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Abstract

We study the properties of rational expectation equilibria (REE) in dynamic asset pricing models with
heterogeneously informed agents. We show that under mild conditions the state space of such models in
REE can be infinite dimensional. This result indicates that the domain of analytically tractable dynamic
models with asymmetric information is severely restricted. We also demonstrate that even though the se-
rial correlation of returns is predominantly determined by the dynamics of stochastic equity supply, under
certain circumstances asymmetric information can generate positive autocorrelation of returns.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

This paper studies the properties of linear rational expectation equilibria in dynamic asset
pricing models with imperfectly informed agents. Since the 1970’s, the concept of rational ex-
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pectation equilibrium (REE) has become central to both macroeconomics and finance, where
agents’ expectations are of paramount importance. There is extensive evidence that in financial
markets information is distributed unevenly among different agents. As a result, prices reflect ex-
pectations of various market participants and, therefore, are essential sources of information. To
extract useful information from prices, rational agents must disentangle the contribution of fun-
damentals from errors made by other investors. Hence, it is not only the agents’ own expectations
about future payoffs that matter, but also their expectations about other agents’ expectations. In
the terminology of Townsend [45], agents forecast the forecasts of others. Trades of each agent
make the price depend on his own expectations about fundamentals, his own mistakes, and his
perception of other agents’ mistakes. This brings an additional layer of iterated expectations.
Iterating this logic forward, prices must depend on the whole hierarchy of investors’ beliefs.1

Iterated expectations are viewed by many economists as an important feature of financial mar-
kets and as a possible source of business cycle fluctuations. However, while dynamic analysis has
become standard in both macroeconomics and finance, formal analysis of dynamic models with
heterogeneous information has proven to be very difficult. The reason is that in most dynamic
models successive forecasts of the forecasts of others are all different from one another. Hence,
unless a recursive representation for them is available, the dimensionality of the state space of
the model grows with the number of signals that the agents receive. As a result, both analytical
and numerical analysis of the model becomes more complicated as the number of trading periods
increases.

Although several assumptions have been identified in the literature that help preserve tractabil-
ity, all of them are quite restrictive. For example, a direct way to limit the depth of higher order
expectations is to assume that all private information becomes public after several periods (Al-
buquerque and Miao [3]; Brown and Jennings [15]; Grundy and McNichols [23]; Grundy and
Kim [24]; Singleton [44]). As a result, the investors’ learning problem becomes static, severely
weakening the effects of asymmetric information on expectations, prices, and returns. Another
way to make a model tractable is to assume that agents are hierarchically informed, i.e., they
can be ranked by the amount of information they possess (Townsend [45]; Wang [49,50]). The
simplest example is the case with two classes of agents: informed and uninformed. Informed
agents know the forecasting error of the uninformed agents and, therefore, do not need to infer it.
Thus, the series of higher order expectations collapses. Although this information structure sub-
stantially simplifies the solution, it puts severe restrictions on the range of possible dynamics of
agents’ expectations and their impact on stock returns. Finally, the “forecasting the forecasts of
others” problem can be avoided if payoff-relevant fundamentals are constant over time (Amador
and Weill [5]; Back, Cao, and Willard [8]; Foster and Viswanathan [20]; He and Wang [26])
or if the number of signals that agents receive is not less than the number of shocks in the
model.

Although the simplifying assumptions are widely used in the literature, the question as to
what extent these conditions can be relaxed has not been explored. Our paper fills this gap. We
consider a dynamic asset pricing model with an infinite horizon in which 1) each agent lacks
some information available to others, 2) payoff-relevant fundamentals evolve stochastically over
time, and 3) for each agent, the dimensionality of unobservable shocks exceeds the number of the

1 We use the terms “hierarchy of beliefs” and “hierarchy of expectations” interchangeably. They are different from what
is generally referred to in game theory (Biais and Bossaerts [13]; Harsanyi [25]; Mertens and Zamir [36]). In our case,
agents have common knowledge of a common prior but agents’ private information is represented by infinite dimensional
vectors.
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conditioning variables. We show that this small set of conditions can make an infinite hierarchy of
iterated expectations unavoidable and, therefore, an infinite number of state variables is required
to describe the dynamics of the economy. The establishment of this fact is a challenging problem
since even when a model does have a finite-dimensional state space, it is not obvious how to
identify those state variables in which the equilibrium dynamics have a tractable form.

The identified conditions are quite intuitive. The first one guarantees that the information held
by other agents is relevant to each agent’s payoff. As a result, beliefs about other agents’ beliefs
affect each agent’s demand for the risky asset. The second condition forces agents to form new
sets of higher order beliefs every period. Since the fundamentals are persistent and no agent
ever becomes fully informed, all agents need to incorporate the entire history of prices into their
predictions. The third condition makes it impossible for agents to reconstruct unknown shocks
to fundamentals (or their observational equivalents) using observable signals.

We also examine the effects of asymmetric information on asset prices. We compare two
settings with identical fundamentals but different informational structures. In the first setting,
the agents are fully informed, whereas in the second setting the information is heterogeneously
distributed among them. We demonstrate that the equilibrium prices and returns are strongly
affected by the allocation of information. In particular, when there are no superiorly informed
agents, the diffusion of information into prices can be slow. Under certain circumstances, the
resulting underreaction to new information leads to a positive autocorrelation of returns. This
finding shows that momentum can be consistent with the rational expectation framework. In our
model, momentum is an equilibrium outcome of agents’ portfolio decisions. This distinguishes
our explanation of momentum from a number of behavioral theories as well as existing rational
theories, which show how momentum can appear in a partial equilibrium framework.

Our paper is related to the literature that explores the role of higher order expectations in asset
pricing (Allen, Morris, and Shin [4]; Bacchetta and Wincoop [6]; Nimark [38]; Woodford [52]).
In particular, Allen, Morris, and Shin [4] emphasize the failure of the law of iterated expectations
for average expectations. As a consequence, under asymmetric information agents tend to under-
react to private information, biasing the price towards the public signal and producing a drift in
the price process. Their intuition is challenged by Banerjee, Kaniel, and Kremer [9], who argue
that asymmetric information alone cannot generate price drift and suggest “differences in opin-
ions”, i.e., disagreements about higher order beliefs, as a possible source of momentum. In this
paper, we show that the serial correlation of returns is determined by an interplay between two
different effects. On the one hand, slow diffusion of information increases persistence of returns.
On the other hand, the stochastic asset supply contributes to negative return autocorrelation (this
effect is pure in the full information case). Hence, the serial correlation of returns depends on
the relative strength of the two effects. In general, neither a slow diffusion of information nor
a breakdown of the law of iterated expectations is sufficient to generate momentum. Neverthe-
less, we demonstrate that the information dispersion can have a qualitative effect on the serial
correlation of returns if the effect of stochastic supply is sufficiently suppressed.

To analyze the model, we transform it from the time domain to the frequency domain. First
developed by Futia [21], this technique has found many applications (Bernhardt, Seiler, and
Taub [12]; Kasa [33]; Kasa, Walker, and Whiteman [34]; Walker [48]). Similar to our paper,
Bernhardt, Seiler, and Taub [12] consider a dynamic model with stochastic fundamentals and
heterogeneously informed agents. However, their model features a finite number of risk neutral
investors who can individually affect prices and, hence, behave strategically. Thus, their work
focuses on the effects of competition on information revelation, trading strategies, and price
behavior. In contrast, in our model investors are risk averse and behave competitively, as they
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are unable to move the price individually. Their trading behavior is determined not by a strategic
revelation of information, but by risk considerations.

The rest of the paper is organized as follows. Section 2 describes the model. In Section 3,
we prove that a simple version of our model has the “forecasting the forecasts of others” prob-
lem and that its dynamics cannot be described in terms of a finite number of state variables. In
Section 4 we examine the impact of information dispersion on serial correlations of returns and
discuss the dynamics of higher order expectations. In particular, we demonstrate that heteroge-
neous information accompanied by evolving fundamentals can produce momentum. Section 5
concludes. Technical details are presented in Appendices A and B.

2. Setup

This section presents our main setup, which will be used for analysis of the “forecasting the
forecasts” problem and the serial correlation of returns. The setup includes most of the essential
elements common to dynamic asset pricing models with asymmetric information.

