in the form of poorer trade execution following perceived abuses of a broker-
customer relationship (e.g., selling the broker a large block of stock the day before a disastrous
earnings report).

16 Although in equilibrium only sequences of optimal orders will be traded (and hence only certain
histories will be observed), the hypothetical probability ¢, is well defined for all orders and histories.
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information 6, 6y, or 6, if it begins a sequence of orders b, x which solves the
unconstrained problem:

max [m ~ q(b)]b + S71{m ~ E[p(5)|xuhel}x: — Ele(hn)]
®)

(where m = py,u,uq).

A market order x, is again optimal given previous trades b, x, -+, x,_; and a
history h,; if it begins a series of trades x, ---, x; which solves a truncated
version of (8) beginning at date ¢.

Although the institution is sometimes constrained to rebalance its portfolio, it
trades optimally to accomplish this. By providing the rebalancing institution
with alternatives to block trading in the form of dynamic market order strategies,
the results here extend those in Easley and O’Hara (1987).'7

If more than one block quantity b is optimal at date O or if more than one
market order x, is optimal at a subsequent date t, then the institution will be
indifferent between any distributions v, or ¥, randomizing over these orders. Put
differently, programs (7) and (8) characterize sets of optimal trades at each date
but impose no restrictions on the probabilities with which different optimal orders
are submitted. Note that this implies that any strategy ¢ is optimal provided
that the sets of orders which are assigned positive probability are subsets of the
sets of optimal trades.

Having described optimal trading strategies, the next step is to define market
makers’ beliefs and price rules. Let ¥® = {8, - - -, ¥4} be the trading strategy
market makers believe the institution will follow and let 3(g,0:h;) denote their
assessment of the probability that the institution is in state (g,0) conditional on
a trading history h, Using the strategy beliefs y® and Bayes’ Theorem, the
conditional probability 8(g,0:h,.) is well defined for any current trading data h,
which occurs with positive probability under y? given a previous history h,_,.
However, market makers’ beliefs must be complete in the sense that they are
defined for any hypothetical h.'® Thus, a “sequentially rational” extension of 8
must be found for all ks which do not occur under ¥?. (See Kreps and Wilson
(1982).)

Given their beliefs, market makers quote prices at which they are willing to
clear the market. As in Kyle (1985), competition between market makers is
assumed to force the price to equal the expected terminal stock value conditional
on the observed trading history at each trading date:

q(b) = [B(gnb) + B(&::b) + B(60:b)In + B(0u:b)uu + B(0a:b)ua, )
p(he) = [B(&s:he) + B(&she) + B(0o:he)lu + B(Ou:h)uy + B(0she)a-

" Easley and O’Hara (1987) examines optimal trading strategies for informed investors and the
resulting equilibria given that some uninformed investors are constrained to trade in blocks.

'8 Suppose that using “backwards induction” to solve the institution’s problem, some order sequence
b, z, is optimal. This means that no alternative orders lead to a higher expected profit. To make such
a statement, however, we need to be able to say at what prices suboptimal orders would be executed.
Prices must, however, be “fair” with respect to some set of beliefs. Hence, there is a requirement that
beliefs 3 be defined for all h,.
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Equilibrium Block Trading and Asymmetric Information 81

Prices which satisfy (9) are called “fair prices” given the market makers’ beliefs.
At “fair prices” a competitive, risk-neutral market maker is just compensated for
clearing the market.

One immediate implication of the “fair price” requirement is that for any
beliefs 3 the range of each of the price functions q(b) and p(h.) is restricted to
the interval [ug, 1.]. The worst inference a market maker can draw from a trading
history is that the institution has bad news 6, and the best inference is that it
has good news 6,.

The following definition summarizes the requirements for equilibrium:

Definition 3: A “fair price” equilibrium is a quintuple {¥, 8, g, p, ¢}, where ¥ is
an optimal strategy given the price and commitment rules, 8 are “sequentially
rational” conditional probabilities based on consistent beliefs y* = ¢, and the
price rules g and p are fair given the beliefs 8.

Although in equilibrium ¥ must be an optimal strategy when facing fair prices
based on beliefs y® = ¥, the institution will be indifferent between this strategy
and any alternative strategy which assigns positive probability only to optimal
orders. However, given that the institution is willing to use ¥, the model is closed
by assuming that it does so.

Having defined a “fair price” equilibrium FPE for this market, we have the
following existence result for the specialist market:

PROPOSITION 1: For any market parameterization M there is a “fair price”
equilibrium in which (except possibly at date T) the institution trades only round
lots with the specialist.

Proof: See Appendix A.'°

With a functioning multiperiod specialist market in hand, we turn to the main
question of whether there are particular parameterizations which support block
trading through a coexisting network of broker/dealers.

