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a b s t r a c t 

We present and test a model to understand the puzzling fact that characteristics-sorted 

stock portfolios tend to earn opposite-signed overnight and intraday expected returns. Het- 

erogeneous arbitrageurs – “fast” arbitrageurs with informational advantages and “slow” ar- 

bitrageurs with low inventory costs – compete to determine the price of liquidity. High in- 

formation asymmetry around market open allows fast arbitrageurs to demand large price 

deviations for absorbing order imbalances, as cream-skimming risk discourages competi- 

tion from slow arbitrageurs. Despite persistent order imbalances, these deviations attenu- 

ate when cream-skimming risk subsides, leading to opposite-signed overnight and intra- 

day returns. Our model identifies novel determinants that empirically explain substantial 

variations in predictable overnight-minus-intraday returns. 

© 2023 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Recent research has documented that characteristics-

sorted stock portfolios earn large, predictable, and oppo-

site signed overnight and intraday returns. For example,

Hendershott et al. (2020) report that if a stock’s market

beta increases by 1, its average overnight returns increase

by 14 basis points (bps) per day while its average intra-

day returns decrease by 15 bps per day. The resulting

beta-sorted portfolio has an average “night-minus-day”

return of 73% per annum. 1 These patterns are particularly
∗ Corresponding author. 

E-mail address: sgm@uga.edu (S. Malliaris) . 
1 The overnight return is measured from the previous close to today’s 

open, the intraday return is measured from today’s open to today’s close, 

and the night-minus-day return is the overnight return minus the intra- 

day return. See Fig. 3 for the predictable night-minus-day return patterns 

in our sample period. 

https://doi.org/10.1016/j.jfineco.2023.03.002 

0304-405X/© 2023 Elsevier B.V. All rights reserved. 
puzzling because expected risk exposures, risk premia, and 

information flows are unlikely to flip signs between night 

and day. 

Existing explanations have conjectured that these pre- 

dictable night-minus-day returns reflect recurring price 

pressures caused by order flow shocks. However, if order 

flows alone are responsible for generating the return pat- 

terns, then alongside the recurring swings in prices, we 

should observe similarly recurring swings in order flows. 

Our first novel finding is that such order flow swings do 

not occur. Order imbalances near the market open are in 

the same direction as the predictable overnight returns, 

consistent with the prevailing explanations. Surprisingly, 

however, these imbalances persist throughout the rest of 

the day and thus are in the opposite direction of the pre- 

dictable intraday return, deepening the night-minus-day 

return puzzle. 

We offer an alternative explanation of night-minus- 

day return predictability. Our explanation emphasizes 

https://doi.org/10.1016/j.jfineco.2023.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2023.03.002&domain=pdf
mailto:sgm@uga.edu
https://doi.org/10.1016/j.jfineco.2023.03.002
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heterogeneity among liquidity providers and decreasing

information asymmetry throughout the trading day. We

build a model featuring key elements from Glosten and

Milgrom (1985) and Grossman and Miller (1988) , sim-

ilar to Hendershott and Menkveld (2014) . Informed or

sentiment-driven investors trade at the best bid or ask

price posted by liquidity providers. The novelty of our

model is that liquidity providers differ in their expertise.

“Fast” arbitrageurs (e.g., designated or de facto market

makers) invest in market making technology, which gives

them an advantage in separating informed order flows

from uninformed ones. “Slow” arbitrageurs (e.g., large

asset managers) invest in risk bearing capacity, which

gives them an advantage in having low inventory costs. 2 

Due to the difficulty of trading on information that

arrives during the thinly traded overnight session, the

amount of unpriced private information tends to be high-

est at market open ( Madhavan et al., 1997; Barclay and

Hendershott, 2003 ). During these times, fast arbitrageurs’

information advantage allows them to “cream-skim” orders

that are less likely to be informed. Their limited risk bear-

ing capacity causes them to set asymmetric bid and ask

quotes to control their inventory risk, causing mid-quote

prices to deviate from fundamental values. Due to cream

skimming risk, slow arbitrageurs cannot undercut fast ar-

bitrageurs despite their greater risk bearing capacity. As

informed investors’ private information is revealed, cream

skimming risk subsides, and slow arbitrageurs are able to

undercut by providing cheaper liquidity, compressing price

deviations later in the day. Thus, even with persistent or-

der flows in the same direction throughout the day, we ob-

serve predictable overnight and intraday returns in oppo-

site directions. 

Our model thus resolves an open question in the liter-

ature: given that trading on night-minus-day return pat-

terns is highly profitable at mid-quote or volume-weighted

average prices, even among large and liquid stocks, why

doesn’t competition from lower-cost liquidity providers

eliminate these patterns? Our model highlights that fast

arbitrageurs’ cream skimming prevents slow arbitrageurs’

entry, and thus night-minus-day returns should arise only

in a subset of assets where fast arbitrageurs can charge a

high price of liquidity due to the cream skimming mech-

anism. Testing our conjectured mechanism is empirically

challenging due to the strategic and proprietary nature of

fast arbitrageurs’ liquidity provision algorithms. Using both

standard and unique data, we design several tests to over-

come these empirical challenges. 

Our first set of tests operates under the premise that

cream skimming risk near the market open allows fast ar-

bitrageurs to determine the price of liquidity for at least

some stocks in the cross section. Thus, on average, the

magnitude of predictable night-minus-day returns should

increase in the amount of predictable, uninformed or-

der flows absorbed by fast arbitrageurs near the mar-
2 In the real world, market makers have expertise in detecting high- 

frequency patterns in order flows and privileged first looks at orders. 

Large asset managers have low inventory costs because their liquidity 

provision occurs during the process of implementing their optimal port- 

folio. See Section 2 for detailed discussions. 
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ket open and in fast arbitrageurs’ required returns. We 

proxy for the former using retail order imbalances filled 

by market makers (hereafter, RM OI) as identified by the 

Boehmer et al. (2021) algorithm, 3 and we proxy for the 

latter using the measure proposed by Nagel (2012) as 

well as other market-level liquidity proxies. Supporting our 

model’s predictions, we find that predictable RM OI near 

the market open (hereafter, Open RM OI) strongly predicts 

stocks’ night-minus-day returns and this predictive rela- 

tionship is increasing in fast arbitrageurs’ required returns 

from liquidity provision. 

Having established the existence of an average predic- 

tive relationship between Open RM OI and night-minus- 

day returns, we proceed to identify the subsets of stocks 

where this predictive relationship should be weaker ac- 

cording to the model because slow arbitrageurs can out- 

compete fast arbitrageurs and determine the price of liq- 

uidity throughout the day. To test this model prediction, 

we examine U.S. stocks that are dual listed in the European 

stock markets. These stocks have active overseas trading 

immediately prior to the U.S. market open, which should 

reduce unpriced private information and thus curtail the 

cream skimming risk for slow arbitrageurs around mar- 

ket open. Consistent with this prediction, we find Euro- 

pean dual-listed stocks have lower bid-ask spreads at the 

U.S. open, and Open RM OI predicts night-minus-day re- 

turns less strongly among these stocks. Further corrobo- 

rating our proposed mechanism, we find no such effects 

among stocks that are dual-listed in the Canadian stock 

markets, which open at the same time as the U.S. stock 

market. Finally, we use a unique dataset from the NAS- 

DAQ exchange on high-frequency trading firms’ (HFT) trad- 

ing to identify stocks where fast arbitrageurs provide less 

liquidity near the market open. Consistent with an inter- 

pretation that fast arbitrageurs have a smaller advantage 

among these stocks, we find that in this subset of stocks, 

Open RM OI predicts subsequent intraday returns less 

negatively. 

To evaluate the economic relevance of our model, we 

use its predicted determinants to explain the night-minus- 

day returns of the characteristics-sorted portfolios stud- 

ied in the literature. Using the 17 anomaly-sorted portfo- 

lios from Lou et al. (2019) (hereafter, LPS portfolios), we 

find that the sign and magnitude of the average portfo- 

lio night-minus-day returns can be explained by the cor- 

responding average Open RM OI to a large extent, with 

a cross-sectional regression R 2 of 71%. Consistent with 

our model prediction, the cross-sectional regression slope 

is more positive when the required returns from liquid- 

ity provision are higher. Further corroborating the re- 

sult, we show that the α’s of the night-minus-day re- 

turns of these portfolios are mostly insignificant after ac- 

counting for the exposure to Nagel’s liquidity provision 

factor. 

In the last part of our analysis, given that anomaly 

portfolios are simultaneously associated with predictable 

night-minus-day returns and close-to-close returns, we ex- 
3 Our inferences are robust to using Lee and Ready (1991) order imbal- 

ances. See Section 3.3 for further discussions. 
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vate information. 

5 Numerous microstructure models imply that information asymme- 

try declines on average over the trading day as private information ac- 
plore whether these two types of return predictabilities

share a common source ( McLean and Pontiff, 2016; Bo-

gousslavsky, 2021 ). We find that the expected Open RM

OI conditioned on the 17 LPS characteristics strongly pre-

dicts night-minus-day returns but does not predict close-

to-close returns. Furthermore, when we zoom into the sur-

prising finding in Hendershott et al. (2020) that the slopes

of the capital asset pricing model (CAPM) switch signs be-

tween night and day, we find that controlling for expected

Open RM OI has little effect on the relation between

CAPM beta and close-to-close returns but substantially

reduces the positive (negative) relation between CAPM

beta and overnight (intraday) returns. Both results sug-

gest that anomaly portfolios generate large and predictable

night-minus-day returns because anomaly characteristics

predict liquidity demand – but such predictable liquid-

ity demand does not appear to be the channel by which

anomaly characteristics influence expected close-to-close

returns. 

1.1. Related literature 

Our paper is motivated by the recent evidence that

stock characteristics-sorted long-short portfolios have siz-

able overnight and intraday returns that are similar in

magnitude but opposite in sign – a puzzling phenomenon

that is unlikely to arise from underlying risk exposures

(e.g., Berkman et al., 2012; Branch and Ma, 2012; Lou et al.,

2019; Hendershott et al., 2020 , and Bogousslavsky, 2021 ). 

Existing explanations share a focus on liquidity de-

mand. Hendershott et al. (2020) attribute the posi-

tive beta-overnight return relationship to a positive

risk-return tradeoff and the negative beta-intraday re-

turn relationship to speculators’ trading at market

open; Berkman et al. (2012) attribute night-minus-

day return predictability to retail trading demand;

Lou et al. (2019) propose a more general explana-

tion emphasizing opposing clientele trading demands

both at the market open and market close; and

Bogousslavsky (2021) argues that an overnight arbitrag-

ing constraint causes arbitrageurs to shed their holdings

right before the market close, resulting in predictable

returns of a mispricing portfolio in the last half-hour

of the trading session. 4 The only existing study that

provides a formal model for explaining night-minus-day

returns is Lou et al. (2019) . In their model, predictable

night-minus-day returns arise due to exogenously spec-

ified opposing demands of investor clienteles at the

open and close, which can be interpreted as predicting

opposite signed order imbalances throughout a trading

day. 