The uncertainty in the model is described by a complete probability space (X ,F,μ) equipped
with a filtration Ft . Time is discrete. There are two assets in the model: a riskless asset and a risky
asset (“stock”). The riskless asset is assumed to be in infinitely elastic supply at a constant gross
rate of return R. Each share of the stock pays a dividend Dt at time t ∈ Z. Following Grossman
and Stiglitz [22], we assume that the total amount of risky equity available to rational agents
is Θt and attribute the time variation in Θt to noise trading. This assumption prevents prices
from being fully revealing in an equilibrium, and thus gives a scope for asymmetric informa-
tion. We assume that the processes Dt and Θt are stationary, adapted to the filtration Ft , and
jointly Gaussian. The normality assumption is standard for asset pricing models with asymmet-
ric information. It ensures the linearity of conditional expectations and, therefore, makes models
tractable.

There is a continuum of competitive investors who are assumed to be uniformly distributed
on a unit interval [0,1]. All investors have an exponential utility function with the same constant
risk-aversion parameter α and derive utility from their accumulated wealth in the next period.
The assumption of one-period investment horizon is common in the asset pricing literature with
asymmetric information (e.g., Allen, Morris, and Shin [4], Bacchetta and Wincoop [7], Single-
ton [44], Walker [48]). In this case, investors have no hedging component in their demand for the
risky asset. In our setup, this is especially advantageous since the calculation of the hedging de-
mand in an economy with an infinite number of state variables presents a considerable technical
challenge. Sidestepping this problem allows us to preserve tractability of the model.

Let F i
t ⊆ Ft be an information set of investor i generated by some stationary signals. It is

natural to assume that F i
t always includes the current price of the risky asset Pt and its cur-

rent dividend Dt as well as all their past realizations. In addition, investors may receive some
information about noise trading (past, current, or future) or future dividends, and this informa-
tion may vary across investors. Hence, each investor i at time t solves the following portfolio
problem:

max
xi
t

E
[−e−αWi

t+1
∣∣F i

t

]
(1)

subject to the budget constraint

Wi = xiQt+1 + WiR, (2)
t+1 t t
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where Qt+1 = Pt+1 + Dt+1 − RPt is the stock’s excess return at time t + 1 and Wi
t is accumu-

lated wealth. It is well-known that the solution to this problem is

xi
t = ωiE

[
Qt+1

∣∣F i
t

]
, (3)

where ωi = (α Var[Qt+1 | F i
t ])−1 is a constant due to the normality and stationarity assump-

tions.
The rational expectation equilibrium in the model is characterized by (i) the price process Pt ,

which is assumed to be adapted to the filtration Ft and (ii) the trading strategies xi
t , which solve

the optimization problem in Eq. (1) and in each period t satisfy the market clearing condition

1∫
0

xi
t di = Θt .

The market clearing condition allows us to represent the equilibrium price in terms of ex-
pectations of future fundamentals Dt and Θt . It is convenient to define the weighted average
expectation operator Ēt [·], which summarizes the expectations of individual investors:

Ēt [·] = Ω

1∫
0

ωiE
[· ∣∣F i

t

]
di, Ω =

[ 1∫
0

ωi di

]−1

. (4)

Using this operator, the market clearing condition can be succinctly rewritten as

ΩΘt = Ēt [Qt+1]. (5)

Since the equilibrium price Pt is observed by all investors, combining the definition of excess
returns and Eq. (5) yields an explicit equation for the price process:

Pt = −λΘt + βĒt [Dt+1 + Pt+1], (6)

where we introduce β = R−1 and λ = βΩ for the ease of notation. Iterating Eq. (6) forward and
imposing the standard no-bubble condition limt→∞ βtPt = 0, we obtain another representation
for the equilibrium price:

Pt = −λΘt +
∞∑

s=0

βs+1Ēt . . . Ēt+s(Dt+s+1 − λΘt+s+1). (7)

Eq. (7) represents the price as a sum of iterated average expectations of future realizations of
processes Dt and Θt . In general, the information sets of investors are different, so the law of
iterated expectations for the weighted average expectation operator Ēt [·] does not hold. As a
result, investors must forecast not only future values of Dt and Θt but also expectations of other
agents, and, therefore, non-trivial higher order expectations arise. Eq. (7) reveals the potential
source of the “forecasting the forecasts of others” problem. Indeed, the current price Pt depends
on agents’ future expectations, which, in turn, depend on future prices (recall that Pt+s is in
the information set of all investors and is used for conditioning in Ēt+s[·]). Hence, to find the
equilibrium in the model it is necessary to solve a fixed point problem for the entire sequence of
prices. As we demonstrate below, it is a very complicated problem unless the information sets
F i

t have a very special structure.
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3. Information dispersion and dynamics of prices

In this section, we rigorously prove that the information dispersion can produce the “forecast-
ing the forecasts of others” problem, i.e., that the dynamics of the model cannot be described
in terms of a finite number of state variables. Instead of working with the very general model
described in the previous section, we consider its special version. On the one hand, it allows us
to keep the proof as short as possible. On the other hand, even in its reduced form the model
preserves all elements which are necessary for the existence of the “forecasting the forecasts of
others” problem.

First, we assume that Dt ≡ 0, i.e., the price of the asset is solely determined by the risk pre-
mium required by investors for liquidity provision to noise traders. The main benefit of setting
dividends to zero comes from the reduction in the number of observables available to investors,
and the resulting simplification of investors’ filtering problem. Second, we assume that the pro-
cess Θt consists of a persistent component Vt and a transitory component bεΘ

t :

Θt = Vt + bεΘ
t , (8)

where b is a non-zero constant. In its turn, Vt also contains two components following AR(1)
processes with the same persistence parameter a:

Vt = V 1
t + V 2

t ,

V
j

t+1 = aV
j
t + ε

j

t+1, j = 1,2.

The innovations ε1
t , ε2

t , and εΘ
t are assumed to be jointly independent and normally distributed

with zero mean and unit variance.
There are two types of investors labeled by j = 1,2. Each type populates a subset of a unit

interval with a measure of 1/2. All investors observe the price process Pt . The informational
structure of the model is determined by what investors of each type know about the persistent
components V 1

t and V 2
t .

As a benchmark, we consider a full information case in which the information sets of investors
are

F1
t =F2

t = {
Pτ ,V

1
τ ,V 2

τ : τ � t
}
.

It means that all investors observe both V 1
t and V 2

t , i.e., have all relevant information about future
fundamentals available at time t . Since the information sets of investors are identical, the law
of iterated expectations holds for average expectations: Ēt Ēt+1 . . . Ēt+sVt+s+1 = EtVt+s+1 =
as+1Vt . At the same time, Etε

Θ
t+s = 0 for s > 0. Hence, the infinite sum in Eq. (7) can be com-

puted explicitly and we obtain a simple representation for the equilibrium price:

Pt = −λ

(
bεΘ

t + 1

1 − aβ
Vt

)
. (9)

Note that since all investors observe V 1
t and V 2

t , the shocks εΘ
t can be inferred from the price.

From Eq. (9) it is obvious that in the full information equilibrium the price is determined by the
state variables V 1

t , V 2
t , and εΘ

t and the system {V 1
t , V 2

t , εΘ
t ,Pt } follows a VAR process.

Next, we consider the case in which investors have heterogeneous information about Vt . In
particular, we assume that in addition to the price, type j investors also observe V

j
t , but not the

other component of Vt denoted by V
−j
t . Thus, the information sets of investors are

F1 = {
Pτ ,V

1: τ � t
}
, F2 = {

Pτ ,V
2: τ � t

}

t τ t τ
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and the equilibrium price is determined by the following equation:

Pt = −λ
(
Vt + bεΘ

t

) + βĒt [Pt+1]. (10)

In this setting, each type of investor receives information that the other type also needs but does
not observe: V

−j
t would help type j investors to predict the future asset supply Θt+s , s > 0

and, therefore, the future price. The price is not fully revealing: observing the price and their
own component V

j
t is insufficient for type j investors to infer the other component, V

−j
t . Since

V
−j
t is related to future payoffs, the expectations of V

−j
t formed by type j investors affect their

demand and, subsequently, the price. Therefore, while extracting information from prices, type
−j investors need to infer not only the missing information about V

j
t but also the expectations

of type j investors about V
−j
t . Type j investors face a similar problem, and the infinite regress

starts.
This logic may seem to be quite general, but it does not always produce an infinite num-

ber of distinct higher-order expectations. He and Wang [26] provide an example in which the
higher order expectations can be reduced to first-order expectations even when investors have
heterogeneous information. They consider a conceptually similar setup, but assume that V does
not evolve over time and is revealed to everybody at some future moment T . In their model,
each investor also tries to predict the average of investors’ expectations, V̂ . However, as He and
Wang [26] demonstrate, V̂ can be written as a weighed average of V conditional on public in-
formation (history of prices) and the true value of V . Given this, type j investors’ expectations
of V̂ are a weighed average of their first-order expectations, conditional on past prices and on
their past private signals. Since V is constant, the aggregation of investors’ private signals also
produces V . Therefore, the second (and higher) order expectations of V can also be expressed in
terms of a weighted average of V conditional on past prices and the true value of V .