II. Block Trading with “No Bagging” Commitments

Block trades are executed by brokers in one of two ways. The broker can try to
“shop the block” to potential buyers/sellers, or he or she may take part or all of
the other side of the block on his or her own account and then subsequently
work off the trade at a later date.?° In the latter case, as a service to his or her
client, the broker is a principal in the trade and bears the subsequent price risk.
The block trades modeled here are intended to resemble blocks in which a
brokerage house acts as a principal.?

% Since the set of possible prices is not a finite set, it is not sufficient to appeal to Proposition 1
of Kreps and Wilson (1982) for existence. Also, market makers are not really “players” since prices
are constrained to be fair. It might appear that this could be fixed by assuming that market makers’
payoffs are a large negative number if they set “unfair” prices. However, such payoff rules seem to be
outside of the scope of those considered in Kreps and Wilson.

% Schwartz (1988) provides a good description of the mechanics of block trading.

% Burdett and O’Hara (1987) model the process of shopping a block.
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A common institutional practice in such trades is for the client who initiates
the block to commit implicitly not to trade again in the stock until the brokerage
house has traded the acquired position off of its inventory. From conversations
with block positioners it appears that such a commitment might last for one day
after a block which is large relative to normal market volume and for up to two
days after a very large block.?? Failure to keep this commitment, commonly called
“bagging the street”, can lead to a refusal by brokerage houses to act as principal
in future block trades with an offending client. (See Glynn (1983) and Smith
(1985).) Thus, in contrast to the relatively anonymous and “commitment free”
trading through NYSE specialists, the lack of anonymity in block trades allows
investors to make multiperiod commitments which are then monitored and
enforced by brokers.

In this section the simple market in Section I is used to show that with binding
“no bagging” commitments there is always a parameterization M which supports
“large” (i.e., |B| > |e, — e,|) and sometimes informationally motivated block
trades in a “fair price” equilibrium.

Because of the one-shot nature of this model (e.g., the institution only rebal-
ances once), the analysis abstracts from. additional constraints which arise in
models with multiple rounds of block trading where long-term relationships
between brokers and investors are possible.? In addition, rather than explicitly
modeling the cost of being shut out of a multi-round block trade market, it is
simply assumed that brokers have access to a penalty technology through which
prohibitive ex post penalties c(hr) can be imposed if the final trading history hr
reveals that the institution has “bagged” its dealer.**

The first result of this section finds a “separating” equilibrium with arbitrarily
large block trades. If forced to rebalance, the institution trades a block with the
dealer at a competitive price equal to the unconditional expected value u. If
informed, it trades only with the specialist. For an uninformed institution, the
opportunity cost of the “no bagging” commitment is zero. However, for an
informed institution, there is a tradeoff between trading a limited number of
shares as a block at a good price and potentially trading many round lots but at
less favorable prices. If the block, although possibly “large” relative to a single
market order, is not “large enough” relative to the total number of possible
market orders, then block trades are suboptimal for the informed institution.

2 Although comparatively short, one or two days may be the relevant time horizon over which it
is possible to trade on private information obtained in advance of many types of public announce-
ments. Seppi (1988) shows that price changes on block trades executed during the last five-day
trading week before a quarterly earnings announcement are correlated with earnings forecast errors
but that price changes on block trades executed two weeks before the announcement are not correlated.
In addition, anecdotal evidence that occasionally institutions do in fact “bag” their broker suggests
that this constraint, although short, is nontrivial.

% Reputation acquisition is one possible example.

2 A “forcing contract” is possible because aggregate order flow realizations other than e, or e,
unambiguously reveal the presence of an institutional order. In practice, the monitoring of “no
bagging” commitments is more subtle. Smith (1985) describes an informal network of connections
between market makers through which brokers ferret out information about suspicious trading
activity. In addition, periodic public disclosures by institutions with fiduciary responsibilities also
allow (imperfect) ex post monitoring of portfolio holdings.
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PROPOSITION 2: For any block size B there is a market with a separating “fair
price” equilibrium in which only the uninformed institution trades a block B and
makes a binding “no bagging” commitment.