We propose a complementary explanation that empha-

sizes heterogeneity in liquidity provision. As a result, our

model allows for persistent order imbalances throughout

the day, as observed in the data. Furthermore, we demon-
4 Relatedly, Bogousslavsky (2016) argues that the periodicity of half- 

hour intraday stock returns documented by Heston et al. (2010) is due 

to the infrequent rebalancing of liquidity providers, which can also be in- 

terpreted as a liquidity demand story. 
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strate both theoretically and empirically that while the un- 

informed order flows near the market open emphasized 

by the literature are important, their predictive power for 

night-minus-day returns depends on the identity of the 

marginal liquidity provider as well as fast arbitrageurs’ re- 

quired returns. These key determinants identified by our 

model explain substantial variations in the predictable 

night-minus-day returns. Our model also reconciles the 

contrasting assumptions made by Lou et al. (2019) and 

Bogousslavsky (2021) . While both papers appeal to intra- 

day variation in the availability of arbitraging capital, the 

former assumes an arrival of additional arbitraging capi- 

tal at the market close whereas the latter assumes with- 

drawal of arbitraging capital due to an aversion to holding 

overnight positions. Our model suggests that both charac- 

terizations can be true if the former pertains to the behav- 

ior of slow arbitrageurs and the latter pertains to that of 

fast arbitrageurs. 

2. A model of night-minus-day returns 

2.1. Setup 

We present a stylized but tractable model to transpar- 

ently illustrate how the marginal liquidity provider might 

change throughout the trading day. Consider a two-period 

economy, t = 0 , 1 , 2 , with J risky assets, a representative 

sentiment-driven trader, a representative informed trader, 

a competitive group of slow arbitrageurs, and a competi- 

tive group of fast arbitrageurs. We call t = 0 “yesterday’s 

close,” t = 1 “today’s open” or “open,” and t = 2 “today’s 

close” or “close.” We analyze a representative asset j ∈ J, 

with fundamental value ˜ v . 
The common knowledge about ˜ v at t = 0 is normalized 

to zero, i.e., v 0 ≡ E 0 [ ̃ v ] = 0 . At t = 1 , informed traders ob- 

tain private information η about ˜ v , that is, ˜ v = v 0 + η, with 

η ∼ U[ −n, n ] drawn independently for each risky asset. At 

t = 2 , all other market participants observe η. Our results 

do not require private information at close to be exactly 

zero, but they do rely on the assumption that private in- 

formation is higher at open than at close. 5 

For each asset, one trader arrives at t = 1 . She is either 

informed or sentiment-driven. 6 We denote the probability 

that the arriving trader is informed by π , with π ∼ U[0 , 1] 

drawn independently for each risky asset. The trader trades 

at the best available bid or ask price, using a market order. 

If the trader is sentiment driven, the sign of her trade is 

unrelated to the price; she buys with probability λ = 

1 
2 and 

sells otherwise. If the trader is informed, she optimizes by 

trading if and only if it would be profitable given her pri- 
quired overnight is incorporated into prices via trading (e.g., Kyle, 1985; 

Glosten and Milgrom, 1985 , and Easley and O’Hara, 1992 ). Empirically, 

both Madhavan et al. (1997) and Barclay and Hendershott (2003) confirm 

that information asymmetry decays over the trading day. 
6 We use “sentiment-driven trade” as a catch-all term for all non- 

fundamental-based, uninformed trades, which include liquidity-driven de- 

mand. 
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Conditional on trade, we take the expected trade size,

and hence the expected order imbalance, as an exoge-

nously given parameter in the model. 7 Specifically, let q a
( q b ) denote the expected quantity conditional on trade at

the ask (bid), so that q a − q b determines the expected or-

der imbalance conditional on trade in the model. 8 Consis-

tent with Berkman et al. (2012) , night-minus-day returns

in our model will be predictable only if order imbalances

near the market open are predictable. Importantly, as we

will show in this section, these imbalances are a necessary

but not sufficient condition for night-minus-day returns to

arise. 

Our model features two types of liquidity providers

with offsetting advantages. The fast type (i.e., designated or

de facto market makers) has an information advantage in

knowing the realization of π , whereas the slow type (i.e.,

large asset management firms) only knows the distribu-

tion of π but not its realization. However, the slow type

has an advantage of lower inventory cost. Specifically, slow

arbitrageurs are risk neutral and require zero expected

profit to fill a trade, similar to the liquidity providers in

Glosten and Milgrom (1985) . Fast arbitrageurs only fill a

trade if they expect to earn a required return c { a,b } = c ′ ×
q { a,b } , where the constant c ′ is the required return per unit

of inventory risk and q { a,b } is the trade size, similar to the

liquidity providers in Grossman and Miller (1988) . Conse-

quently, fast arbitrageurs set bid and ask quotes asymmet-

rically around the expected fundamental value, resulting in

mid-quotes that are too high (low) when fast arbitrageurs

expect to absorb a positive (negative) liquidity demand,

similar to Hendershott and Menkveld (2014) . 

Our characterization of fast arbitrageurs’ information

advantage is motivated by market makers’ specialization in

detecting high-frequency order flow patterns, including but

not limited to the privileged first-look at retail order flows

through payment for order flow arrangements. 9 Our as-

sumption that slow arbitrageurs have a relatively lower in-

ventory cost reflects the fact that large asset management

firms’ liquidity provision occurs when they use limit or-

ders to achieve their optimal portfolio. 10 In contrast, mar-

ket makers have a much smaller balance sheet, mostly rely
7 The attention hypothesis put forward in Berkman et al. (2012) is one 

explanation of the predictable order imbalances. More broadly, achieving 

a better understanding of the specific underlying determinants of pre- 

dictable demand at market open remains an interesting open question. 
8 We assume sentiment-driven and informed traders place orders of 

the same size such that the order size is not informative about the 

trader’s type, which reflects the fact that informed traders routinely split 

their orders into smaller ones to mimic the size of retail orders. 
9 For example, as of 2021, Citadel Securities executed over 40% of all 

U.S.-listed retail volume. Citadel Securities likely has better knowledge re- 

garding retail order flows than its competitors. See U.S. Congress, “Game 

Stopped? Who Wins and Loses When Short Sellers, Social Media, and Re- 

tail Investors Collide,” hearings before the House Financial Services Com- 

mittee, testimony of Kenneth Griffin, 117th Congress, Feb. 18, 2021. 
10 For example, Eduardo Repetto (Chief Investment Officer at Dimen- 

sional Fund Advisors) states, “We really like to act as a liquidity 

provider...In some sense we have an advantage over a market maker 

since we do not have inventory costs. We want to hold the securi- 

ties that we buy for our portfolios.” See Pichardo, Raquel. September 17, 

2007. “Applied Scientist: Face to Face with DFA’s Eduardo Repetto.” Pen- 

sions & Investments, https://www.pionline.com/article/20070917/PRINT/ 

70914035/applied- scientist- face- to- face- with- dfa- s- eduardo- repetto . 
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on internal capital, and employ costly high-frequency trad- 

ing technology, so their goal is to maximize profit with 

a minimal inventory position rather than earning the risk 

premium on their inventory position. 11 

2.2. Agents’ optimization 

We denote “slow” and “fast” arbitrageurs using the sub- 

scripts s and f , respectively. At each t = 1 , 2 , there is a 

round of trading. Both types of arbitrageurs post limit or- 

ders simultaneously and thus cannot learn from one an- 

other’s quotes. 12 Any market participant may use mar- 

ketable orders to trade with these limit orders. Both types 

of arbitrageurs, as well as informed traders, maximize their 

expected terminal wealth at t = 2 . 

At t = 2 , η is observed by all participants including slow 

arbitrageurs, so fully competitive and risk neutral slow 

arbitrageurs set bid ( b s,t ) and ask ( a s,t ) prices to break 

even in equilibrium at b s, 2 = a s, 2 = ̃

 v = v 0 + η, and slow 

arbitrageurs are the marginal investor at t = 2 . Fast arbi- 

trageurs continue to face inventory costs, so they optimize 

at t = 2 by using market orders to trade with slow arbi- 

trageurs’ limit orders and offload their inventory. 13 

At t = 1 , agents’ optimization problems are more sub- 

tle. Sentiment-driven traders buy with a probability λ = 

1 
2 

and sell otherwise. Informed traders optimize by choos- 

ing whether or not to trade with any extant limit orders 

at t = 1 ; they buy if and only if η > a ∈ { a f, 1 , a s, 1 } , or sell

short if and only if η < b ∈ { b f, 1 , b s, 1 } . Their position’s ex- 

pected value per share, conditional on trading, is 

ψ ( { a, b } ) ≡
{

E(η| η > a ) if long , 
−E(η| η < b) if short. 

(1) 

When there is no ambiguity about the relevant ask and bid 

prices, we will drop the { a, b } and simply refer to the ex- 

pected value conditional on informed trades as ψ . 

Recall that slow arbitrageurs know the distributions of 

π and η, but do not know the realization of either as of 

t = 1 . They can form their expectation of π conditional on 

their posted quotes being best, which we denote ˜ π , with 

subscript a (ask) or b (bid) when needed to avoid ambigu- 

ity. Under this expectation, recalling that v 0 ≡ 0 , they solve 

for bid and ask prices as follows 

(1 − ˜ πa )(λ)(a s, 1 ) + ( ̃  πa )(1 − �η(a s, 1 ))(a s, 1 − ψ(a s, 1 )) = 0 

(2) 
11 “Fast” and “slow” characterize differences in information gathering 

and processing systems rather than trade execution speeds. Both market 

makers and large asset management companies have access to high speed 

trading systems either internally or via intermediaries, but they specialize 

in forming predictive signals over high and low frequencies, respectively. 
12 In practice, it is difficult for slow arbitrageurs to learn π because mar- 

ket makers can often use payment-for-order-flow arrangements to inter- 

nalize orders at prices not immediately observable to slow arbitrageurs, 

and because which limit orders are posted by market makers is also un- 

known to slow arbitrageurs. 
13 Fast arbitrageurs who carry a positive (negative) inventory into t = 2 

will have a reservation selling (or buying) price of ˜ v − c b (or ˜ v + c a ), and 

thus gladly trade with slow arbitrageurs using a market order at ˜ v . In 

the real world, fast arbitrageurs’ overnight inventory costs are higher than 

their intraday inventory costs, so our use of c a and c b is a lower bound on 

fast arbitrageurs’ incentives to offload their inventory to slow arbitrageurs. 

https://www.pionline.com/article/20070917/PRINT/70914035/applied-scientist-face-to-face-with-dfa-s-eduardo-repetto
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(1 − ˜ πb )(λ)(−b s, 1 ) + ( ̃  πb )(�η(b s, 1 ))(ψ(b s, 1 ) − b s, 1 ) = 0 

(3)

where �η(x ) is the cumulative distribution function of η
evaluated at x. In both equations, the first term (which

is positive) represents the expected profits from trading

against a sentiment-driven counterparty. The second term

(which is negative) represents the expected losses from

trading against an informed counterparty. 

Conditional on a conjectured ˜ πa , slow arbitrageurs solve

(2) by setting an ask price which we denote by the func-

tion s ( ̃  πa ) , 
14 

a s, 1 = s ( ̃  πa ) = 

n 

(
1 −

√ 

1 − ˜ π2 
a 

)
˜ πa 

, (4)

The prices that solve Eqs. (2) and (3) are sustained in

equilibrium only if slow arbitrageurs’ expectation ˜ π cor-

rectly reflects meeting an informed counterparty condi-

tional on their quotes and fast arbitrageurs’ quotes. Note

that ˜ π will generally not equal the unconditional expec-

tation E 0 [ π ] , because in some states of the world (specif-

ically, those states with low realizations of π ), fast arbi-

trageurs’ limit orders will undercut slow arbitrageurs’ or-

ders, and hence slow arbitrageurs’ orders will not be hit.

Thus, slow arbitrageurs face an adversely selected subset

of counterparties. In a world without fast arbitrageurs, ˜ π
equals its unconditional expectation, and the analysis re-

duces to Glosten and Milgrom (1985) . 