This logic breaks down when Vt evolves stochastically over time. In this case, investors form
expectations not only about the value of Vt at a particular moment, but also about all previous
realizations of Vt . New information arriving in each period changes the way investors use their
past signals; they need to reestimate the whole path of their expectations. This means that in-
vestors have to track an infinite number of state variables and that the logic described above does
not hold.

It is important to know whether a model has a finite or infinite number of state variables
because the two cases call for different solution techniques. In the former case, the major problem
is to find the appropriate state space variables. In the latter one, the search for a finite set of state
variables that can capture the dynamics is doomed, and finding the solution to such models
presents a greater challenge.

Until now, the “forecasting the forecasts of others” problem was defined relatively loosely. To
lay the groundwork for its rigorous treatment, we introduce the concept of Markovian dynamics.

Definition. Let Xt be a multivariate stationary adapted random process. We say that Xt admits
Markovian dynamics if there exists a collection of n < ∞ adapted random processes Ȳt = {Y i

t },
i = 1, . . . , n, such that the joint process (Xt , Ȳt ) is a Markov process:

Prob(Xt � x, Ȳt � y | Xτ , Ȳτ : τ � t − 1) = Prob(Xt � x, Ȳt � y | Xt−1, Ȳt−1).

While it is obvious that any Markov process admits Markovian dynamics, the opposite is not
true. The following example helps to clarify the difference.
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Let εt , t ∈ Z be i.i.d. standard normal random variables and consider an MA(1) process Xt

such that Xt = εt −θεt−1 where θ is a constant. Xt is not a Markov process, or even an n-Markov
process: Prob(Xt | Xτ : τ � t − 1) �= Prob(Xt | Xt−1, . . . ,Xt−n) for any n. However, Xt can be
easily extended to a Markov process by augmenting it with εt .

Applying the concept of Markovian dynamics to our model with heterogeneous information,
we get the main result of the paper.

Theorem 1. Suppose that type j investors’ information set is given by F j
t = {Pτ ,V

j
τ : τ � t},

j = 1,2. Then, in the linear equilibrium the system {V 1,V 2, εΘ,P } does not admit Markovian
dynamics.

Proof. See Appendix A. �
The main idea of the proof is to use the following result from the theory of stationary Gaussian

processes: if a multivariate process admits Markovian dynamics, then it can be described by a set
of rational functions in the frequency domain. We start the proof assuming that the equilibrium
admits Markovian dynamics, so the price function in the frequency domain is rational. The proof
then consists of showing that if we work only with rational functions, it is impossible to simulta-
neously satisfy the market clearing condition and solve the filtering problem of each agent. This
contradiction proves that the equilibrium does not admit Markovian dynamics.

To the best of our knowledge, we are the first who rigorously demonstrate that the infinite
regress problem does indeed arise naturally in a rational expectation equilibrium of dynamic
models with heterogeneous information. Ironically, Townsend [45] who inspired the study of
the infinite regress problem and coined the term “forecasting the forecasts of others”, actually
developed a model without the infinite regress problem (Kasa [33]; Pearlman and Sargent [39];
Sargent [43]). This illustrates how challenging it could be even to diagnose the presence of the
“forecasting the forecasts of others” problem in a particular setting. Theorem 1 suggests a set of
typical conditions for its existence. If each agent lacks some information available to other agents,
fundamentals evolve stochastically over time, and dimensionality of unknown shocks exceeds
that of conditioning variables then an infinite hierarchy of iterated expectations arises. Almost all
of these conditions are also necessary. For example, as demonstrated by He and Wang [26], if the
fundamentals are constant, then it is possible to avoid the “forecasting the forecasts of others”
problem.

The infinite regress problem can be viewed as a rational justification for technical analysis.
To a statistician who has only public information, the dynamics of prices might appear to be
quite simple. However, for an investor who has additional private information the joint dynamics
of prices and his private signals can become very complicated. We show that even with a very
simple specification of the fundamentals, asymmetric information makes equilibrium dynamics
highly non-trivial. To be as efficient as possible, agents use the entire history of prices in their
predictions. Moreover, as Theorem 1 demonstrates, investors cannot summarize the available
information with a finite number of state variables. In other words, investors’ strategies become
path-dependant, often in a convoluted way. This suggests that in financial markets where the
asymmetry of information is common, the entire history of prices may be very important to
investors and have a profound effect on their actions.

A model with an infinite number of state variables calls for an appropriate solution technique.
In Appendix B we describe one of the ways to solve the model. Since an analytical solution is
not feasible, we construct a numerical approximation to the equilibrium. This approach allows
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us to evaluate the effects of various information distributions on prices and returns and explore
the dynamics of higher order expectations.

4. Higher order expectations and autocorrelations of returns

In this section we explore the link between asymmetric information and autocorrelation of
returns. A non-zero autocorrelation implies the predictability of next period returns by current
returns and the existence of potentially profitable trading opportunities. In the asset pricing lit-
erature, positive serial correlations are often associated with momentum whereas negative serial
correlations imply a reversal in stock returns.2

Consider again the general model presented in Section 2. We first observe that the autocorre-
lation structure of returns in rational expectation equilibria is determined to a large extent by the
assumed process for the stochastic supply of equity Θt . The market clearing condition in Eq. (5)
implies that the unconditional autocovariance of excess returns Qt is solely determined by the
contemporaneous covariance between excess returns and the supply of equity:

Cov(Qt+1,Qt ) = Ω Cov(Qt ,Θt ). (11)

Our derivation of Eq. (11) explicitly assumes that investors are myopic and have no hedging
demand. However, Eq. (11) would also hold in a more general setting. If investors had a CARA
utility function over the long horizon, any hedging demand resulting solely from the asymmetric
information would be a linear function of investors’ forecast errors. Since by definition, the
forecast errors are orthogonal to the public information set including past prices and dividends,
the covariance of the hedging demand with past returns would be zero and Eq. (11) would still
hold. For example, Eq. (11) is valid in the setups of He and Wang [26] and Wang [49].

To get further insights, we have to make some specific assumptions about Θt . The next theo-
rem characterizes the autocorrelation of returns when the stochastic supply of equity follows an
AR(1) process.

Theorem 2. Suppose Θt follows an AR(1) process: Θt = aΘΘt−1 + bεΘ
t . If 0 � aΘ < 1/R and

all current and past dividends as well as all investors’ exogenous signals about dividends are
uncorrelated with Θt , then excess returns are negatively autocorrelated: Cov(Qt+1,Qt ) < 0.
Conversely, if 1/R < aΘ < 1 then Cov(Qt+1,Qt ) > 0.