Proof: Suppose B > 0. The proof consists of showing that for some parameter-
ization M there is a FPE in which the institution uses the following pure
strategies: if constrained to rebalance g, = B, it buys a block B (or sells a block
g, if constrained to sell); if uninformed and unconstrained, it does not trade; and,
if informed, it buys round lots every period given good news and sells round lots
given bad news:

Yo(b = B:gy) = Yo(b = g::8:) = Yo(b = 0:6,)
= yYo(b = 0:0,) = ¢Yo(b = 0:6;) = 1, (10a)
Yelxe = 0:8) = Yulxe = 0:85) = Yo, = 0:60) = Yulx, = e, — esb)
=y, =e —epby) =1,t=1,--.,T. (10b)

In particular, the informed institution never trades blocks. Market makers have
consistent beliefs ¥® = y and sequentially rational out-of-equilibrium beliefs as
given in Step 1 of the proof of Proposition 1. The corresponding fair price rules
are

M if b= B org, (10c)

My if >0 and b # B,
q(db) =
Md if b<0andb¢gs,

( 1y if o(x,)>0 orif y, = 2e, — e,
orif y,=e, and B(0.:h,—1) + B(0s:h—1) =1,
w(e,)'w(0.)p. + w(ep)'w(0)
w(e,)'w(0.) + w(ep)'m(6o)

if Yt = (e, - +,e)

p(h) =1 " ifb=g,or Borif b=0 and y, includes 10d)

both an e, and an e, realization,

m(ep)'m(n, = v, — 1) (0a)pa + w(e,)'w(n, = v,)mw(6o)
W(eb)tﬂ'(r_lt =V — lt)ﬂ'(od) + W(es)tﬂ'(’lt = 2t)7|'(00)

if :Xt = (es,' ° ',es)’

Ha if o(x,) <O orif y, = 2e, — ¢,
orif y,=e, and B(0.:h-1) + B(0a:h,) =1,

\

where y, = (y1,- -+ ,¥), v = (v1,- -+, »), and 1, is a t-long series (1, - -, 1).

By construction the price rules are fair given the market makers’ beliefs. The
proof that the trading strategies in (10a) and (10b) are optimal given these price
rules is divided into three steps. First, sufficient conditions are found on M such
that an informed institution does not trade blocks B or g, with binding “no
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bagging” commitments. Because this is immediate for all other block sizes given
the block price rule, forgoing block trades is optimal for an informed institution.
Second, conditions are found such that (10b) is the optimal trading strategy for
an informed institution in the specialist market. Third, it is verified that under
these conditions a block trade is the optimal way to rebalance and that not
trading is optimal for the institution when it is uninformed and is not forced to
rebalance.

STEP 1: For an informed institution, the expected gain from buying a block B and
making a binding “no bagging” commitment is less than the expected gain from
buying through the specialist if the block size B is “small” in that

T [m(es)m(ep)'m(6,)
o —e T 2 T m(00) + n(en)m (o)

(11)

Proof of Step 1: The proof is immediate for an institution with bad news 6,.2°
Consider an institution with good news 6, which deviates from the proposed
strategy. Given the price rule (10c) it could buy a block B at the competitive
price u. However, because the “no bagging” commitment precludes post-block
trading in the specialist market, the informed institution’s total expected profit
under this strategy would be limited to

G(B|6.) = [p. — u]B. (12)

Next, consider the proposed strategy (denoted x;) of buying round lots from
the specialist on dates 1, - - -, T. On each buy e, — ¢, there is a positive (expected)
profit until the first date small investors buy e, causing an order flow y, = 2e, —
e;, thereby unambiguously revealing that the institution is buying. The informed
institution’s total expected profit is

G(x10.) = Tam(e) Tu — p(hep)l(es — e), (13)
where p(h.;) is the price given any trading history consisting of an unbroken
t-long sequence of net buy realizations ye= (e - -, ey). Substituting from (10d)
into (13) and rearranging gives ’

[7(e;)m(ep)]'m(8o)
w(es)'w(8,) + w(ep)'w(6o)

Thus, (11) is sufficient for G(B|68,) < G(xs|6.) and insures that a block trade with
a binding “no bagging” commitment is not optimal for an informed institution
with good news 6,,.

The same logic can be used to show that, if g, is small, then only the rebalancing
institution will sell blocks. This also takes care of the case where B< 0. Q.E.D.

G(x16.) = <Z¢T=1 )(/-"u — u)(ey — e). (14)

% If B > e, — e, then the “no bagging” commitment can be relaxed to prohibit only subsequent
buying (rather than all trading) after a block buy, and an institution with bad news will still not try
to manipulate by buying a block.

% Notice that, given the assumption that the number of small traders N is even, the number of
crosses v, contains no additional information when the order flow y, is positive.
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STEP 2: If the probability of being informed is sufficiently small relative to w(6,) >
0, then the optimal strategy for the informed institution in the specialist market is
(10b).

Proof of Step 2: See Appendix B.

STEP 3: The optimal strategy for an uninformed institution when rebalancing is to
use blocks with binding “no bagging” commitments. When not constrained to
rebalance, it is optimal for the uninformed institution not to trade.?”