The fast arbitrageur’s problem is simpler: they observe

π and hence simply post prices a f, 1 , b f, 1 which solve 

(1 − π)(λ)(a f, 1 − c a ) + (π )(1 − �η(a f, 1 )) 
(
a f, 1 − c a − ψ ( a ) 

)
= 0 ,

(5)

(1 − π)(λ)(−b f, 1 − c b ) + (π )(�η(b f, 1 )) 
(
ψ ( b ) − b f, 1 − c b 

)
= 0 

(6)

The solution is denoted by the function f (π ) , where 15 

a f, 1 = f (π ) = 

πc a + n −
√ 

π2 c 2 a + n 

2 (1 − π2 ) 

π
. (7)

Thus, when c is nonzero, fast arbitrageurs post an ask price

higher than (and bid price lower than) the conditional ex-

pected fundamental value. 

Figure 1 visualizes this ask price curve for n = 5 and

c ′ = 1 . In the left panel, we plot the fast arbitrageur’s ask

price as a function of π for q a = 1 . 5 , the bid price b f, 1

for q b = 0 . 5 , and the associated mid-quote m f, 1 = 

a f, 1 + b f, 1 
2 .

With q a > q b , we observe asymmetric ask and bid price

curves, and the midpoint of ask and bid quotes deviates

from the expected fundamental value (i.e., m f, 1 > E 0 ( ̃ v ) =
0 ). In the right panel, we compare the ask price curve

to the expected fundamental value conditional on a trade
14 See Appendix A for brief discussion of this calculation. While we fo- 

cus on ask prices in the main text, note the slow arbitrageur’s expression 

for the bid price is similar: b s, 1 = 

−n 

(
1 −

√ 

1 − ˜ π2 
b 

)
˜ πb 

. 

15 Again, bid prices are similar: b f, 1 = 

−πc b −n + 
√ 

π2 c 2 
b 
+ n 2 (1 −π2 ) 

π . 
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occurring at the ask, E 1 ( ̃ v | trade ) . The difference between 

these two lines captures the post-trade price deviation 

conditional on a trade occurring at the ask price, as op- 

posed to the pre-trade price deviation illustrated in the 

left panel. Both pre-trade and average post-trade price de- 

viations are increasing in fast arbitrageurs’ required re- 

turns from liquidity provision. As we will see below, these 

deviations give rise to night-minus-day returns because 

overnight returns reflect fast arbitrageurs’ required returns 

from providing liquidity, while intraday returns reflect the 

correction of these deviations as slow arbitrageurs replace 

fast arbitrageurs in determining the price of liquidity. 

However, given that fast arbitrageurs’ t = 1 quotes gen- 

erate profits that cover their inventory costs, one may 

wonder why slow arbitrageurs with no capital constraints 

do not undercut fast arbitrageurs by posting a narrower 

bid-ask spread at open. As we demonstrate below, this is 

because the fast arbitrageur’s superior information about 

π exposes the slow arbitrageur to adverse selection risk. 

The analyses of the bid prices are similar, so we focus on 

the ask prices to avoid duplication. 

2.3. Adverse selection 

Slow arbitrageurs face two types of adverse selec- 

tion. First, informed traders have more precise informa- 

tion about the fundamental value. Second, fast arbitrageurs 

have an informational advantage in knowing π , enabling 

them to disproportionately fill the marketable orders from 

sentiment-driven traders. Thus, if a slow arbitrageur places 

limit orders at t = 1 , those orders will be predominantly 

filled when the counterparty is informed, as shown in the 

following Lemma. 

Lemma 1 (Cream skimming risk). Suppose a slow arbi- 

trageur posts an ask price a s, 1 = s ( ̃  π) . The ask price will be 

competitive if and only if 

π ≥ f −1 (s ( ̃  π)) , (8) 

where f −1 (a ) is the inverse of f (π ) as defined in Eq. (7) . 

Proof . See Appendix A . �

Our analysis will focus on this cream skimming adverse 

selection, because this interplay between fast and slow ar- 

bitrageurs determines the identity of the marginal liquidity 

provider, and hence the predictable night-minus-day re- 

turn. Intuitively, suppose a slow arbitrageur posts a limit 

order, expecting that she meets an informed trader with 

probability ˜ π . If fast arbitrageurs observe a true π that is 

sufficiently low compared to ˜ π , they will post a narrower 

spread than slow arbitrageurs and fill these orders. That 

is, fast arbitrageurs will “cream-skim” orders when coun- 

terparties are most likely to be uninformed. Understanding 

this, slow arbitrageurs have to set a wider spread than they 

would have done in the absence of competition from fast 

arbitrageurs, which makes it difficult for them to undercut 

fast arbitrageurs’ quotes despite their advantage in cost of 

capital. 

Our proposed cream skimming mechanism is related 

to Hoffmann (2014) , which explores the effects of fast 

traders’ ability to update stale limit orders to prevent 
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Fig. 1. Fast Arbitrageurs’ Ask (Bid) Price Curve. This figure plots an example of our model’s equilibrium ask price posted by fast arbitrageurs (solid line) 

in the presence of unpriced private information (described by parameters n = 5 , c a = 1 . 5 , c b = 0 . 5 ), along with bid and midquote prices (left panel) and the 

expected fundamental value conditional on a trade occurring at ask prices, E 1 [ ̃ v | trade ] (right panel). The x -axis gives the probability of meeting an informed 

trader, π . The unconditional expected value of the asset is zero, so that the difference between the dotted line and zero in the left panel corresponds to 

the positive deviation of the fast arbitrageur’s midquote from the pre-trade fundamental value. In the right panel, the difference between the solid and 

dashed lines is the predictable price deviation conditional on a market buy, which is equal to fast arbitrageurs’ required return, c a = c ′ × q a . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

them from being picked off by late-arriving (also dubbed

“slow”) traders. Similar to our results, he shows that slow

traders post wider quotes than fast traders. However, his

model focuses on bargaining power among monopolis-

tic, sequentially-arriving, short-lived traders with heteroge-

neous speed, whereas our model features competitive fast

and slow liquidity providers that coexist simultaneously in

the market and endogenously become the marginal liquid-

ity provider under different market conditions. 

2.4. Equilibrium 

Equilibrium in this economy is defined by the arbi-

trageurs’ limit orders a s, 1 and a f, 1 , such that, conditional

on all agents’ choices, both types of arbitrageurs correctly

assess their counterparties’ expected informedness. The

following proposition characterizes slow arbitrageurs’ ask

prices in the presence of fast arbitrageurs. 

Proposition 1 (Endogenous limited participation). For any

˜ π , a slow arbitrageur is willing to price her limit order at

s ( ̃  π) if and only if 

f −1 (s ( ̃  π)) + 1 

2 

≤ ˜ π. (9)

As long as Eq. (9) is satisfied by some ˜ π ∈ [0 , 1] , then the

equilibrium ˜ π will solve 

f (2 ̃  π − 1) = s ( ̃  π) . (10)

For π < π ∗ ≡ f −1 (s ( ̃  π)) , slow arbitrageurs’ quotes are infe-

rior to fast arbitrageurs’ quotes and thus fast arbitrageurs de-

termine the price of liquidity at t = 1 . 

Proof . See Appendix A . �

Limited participation arises because slow arbitrageurs

understand fast arbitrageurs’ information advantage and

hence form their equilibrium assessment of ˜ π such that,

given their ask price s ( ̃  π) , the average likelihood of meet-

ing an informed counterparty is indeed ˜ π . Hence, their ask

prices are above those of fast arbitrageurs in the region of

π < π ∗. In effect, slow arbitrageurs withdraw from setting
180 
the price of liquidity in this region despite their advantage 

of requiring a lower return from liquidity provision. 

Fast arbitrageurs’ information advantage increases in 

the amount of unpriced private information ( n ). We plot 

ask prices for fast and slow arbitrageurs for several values 

of n in Fig. 2 . When the amount of unpriced private infor- 

mation is large (left panel, n = 5 ), fast arbitrageurs deter- 

mine the price of liquidity for almost all assets ( π ∗ ≈ 1 ). 

With a moderate amount of unpriced private information 

(middle panel, n = 3 ), fast (slow) arbitrageurs determine 

the price of liquidity for assets with low (high) realizations 

of π . Lastly, when the amount of unpriced private infor- 

mation is small (right panel, n = 0 . 75 ), slow arbitrageurs 

determine the price of liquidity for all assets (π ∗ = 0) . 

Thus, slow arbitrageurs end up being the marginal liquid- 

ity providers not just for stocks with little informed trading 

(small n ), but also for stocks with lots of informed trading 

(high π ). 

For the assets where fast arbitrageurs determine the 

price of liquidity at the market open, the following Propo- 

sition characterizes the determinants of the price deviation 

and the resulting night-minus-day return. 

Proposition 2 (Determinants of predictable night-minus-day 

returns). For an asset with π < π ∗, the price at market open 

( t = 1 ) is determined by fast arbitrageurs and thus deviates 

from expected fundamental values; the price at market close 

( t = 2 ) is determined by slow arbitrageurs and thus is equal 

to fundamental value. As a result, overnight returns and in- 

traday returns will have opposite signs in expectation, gener- 

ating expected night-minus-day returns that are increasing in 

c ′ and (q a − q b ) . 

Proof . See Appendix A . �

Two types of variation in unpriced information are rele- 

vant. First, cross-sectionally, fast arbitrageurs are less likely 

to be the marginal liquidity provider for assets with less 

unpriced private information around market open (e.g., Eu- 

ropean dual-listed stocks, as we discuss in 4.3.1 ). Second, 

fast arbitrageurs are less likely to be the marginal liquid- 

ity provider at market close when intraday trading has re- 
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Fig. 2. Unpriced Private Information and the Marginal Liquidity Provider. This figure plots an example of our model’s equilibrium ask prices for fast 

and slow arbitrageurs when unpriced private information is large (left panel, n = 5 ), moderate (middle panel, n = 3 ), and small (right panel, n = 0 . 75 ), for 

an asset with expected fundamental value v 0 = 0 . Each panel also plots the expected fundamental value conditional on a trade executed at the best ask 

(dotted line). For all panels, the x -axis gives the probability of meeting an informed trader, π . In the left panel, at market open, for almost all π , the ask 

price of fast arbitrageurs with inventory cost c a = 0 . 5 (solid line) undercuts the slow arbitrageur’s ask price (dashed line). In the middle panel, with lower n , 

slow arbitrageurs’ ask prices allow them to determine the price of liquidity where π is high, while fast arbitrageurs determine the price of liquidity where 

π is low. In the right panel, when unpriced private information is low, both slow and fast arbitrageurs post narrower quotes, but slow arbitrageurs’ ask 

price (dashed line) falls below that of fast arbitrageurs. In all plots, over the regions where fast arbitrageurs determine the price of liquidity, the marginal 

ask prices exceed conditional fundamental values, and over the regions where slow arbitrageurs determine the price of liquidity, the marginal ask prices 

equal conditional fundamental values on average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

duced the unpriced private information. 16 For the subset of

stocks where fast arbitrageurs determine the price of liq-

uidity at market open, both pre-trade midquotes and prices

of executed trades deviate from expected fundamental val-

ues, as illustrated in Fig. 1 , leading to predictable night-

minus-day returns that are increasing in fast arbitrageurs’

inventory cost and in the expected order imbalance ab-

sorbed. For the subset of stocks where slow arbitrageurs

determine the price of liquidity, midquotes and executed

trade prices equal expected fundamental values and there

is no predictable night-minus-day return. 

2.5. Testable implications 

Below we summarize testable predictions from the key

economic forces characterized in the model. 

Prediction 1 . While predictable night-minus-day returns

imply opposite movements in prices at market open and

throughout the rest of the day, the associated order imbal-

ances need not exhibit similar swings. 