Proof. First, we demonstrate that if the stated conditions hold, then Cov(Θt ,Pt ) �= 0. Indeed,
suppose the opposite is true, i.e., Cov(Θt ,Pt ) = 0. Since Θt is an AR(1) process,

Cov(Θt ,Ps) = at−s
Θ Cov(Θs,Ps) = 0, s = t, t − 1, . . . . (12)

Hence, Θt is uncorrelated with past prices. Using the representation for the price from Eq. (7)

Pt = −λΘt +
∞∑

s=0

βs+1Ēt . . . Ēt+s(Dt+s+1 − λΘt+s+1)

and computing the covariance of both sides with Θt we get

Cov

(
λΘt ,

∞∑
s=0

βs+1Ēt . . . Ēt+s(Dt+s+1 − λΘt+s+1)

)
> 0. (13)

2 The empirical literature on momentum is very large. See Jegadeesh and Titman [30] for the initial contribution and
Jegadeesh and Titman [31] for a review.
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However, all expectations in Eq. (13) are functions of past prices and agents’ exogenous signals,
which are orthogonal to Θt . Thus,

Cov

(
λΘt ,

∞∑
s=0

βs+1Ēt . . . Ēt+s(Dt+s+1 − λΘt+s+1)

)
= 0. (14)

We arrive at a contradiction implying that Cov(Θt ,Pt ) �= 0. A direct computation shows that in
the case of full information Cov(Θt ,Pt ) < 0. Hence, in any information dispersion setup that can
be continuously transformed into the full information setup by changing precisions of signals,
prices are negatively correlated with Θt . Combining this result and Eq. (12) we get

Cov(Qt+1,Qs) = Ωat−s
Θ (1 − aΘR)Cov(Θt ,Pt ), s = t, t − 1, . . . . (15)

Hence, the autocorrelations of returns are negative when Θt follows an AR(1) process with 0 �
aΘ � 1/R. �

It is interesting to note that Theorem 2 seemingly contradicts the findings of Brown and Jen-
nings [15] who obtain a positive autocorrelation of returns in a rational expectation equilibrium
with persistent noise trading. The two results can be reconciled by realizing that while our model
is stationary and has an infinite horizon, the model of Brown and Jennings (1989) has only
two periods. In their case, several artificial features such as deterministic changes in conditional
variance of returns or the impact of boundary conditions can have substantial effect on autocor-
relations of returns. In a stationary model, we eliminate these obscuring effects and show that
asymmetric information alone cannot generate momentum when the demand from noise traders
follows an AR(1) process.

The impossibility of generating momentum with AR(1) traders emphasizes that slow diffusion
of information or breakdown of the law of iterated expectations are not sufficient conditions for
momentum. In our model, the autocorrelation of returns is determined by the interplay of two
different effects. On the one hand, the downward sloping demand curve of rational investors
together with the mean reverting stochastic supply produce a negative autocorrelation of returns
(this effect is easiest to see in the full information case). On the other hand, since investors
are heterogeneously informed, the diffusion of information into prices may be slow, and this
increases the autocorrelation of returns. Hence, the statistical properties of returns depend on
which effect is stronger. When the demand from noise traders follows an AR(1) process, Eq. (15)
shows that the latter effect is always stronger.

The weakness of the information effect may not be specific to the case with the AR(1) equity
supply. A distinctive property of the AR(1) process is that today’s expectations of future realiza-
tions decline monotonically (in absolute terms) with the horizon. As a result, the supply of equity
and prices tend to revert. Thus, it is reasonable to expect that for all processes with as � as+1,
where as = E(εΘ

t−sΘt ) the effect of heterogeneous information is weaker than the effect of mean
reverting equity supply.

We would like to emphasize that our conclusion crucially depends on the specification of eq-
uity supply as an exogenous process. If instead we assume that it is endogenously determined
(e.g., as a function of past returns), the autocorrelation of returns may become positive. To illus-
trate this point, suppose that the time variation in equity supply is produced by feedback traders
(in the terminology of De Long, Shleifer, Summers, and Waldmann [17]), whose demand for
stocks is proportional to last period returns. Since Eq. (11) still holds, we immediately obtain
that in this case, the first-order autocorrelation of returns is positive.
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Table 1
Statistics of returns Qt and the informational component of the price �t in the
full information and heterogeneous information equilibria.

Full Info Heterogeneous Info

Corr(Qt+1,Qt ) −0.0002 0.0001
Std(�t ) 0 1.6574
Corr(�t ,�t−1) – 0.6217
Corr(Θt ,�t ) – −0.3930
Corr(εD

t ,�t ) – 0.6121

Although the asymmetry of information cannot change the sign of return autocorrelations
when Θt follows an AR(1) process, the situation is different if the exogenous equity supply
follows a more general process. As an example, we consider the case when Θt is an AR(2)

process defined as Θt = (a1Θ + a2Θ)Θt−1 − a1Θa2ΘΘt−2 + bεΘ
t . To demonstrate the effect of

asymmetric information on the dynamics of returns, we choose the parameters a1Θ and a2Θ so
that the serial correlation of returns is negative in the full information case. Specifically, we set
a1Θ = 0.55 and a2Θ = 0.8. The innovations εΘ

t are i.i.d. with the standard normal distribution
and b = 0.2. Also, we assume that the dividend Dt consists of three components: Dt = D1

t +
D2

t + bDεD
t . The first two components follow AR(1) processes:

Di
t = aDi

t−1 + biε
i
t , i = 1,2.

The shocks ε1
t , ε2

t , and εD
t are also i.i.d. with the standard normal distribution. In the numerical

example we set a = 0.8, b1 = b2 = 0.7, and bD = 0.9. For simplicity, the risk-free rate is set
to be zero, so R = 1.3 As in Section 3, we assume that there are two types of investors. Type i

investors perfectly observe Di
t , so F i

t = {Ps,D
i
s}t−∞. This model contains all elements required

for the existence of the “forecasting the forecasts of others” problem and it is very likely that it
does not admit a Markovian dynamics. Hence, the statistical properties of returns can be explored
only numerically. The detailed description of our computations is relegated to Appendix B.

Table 1 reports serial correlations of returns in models with full information and heteroge-
neous information. For the chosen set of parameters, returns are negatively autocorrelated when
investors are fully informed. However, the autocorrelation is positive for the same fundamen-
tals in the heterogeneous information case. It means that if stochastic supply follows an AR(2)
process, momentum can exist in the rational expectation equilibrium. Intuitively, in this case the
negative autocorrelation of returns produced by mean reversion of the equity supply is relatively
weak, and the information dispersion effect is strong enough to change the sign of the autocor-
relation from negative to positive. However, the magnitudes of autocorrelations are rather small,
and our model falls short of explaining momentum quantitatively.

To better understand the impact of asymmetric information on dynamics of returns, it is con-
venient to decompose the price from Eq. (7) into a component that is determined solely by the
fundamentals and a correction term �t produced by heterogenous information. Denoting the

3 Although our results are obtained for this specific combination of parameters, we also examined alternative models
with other parameters and found that our qualitative conclusions are not driven by this particular choice.
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Fig. 1. Impulse response of �t to the shocks εi
t , εD

t , and εΘ
t .

expectation operator with respect to full information at time t as Et , we obtain the following
representation for the price:

Pt = −λΘt +
∞∑

s=0

βs+1Et(Dt+s+1 − λΘt+s+1)︸ ︷︷ ︸
full information component

+�t, (16)

where

�t =
∞∑

s=0

βs+1(Ēt . . . Ēt+s − Et)(Dt+s+1 − λΘt+s+1). (17)

The term �t represents the effect of asymmetric information. If investors are fully in-
formed, the chain of iterated average expectations collapses and the information term disappears:
�t = 0.4 In the heterogeneous information setup, due to the violation of the law of iterated ex-
pectations for average expectations Ēt , all higher order expectations are different. Therefore, �t

is non-trivial and has two effects. First, it produces a gap between the price of the firm and its
fundamental value. Second, it affects the dynamics and statistical properties of prices and returns.

To illustrate the impact of �t , we compute its volatility and autocorrelation as well as its
correlations with Θt and εD

t . The results are presented in Table 1. First, note that in the hetero-
geneous information case the standard deviation of �t is quite high and represents a substantial
part of the price variation. Hence, higher order expectations play an important role in the price
formation. Second, Table 1 shows that �t is highly persistent under heterogeneous information:
its autocorrelation coefficient is 0.62. Intuitively, when investors are heterogeneously informed,
they all make forecasting errors. The errors made by one type of investors depend not only on
fundamentals but also on the errors made by the other type. In the absence of fully informed
arbitrageurs, errors are persistent since it takes several periods for investors to realize that they
made mistakes and to correct them.