Proof of Step 3: Consider the expected profit for an uninformed institution
which deviates from the proposed strategy by trading market orders. Under the
price rule (10d), any buy market order x, > 0 is executed at an expected price
greater than the unconditional expected asset value u regardless of the prior
trading history h,-,. Similarly, any sell order x, < 0 is executed at an expected
price less than u. Thus, the expected gain on any trading strategy involving
market orders is strictly negative for an uninformed institution. Because a gain
of zero can be obtained by trading the necessary shares as a block, the proposed
block trade strategy is the optimal way to rebalance. Similarly, not trading is an
optimal strategy when the uninformed institution is not constrained to
trade. Q.E.D,

Proposition 2 illustrates that simply because a block B is “large” relative to
single market orders does not, in a multiperiod market, mean that it has a
“permanent” price effect. Unlike the Easley and O’Hara (1987) model, blocks are
traded here only for uninformative rebalancing reasons. The next result, however,
shows that, if the amount to be rebalanced g, exceeds the critical level (e, — e,)k,
then a partial-pooling equilibrium is obtained in which information-based blocks
are also traded.

PROPOSITION 3: For any block size B there is a market with a partial-pooling
mixed-strategy “fair price” equilibrium in which the institution still trades blocks
to rebalance but randomizes between market orders and a block B if informed.

Proaf: Again suppose B > 0. Fix a “separating” parameterization from Propo-
sition 2 with B > (e, — e,)k, and then increase the rebalance amount until
8» = B. The resulting market has a partial-pooling FPE in which (10) is modified
by setting ¢(b = 0:6,) = 1 — Y(B:6,) in (10a), replacing =(6,) in (10d) with
m(0.,)[1 — ¢(B:6,)], and setting

(B) = W(Ou)\b(B:ou)llu + 7l’(gb)p,
! (6)W(B:0,) + () '

(10c’)

" This step is harder than it appears. To show that given 6, the institution prefers an expected
profit of zera requires computing prices for each possible deviation involving market orders. If the
informed institution randomizes over multiple market orders in both the (g, 6.) and (g, 6,) states,
it is hard in general to show that there are not profitable strategies for an uninformed institution in
states (go, 6o), (8 60), or (& ). The reason for this difficulty is that the uninformed institution
(unlike the specialist) knows that there is no informed institution trading.
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where the probability of a block B given good news ¥(B:6,) either is the solution
to G(B|6.) = G(xs|0.) (i.e., B and x; are equally profitable given good news) or is
one if G(B|6,) > G(x,|0,) for all Y(B:6,).

In verifying that this is a FPE, there are two differences from the proof of
Proposition 2. First, an informed institution now optimally trades blocks given
good news. This follows from (12) and (14) (which imply that the informed
institution is indifferent between B and x, when B = g, = (e, — e,)k and {/(B:0,)
= 0) and the fact that G(B|f,) is increasing in B and decreasing in ¥(B:6,) and
that G(x,|6.) is increasing in ¢(B:6,).

Second, although a rebalancing institution now pays more than u for a block
B = g, (i.e., blocks are costly), it still does not deviate and “break up” g, into
market orders. For deviating to be optimal, the share-weighted average expected
price paid to buy g, using some strategy x’ must be less than ¢(B) from (10c’).
However, since G(B|6,) = G(x|0.) when B > (e, — e,)k and since the strategy x;
is still optimal whenever the informed institution trades market orders (the proof
of Proposition 2 Step 2 is unchanged), the existence of a strategy x’ with lower
average expected prices contradicts the optimality of block trades for the informed
institution. Q.E.D.

In particular, the critical quantity 2 in Propositions 2 and 3 can be made
arbitrarily larger than one by setting the probability =(e;) close to one (i.e., round
lots can be bought with low probability of certain detection), the probability
(6,) of good news close to zero (i.e., buy orders which do not reveal that the
institution bought trade at prices close to u), and the number of rounds of trade
T to be large. If g, is less than (e, — e,)k, a separating equilibrium results. Only
if more than (e, — e,)k must be bought to rebalance is a partial-pooling equilib-
rium obtained in which blocks are “large enough” to have “permanent” price
effects gq(B) =p; = --- =pr>u.

Three other points can be made. First, the probabilities of uninformed blocks
7(g,) and 7(g,) constrain the (endogenous) probabilities of informed blocks and
hence the total frequency of all blocks. However, the requirement that G(B|4,)
= G(x5/0,) (and the corresponding condition for informed block sells) implies
that a simple disparity in the probabilities of uninformed blocks 7(g, = B) <
7(g; = —B) alone is not sufficient to account for the observation that large block
buys are less frequent than block sells. (See Holthausen, Leftwich, and Mayers
(1987, p. 246).) In particular, the probability of uninformed sell market orders
m(es) cannot be too large relative to w(e;).