Proof . See Appendix A . �

Our model includes two key components: heteroge-

neous liquidity providers and variation in unpriced pri-

vate information throughout the trading day. Both compo-

nents are necessary for night-minus-day returns to occur

in conjunction with persistent imbalances. Without hetero-

geneous liquidity providers, our model reduces to a stan-

dard price pressure story, in which persistent order imbal-

ances cannot give rise to recurring swings in prices. With-

out variation in unpriced private information, the impor-

tance of each type of liquidity provider in setting the price

would not vary throughout the trading day. 

With these two components, order flows need not

change sign throughout the day to generate price reversals.
16 Therefore, our model implications still hold when the assumption that 

private information is fully revealed at t = 2 is relaxed, as long as n at 

t = 2 is sufficiently small. 
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Fast arbitrageurs absorb order imbalances in the morn- 

ing and then pass on the same imbalances to slow ar- 

bitrageurs near the market close. To the extent that fast 

arbitrageurs tend to enter positions passively and exit 

them actively, their exits generate order imbalances later 

in the day which are of the same sign as those at open. 

Unlike the open imbalances, these latter imbalances do 

not generate additional price pressure, because slow ar- 

bitrageurs have large amounts of capital to accommo- 

date accumulated sentiment-driven demand and hold po- 

sitions over longer horizons. As a result, while overnight 

returns are driven by market makers’ inventory costs asso- 

ciated with absorbing order imbalances at open, intraday 

returns are driven by the increasing importance of slow 

arbitrageurs in setting the price of liquidity. Hence, the 

model can accommodate the negative correlation between 

overnight and intraday returns even when accompanied by 

order imbalances that have the same sign at open and at 

close. 

Prediction 2 . Cross-sectional differences in predictable 

night-minus-day stock returns align with cross-sectional 

differences in the predictable liquidity demand absorbed 

by fast arbitrageurs near market open, and the magnitude 

of this cross-sectional relationship increases in fast arbi- 

trageurs’ required returns from liquidity provision. 

Proof . See Appendix A . �

The intuition for Prediction 2 is that, due to cream 

skimming risk, fast arbitrageurs are the marginal liquid- 

ity provider for selected assets around market open. The 

predictable night-minus-day returns are compensation for 

fast arbitrageurs’ liquidity provision, and the magnitude 

increases in fast arbitrageurs’ required returns. However, 

among the subset of assets where fast arbitrageurs do not 

determine the price of liquidity, the above patterns should 

be attenuated, as we discuss in the following prediction. 

Prediction 3 . Among stocks for which n is small and π is 

more positive, slow arbitrageurs are more likely to deter- 

mine the price of liquidity; and thus among these stocks, 
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the relationship between fast arbitrageurs’ liquidity provi-

sion and future returns will be attenuated. 

Proof . See Appendix A . �

There are several illustrative cases to consider. For

stocks with small n , the risk of providing liquidity to an

informed counterparty is low. Crucially, both types of ar-

bitrageurs know this, so slow arbitrageurs will typically be

able to undercut fast arbitrageurs and determine the price

of liquidity, as shown in Fig. 2 above. That is, as unpriced

private information n becomes smaller, the threshold π ∗

(below which fast arbitrageurs undercut slow ones) ap-

proaches zero, so the importance of fast arbitrageurs’ in-

formation advantage – the likelihood of fast arbitrageurs

observing π < π ∗ – shrinks. 

For stocks with large n , if π is low, the risk of pro-

viding liquidity to an informed counterparty is again low.

But only fast arbitrageurs know this, so slow arbitrageurs’

quotes are inferior to fast arbitrageurs’ among these stocks.

As a result, among stocks with large n , slow arbitrageurs’

quotes only bind if π is high (formally, with large n ,

equilibrium π ∗ is more positive, so π > π ∗ only if π is

high). 

Aggregating over these cases, our model predicts that

fast arbitrageurs will tend to be the marginal liquidity

provider when n is large and the realization of π is low,

while slow arbitrageurs will tend to be the marginal liq-

uidity provider when n is small, or when n is large and π
is high. 17 Prediction 3 is testable in two ways. First, the re-

lationship between expected night-minus-day returns and

expected liquidity provision of fast arbitrageurs should at-

tenuate among stocks where n is predictably low at open.

We investigate this aspect of Prediction 3 in Section 4.3.1 .

Second, π is privately observed by fast arbitrageurs, so

by definition it is not predictable. However, we can still

test Prediction 3 conditional on the realized liquidity pro-

vision of fast arbitrageurs. The idea is that fast arbi-

trageurs’ choice to reduce their liquidity provision around

market open is a signal that π > π ∗ (either because of

small n or large π ), which implies they are less likely

to determine the price of liquidity. Therefore, when fast

arbitrageurs provide less liquidity, liquidity demand ab-

sorbed by fast arbitrageurs will predict future returns less

strongly. 

3. Data and measurement 

3.1. Sample construction 

We start by collecting data from the Center for Re-

search in Security Prices (CRSP) database for all U.S. com-

mon stocks listed on the NYSE, AMEX, and NASDAQ stock

exchanges. We then merge the CRSP data with the NYSE

Trade and Quote (TAQ) database using the TAQ-CRSP link

table provided by Wharton Research Data Services (WRDS).
17 In our model, fast arbitrageurs provide liquidity only if they are the 

marginal liquidity provider. In practice, for reasons outside the model 

(e.g., rebate arbitraging), fast arbitrageurs may still provide some liquidity 

even at times when slow arbitrageurs determine the price of liquidity. 
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Our sample begins on January 4, 1993 due to the avail- 

ability of TAQ data. See Section 1 of the Internet Ap- 

pendix for a detailed description of the merge proce- 

dure. We impose the following data filters. First, like 

Hendershott et al. (2020) , we drop stock days with an in- 

traday return of over 10 0 0% or when the open price is 

missing. Second, to mitigate microstructure issues and en- 

sure that our results are not driven by small and illiq- 

uid stocks, we require the following for a stock to be in- 

cluded in the sample at the end of month t: (i) the stock’s 

median daily trading volume in month t is greater than 

1,0 0 0 shares, (ii) the stock has no more than one miss- 

ing open price from CRSP in month t , and (iii) following 

Lou et al. (2019) , stocks need to have a price above $5 and 

a market capitalization above the NYSE bottom quintile at 

the end of month t . The night-minus-day return patterns 

are similar but larger in magnitude among microcap and 

low-priced stocks. 

3.2. Measurement of overnight and intraday returns 

We compute the intraday return ( r D,d ) on day d as, 

r D,d = 

P close 
d 

P open 

d 

− 1 , (11) 

and the overnight return ( r N,d ) from the close of day d − 1 

to the open of day d as, 

r N,d = 

1 + r close-to-close ,d 

1 + r D,d 

− 1 , (12) 

where r close-to-close ,d is the close-to-close return on day d. 

The daily night-minus-day return is then, 

r NMD,d = r N,d − r D,d . (13) 

Following Lou et al. (2019) , our main specification of 

P 
open 

d 
is the volume-weighted average price between 9:30 

am and 10:00 am. We also use the midquotes at 9:45 am 

and 10:00 am as alternative specifications of P 
open 

d 
in ro- 

bustness tests, which are reported in Section 4 of the Inter- 

net Appendix. We compute r close-to-close ,d using the closing 

trade prices from TAQ as P close 
d 

and adjust for stock splits 

and dividends. 18 

3.3. Measurement of liquidity demand absorbed by fast 

arbitrageurs 

Our model predicts that night-minus-day returns 

are driven by fast arbitrageurs’ liquidity provision. 

Our empirical proxies for fast arbitrageurs’ liquid- 

ity provision are the order imbalances computed 

based on the Lee and Ready (1991) algorithm and the 

Boehmer et al. (2021) (hereafter, BJZZ) algorithm. The 

advantage of the Lee-Ready algorithm is that it can classify 

all trades in the TAQ database as either buyer- or seller- 
18 Hendershott et al. (2020) use the open price from CRSP, 

Berkman et al. (2012) use the first midquote after market open, 

and Bogousslavsky (2021) uses the midquote at 9:45 am. The night- 

minus-day return predictability is larger in magnitude when a price 

closer to the market open is used as P open 

d 
(see related discussions in 

Bogousslavsky (2021) ). 
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initiated, so the resulting buy-minus-sell order imbalance

is available starting in 1993. 19 However, in our model

and in practice, fast arbitrageurs can be on the aggres-

sive side of trades and other types of traders (e.g., slow

arbitrageurs) can be on the passive side of trades, so the

Lee-Ready order imbalance is at best a noisy measure of

fast arbitrageurs’ liquidity provision. 20 

BJZZ note that after the implementation of Regulation

National Market System (Regulation NMS) in 2005, trades

at non-midpoints with a subpenny price improvement are

predominantly retail marketable orders filled by whole-

salers and brokers. These orders are recorded in TAQ with

exchange code “D”, and the buy/sell direction of these

trades can be identified by the magnitude of the subpenny

price improvements. While the order imbalances captured

by the BJZZ algorithm are commonly used as a proxy for

retail trading demand, 21 the BJZZ order imbalances also

reflect wholesalers’ incentives to internalize these order

flows ( Barardehi et al., 2021 ). Thus, the BJZZ order im-

balances map nicely onto our theoretical model – these

trades are internalized by market makers likely because

they have a lower probability of being informed. Further-

more, given that the BJZZ order imbalances are known to

be filled by market makers (i.e., the fast arbitrageurs in our

model), they are not contaminated by non market mak-

ers’ liquidity provision. Therefore, we consider the BJZZ or-

der imbalances to be a more accurate proxy for fast arbi-

trageurs’ liquidity provision than the Lee-Ready order im-

balances. The disadvantage of using the BJZZ order imbal-

ance is its shorter sample period: following the convention

in the WRDS data manual, we are only able to compute

it in the post-October 2006 period when subpenny price

improvements become more prevalent. 

In our empirical analysis, we refer to the BJZZ order im-

balances as the retail order imbalance absorbed by mar-

ket makers (hereafter, RM OI), the Lee-Ready order imbal-

ance as the total order imbalance (hereafter, OI), and the

difference between OI and RM OI as Non-RM OI. We use

RM OI as our main proxy for the liquidity provision by

fast arbitrageurs and then use OI as the alternative proxy

when conducting robustness tests over the full sample pe-

riod. We scale order imbalance variables by daily trad-

ing volumes (both in number of shares) at the stock level

and then compute value-weighted order imbalance ratios

at the portfolio level. All our inferences remain qualita-

tively the same when we scale the order imbalances by the
19 We thank Craig Holden and Stacey Jacobsen for making their SAS 

code used in Holden and Jacobsen (2014) available for performing the Lee 

and Ready algorithm. We thank Greg Eaton, Stacey Jacobsen, Zhengzi Li, 

and Vincent Bogousslavsky for helpful discussions of these SAS codes. 
20 Fast arbitrageurs are often on the active side of trades. In our model, 

fast arbitrageurs are on the passive side at t = 1 , but on the active side 

at t = 2 . Empirically, our data on high-frequency trading firms (more de- 

tails in Section 4.3.2 ) show that these de facto market makers are on the 

passive (aggressive) side for 49% (51%) of the dollar trading volume when 

they trade with other types of traders. 
21 While the BJZZ order imbalance is not a perfect measure of retail or- 

der flows (e.g., it does not capture limit retail order flows), it has quickly 

become the standard proxy for retail order flows due to the lack of alter- 

native measures that cover a broad panel of stocks. 
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stock’s total shares outstanding, which we report in Sec- 

tion 2 of our Internet Appendix. 

4. Empirical results 

4.1. Evaluating the existing price pressure hypothesis 

(Prediction 1) 

Existing explanations for night-minus-day return pre- 

dictability focus on the role of order flow shocks. 