This intuition is also illustrated by the impulse response functions of �t presented in Fig. 1.
Indeed, �t has high negative loadings on εi

t and εΘ
t and positive loadings on εD

t . When there
is a shock to one of the persistent components Di

t , the investors who observe Di
t increase their

demand and drive the price upward. Investors who cannot observe Di
t partially attribute the price

increase to a negative shock to the aggregate asset supply Θt and underreact relative to the full

4 In the full information solution, the constant λ is also different.
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information case. Hence, the price is lower and �t is negative. However, observing subsequent
realizations of prices and dividends, uninformed investors infer that is was a shock to Di

t and
also increase their demand, driving the price up towards its full information level. A similar logic
explains negative loadings of �t on εΘ

t .
A positive reaction of �t to εD

t is also quite natural. When εD
t is positive, investors observe

a higher dividend. Unable to disentangle the persistent components D1
t and D2

t from εD
t , they

partially attribute the increase in dividends to positive ε1
t or ε2

t . As a result, investors value the
asset more and drive the price up. As time passes and new realizations of dividends become
available, they learn their mistake and �t decreases.

The described relations between �t and the fundamental shocks also explain the correlations
reported in Table 1. Indeed, �t is negatively correlated with Θt and positively with εD

t . Given
that εD

t are i.i.d., the latter correlation is a direct consequence of the positive impulse response
of �t to εD

t . The former correlation is less straightforward, since Θt is a persistent process.
However, if learning is relatively fast, then the sign of the correlation Corr(Θt ,�t ) is mostly
determined by the correlation between �t and εΘ

t , which is negative.
Overall, when investors are heterogeneously informed, the information may penetrate into

prices quite slowly. As a result, the sign of the serial correlation of returns may change, and
returns can be positively autocorrelated in the equilibrium, an outcome that points towards a ra-
tional explanation for momentum. This mechanism is distinct from behavioral stories, which
attribute momentum to under-reaction or delayed over-reaction caused by cognitive biases
(Barberis, Shleifer, and Vishny [10]; Daniel, Hirshleifer, and Subrahmanyam [16]; Hong and
Stein [27]). It is also quite different from existing rational explanations, which are based on
partial equilibrium models (Berk, Green, and Naik [11]; Johnson [32]; Sagi and Seasholes [42]).

5. Concluding remarks

In this paper, we develop a dynamic asset pricing model with heterogeneous information and
study the structure of its rational expectation equilibrium. The model demonstrates the mechanics
of the “forecasting the forecasts of others” problem and shows that an infinite hierarchy of higher
order expectations naturally arises in such a setting. Moreover, we give a formal proof that under
very mild conditions it is impossible to describe the dynamics of the economy using a finite
number of state variables.

Due to the complexity of the problem, we make several simplifying assumptions. However,
it is reasonable to believe that the intuition behind our conclusions is also valid in more real-
istic models. First, while our model considers only one firm, it would be interesting to analyze
a similar setup with multiple firms. Such an analysis would extend existing static models (Ad-
mati [1]; Easley and O’Hara [19]; Hughes, Liu, and Liu [28]) and grant new insights into the
effect of information distribution on cross-correlations of prices and returns.5 Next, in this paper
we consider myopic investors with no hedging demand. This significantly simplifies the anal-
ysis; otherwise we would have to solve a dynamic program with an infinite dimensional state
space. The impact of hedging could be non-trivial and requires further investigation (Qiu and
Wang [40]).

In our model, agents are exogenously endowed with their information; they can neither buy
new information, nor release their own if they find this exchange profitable. It might be interesting

5 See Biais, Bossaerts, and Spatt [14] and Watanabe [51] for some results in the dynamic setting.
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to relax this assumption and introduce a market for information. Such extensions have been
studied in a static setting by Admati and Pfleiderer [2], Verrecchia [46], and others, but the
dynamic properties of the market for information have not been thoroughly explored6.

Although our analysis pertains mostly to asset pricing, it may provide new insights into var-
ious aspects of the “ forecasting the forecasts of others” problem and iterated expectations in
general. The intuition behind our results is also relevant to other fields. For example, higher
order expectations naturally arise in several different macroeconomic settings (Lorenzoni [35];
Rondina [41]; Woodford [52]), in the analysis of exchange rate dynamics (Bacchetta and Win-
coop [6]), in models of industrial organization where firms have to extract information about
unknown cost structure of their competitors (Vives [47]). Adapting our approach to the analysis
of higher order expectations in these fields may be a fruitful direction for future research.

Appendix A

The main idea of the proof of Theorem 1 is to transform the analysis from the time domain into
the frequency domain. Therefore, before proceeding with the proof, we introduce some notations
and state several relevant results from the theory of stochastic processes.

A.1. Time and frequency domains

Consider an infinite sequence of three-dimensional random vectors εt = (ε1
t , ε

2
t , ε

Θ
t ), t ∈ Z.

The random variables ε1
t , ε2

t , εΘ
t are independent, normal, and have zero mean and unit variance.

We say that the process Xt is a stationary regular Gaussian process adapted to the filtration
generated by εt if it can be written as

Xt =
∞∑

k=0

xkε
′
t−k,

where the three-dimensional constant coefficients xk are square summable:

∞∑
k=0

xkx
′
k < ∞.

The set of such processes is a pre-Hilbert space H with an inner product of vectors

Xt =
∞∑

k=0

xkε
′
t−k and Yt =

∞∑
k=0

ykε
′
t−k

defined as

E[XtYt ] =
∞∑

k=0

xky
′
k.

Thus, two processes are orthogonal if they are uncorrelated. The infinite sequence of coefficients
xk , k = 0,1, . . . can be viewed as a representation of the process in the time domain.

6 See Naik [37] for analysis of a monopolistic information market in a dynamic framework.
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Instead of working with an infinite number of coefficients, it is often convenient to introduce
the frequency domain representation. We will say that a three-dimensional function X(z) is a
z-representation of the process Xt if

X(z) =
∞∑

k=0

xkz
k.

The components of X(z) are well-defined analytical functions in the unit disk D0 = {z: |z| < 1}
in the complex plane C. The corresponding inner product takes the following form:

E[XtYt ] = 1

2πi

∮
X(z)Y

(
z−1)′ dz

z
, (A.1)

where the integral is taken in the complex plane along the contour |z| = 1. Eq. (A.1) creates a
bridge between the correlation structure of random variables and the location of singularities of
their z -representation functions.

Let L be a shift operator defined as Lεt = εt−1. Using its z-representation we can write the
process Xt as

Xt = X(L)ε′
t . (A.2)

From (A.2) it is clear that zX(z) corresponds to the lagged process Xt−1.

A.2. Markovian dynamics in the frequency domain

The concept of Markovian dynamics introduced in Section 3 can be concisely defined in the
frequency domain representation. We rely on the following result from the theory of stationary
Gaussian processes (see Doob [18] for the original results and Ibragimov and Rozanov [29] for
a textbook treatment).

Theorem 3. Let Xt be a regular stationary Gaussian process in discrete time defined on a com-
plete probability space (Ω,F,μ). The process Xt admits Markovian dynamics with a finite
number of Gaussian state variables if and only if its z-representation is a rational function of z.

The following examples serve to illustrate the theorem. They show that several well-known
processes admitting Markovian dynamics indeed have a rational z-representation.

Example 1. Let Xt be i.i.d. over time: Xt = εt . In this case, x0 = 1 and xk = 0, for k = 1,2 . . . .
Thus X(z) ≡ 1.

Example 2. Let Xt be an AR(1) process: Xt = aXt−1 +εt . In this case, xk = ak , for k = 0,1, . . . .
Thus X(z) = (1 − az)−1.

Example 3. Let Xt be an MA(1) process: Xt = εt − θεt−1. In this case, x0 = 1, x1 = −θ , xk = 0,
for k = 2,3, . . . . Thus X(z) = 1 − θz.

A.3. Proof of Theorem 1

As shown in Section 3, the equilibrium price function satisfies the following equation:

Pt = −λ
(
Vt + bεΘ

) + βĒt [Pt+1], (A.3)
t
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where 0 < β < 1. Recall that λ = βΩ , where

Ω−1 = 1

2α

(
1

Var[Qt+1 | F1
t ] + 1

Var[Qt+1 |F2
t ]

)
.

Hence, λ is endogenous, i.e., it is determined in the equilibrium along with the process for Pt .
However, to prove that the equilibrium does not admit Markovian dynamics it is sufficient to
prove that Eq. (A.3) has no solution that admits Markovian dynamics for any arbitrary λ �= 0
treated as an exogenous constant. This is the path we follow below.