Second, the previously cited empirical evidence indicates that the information
effect of block trades is small. This suggests that the empirically relevant part of
the parameter space is likely to be the region close to g, = (e, — e,)k (and the
corresponding region for sells) where informed blocks trade with low probability.

Third, if g, is either less (or not too much larger) than (e, — e,)k, then the
timing of blocks at date 0 is in fact optimal for the rebalancing institution. This
follows because the opportunity cost of the “no bagging” commitment to the
informed institution is increasing in the number of rounds of forgone trade.
Thus, for.example, it is possible that a block which is suboptimal for the informed
institution at date 0 could become optimal if traded at some later date. Since the
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uninformed institution bears the cost of informed block trades, it clearly prefers
to trade such blocks at date 0.2

Other equilibria—We are also interested in the existence of equilibria other
than the separating and partial-pooling varieties considered thus far. If a slightly
stronger constraint is imposed on the uninformed institution requiring its port-
folio rebalancing to be completed by some date T, strictly before date T, then it
is easy to show that no “full” pooling equilibria exist in which the institution
randomizes between block trades and market orders both when informed and
when rebalancing.

PROPOSITION 4: If T, < T, then “full” pooling mixed-strategy equilibria are
impossible.

Proof: Suppose the proposition does not hold; then, for the rebalancing insti-
tution to randomize between buying a block B and following some dynamic
strategy x’, the share-weighted average expected price paid must be the same.
However, since the strategy x’ satisfies the constraint Ty, the dynamic strategy
dominates blocks for the informed institution since with x’ the informed insti-
tution retains the option of trading after date T,. Thus, the informed institution
will not trade blocks, but this is a contradiction. Q.E.D.

The absence of a “full” pooling equilibrium is a very general result in this
model. It holds not only for “round lot” equilibria but also for any alternative
equilibrium in which non-round lot market orders are traded. Because the notion
of a final resolution of uncertainty is simply a modeling fiction, rebalancing must
always be completed before all uncertainty is fully resolved. Thus, T, < T is
arguably the empirically relevant case.

III. Other Empirical Implications

Although our primary focus has been simply to motivate block trading as
equilibrium behavior, the model can also illustrate other testable properties of
block trades. First, however, the model needs to be enriched to allow for multiple
block sizes. This is done by replacing assumption (2) with an assumption that
there are different amounts which an uninformed institution may be constrained
to trade. The same logic as in Section II can then be used to show that a block
trading equilibrium exists for the modified market.?

In any equilibrium in which different size blocks by, - - -, b,, trade, the block

% The issue of optimal timing becomes more complicated as blocks become larger because of a
possible tradeoff between 1) the fact that there are fewer forgone rounds of trade on blocks executed
after ¢t = 0 (which increases the probability of informed block trades and hence worsens the terms of
trade for rebalancing) and 2) the fact that the informed institution may increase the probability that
it trades market orders before trading blocks and decrease the probability that it trades just a block.
Since the pre-block trading history is informative about pre-block institutional trading, this can
improve the ex ante terms of trade for the uninformed institution.

2 For example, any portfolio rebalancing in which fewer than (e, — e,)k shares must be bought will
also be executed by a block trade. States with rebalancing quantities greater than (e, — e,)k can also
be introduced.
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prices q(bi), -+, q(b,) have, as in Easley and O’Hara (1987), the following
intuitive property:

PROPOSITION 5: Block prices q(b) are increasing in block size b for quantities which
are traded with positive probability in equilibrium.

Proof: With a binding “no bagging” commitment, the institution’s expected
trading profit on a block trade b is

_ flpw — q(b)1b given good news 6,,
G(b10) = {[ud —g(B)]b  given bad news 6, (15)

Let b, and b, be two blocks which are traded with positive probability in
equilibrium. Suppose that b; > b, and that q(b,) < q(b.); then from (15) an
institution will never optimally trade b, given good news 6, and will never trade
b, given bad news 6,. This, however, contradicts the assumption that the prices
q(b;) and q(b,) are “fair”. Thus, in equilibrium block prices must be increasing
in block size g(b;) > q(b;). Q.E.D.

It is important to recognize, however, that most presently available transactions
data sets (e.g., ISSM or Fitch) pool trades executed through different market-
making mechanisms. The present model illustrates the important fact that the
price-trade quantity relation can be nonmonotone in pooled data sets of market
orders and block trades. For example, principal-executed “large” block buys of
fewer than (e, — e;)k shares will have no price impact, while individual “small”
market orders can have permanent price effects. Even for blocks larger than
(es — e,)k, it is possible for the total price impact to be less than that of the
average market order. Further, even when the total block price effect exceeds
that of a single market order, this “market impact” cost must be less than on
dynamic alternatives which also meet the typical rebalancing time constraint.
This suggests that, in regressions estimating the per-share price impact of NYSE
trades (e.g., Glosten and Harris (1988)), one might want to use specifications
which allow for a differential “per share” price impact on large and small trades.