Berkman et al. (2012) emphasize price pressures at market 

open, arguing that “attention-based retail trading causes 

prices to temporarily deviate from fundamental values at 

the open of the typical trading day.” Other studies em- 

phasize opposing price pressures that arise both at the 

market open and close, either from different clienteles as 

in Lou et al. (2019) , where “[s]ome investors may prefer 

to trade at or near the morning open while others may 

prefer to trade during the rest of the day up to and in- 

cluding the market close”; or from the same clientele as 

in Hendershott et al. (2020) , where “[a] speculator buys 

higher beta stocks at the open and reverses her position 

approaching the close”. 

If predictable order flow shocks solely determine the 

predictable night-minus-day returns of the characteristic- 

sorted portfolios studied in the literature, then the 

opposite-signed overnight and intraday returns of these 

portfolios should be associated with corresponding 

opposite-signed order flows near the market open and 

over the rest of the trading day. 

We test this benchmark price pressure hypothesis us- 

ing the 17 portfolios studied by Lou et al. (2019) (the “LPS 

portfolios”). These are anomaly-sorted long-short portfo- 

lios that are value-weighted and rebalanced monthly. As 

shown by Panel A of Fig. 3 , these portfolios tend to 

have average r N and r D that are large in magnitude but 

opposite in sign. We summarize the common compo- 

nent of these portfolios’ night-minus-day returns using the 

Bayesian stochastic discount factor (SDF) estimator pro- 

posed by Kozak et al. (2020) . The resulting SDF implied 

night-minus-day mean-variance efficient (hereafter, NMD 

MVE) portfolio is a simple linear combination of the LPS 

portfolios. 22 The weights are constant over time and nor- 

malized by the sum of their absolute values so that the 

NMD MVE portfolio remains a zero-cost one-dollar long- 

short portfolio. For comparison, we also construct the cor- 

responding SDF based on the close-to-close returns of the 

LPS portfolios (RET MVE). Table 1 reports the NMD MVE 

and RET MVE weights, which have opposite signs for 12 

out of the 17 portfolios. We explore this difference more 

in Section 5.2 . 

Panel A of Fig. 3 shows that the NMD MVE portfo- 

lio has average overnight and intraday returns of 13% and 

−15 % per annum, respectively. Panel B of Fig. 3 further 

shows that the average overnight and intraday returns of 

the NMD MVE portfolio have CAPM alphas of 12% and 
22 Kozak et al. (2020) show that their SDF coefficients are proportional 

to the weights of a L 2 -norm constrained MVE portfolio, which works bet- 

ter out of sample than the unconstrained MVE portfolio. Appendix B pro- 

vides a detailed description of the NMD MVE portfolio construction. 
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Fig. 3. Predictable Overnight and Intraday Returns. This figure plots the 

average overnight ( r N ) and intraday ( r D ) returns (Panel A) and CAPM al- 

phas (Panel B) of the 17 high-minus-low Lou, Polk, and Skouras (2019, 

LPS) portfolios and the night-minus-day mean variance efficient (NMD 

MVE) portfolio in annualized percentage points. The portfolio returns are 

measured between February 1, 1995 and December 31, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Mean-Variance Efficient Portfolio Weights. This table compares 

the night-minus-day mean-variance efficient (NMD MVE) and close- 

to-close mean-variance efficient (RET MVE) portfolios in terms of 

their mean-variance efficient loadings. We report the loadings in 

percentage points for each of the 17 high-minus-low Lou, Polk, and 

Skouras (2019, LPS) portfolios. The sample period is between Febru- 

ary 1, 1995 and December 31, 2020. 

Signal NMD MVE Weights (%) RET MVE Weights (%) 

r D −10.49 −6.51 

r N 14.96 −4.39 

r ewma 
D 

−4.60 1.28 

r ewma 
N 

15.58 −4.24 

BETA 3.02 −1.81 

IVOL 6.46 −8.90 

BM 7.21 −1.71 

ISSUE −3.00 −12.33 

ACCRUALS 0.90 −6.20 

INV 3.05 −10.52 

ROE −2.43 5.14 

ME 9.68 −6.61 

SUE 2.15 9.37 

MOM 3.19 8.00 

STR −2.58 5.81 

TURNOVER 6.56 6.02 

INDMOM 4.14 −1.16 
−15% , respectively. 23 Hence, adjusting for market exposure

accounts for only 1% per annum out of the 28% per annum

predictable night-minus-day return. While we already ex-

clude microcap stocks, we further demonstrate the robust-

ness of this pattern by reporting the corresponding return

patterns among S&P 500 stocks in Section 4 of our Internet

Appendix. We find that the predictable night-minus-day

returns remain economically large in the S&P 500 sample,

with the NMD MVE portfolio earning overnight and intra-

day CAPM alphas of 11% and −13% , respectively. 

To contrast the expected night-minus-day return pat-

tern with the expected order imbalance pattern, we plot

the average cumulative return of the NMD MVE portfolio
23 We compute the CAPM alphas of these portfolios by regressing their 

r N and r D on the overnight and intraday returns of the market port- 

folio, respectively, to allow for different overnight and intraday mar- 

ket betas as well as the different overnight and intraday market ex- 

cess returns ( Cooper et al., 2008; Bondarenko and Muravyev, 2022 , and 

Boyarchenko et al., 2022 ). 
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over 30-minute intervals beginning at the previous day’s 

market close and continuing until the current day’s close 

in Fig. 4 . We then plot the hypothetical order imbalances 

under the benchmark price pressure hypothesis in Panel A 

of Fig. 4 , which depicts hypothetical order imbalances that 

follow the observed returns by being positive around the 

market open and negative over the rest of the day. Panel 

B presents the true average order imbalance of the NMD 

MVE portfolio in the data. We find that the true average 

OI is not only positive near the market open, but also re- 

mains positive throughout the rest of the day. That is, the 

order imbalance pattern does not mirror the price pattern. 

We conduct formal tests of these order imbalance pat- 

terns in Table 2 . Panel A tests the significance of the time- 

series mean of the order imbalance associated with the 

NMD MVE portfolio. If the stock characteristics used to 

form the portfolio do not predict order imbalances, then 

the mean order imbalance should be zero. Instead, we find 

that the average OI of the NMD MVE portfolio is posi- 

tive and statistically significant at the 1% level for each 

of 13 half-hour trading intervals. In the subsequent rows, 

we separately examine RM OI and Non-RM OI in the post- 

October 2006 sample when such data are available. During 

this period, the average OI remains positive and statisti- 

cally significant for all 13 half-hour trading intervals, albeit 

with smaller magnitudes across the board. The average RM 

OI and Non-RM OI are also all positive and statistically sig- 

nificant across the 13 half-hour trading intervals, with RM 

OI accounting for about one-fourth to one-third of the total 

order imbalance. 

Panel B tests the significance of the autocorrelation be- 

tween the order imbalances associated with the NMD MVE 

portfolio in the first half-hour interval (i.e., the market 

open) and those in each of the 12 remaining half-hour in- 

tervals. Specifically, we estimate a time-series predictive 

regression using daily data and conduct inference using 

Newey and West (1987) standard errors with 21 lags. Con- 
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Table 2 

The Predictable Order Imbalances of the NMD MVE Portfolio. This table presents the predictable order imbalance pattern of the night-minus-day mean-variance efficient (NMD MVE) portfolio across 30-minute 

trading intervals. Each column presents the ending point of a 30-minute trading interval during market trading hours, with the first (last) column ending at 10:00 AM (4:00 PM). Panel A reports the time series 

average of the order imbalances (in basis points per the daily trading volume in shares) and Panel B reports the autocorrelation coefficient between order imbalances in the first interval and those in each of the 

12 remaining intervals. OI is order imbalances identified by the Lee and Ready (1991) algorithm, RM OI is the retail order imbalance absorbed by market makers identified by the Boehmer et al. (2021) algorithm, 

and Non-RM OI is the difference between the two. Order imbalances for the NMD MVE portfolio are computed by multiplying the value-weighted order imbalances for each of the 17 LPS long/short portfolios 

by their corresponding NMD MVE portfolio weight, and then summing the products. We report t-statistics in parentheses, computed based on Newey and West (1987) standard errors with 21 lags. In the first 

row for the full sample, OI is measured between February 1, 1995 and December 31, 2020. In the subsequent rows, OI, RM OI, and Non-RM OI are measured between October 1, 2006 and December 31, 2020. 

Panel A - Average Predictable Order Imbalances 

10:00 AM 10:30 AM 11:00 AM 11:30 AM 12:00 AM 12:30 AM 1:00 PM 1:30 PM 2:00 PM 2:30 PM 3:00 PM 3:30 PM 4:00 PM 

OI (Full Sample) 11.92 8.97 8.08 7.34 6.79 5.93 5.45 4.48 4.65 5.30 6.53 5.30 5.07 

(13.45) (12.45) (12.43) (12.91) (13.29) (12.44) (11.72) (10.11) (11.23) (11.33) (10.93) (9.76) (5.70) 

OI 4.88 3.68 3.24 3.07 2.81 2.85 2.22 2.52 2.30 2.34 2.73 2.73 2.11 

(8.78) (10.96) (10.83) (11.09) (11.08) (12.93) (10.25) (12.31) (11.18) (10.85) (11.24) (9.84) (4.44) 

RM OI 1.88 1.23 1.07 0.96 0.86 0.83 0.77 0.73 0.71 0.79 0.77 0.79 0.45 

(19.80) (18.31) (19.00) (17.72) (18.44) (16.81) (18.11) (18.26) (15.22) (17.69) (17.57) (16.18) (6.88) 

Non-RM OI 3.00 2.45 2.17 2.11 1.95 2.02 1.45 1.79 1.59 1.55 1.94 1.94 1.66 

(5.66) (7.43) (7.52) (7.90) (8.00) (9.72) (6.92) (8.94) (7.81) (7.51) (8.26) (7.17) (3.53) 

Panel B - Autocorrelation Coefficients 

Predictive Coef 10:00 AM 10:30 AM 11:00 AM 11:30 AM 12:00 AM 12:30 AM 1:00 PM 1:30 PM 2:00 PM 2:30 PM 3:00 PM 3:30 PM 4:00 PM 

OI (Full Sample) 1.00 0.20 0.13 0.11 0.09 0.08 0.07 0.04 0.06 0.07 0.08 0.07 0.11 

(9.82) (8.65) (8.84) (6.99) (7.08) (6.30) (4.17) (7.46) (6.19) (6.97) (4.90) (5.77) 

OI 1.00 0.10 0.06 0.05 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.05 

(4.66) (5.28) (4.47) (2.78) (1.71) (1.67) (2.27) (2.78) (2.01) (2.51) (1.55) (3.22) 

RM OI 1.00 0.24 0.16 0.12 0.10 0.10 0.08 0.06 0.06 0.06 0.06 0.08 0.05 

(14.23) (11.73) (9.13) (8.35) (8.66) (6.97) (6.15) (4.38) (5.08) (4.87) (5.54) (2.43) 

Non-RM OI 1.00 0.10 0.06 0.05 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.04 

(4.75) (5.03) (4.40) (2.56) (1.56) (1.53) (2.21) (3.06) (1.89) (2.49) (1.49) (2.95) 

1
8

5
 



Z. Lu, S. Malliaris and Z. Qin Journal of Financial Economics 148 (2023) 175–200 

Fig. 4. Returns and Order Imbalances of the NMD MVE Portfolio. This figure plots the average cumulative returns and order imbalances of the night- 

minus-day mean variance efficient (NMD MVE) portfolio over 30-minute intervals of a trading day. Cumulative returns are computed from the previous 

day’s close as 
P τ

d 

P close 
d−1 

− 1 = 

(1+ r close-to-close ,d ) 

(1+ r τ,d ) 
− 1 , where 1 + r τ,d = 

P close 
d 

P τ
d 

and P τ
d 

is the volume-weighted price in the 30-minute interval τ in day d. Both panels 

report the observed cumulative returns. Panel A presents the hypothetical order imbalance pattern under the benchmark price pressure hypothesis that 

order imbalances and returns are positively correlated. Panel B reports the average Lee and Ready (1991) order imbalances in the data. The sample period 

is between February 1, 1995 and December 31, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 For example, fast arbitrageurs fill a market buy order in the morning 

and then close their short position with a market buy order of their own 

near the market close. As a result, persistent order imbalances do not im- 
sistent across OI, RM OI, and Non-RM OI, the NMD MVE

portfolio’s order imbalances in the first half-hour positively

predict its order imbalances in each of the remaining 12

half-hour intervals of the day, with 29 out of the 36 auto-

correlations being significant at the 5% level. 