Because we focus on a stationary linear equilibrium, we assume that the price Pt is a stationary
regular adapted Gaussian process represented as

Pt =
∞∑

k=0

fkε
1
t−k +

∞∑
k=0

fkε
2
t−k + b

∞∑
k=0

f Θ
k εΘ

t−k, (A.4)

or in the frequency domain:

Pt = f (L)ε1
t + f (L)ε2

t + bf Θ(L)εΘ
t , f (z) =

∞∑
k=0

fkz
k, fΘ(z) =

∞∑
k=0

f Θ
k zk. (A.5)

We prove Theorem 1 in several steps. First, we use the frequency domain representation of the
equilibrium price and reformulate the equilibrium conditions in terms of the functions f (z) and
fΘ(z). Second, we assume that the system of processes {V 1,V 2, εΘ,P } admits Markovian dy-
namics. In this case, according to Theorem 3 f (z) and fΘ(z) must be rational. Finally, we
demonstrate that rational f (z) and fΘ(z) cannot satisfy the equilibrium conditions. This con-
tradiction proves Theorem 1.

Step 1. It is convenient to start with the filtering problem of each agent. Eq. (A.3) implies
that each type i investor must find the best estimate of Pt+1 given his information set F i

t =
{V i

s ,Ps}t−∞. Since some components of Pt are known to investor i, the information set F i
t =

{V i
s ,Ps}t−∞ is identical to F i

t = {V i
s ,Zi

s}t−∞, where

Zi
t = f (L)ε−i

t + bfΘ(L)εΘ
t . (A.6)

The filtering problem is equivalent to finding a projector G such that

E
[
Zi

t+1

∣∣F i
t

] = G(L)Zi
t . (A.7)

By definition, Zi
t+1 − G(L)Zi

t is orthogonal to all Zi
s , s � t :

E
[(

Zi
t+1 − G(L)Zi

t

)
Zi

s

] = 0. (A.8)

Calculating expectations we get

E
[
Zi

t+1Z
i
s

] = 1

2πi

∮ {
1

z2
f (z)

1

zt−s
f

(
z−1) + b2 1

z2
fΘ(z)

1

zt−s
fΘ

(
z−1)}dz,

E
[
G(L)Zi

t Z
i
s

] = 1

2πi

∮ {
1

z
G(z)f (z)

1

zt−s
f

(
z−1) + b2 1

z
G(z)fΘ(z)

1

zt−s
fΘ

(
z−1)}dz.

After collecting all terms, the orthogonality condition (A.8) takes the form

1
∮

1
k
U(z) dz = 0, k = 1,2, . . . , (A.9)
2πi z
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where the function U(z) is

U(z) =
(

1

z
− G(z)

)(
f (z)f

(
z−1) + b2fΘ(z)fΘ

(
z−1)). (A.10)

Using Eq. (A.3), we get a set of equations for f (z) and fΘ(z):

− 2λ

1 − az
− 2f (z) + β

f (z) − f (0)

z
+ βG(z)f (z) = 0, (A.11)(

1 − βG(z)
)
fΘ(z) + λ = 0. (A.12)

For further convenience we introduce the function

g(z) = 1

λ

(
βG(z) − 1

)
. (A.13)

Using this definition, Eqs. (A.11), (A.12), and (A.10) can be rewritten as

f (z) = βf (0) − z(aβf (0) − 2λ)

(1 − az)(β − z + λzg(z))
, (A.14)

fΘ(z) = 1

g(z)
, (A.15)

U(z) = β − z − λzg(z)

βz

(
f (z)f

(
z−1) + b2fΘ(z)fΘ

(
z−1)). (A.16)

Step 2. Assume that the system of processes {V 1,V 2, εΘ,P } admits Markovian dynamics.
Then, the projection of Pt+1 on F i

t also admits Markovian dynamics. By Theorem 3, its z-
representation G(z) must be rational. Hence, from Eqs. (A.13), (A.14), and (A.15), the functions
g(z), f (z), and fΘ(z) should be rational as well. Given the rationality of G(z), f (z), and fΘ(z),
Eq. (A.10) shows that U(z) is a finite linear combination of products of rational functions, so it
is also rational. The rationality of U(z) combined with Eq. (A.9) implies that U(z) is analytic
in C except for a finite number of poles within the unit circle D0 = {z: |z| < 1} and U(∞) = 0.
To prove that our model has non-Markovian dynamics, it is sufficient to show that there exist no
rational functions f (z), fΘ(z), g(z) and U(z) such that 1) f (z), fΘ(z), and g(z) are analytic
inside the unit circle and U(z) is analytic outside the unit circle; 2) U(∞) = 0; 3) Eqs. (A.14),
(A.15), and (A.16) hold.

Step 3. Inspired by the structure of Eqs. (A.14) and (A.16), we introduce the function H(z)

such that

g(z) = (
β − z + λzg(z)

)
H(z)/β. (A.17)

Remarkably, all the equilibrium functions f (z), fΘ(z), g(z), and U(z) can easily be rewritten
in terms of the function H(z) and all analyticity conditions on the equilibrium functions can
be translated into conditions on the function H(z). Thus, the question of the existence of the
equilibrium with Markovian dynamics reduces to the question of the existence of a function
H(z) satisfying a set of conditions.

From Eq. (A.17) the function g(z) is

g(z) = (β − z)H(z)

β − λzH(z)
. (A.18)

Recall that β is the implicit discount factor in Eq. (A.3) satisfying 0 < β < 1. Since fΘ(z) =
1/g(z), we have

fΘ(z) = β − λzH(z)
. (A.19)
(β − z)H(z)
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Substitution of Eq. (A.18) into Eq. (A.14) gives

f (z) = βf (0) − z(aβf (0) − 2λ)

β(1 − az)(β − z)

(
β − λzH(z)

)
. (A.20)

If aβf (0) − 2λ �= 0 we can define z1 as

z1 = βf (0)

aβf (0) − 2λ

and rewrite the function f (z) in the following form:

f (z) = (
aβf (0) − 2λ

) z1 − z

β(1 − az)(β − z)

(
β − λzH(z)

)
. (A.21)

The structure of the function U(z) depends on whether aβf (0)−2λ �= 0 (z1 is finite) or aβf (0)−
2λ = 0 (z1 = ∞). In the first case, using Eqs. (A.15), (A.18), and (A.21) U(z) can be rewritten
as

U(z) =
(

1

zH(z)
− 2λ

β

)

×
[
(aβf (0) − 2λ)2(z − z1)(z

−1 − z1)

β2(1 − az)(1 − az−1)
H(z)H

(
z−1) + b2

]
1

g(z−1)
. (A.22)

Since g(z) does not have poles in D0 (and, consequently, g(z−1) does not have poles in D∞),
the analyticity of U(z) in D∞ implies the analyticity of Ug(z) = U(z)g(z−1) in D∞. Hence,

Ug(z) =
(

1

zH(z)
− 2λ

β

)[
(aβf (0) − 2λ)2(z − z1)(z

−1 − z1)

β2(1 − az)(1 − az−1)
H(z)H

(
z−1) + b2

]
(A.23)

must be analytical in D∞. In a special case aβf (0) − 2λ = 0 (i.e., z1 = ∞), the function Ug(z)

takes a simpler form:

Ug(z) =
(

1

zH(z)
− 2λ

β

)[
4λ2

a2β2(1 − az)(1 − az−1)
H(z)H

(
z−1) + b2

]
. (A.24)

First, consider the general case with aβf (0) − 2λ �= 0 (finite z1). The following lemma de-
scribes the properties of H(z).

Lemma 1. The function H(z) can satisfy the equilibrium conditions only if

1. H(z) is rational;
2. H(β) = 1

λ
;

3. H(z) may have poles only at z1 or z−1
1 , where z1 �= 0, and the order of poles cannot exceed 1;

4. H(z) may have zeros only at a−1 and z1 ∈ D∞, and the order of zeros cannot exceed 1.

Proof. Statement 1 follows from the assumed rationality of fΘ(z) and Eq. (A.19).
Since fΘ(z) must be analytic in D0, the pole z = β in Eq. (A.19) must cancel, and this implies

1 − λH(β) = 0. This is statement 2.
Also, the analyticity of fΘ(z) implies that H(z) �= 0 for z ∈ D0. For the rest of the statements

we need the conditions on functions f (z) and U(z).
By assumption, f (z) is analytic in D0. The pole β in Eq. (A.21) disappears since 1−λH(β) =

0 (statement 2), but H(z) may have first-order poles at z = 0 and z = z1 (if z1 �= 0) or a second-
order pole at z = 0 (if z1 = 0), which potentially may not violate the analyticity of f (z). An
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existence of a pole at z = 0 of any order would mean that the function g(z) has a pole at z = 0
(this follows from Eq. (A.18)) in contradiction to its analyticity in D0. Hence, in D0 the function
H(z) may have only the pole z = z1 �= 0, and the order of this pole cannot exceed 1. In D∞ the
possible poles are determined by the analyticity of U(z). Indeed, a pole in H(z) must be canceled
by a zero in

(z − z1)(z
−1 − z1)

(1 − az)(1 − az−1)
H

(
z−1).