Another implication of Proposition 5 is that, even if the strategy probabilities
Y(b:0,) and Y(b:6;) are nonmonotonic in block size, the conditional probability
B(0,:b) is nondecreasing and (8(6,:b) is nonincreasing for traded blocks. Thus, if
a sample of block trade data is generated by multiple repetitions of a market like
the one modeled here, then the frequency of information-based block trades
should be increasing in samples sorted by unsigned trade quantities. Seppi (1988)
uses this idea to develop a stronger test for the presence of information-based
block trades around quarterly earnings announcements.

IV. Summary

This paper provides simple examples of multiperiod markets in which block
trades are not “broken up” into sequences of smaller market orders. Parameter-
izations of the market are found such that 1) a strategic uninformed institution
trades “large” blocks in a separating equilibrium and 2) both strategic informed
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and uninformed institutions trade “large” (sometimes information-based) blocks
in a partial-pooling equilibrium.

These results are of interest for several reasons. First, the partial-pooling
equilibrium provides a theoretical basis for the empirical hypothesis that block
trades reveal private information. Second, they show that from a modeling
perspective it is not necessary to treat uninformed institutions like “noise”
traders. Blocks can be an optimal way for an institution to rebalance its portfolio.
Third, the ability of dealers and institutions to make commitments beyond
simply agreeing on the terms of the trade is shown to allow an institution to
credibly signal (at least imperfectly) that it is uninformed. The particular com-
mitment examined is a “no bagging” commitment restricting subsequent trading
by investors after block trades in which the dealer takes the other side of the
trade. Other implicit commitments accompanying block trades (e.g., reputation
acquisition, warranties) can be viewed as alternative signaling mechanisms.

The model also suggests topics where further work is needed. These include
the following.

Robustness—Given the scarcity of tractable market microstructure models, it
was necessary to work in a very stylized market setting. A natural first step to
enrich the model would be to replace the binomial distribution for small investors’
orders with a multinomial distribution. Because this adds more “noise” in the
specialist market, the relative profitability of block trades by an informed
institution will decrease (i.e., Proposition 2, Step 1 becomes easier to satisfy).
However, multinomial distributions complicate the proof that a strategic unin-
formed institution cannot also do better using market orders (e.g., Proposition 2,
Step 3).

Refinements—It is easy to show that there are multiple equilibria in this
market. What equilibrium refinements lead to block trading? Related issues are:
who benefits from block trading (e.g., how do the small “noise” traders fare with
and without blocks trading)?; and does block trading increase or decrease the
specialist’s spreads for market orders?

Role of extra-market commitments—The “no bagging” commitment, by essen-
tially reducing block trade strategies to single-period strategies, plays a central
role in this analysis. Are such commitment devices necessary for the viability of
“lumpy” block trade strategies in multiperiod markets, or do they simply improve
the terms of trade for uninformed institutions?

Appendix A

PROPOSITION 1: For any market parameterization M there is a “fair price”
equilibrium in which (except possibly at date T) the institution trades only round
lots with the specialist.

Proof: The proof is divided into three steps. First, fair prices are found which
cause the institution to trade only round lots (provided that it is feasible to
rebalance using round lots). Second, it is shown that a FPE exists for the
specialist market if only round lots are traded. Third, the proof is modified to
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allow for non-round lot trades on date T when it is not feasible to rebalance
using only market orders.

STEP 1: If |g/(er — e))| and |g,/(es — e,)| are integers < T (i.e., round lot
rebalancing is feasible), then there are sequentially rational beliefs and fair price
rules which deter non-round lot market orders.

Proof of Step 1: Suppose at each date ¢ market makers 1) impute non-round
lot buys to an informed institution with good news and non-round lot sells to
one with bad news:

B(8.:h) = 1 if o(x,) > 0, (A1)
B(04:hy) = 1 if o(x,) <O,

2) conjecture that at subsequent dates t’ > t the institution will use pure
strategies:

Polay = er — e:.) = YP(xr = e, — efla) = 1, (A2)
and 3) interprets any subsequent histories inconsistent with (A2) using beliefs
(B(6u:he),B(0a:he))

(1,0) if o(xy) >0 orif o(xy) =0andy, € {2e, — e, e},

= {(0,1) if o(xy) <0 orif o(xy) =0 andy, € {2e, — e, ¢}, (A3)
and then resume assuming that (A2) is the institution’s strategy.
Given these beliefs, the price rule
pa— Mu if O(xt) > 07
p(ht) {#d if o(x) <O, (A4)

wy, if o(xy) >0 orif o(x,)=0

and y; € {2¢, — e, e},
ua if o(xy) <0 orif o(xy) =0

and y, € {2e, — e, €.},

p(ht') =

is fair. In addition, given prices (A4), buying e, — e, at each subsequent date ¢’ is
optimal given good news 6, (i.e., no other order makes the institution strictly
better off), and selling e, — e, shares is optimal given bad news 6. Thus, the
beliefs (A2) and (A3) are sequentially rational.