Together, the above results suggest that the expected

order imbalances associated with the NMD MVE port-

folio are in the same direction throughout the trading

day. Our results are related to Berkman et al. (2012) ’s

finding that stocks attracting retail investors’ attention

have more positive retail order imbalances at the market

open and more positive night-minus-day returns. While

Berkman et al. (2012) ’s finding highlights the role of retail

order imbalances in driving the night-minus-day returns,

we show it cannot be the full explanation. Both RM OI and

OI of the NMD MVE portfolio are not only positive near the
186 
market open, but also positive throughout the rest of the 

day. These patterns hence challenge the benchmark price 

pressure hypothesis: if the positive expected order imbal- 

ance near the market open causes the predictably positive 

r N of the NMD MVE portfolio, why would its similarly pos- 

itive expected order imbalances over the rest of the day 

cause a predictably negative r D ? 

Our model provides a resolution to this puzzle. Fast ar- 

bitrageurs absorb the order imbalances in the morning and 

then pass on the same imbalances to slow arbitrageurs 

near the market close. 24 Slow arbitrageurs would be will- 

ing to accept lower compensation for absorbing the order 

pcollin
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26 Note that in our model, reversals occur entirely intraday. To gener- 
imbalances, but they are deterred by cream skimming risk

at open. As a result, overnight returns are driven by market

makers’ inventory costs associated with absorbing order

imbalances at open, whereas intraday returns are driven by

the increasing importance of slow arbitrageurs in setting

the price of liquidity. Hence, our model generates opposite

movements in prices at market open and over the rest of

the day with persistent order imbalances throughout the

day. To further evaluate our proposed mechanism, we now

turn to testing the other predictions from our model. 

4.2. Determinants of predictable night-minus-day returns 

( Prediction 2 ) 

Prediction 2 states that predictable night-minus-day re-

turns are driven by two factors: the predictable liquidity

demand absorbed by fast arbitrageurs near market open

and fast arbitrageurs’ required returns from liquidity pro-

vision. 

We first explore the effect of predictable liquidity de-

mand absorbed by fast arbitrageurs near market open.

Our main proxy for fast arbitrageurs’ liquidity provision

near market open is RM OI in the opening half-hour

(Open RM OI). In order to capture the relationship de-

scribed in Prediction 2 between expected night-minus-day

returns and expected order imbalances absorbed by fast ar-

bitrageurs, we run a two-stage least squares (2SLS) panel

regression at the stock-day level with day fixed effects.

Specifically, in the first stage we regress order imbalances

on their one-day lagged values to generate expected order

imbalances, 25 and in the second stage we regress stocks’

night-minus-day returns on the instrumented order imbal-

ances. The resulting 2SLS regression coefficient thus cap-

tures the relation between the expected night-minus-day

returns and expected liquidity provision conditioned on

the lagged order imbalances. 

Panel A of Table 3 reports the 2SLS regression co-

efficients. Column (1) shows that the regression coeffi-

cient on instrumented Open RM OI is 1.18 and statisti-

cally significant, suggesting that a one basis point increase

in stocks’ expected Open RM OI (per daily trading vol-

ume) is associated with a 1.18 basis point increase in ex-

pected night-minus-day returns per day. These results are

consistent with the prediction that expected liquidity de-

mand absorbed by fast arbitrageurs near market open is

an important driver of the predictable night-minus-day re-

turns. Our results are also consistent with the findings in

Berkman et al. (2012) , although their interpretation em-

phasizes the role of retail trading demand whereas we

emphasize the role of liquidity provision from fast arbi-

trageurs. 

Next, we examine the role of fast arbitrageurs’ re-

quired returns from liquidity provision. We use several

proxies to measure these required returns. We first fol-
ply that the fast arbitrageurs will accumulate a large inventory position 

over time in our model. 
25 In Section 3 of the Internet Appendix, we report the first stage re- 

gression results to demonstrate the relevance of the instrument. The F - 

statistics are all well above 10, suggesting that our instruments are un- 

likely to be weak. 
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low Nagel (2012) and use the daily reversal strategy re- 

turn of Lehmann (1990) (henceforth, Daily Rev) to measure 

market makers’ required returns from liquidity provision. 26 

We then use the predictive model in Nagel (2012) to 

compute the expected returns from liquidity provision 

( ̂ Daily Rev ). More details on the construction of Daily Rev 

and 

̂ Daily Rev are offered in Appendix B . 

Building on the 2SLS regression from Column 1 of Panel 

A of Table 3 , we add an indicator variable, High 

̂ Daily Rev 

(that is equal to one when 

̂ Daily Rev is above the sample 

median), and its interaction with instrumented Open RM 

OI, to test whether the relation between expected Open 

RM OI and expected night-minus-day returns is different 

when market makers’ required returns are different. Col- 

umn (2) in Panel A of Table 3 shows that the coefficient 

on the interaction is 0.64 and significant at the 1% level. A 

one basis point increase in expected Open RM OI is asso- 

ciated with a 0.89 (1.53) basis point increase in expected 

night-minus-day returns in low (high) ̂ Daily Rev periods. 

Column (3) shows that the results are similar if we define 

High 

̂ Daily Rev using ̂ Daily Rev computed over expanding 

estimation windows with no-look-ahead bias. Lastly, as 

Nagel (2012) discusses, required returns from liquidity pro- 

vision can increase due to higher volatility or higher com- 

pensation per unit of risk. To examine the latter effect, 

we redefine the indicator variable High 

̂ Daily Rev using the 

conditional Sharpe Ratio of Daily Rev estimated following 

Eq. (25) of Nagel (2012) . We find in Column (4) that the 

positive relation between instrumented Open RM OI and 

night-minus-day return is also significantly stronger when 

the conditional Sharpe Ratio of Daily Rev is high. 

The recent literature has preferred to proxy for the 

required returns from liquidity provision using Daily Rev 

rather than bid-ask spreads because, as Nagel (2012) ar- 

gues, the former is not affected by asymmetric information 

in a model with a representative market maker. However, 

in the presence of heterogeneous liquidity providers, Daily 

Rev can nevertheless be affected by asymmetric informa- 

tion. In particular, Daily Rev arises in our model when pri- 

vate information is not fully revealed at market close and 

fast arbitrageurs become the marginal liquidity provider 

for some proportion of stocks at market close. Because this 

proportion can increase in asymmetric information, Daily 

Rev can be positively associated with both c ′ and asym- 

metric information. Therefore, for robustness tests, we use 

alternative liquidity proxies that also are related to market 

makers’ required returns to test Prediction 2 . 

In Panel B of Table 3 , we replace ̂ Daily Rev with ex- 

pected spread, expected liquidity, and expected volatility at 

the market level. Our spread measure is the daily dollar- 

volume-weighted effective spread from TAQ, and our liq- 
ate predictable Daily Rev within our model (i.e., reversal over the subse- 

quent day), we can relax the simplifying assumption of full information at 

market close. In this case, fast arbitrageurs will be the marginal liquidity 

provider for some stocks at market close, leading to incomplete intraday 

reversal and hence predictable Daily Rev. Alternatively, we can relax the 

assumption that slow arbitrageurs’ required returns of liquidity provision 

are zero. In this case, we interpret Nagel’s measure as the common com- 

ponent of required returns for fast and slow arbitrageurs. 

pcollin
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Table 3 

Predictable Order Imbalances and Night-minus-day Returns. This table examines the relation between expected night-minus- 

day (NMD) returns and expected order imbalances. In Panel A, we report daily two-stage least squares (2SLS) panel regressions 

of NMD returns on Open RM OI, which are instrumented (instru.) by their one-day lagged values. Open RM OI is the retail order 

imbalances absorbed by market makers in the first half-hour trading interval identified by the Boehmer et al. (2021) algorithm. 

Column (2) adds an interaction term with an indicator variable that is equal to one when Nagel (2012) ’s measure of fast ar- 

bitrageurs’ required returns (Daily Rev) is above the sample median. Columns (3) and (4) use two alternative proxies for the 

required returns (respectively, a construction of Nagel’s measure that avoids look-ahead bias and the conditional Sharpe ratio 

of Nagel’s measure). Panel B reports robustness results using aggregate expected spread, liquidity, and volatility as alternative 

proxies for the required returns. Panel C performs the analyses in Panel A using Lee and Ready (1991) order imbalance over a 

longer sample period. All models include Day fixed effects. We report t-statistics in parentheses based on robust standard er- 

rors two-way clustered by firm and day. Returns are in basis points per day and order imbalances are in basis points per daily 

trading volume. RM OI becomes available from October 1, 2006, OI from February 1, 1995, and Daily Rev, aggregate expected 

spread, liquidity, and volatility from January 1, 1998. The sample period ends December 31, 2020. ∗∗∗ , ∗∗ , and ∗ indicate statistical 

significance at the 1%, 5%, and 10% level, respectively. 

Panel A - RM OI 

NMD i,t 
(1) (2) (3) (4) 

Open RM OI i,t (instr.) 1.18 ∗∗∗ 0.89 ∗∗∗ 0.87 ∗∗∗ 0.82 ∗∗∗

(8.46) (5.36) (5.20) (4.82) 

Open RM OI i,t (instr.) × High ̂ Daily Rev t 0.64 ∗∗

(2.23) 

Open RM OI i,t (instr.) × High ̂ Daily Rev 
No Look Ahead 

t 0.68 ∗∗

(2.38) 

Open RM OI i,t (instr.) × High ̂ Daily Rev SR t 0.74 ∗∗∗

(2.68) 

Day Fixed Effects Yes Yes Yes Yes 

N 6,184,322 6,184,322 6,184,322 6,184,322 

Panel B - Alternative Liquidity Proxies 

NMD i,t 

(1) (2) (3) (4) (5) 

Open RM OI i,t (instr.) 0.74 ∗∗∗ 0.67 ∗∗∗ 0.78 ∗∗∗ 0.84 ∗∗∗ 0.75 ∗∗∗

(3.79) (3.43) (4.56) (4.75) (4.74) 

Open RM OI i,t (instr.) × High ̂ Spread 
ARIMA(5,1,0) 

t 0.85 ∗∗∗

(3.02) 

Open RM OI i,t (instr.) × High ̂ Spread 
ARIMA(2,1,3) 

t 0.96 ∗∗∗

(3.36) 

Open RM OI i,t (instr.) × High ̂ Amihud 
ARIMA(5,1,0) 

t 0.80 ∗∗∗

(2.77) 

Open RM OI i,t (instr.) × High ̂ Amihud 
ARIMA(0,1,3) 

t 0.68 ∗∗

(2.34) 

Open RM OI i,t (instr.) × High VIX t 0.97 ∗∗∗

(3.31) 

Day Fixed Effects Yes Yes Yes Yes Yes 

N 6,184,322 6,184,322 6,184,322 6,184,322 6,184,322 

Panel C - OI 

NMD i,t 

(1) (2) (3) (4) 

Open OI i,t (instr.) 0.15 ∗∗∗ 0.09 ∗∗∗ 0.09 ∗∗∗ 0.09 ∗∗∗

(18.15) (11.65) (11.43) (11.39) 

Open OI i,t (instr.) × High ̂ Daily Rev t 0.11 ∗∗∗

(6.66) 

Open OI i,t (instr.) × High ̂ Daily Rev 
No Look Ahead 

t 0.11 ∗∗∗

(6.80) 

Open OI i,t (instr.) × High ̂ Daily Rev SR t 0.11 ∗∗∗

(6.75) 

Day Fixed Effects Yes Yes Yes Yes 

N 12,190,348 10,689,613 10,689,613 10,689,613 
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uidity measure is the daily Amihud (2002) illiquidity mea-

sure. We winsorize these variables at the 1% level for each

trading day and compute the cross-sectional mean to ar-

rive at the market-level measure. We then compute the

market-level expected spread (liquidity) using two ARIMA

models selected under the Akaike information criterion. 27

Our expected volatility measure is VIX. Consistent with the

results in Panel A, we find that the positive relation be-

tween instrumented Open RM OI and night-minus-day re-

turn is significantly stronger when expected spread, ex-

pected illiquidity, or expected volatility is high. 