Clearly, it can be 1) either z1 or z−1
1 depending on whether z1 is in D∞ or D0, or 2) a zero

of H(z−1). The second option contradicts H(z) �= 0 for z ∈ D0 and we arrive at statement 3.
Since H(z) �= 0 for z ∈ D0, H(z) may have zeros in D∞ only. However, a zero of H(z) may

produce a pole in U(z) (the term b2/(zH(z)) in Eq. (A.23)) which would contradict its analyt-
icity in D∞. This happens unless the pole is canceled by a pole in another term in Eq. (A.23).
Such a pole can be either a−1 or a pole of H(z−1). Since for z−1 ∈ D0 the function H(z−1) may
have a first-order pole in z1 only, statement 4 follows. �

Lemma 1 implies that if z1 = 0 (i.e., f (0) = 0), then the function H(z) must have a linear
form H(z) = A(z − a−1)k , where A is a non-zero constant and k is either 0 or 1. In the latter
case, Eq. (A.23) and the condition Ug(∞) = 0 yields the following equation for A:

4λ2A2

a2β2
+ b2 = 0. (A.25)

Obviously, it cannot be satisfied. If H(z) is a constant (k = 0) then the condition Ug(∞) = 0
reduces to b2 = 0 which is also violated. Thus, we have showed that if z1 = 0 then the equilibrium
does not admit Markovian dynamics.

Consider now the case of z1 �= 0. According to Lemma 1, if z1 �= 0 the function H(z) must
have the following representation:

H(z) = A(z − z1)
k1(z − a−1)k2

(z − z1)p1(z − z−1
1 )p2

,

where k1, k2, p1, and p2 can be either 0 or 1, k1 �= 1 if p1 = 1, and A is a constant. Let the
number of poles in H(z) be P and the number of zeros be K : K = k1 + k2, P = p1 + p2. The
condition Ug(∞) = 0 imposes some restrictions on K and P , summarized in Lemma 2.

Lemma 2. If z1 �= 0, then either P = K or P = K + 1.

Proof. Since z1 �= 0, we have

(z − z1)(z
−1 − z1)

(1 − az)(1 − az−1)
−→ z1

a
�= 0 as z −→ ∞.

If P < K we have H(z) → ∞ as z → ∞. Because H(0) = const �= 0 (Lemma 1) the function
Ug(z) from Eq. (A.23) is not finite at infinity: Ug(z) → ∞. If P > K + 1 then zH(z) → 0 as
z → ∞ and again Ug(z) → ∞. �

The asymptotic condition Ug(∞) = 0 also imposes restrictions on the constant A. If z1 �= 0
and P = K , then the condition Ug(∞) = 0 implies that

f (0)2 z
k1−p1+p2−1
1 A2 + b2 = 0. (A.26)
ak2+1
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If P = K + 1 the condition Ug(∞) = 0 yields

1

A
− 2λ

β
= 0. (A.27)

Note that the constant A is also fixed by Lemma 1, which states that H(β) = 1/λ. Thus,

A = 1

λ

(β − z1)
p1(β − z−1

1 )p2

(β − z1)k1(β − a−1)k2
. (A.28)

Combining the implications of Lemmas 1 and 2, it is convenient to summarize all possible
cases in one table:

Zeros Poles

∅ z1 z−1
1 z1, z−1

1

∅ (1) (2) (3) X
z1 X X (4) X
a−1 X (5) (6) (7)
z1, a−1 X X X X

Note that according to Lemma 1 in all cases involving z1 we assume that z1 �= 0. In the rest
of the proof, we show that none of the seven cases can realize.

Case 1: k1 = k2 = p1 = p2 = 0, i.e., H(z) = A.
In this case, Eqs. (A.26) and (A.28) reduce to

f (0)2

az1
A2 + b2 = 0, A = 1

λ
. (A.29)

The analyticity of the function Ug(z) in D∞ is achieved only if the pole z = a−1 cancels out.
This can happen for three reasons:

1. z1 = a;
2. z1 = a−1;
3. − λ

β
+ a

2A
= 0.

If z1 = a, Eq. (A.29) reduces to

f (0)2

a2
A2 + b2 = 0,

which obviously does not have solutions. Similarly, if z1 = a−1, Eq. (A.29) yields

f (0)2A2 + b2 = 0,

which also cannot be satisfied. In the third case, the exogenous parameters of the model should
satisfy a very specific condition

aβ = 2, (A.30)

which cannot be fulfilled since 0 < a < 1, 0 < β < 1.

Case 2: k1 = k2 = p2 = 0, p1 = 1, i.e., H(z) = A/(z − z1).
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In this case, Eqs. (A.27) and (A.28) reduce to

A = β

2λ
, A = β − z1

λ
.

Combining these equations we get z1 = β/2. The pole z = a−1 in the function Ug(z) disappears
only if

− λ

β
+ 1 − az1

2A
= 0.

Substituting for A and z1 in this equation yields aβ = 0, which cannot be satisfied.

Case 3: k1 = k2 = p1 = 0, p2 = 1, i.e., H(z) = A/(z − z−1
1 ).

Similar to case 2, Eqs. (A.27) and (A.28) reduce to

A = β

2λ
, A = β − z−1

1

λ
.

Combining these equations we get z−1
1 = β/2. The pole z = a−1 in the function Ug(z) disappears

only if

− λ

β
+ 1 − a

z1

2A
= 0.

After simple algebraic manipulations we again get aβ = 0, which cannot be satisfied.

Case 4: k2 = p1 = 0, k1 = p2 = 1, i.e., H(z) = A(z − z1)/(z − z−1
1 ).

Since H(z) cannot have zeros in D0 (Lemma 1), z1 ∈ D∞. However, in this case a pole
of Ug(z) in D∞ arises, and it can be canceled only if z1 = a−1. Eq. (A.26) reduces to

f (0)2 A2

a2
+ b2 = 0 (A.31)

and cannot be satisfied.

Case 5: k1 = p2 = 0, k2 = p1 = 1, i.e., H(z) = A(z − a−1)/(z − z1), z1 �= a−1.
In this case Eq. (A.26) reduces to

f (0)2

a2z2
1

A2 + b2 = 0

which cannot be satisfied.

Case 6: k1 = p1 = 0, k2 = p2 = 1, i.e., H(z) = A(z − a−1)/(z − z−1
1 ), z1 �= a.

Similar to case 5, Eq. (A.26) reduces to

f (0)2

a2
A2 + b2 = 0 (A.32)

which cannot be satisfied.

Case 7: k1 = 0, k2 = p1 = p2 = 1, i.e., H(z) = A(z − a−1)/((z − z1)(z − z−1
1 )), z1 �= a,

z1 �= a−1.
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Note that in this case the function Ug(z) always has a pole in D∞ (z1 or z−1
1 ), which does not

cancel out. This violates the analyticity of Ug(z) in D∞ and precludes case 7.
Finally, consider a special case in which aβf (0) − 2λ = 0 (it can be understood as z1 = ∞).

Lemma 3 below is an analog of Lemma 1; it describes the conditions on the function H(z).

Lemma 3. The function H(z) can satisfy the equilibrium conditions only if

1. H(z) is rational;
2. H(β) = 1

λ
;

3. H(z) is analytic in the whole complex plane C;
4. H(z) may have a zero at a−1 only, and the order of this zero cannot exceed 1.