Clearly an unconstrained institution will not submit non-round lot orders so
as to avoid having to trade at prices from (A4). In addition, if (as was assumed)
it is feasible for the constrained institution to rebalance using an integer number
of round lots, it will also choose to do so. Thus, non-round lot orders are
deterred. Q.E.D.

STEP 2: If |g/(es — e,)| and | g,/(es — e,)| are integers = T, then there is a FPE
for the specialist market in which the institution trades only round lots.

Proof of Step 2: Given Step 1, the general market (in which non-round lots are
hypothetically possible) can be treated as a simpler market in which all trades
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are round lots. In this market the specialist’s beliefs about the institution’s
strategy is a vector ¥° consisting of a triplet of probabilities (y2(e, — €,:0,8,h:-1),
Y8 (0:0, g, h.—1), Yo(e, — ev:f,8,h,—1)) for each type of institution (6,g) and for each
possible “round lot” history h,_, at each date t = 1, ---, T. Thus, ¥° lies in a
compact space U formed by the Cartesian product of a finite number of unit
simplexes.

Given any strategy beliefs ¥, prices along histories h; that occur with positive
probability under ¥° can be calculated by using Bayes’ Law to calculate condi-
tional beliefs 8(g,0:h,) and then imposing the “fair price” condition. Prices must
be set using some alternate beliefs for histories that do not occur under y°.

Given prices based on some ¥ ?, truncated versions of programs (7) and (8) can
be solved to obtain the institution’s “best response” correspondence R(y°) (i.e.,
the set of all strategies ¢ which it would be willing to use when trading at prices
based on beliefs y°®). A “fair price” equilibrium in the simplified round-lots-only
market is a fixed point of the best response correspondence y € R(y). However,
in applying the Kakutani Fixed Point Theorem (see Hildenbrand and Kirman
(1976, p. 201)) to show that such a fixed point exists, there is a complication:
although convex-valued, the correspondence R(y¥®) may not be closed on the
subset of U where prices are set for trading histories using the specialists’
alternate beliefs.

Consider, however, a related game in which the institution is exogenously
constrained to use a totally mixed strategy satisfying

min{yi(e, — e:0,8,hi—1), Y2(0:0,8,h.—1), Yo (es — ex0,8,he—1)} = €
Vt,Vh. 1V (g0). (A5)

The specialist’s beliefs ¥° can also be restricted to the closed subspace of U
satisfying an analogous constraint. Because all “round lot” histories are possible
in the ¢ constrained game, no alternate beliefs are needed to set prices. Thus, the
conditions of the fixed point theorem are met and there is a solution .

If constraint (A5) is not binding at the solution, then y ¢ is also a solution to
the unconstrained game. If the constraint is binding, then consider the sequence
of solutions {y‘} to a sequence of constrained games in which ¢ > 0. Since the
unconstrained space U is compact, there is a subsequence {y 9} which converges
to some ¥ *.

Suppose that the limiting vector ¥ * is not an equilibrium in the unconstrained
game. This occurs only if, for some history h,; at some date ¢ for some
institutional state (6,g), an order that is optimal along the subsequence is not
optimal in the limit. However, because prices lie in the (compact) interval [uq,
u.], they also converge to limiting prices. This implies in turn that the sequences
of differences in expected total profits over the remaining rounds of trade given
different orders at date ¢,

Gi(x: = e, — e,]0,8,h,—1) — Gix, = 010,8,h.—1),
Gi(xt =€ep — eslaygyht—l) - G;(xt =es— eblayg’b’t—l)’ (A6)

also converge. Since these differences characterize the set of optimal orders at
date t, this contradicts the hypothesis that the set of optimal orders in the limit
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is smaller than the set of orders to which §* assigns positive probability. Thus,
the orders to which y* assigns positive probability are optimal. Since the
institution is indifferent between probability distributions over optimal orders,
the vector ¥ * is an equilibrium of the unconstrained game. Q.E.D.