We conduct further robustness tests in Panel C of

Table 3 by performing the analyses in Panel A using Lee-

Ready OI over a longer sample period. We again find that

expected Open OI is positively related to the expected

night-minus-day returns and that this relation is stronger

in high 

̂ Daily Rev periods. Consistent with our discussions

in Section 3.3 that OI is a more noisy measure of fast arbi-

trageurs’ liquidity provision, we find that the 2SLS regres-

sion coefficient on Open OI is much smaller at 0.15 (com-

pared to that on Open RM OI of 1.18). For brevity, going

forward, we report the results of robustness tests using

Lee-Ready OI in Section 3 of the Internet Appendix. 28 

Taken together, our empirical tests in this sec-

tion demonstrate a strong positive relation between ex-

pected night-minus-day returns and expected order imbal-

ances absorbed by fast arbitrageurs, and this positive re-

lation is stronger when the required returns of fast arbi-

trageurs are high. 

4.3. Marginal liquidity providers (Prediction 3) 

Our next set of tests examines our prediction that when

fast arbitrageurs are less likely to determine the price of

liquidity, order imbalances absorbed by fast arbitrageurs

should cause smaller price deviations and less return pre-

dictability. 

4.3.1. Dual listed stocks 

As we discuss in Prediction 3 , fast arbitrageurs are less

likely to determine the price of liquidity when unpriced

private information is small. To the extent that unpriced

private information tends to be low for large-cap, liquid,

and high institutional ownership stocks, Prediction 3 is

consistent with existing evidence that these stocks exhibit
27 Our first ARIMA model is selected among ARIMA ( 0 ≤ p ≤ 21 , 0 ≤
d ≤ 2 , q = 0) , where p, d, and q are the number of lags, differences, 

and moving averages, respectively. The selected model is ARIMA(5,1,0) 

for computing both the expected spread and the expected liquidity. 

Our second ARIMA model is selected among ARIMA ( 0 ≤ p ≤ 21 , 0 ≤ d ≤
2 , 0 ≤ q ≤ 21) . The selected model for computing the expected spread 

is ARIMA(2,1,3) and the selected model for computing the liquidity is 

ARIMA(0,1,3). 
28 Our 2SLS regression coefficients capture the relation between ex- 

pected order imbalances and expected night-minus-day returns, which 

reflects market makers’ inventory costs. These coefficients can be con- 

trasted with Breen et al. (2002) ’s evidence on the relation between real- 

ized order imbalances and realized returns, which additionally reflects the 

information content of the unexpected component of order imbalances. 

Consistent with this notion, our 2SLS regression coefficients are less pos- 

itive than those reported by Breen et al. (2002) . 
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weaker night-minus-day return predictability. But such ev- 

idence is also consistent with other types of limits to arbi- 

trage being smaller among these stocks. 

We thus conduct a sharper test of the cream skim- 

ming mechanism underlying Prediction 3 using dual-listed 

stocks. For most U.S. stocks, the accumulation of unpriced 

private information during the thinly traded overnight ses- 

sion leads to high information asymmetry at open. Yet, a 

small set of U.S. stocks are actively traded before the U.S. 

market open because they are dual-listed in the European 

stock markets. For these stocks, overnight information flow 

is incorporated into prices through overseas trading and 

thus the amount of unpriced information at the U.S. mar- 

ket open is likely to be relatively smaller. Thus, according 

to Prediction 3 , slow arbitrageurs are more likely to be the 

marginal liquidity suppliers for these stocks at U.S. market 

open, which leads to a weaker relation between fast arbi- 

trageurs’ liquidity provision and price deviations. 

To test this model implication, we identify U.S. stocks 

dual-listed in the European stock markets using Compustat 

Global (hereafter, European dual-listed stocks). We match 

these European dual-listed stocks to non-dual-listed U.S. 

stocks from the same industry with the closest market 

capitalization at the end of each month, which we refer 

to as the U.S. control sample. 29 We focus on the sample 

between October 2006 and December 2020, during which 

Open RM OI are available. The sample contains 84 Euro- 

pean dual-listed stocks per day on average. 

Similar to our earlier analysis, we run a 2SLS panel re- 

gression of daily night-minus-day returns on instrumented 

Open RM OI that includes day fixed effects to estimate 

the relationship between expected night-minus-day re- 

turns and expected liquidity provision. We conduct infer- 

ence using t-statistics computed from two-way clustered 

standard errors at the firm and day levels. Columns (1) 

and (2) of Table 4 show the contrasting coefficients for the 

European dual-listed stocks and the U.S. control sample, 

respectively. While the 2SLS regression coefficient on in- 

strumented Open RM OI is positive and significant in the 

U.S. control sample, similar to our earlier results based on 

the full cross-section of U.S. common stocks, the coefficient 

is insignificant among European dual-listed stocks. To test 

whether the relation between expected Open RM OI and 

the expected night-minus-day returns is different between 

these two groups, we combine the two samples and add 

a dual-listing indicator variable as well as its interaction 

with instrumented Open RM OI to the regression in Col- 

umn (3). We find that the 2SLS coefficient on the interac- 

tion term is −0 . 12 ( t = −2 . 6 ), which offers strong support 

for the prediction that the positive relation between Open 

RM OI and night-minus-day returns is weaker when over- 

seas trading reduces unpriced private information at U.S. 

market open. 30 
29 See Appendix B for more details on our dual-list sampling procedure. 
30 As an additional test, cream skimming risk should also be reduced 

when a fixed basket of stocks is traded. Consistent with this intuition, 

Section 4 of the Internet Appendix shows that expected Open RM OI is 

not significantly related to expected night-minus-day returns among ex- 

change traded funds (ETFs). However, this ETF test may have low power 

relative to our stock-level test. 
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Table 4 

Predictable Order Imbalances and Night-minus-day Returns Among Dual-listed Stocks. This table reports the results of two-stage 

least squares (2SLS) panel regressions of night-minus-day returns on RM OI at the market open (Open RM OI) instrumented (instru.) 

by its one-day lagged value among overseas dual-listed stocks. Day fixed effects are included. In Columns (1) and (4), we report the 

results using U.S. stocks that are dual-listed on European and Canadian exchanges, respectively. In Columns (2) and (5), we report 

the results in a control sample of market capitalization- and industry-matched non-dual-listed U.S. stocks. In Columns (3) and (6), we 

combine the dual-listed and control samples, and indicate dual-listed firms with Dual-list i,t . We report t-statistics in parentheses based 

on robust standard errors two-way clustered by firm and day. Returns are in basis points per day and order imbalances are in basis 

points of daily trading volume. The sample period is between October 1, 2006 and December 31, 2020. ∗∗∗ , ∗∗ , and ∗ indicate statistical 

significance at the 1%, 5%, and 10% level, respectively. 

Sample: Europe DL U.S. Control Europe + U.S. Canada DL U.S. Control Canada + U.S. 

NMD i,t 
(1) (2) (3) (4) (5) (6) 

Open RM OI i,t (instr.) −0.02 0.09 ∗∗ 0.09 ∗∗ 0.04 ∗ 0.10 ∗∗ 0.09 ∗

( −1.12) (2.22) (2.26) (1.70) (2.23) (1.95) 

Open RM OI i,t (instr.) × Dual-list i,t −0 . 12 ∗∗∗ −0.05 

( −2.64) ( −1.05) 

Dual-list i,t −0.70 3.93 ∗∗

( −0.49) (2.47) 

Day Fixed Effects Yes Yes Yes Yes Yes Yes 

N 302,106 294,693 596,799 335,438 345,826 681,264 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31 Overseas trading prior to U.S. open reveals information and may 

cause the volatility of overnight (intraday) returns of European dual-listed 

stocks to be higher (lower) than that of the non-dual-listed stocks. Using 

the volatility of close-to-close returns avoids this issue. Since RM OI is 

not needed, we conduct the test over the full Daily TAQ sample period 
One potential concern is that our results above are not

related to the cream-skimming mechanism but rather due

to other confounding effects of being dual-listed. To ad-

dress this concern, we present the same analysis using

U.S. stocks dual-listed in Canadian stock markets (hereafter,

Canadian dual-listed stocks). Because Canadian stock mar-

kets open at the same time as U.S. stock markets, Cana-

dian dual-listed stocks would not have active trading prior

to the U.S. market open. Consequently, our model predicts

that the positive relation between Open RM OI and night-

minus-day returns should not be weaker among Canadian

dual-listed stocks. The results in Columns (4) through (6)

of Table 4 support this model prediction. In particular, Col-

umn (6) shows that the regression coefficient on the in-

teraction term between the Canadian dual-listing indicator

and Open RM OI is insignificant at −0 . 05 ( t = −1 . 1 ), which

contrasts with the negative and significant coefficient on

the corresponding European dual-listing interaction term

in Column (3). These results together suggest that over-

seas trading immediately before U.S. market open, rather

than dual-listing status in general, attenuates the relation

between Open RM OI and night-minus-day returns. 

Finally, we further verify the cream skimming mecha-

nism by investigating bid-ask spreads. There are two rea-

sons why spreads should be narrower for European dual-

listed stocks at the US market open. First, microstructure

models featuring asymmetric information (e.g. Glosten and

Milgrom (1985) ) predict a narrower bid-ask spread when

unpriced private information is low. Second, our model

predicts that slow arbitrageurs with low inventory costs

are more likely to determine the price of liquidity when

unpriced private information is low. Finding lower spreads

among European dual-listed stocks would be consistent

with either or both of these channels, but finding higher

spreads would serve as disconfirmatory evidence for our

proposed mechanism. 

We follow Bogousslavsky and Collin-Dufresne (2022) in

computing the log dollar-weighted effective spreads in the

first 30 min of the market open. We regress the log spread

on the dual-listing indicator controlling for commonly used
190
determinants of the bid-ask spread and the day fixed 

effects in the combined sample of European dual-listed 

stocks and the U.S. control stocks. Control variables include 

turnover (i.e., the total daily trading volume divided by 

shares outstanding), volatility (i.e., the standard deviation 

of daily close-to-close returns in the previous month), 13F 

institutional ownership percentage at the previous quarter- 

end (from Thomson/Refinitiv), and the price and market 

capitalization as of the prior day. 31 

Columns (1) to (3) of Table 5 show that spreads are in- 

deed smaller among European dual-listed stocks than the 

U.S. control sample with and without controls. After con- 

trolling for these commonly used determinants of bid-ask 

spreads, the regression coefficient on the dual-listing indi- 

cator remains negative and highly statistically significant. 