Proof. Similar to Lemma 1, statements 1 and 2 follow from the required conditions on fΘ(z)

and g(z). Also, the analyticity of fΘ(z) implies that H(z) �= 0 for z ∈ D0. Next, Eq. (A.20) can
be rewritten as

f (z) = 2λ

aβ(1 − az)(β − z)

(
β − λzH(z)

)
. (A.33)

By assumption, f (z) is analytic in D0. The pole z0 in Eq. (A.33) disappears since
1 − λH(β) = 0 (statement 2), but H(z) may have a first-order pole at z = 0 which potentially
may not violate the analyticity of f (z). However, an existence of a pole at z = 0 of any order
would mean that the function g(z) has a pole at z = 0 (this follows from Eq. (A.18)) in contra-
diction to its analyticity in D0. Hence, the function H(z) is analytic in D0. In D∞ the possible
poles are determined by the analyticity of U(z). Indeed, from Eq. (A.24) a pole in H(z) must be
canceled by a zero in

1

(1 − az)(1 − az−1)
H

(
z−1).

Clearly, it can be only a zero of H(z−1). However, such zeros don’t exist since H(z) �= 0 for
z ∈ D0. Thus, we arrive at statement 3.

Since H(z) �= 0 for z ∈ D0, H(z) may have zeros only in D∞. However, a zero of H(z) may
produce a pole in U(z) (the term b2/(zH(z)) in Eq. (A.24)) which would contradict its analyt-
icity in D∞. This happens unless the pole is canceled by a pole in another term in Eq. (A.24).
Such a pole can be either a−1 or a pole of H(z−1). Since for z−1 ∈ D0 the function H(z−1) is
analytic, statement 4 follows. �

Taken together, the statements of Lemma 3 effectively imply that either H(z) = A or H(z) =
A(1−az), where A is a non-zero constant. However, in the first case Eq. (A.24) yields Ug(∞) =
−2λb2/β . This is a contradiction to the condition Ug(∞) = 0. In the second case, the condition
Ug(∞) = 0 implies

4λ2

a2β2
A2 + b2 = 0,

which also cannot be satisfied. This completes the proof of the theorem.
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Appendix B

In this appendix, we describe the numerical method of computing approximate solutions to
the version of our model presented in Section 4. To construct this approximation, we assume
that all information is revealed to all investors after k periods, so the information set of investor
i is F i

t = {Pτ ,D
i
τ : τ � t; D−i

τ ,Θτ : τ � t − k}. As before, −i denotes an investor type other
than type i. When Θt follows an AR(2) process, it is convenient to characterize the state of the
economy Ψt in terms of the current values of D1

t , D2
t , Θt , Θt−1, and by their k lags:

Ψt = (ψt ,ψt−1, . . . ,ψt−k)
′, where ψτ = (

D1
τ ,D

2
τ ,Θτ ,Θτ−1

)′
.

The demand of type i investors is

Xi
t = ωiE

[
Qt+1

∣∣ F i
t

] = ωi

(
aDi

t − RPt + E
[
aD−i

t + Pt+1
∣∣F i

t

])
.

We look for the equilibrium price process as a linear function of state variables: Pt = PΨt , where
P is a (1 × 4(k + 1)) constant matrix. In the matrix form, the dynamics of ψt are

ψt+1 = aψψt + ε
ψ

t+1,

where

aψ =
⎛
⎜⎝

a 0 0 0
0 a 0 0
0 0 −(a1Θ + a2Θ) a1Θa2Θ

0 0 1 0

⎞
⎟⎠ , ε

ψ
t =

⎛
⎜⎝

ε1
t

ε2
t

εΘ
t

0

⎞
⎟⎠ ,

Var
(
ε
ψ
t

) =

⎛
⎜⎜⎝

b2
V 0 0 0
0 b2

V 0 0
0 0 b2 0
0 0 0 0

⎞
⎟⎟⎠ .

Consequently, the dynamics of Ψt can be described as

Ψt+1 = AΨ Ψt + BΨ ε
ψ

t+1, where AΨ =

⎛
⎜⎜⎜⎜⎝

aψ 0 . . . 0 0
I4 0 . . . 0 0
0 I4 . . . 0 0
...

...
. . .

...
...

0 0 . . . I4 0

⎞
⎟⎟⎟⎟⎠ , BΨ =

⎛
⎜⎜⎜⎜⎝

I4
0
0
...

0

⎞
⎟⎟⎟⎟⎠ .

Here I4 is a four-dimensional unit matrix. In terms of the state variables Ψt the demand can be
rewritten as

Xi
t = ωi

(
aDi

t − RPt + E
[
aD−i

t + PAΨ Ψt

∣∣F i
t

])
.

Introducing (1 × 4(k + 1)) constant matrices D1 = (1,0,0, . . . ,0), D2 = (0,1,0, . . . ,0) and
D = (1,1,0, . . . ,0), we get

Xi
t = −ωiRPt + ωi(aD + PAΨ )E

[
Ψt

∣∣F i
t

]
.

Thus, we have to calculate E[Ψt |F i
t ]. Denoting the observations of agent i at time t as

yi
t = (Pt ,D

i
t )

′, we can gather all his relevant observations into one vector Y i
t = (yi

t , y
i
t−1, . . . ,

yt−k+1,ψt−k). It is also convenient to introduce a set of P̃τ , τ = t − k + 1, . . . , t in order to
separate the informative part of the price:
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P̃t = Pt ,

P̃t−1 = Pt−1 − P kψt−k−1,

. . .

P̃t−k+1 = Pt−k+1 − P 2ψt−k−1 − · · · − P kψt−2k.

Now we can put all observations in a matrix form:

Y i
t = HiΨt , where Hi =

⎛
⎜⎜⎜⎜⎜⎜⎝

hi

hiJ

hiJ 2

...

hiJ k

O3×3k I3

⎞
⎟⎟⎟⎟⎟⎟⎠ , J =

⎛
⎜⎜⎜⎜⎝

0 I4 0 . . . 0
0 0 I4 . . . 0
...

...
...

. . .
...

0 0 0 . . . I4
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠ ,

hi =
(

P

V i

)
.

We use the following well-known fact: if (Ψ,Y ) are jointly normal with zero mean, then

E[Ψ | Y ] = β ′Y, where β = Var(Y )−1E
(
YΨ ′),

Var[Ψ |Y ] = Var(Ψ ) − E
(
YΨ ′)′ Var(Y )−1E

(
YΨ ′).

In our particular case we have:

Var
(
Y i

t

) = Hi Var(Ψt )H
i ′,

E
(
Y iΨ ′) = Hi Var(Ψt ).

From the dynamic equation for Ψt we find that

Var(Ψt ) = AΨ Var(Ψt )A
′
Ψ + BΨ Var

(
ε
ψ
t

)
B ′

Ψ .

Iteration of this equation yields

Var(Ψt ) =
∞∑
l=0

Al
Ψ BΨ Var

(
ε
ψ
t

)
B ′

Ψ Al
Ψ

′
.

Thus, the demand of agent i is

Xi
t = −ωiRPt + ωi(aD + PAΨ )Var(Ψt )H

i ′(Hi Var(Ψt )H
i ′)−1

HiΨt .

Imposing the market clearing condition and taking into account that there is an equal number of
agents of each type we get

−RPt + 1

2
(aD + PAΨ )Var(Ψt )H

1′(
H 1 Var(Ψt )H

1′)−1
H 1Ψt

+ 1

2
(aD + PAΨ )Var(Ψt )H

2′(
H 2Var(Ψt )H

2′)−1
H 2Ψt = ΩΘΨt,

where Θ = (0,0,1,0,0, . . . ,0) and Ω is defined in Section 2. Rearranging the terms we get

Pt = 1

2
β(aD + PAΨ )Var(Ψt )

× [
H 1′(

H 1 Var(Ψt )H
1′)−1

H 1 + H 2′(
H 2 Var(Ψt )H

2′)−1
H 2]Ψt − λΘΨt ,
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where λ = Ω/R. Comparing this equation with the price representation Pt = PΨt , we get a
matrix equation:

P = 1

2
β(aD + PAΨ )Var(Ψt )

× (
H 1′(

H 1 Var(Ψt )H
1′)−1

H 1 + H 2′(
H 2 Var(Ψt )H

2′)−1
H 2) − λΘ. (B.1)

As a result, when all information is revealed after k lags the equilibrium condition transforms
into a system of non-linear equations (B.1) that determines P . A numerical solution to these
equations gives us an approximation to the REE with heterogeneous information.
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