STEP 3: A modification of Steps 1 and 2 is described here to handle cases where
round lot rebalancing is not feasible (i.e., |gy/(es — e,)| or |g./(ey — e,)| are either
non-integer or are >T). One solution is to change beliefs and strategies to allow for
a (finite) number of possible non-round lot orders on date'T so that the constrained
institution can make up any shortfall after trading in round lots at all previous
dates. Because the proofs of Steps 1 and 2 depend only on there being a finite
number of possible orders, they are easily adapted to this case. Q.E.D.

Appendix B

STEP 2 OF PROPOSITION 2: If the probability of being informed is sufficiently small
relative to w(6,) > 0, then the optimal strategy for the informed institution in the
specialist market is (10b).

Proof: At the last trading date T, conditional on good news 6, it is always
optimal to buy e, — e, shares. Conditional on bad news 6,, it is always optimal to
sell e, — e, shares. This is because fair prices lie in the interval [ug,u,] regardless
of the prior trading history hr_;.

A backwards induction argument can then be used to show that, if at date
t’ + 1 there exist positive bounds a,+; and aq.+; on the probabilities of being
informed 7(6,) and 7(6,) such that (10b) is the optimal strategy for the informed
institution at dates t’ + 1, - - -, T, then at date ¢’ there exist bounds a,, and a4
such that (10b) is optimal for the informed institution at dates ¢’, ---, T. This
is done by showing that for sufficiently small 7(6,) and = (6,) the expected profit
for an institution with good news 6, under the proposed strategy

G(xt' =€, — eslou’ht'—l) = T(eb)zz;t'[ﬂu - ﬂu](eb - es) (Bl)
+ m(e) Diee{un — Elp(he)lye = e} (e, — e,)

is greater than under any deviation. (The proof for an institution with bad news
04 is identical.)
First, given the proposed price rule (10d), any deviation in which the institution
submits a non-round lot order x. &{e, — e,,0,e;, — e,} is clearly suboptimal.
Second, consider deviations in which the institution does not trade at date ¢’
and then follows the optimal strategy of buying round lots at dates ¢’ + 1, - - -,
T. Given x, = 0, the expected profit for the institution is

G(x, = 0]0,,by—1) = w(ep) E?=t'+1{l~¢u - E[p(ﬁ:ll Yo = ep]}(es — €) (B2)
+ w(es) ZtT=t’+1{l~¢u —E[pth) |y = es]}(eb —e).

As the probability of the institution receiving private information becomes small,
the expected profit under the deviation x, = 0 drops below that of the proposed
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strategy x, = e, — e, because 1) if the limiting values of the proposed price rule
(
wy if o(x) >0 orif y,=2e —e;

orif y,=e, and B(fu:hi1) + B(6a:hes) =1,

. (}ig’l 0 pth) = 4 u if y,includes only e, and e, realizations
7(9d)—0 and the number of crosses v, # N/2, (B3)

Iud if o(x;)) <0 orif y,=2e — e
orif y,=e, and v,=N/2
orif y,=e, and B(0,:h;) + B(0s:hi—1) =1,

\

are substituted into (B1) and (B2), then the difference between expected profits
under the two strategies is strictly positive in the limit
hm G(xt’ =€p — € | 01“ L’ft'—l) - G(xt' =0 | 0u’ ’_lt'—l) (B4)

7 (0u)—0
w(6d)—0

= 7I-(es)T(N’u - “)(eb - es)
=0

and 2) the prices from (10d) and thus the expected profit functions are continuous
in the probabilities =(6,) and 7(6,). Thus, there are positive bounds a,, and a,
such that, if a,, = 7(6,) > 0 and a4y = 7(6;) > 0, then the difference in the
expected gains is still positive.

Third, consider a deviation in which the institution sells e; — e, shares at date
t' and then follows the optimal strategy of buying round lots at dates t’ + 1, -« -,
T, Given x, = e, — e, the expected profit given good news is

Gy = e, —~ep| 0y, hyy) = (B5)

7 (ep)[1 — 7 (n. = (N = 2)/2)] ({pa — E[p(ﬁy) | yer = €5, e <N/2]} (e, — €5)
+ Y = Elp(le) | ye = es, v <N/2]} (er— &)
+[7(es) +w(ep) w(ne = (N —2)/2)] [(w— pa)es— es)

+ (T_ t,)(ﬂ'u_ ,U'u)(eb - es)]'

Comparing (B2) and (B5) and using the fact that by (B3) the future expected
price levels E[ p(h.) |y = es], E[p(h.)|ys = e;], and E[p(h.)|ys = e, vy < N/2] are
equal in the limit, the limiting expected profit under the deviation x, = e, — e,
can be shown to be strictly less than under the deviation x» = 0 and, thus by
(B4), strictly less than under the proposed strategy x, = e, — e, As above,
continuity of the gain functions implies that, for some positive probabilities of
receiving private information, these differences are still negative. Q.E.D.
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