The magnitude of the regression coefficient is also rela- 

tively stable across the three specifications, ranging from 

−0 . 54 to −0 . 70 , suggesting that the European dual-listed 

stocks on average have an effective bid-ask spread that 

is 42% to 50% lower near the market open. In contrast, 

Columns (4) to (6) show that the bid-ask spreads of Cana- 

dian dual-listed stocks are higher than the matched non- 

dual-listed stocks, although the difference is not statisti- 

cally significant in the presence of control variables. These 

results are consistent with the notion that European dual- 

listed stocks have lower unpriced private information upon 

U.S. market open, thus further corroborating Prediction 3 . 

4.3.2. HFT liquidity provision 

In this subsection, we provide an alternative test of 

Prediction 3 using direct data on the liquidity provision of 

high-frequency traders (HFT). As we explain in our discus- 

sions of Prediction 3 , to the extent that fast arbitrageurs’ 
between September 10, 2003 and December 31, 2020. 
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Table 5 

Bid-ask Spreads for Dual-listed Stocks. This table reports the panel regressions of the dollar-weighted effec- 

tive spread in the first half-hour trading interval (Open Spread) on a dual-list indicator ( Dual-list i,t ) as well as 

control variables (definitions in the main text). The sample contains dual-listed stocks and their capitalization- 

and industry-matched non-dual-listed U.S. stocks between September 10, 2003 and December 31, 2020, when 

the Daily TAQ files are available. The first (last) three columns focus on European (Canadian) dual-listed firms 

and the matched non-dual-listed U.S. stocks. Day fixed effects are included. All variables are log-transformed 

except for institutional ownership. We report t-statistics in parentheses based on robust standard errors two- 

way clustered by firm and day. ∗∗∗ , ∗∗ , and ∗ indicate statistical significance at the 1%, 5%, and 10% level, 

respectively. 

log(Open Spread) i,t 
European Dual-list Canadian Dual-list 

(1) (2) (3) (4) (5) (6) 

Dual-list i,t −0 . 54 ∗∗∗ −0 . 70 ∗∗∗ −0 . 59 ∗∗∗ 0.11 ∗ −0.05 −0.03 

( −9.19) ( −12.62) ( −8.61) (1.84) ( −0.85) ( −1.20) 

log(Turnover) i,t −0 . 23 ∗∗∗ −0 . 16 ∗∗∗ −0 . 29 ∗∗∗ −0 . 21 ∗∗∗

( −11.12) ( −10.41) ( −14.57) ( −16.90) 

log(Volatility) i,t−1 0.64 ∗∗∗ 0.38 ∗∗∗ 0.84 ∗∗∗ 0.31 ∗∗∗

(19.00) (17.29) (25.70) (19.36) 

Institutional Ownership i,t−1 0.17 ∗ −0 . 32 ∗∗∗

(1.95) ( −6.98) 

log(Price) i,t−1 −0.04 0.10 ∗∗∗

( −1.47) (3.56) 

log(Market Capitalization) i,t−1 −0 . 33 ∗∗∗ −0 . 43 ∗∗∗

( −18.61) ( −32.60) 

Day Fixed Effects Yes Yes Yes Yes Yes Yes 

N 788,952 671,520 640,669 907,183 820,358 806,207 

Adjusted R 2 0.14 0.27 0.46 0.07 0.20 0.50 
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choice to reduce their liquidity provision around market

open is a signal of π > π ∗ (i.e., of small n or of large π ),

liquidity demand absorbed by fast arbitrageurs should pre-

dict future returns less strongly when HFTs choose to pro-

vide less liquidity around market open. 

We measure HFT activity using a unique dataset from

the NASDAQ exchange on HFT liquidity provision. The

database includes all trades that occur on the NASDAQ

exchange (excluding the opening, closing, and intraday

crosses) for 120 stocks between 2008 and 2009. The

database includes a buy and sell indicator, which classifies

trades into buyer initiated and seller initiated ones. Cru-

cially, the database also provides information on whether

a HFT is involved in a trade and whether the HFT is pro-

viding or seeking liquidity. 32 For each stock-day, we com-

pute the HFT Liq Ratio as the ratio of the trading volume

(in shares) for which HFTs are providing liquidity to the to-

tal trading volume on the NASDAQ exchange in each of the

half-hour trading intervals. We focus on the HFT Liq Ratio

in the first half hour when cream skimming activity is ex-

pected to be the highest (Open HFT Liq Ratio). 33 A lower

realized Open HFT Liq Ratio indicates that fast arbitrageurs

observe small n or large π near the market open and thus

they choose to intermediate a smaller fraction of trades. 

Since π is unpredictable in our model, instead of the

2SLS regression approach used in our earlier tests, we test
32 See Brogaard et al. (2014) for a detailed data description. We thank 

Phil Mackintosh and Heinrich Lutjens at NASDAQ OMX for providing the 

data. 
33 Consistent with the notion that HFTs are more selective in choosing 

stocks for which to provide liquidity near the market open, Figure 6 of the 

Internet Appendix shows that the distribution of HFT Liq Ratio is more 

dispersed and the frequency of near-zero realized values is much higher 

for the first half-hour trading interval compared to the last half-hour trad- 

ing interval. 

191 
how the predictive relation between realized Open RM OI 

and subsequent intraday returns varies with the realized 

Open HFT Liq Ratio. Specifically, we regress the intraday 

return (from the second half-hour trading interval to the 

close) on Open RM OI, Open HFT Liq Ratio, and their inter- 

action term. The estimation result is presented below (day 

fixed effects are included, but not reported for brevity): 

r D it = 0 . 10 

( t=1 . 58 ) 
× Open RM OI it −7 . 33 

( t= −0 . 95 ) 
×Open HFT Liq Ratio i

−0 . 50 

( t= −2 . 24 ) 
×Open HFT Liq Ratio it × Open RM OI i,t + εit .

We find that the coefficient on the interaction term is 

negative and significant, with a t-statistic of −2 . 2 based 

on two-way standard errors clustered by firm and day. 

This result is consistent with the prediction that liquid- 

ity demand absorbed by fast arbitrageurs will predict fu- 

ture returns less strongly among stocks for which fast 

arbitrageurs choose to intermediate a smaller fraction of 

trades. 

Overall, both of our tests in this section support 

Prediction 3 and the cream skimming mechanism in our 

model. 

5. Explaining the night-minus-day returns of 

characteristics sorted portfolios 

5.1. Explaining the night-minus-day returns of the 17 LPS 

portfolios 

We next explore the ability of our model to explain the 

predictable night-minus-day returns of the 17 LPS charac- 

teristics sorted portfolios. In Panel A of Fig. 5 , we plot the 

average night-minus-day return against the average Open 

RM OI for these portfolios. We find that the sign and mag- 

nitude of a portfolio’s average Open RM OI tend to match 
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Fig. 5. Open RM OI and Night-minus-Day Returns of 17 LPS Portfolios. 

This figure plots the average night-minus-day (NMD) return against the 

average retail order imbalance absorbed by market makers in the first 

half-hour trading interval (Open RM OI) of the 17 high-minus-low Lou, 

Polk, and Skouras (2019, LPS) portfolios. In Panel A, we report the scat- 

ter plot and the regression line in the full sample period. In Panel B, we 

report the scatter plot and the regression line in periods with high and 

low required returns from liquidity provision, respectively. NMD returns 

are in annualized percentage points and Open RM OI is in basis points 

of daily trading volume. The sample period is between October 2006 and 

December 2020 when Open RM OI is available. 

 

 

 

 

 

 

 

 

 

 

that of its average night-minus-day returns. Imposing the

model prediction, we use a linear model without an in-

tercept to fit the cross-sectional relation between average

Open RM OI and average night-minus-day returns and find

a cross-sectional R 2 of 71% . 

The cross-sectional slope in Panel A of Fig. 5 can be in-

terpreted as the average returns of fast arbitrageurs from

providing liquidity at the open. Panel B of Fig. 5 further

shows that this slope is positively correlated with our

proxy for the expected returns from liquidity provision.

Specifically, similar to the analysis in Section 4.2 , we use
192
̂ Daily Rev to define periods with high and low expected 

returns from liquidity provision. We find that the cross- 

sectional slope is twice as large in the high 

̂ Daily Rev pe- 

riod compared to the low 

̂ Daily Rev period. The cross- 

sectional R 2 is similar in magnitude between the two peri- 

ods, at 62% and 66% , respectively. 

In addition to the cross-sectional analysis above, we an- 

alyze the time-series relation between the returns from 

liquidity provision and night-minus-day returns in Table 6 . 

For each of the 17 LPS portfolios and the NMD MVE port- 

folio, we regress their night-minus-day returns on con- 

temporaneous Daily Rev. We use the monthly average 

in these regressions to allow for non-synchronization of 

daily returns. We interpret the intercept from this regres- 

sion as an α because both the dependent and explana- 

tory variables are excess returns. For ease of comparison, 

we also include the αCAPM previously presented in Fig. 3 . 

We find that accounting for exposure to Daily Rev re- 

sults in an insignificant αDaily Rev for 14 out of the 17 LPS 

anomaly portfolios, more than double the number of in- 

significant αCAPM . In the last row, we focus on the NMD 

MVE portfolio that summarizes the cross-sectional night- 

minus-day return predictability across the 17 LPS portfo- 

lios. We find that Daily Rev largely explains this portfolio’s 

average night-minus-day returns ( 25 . 7% per annum), leav- 

ing a statistically insignificant αDaily Rev of 2 . 8% per annum 

( t = 0 . 67 ). Overall, our model’s predicted determinants ac- 

count for a substantial portion of the cross-sectional and 

time-series variability in the night-minus-day returns of 

the 17 LPS portfolios. 

5.2. A common cause of night-minus-day and close-to-close 

returns? 

The fact that the stock characteristics underlying the 

17 LPS portfolios – many of which are known to deter- 

mine the cross-section of close-to-close returns – gener- 

ate predictable night-minus-day returns raises a tantalizing 

conjecture that expected close-to-close returns and night- 

minus-day returns might share the same common cause. 

Our analysis thus far has presented theory and evidence 

supporting the idea that when conditions allow for cream- 

skimming to occur at market open, night-minus-day re- 

turns are determined by Open RM OI and fast arbitrageurs’ 

required returns to liquidity provision. Do these economic 

forces underlying night-minus-day returns also influence 

close-to-close returns? 

5.2.1. Predicted open RM OI 

We first explore whether the Open RM OI predicted 

by the 17 LPS stock characteristics is related to expected 

close-to-close returns. To test this prediction, we train a 

gradient boosted decision tree (GBDT) model using these 

17 characteristics to predict Open RM OI over the follow- 

ing month. We choose a non-linear model because the 

recent literature has shown that a linear combination of 

stock characteristics does not sufficiently capture the vari- 

ation in expected returns ( Freyberger et al., 2020 ). We fol- 

low Gu et al. (2020) in using shallow trees with a max- 

imum depth of 7 to reduce overfitting. We set the num- 

ber of trees to be 20 0 0, use five-fold cross validation to 
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Table 6 

Explaining the Night-minus-day Returns of 17 LPS Portfolios. This table presents 

univariate regressions of the monthly average night-minus-day returns of the 17 

high-minus-low Lou, Polk, and Skouras (2019, LPS) portfolios and the night-minus- 

day mean-variance efficient (NMD MVE) portfolio on either the market excess return 

(CAPM) or the Nagel (2012) short-term reversal strategy return (Daily Rev). We report 

t-statistics computed based on Newey and West (1987) standard errors with 12 lags 

in the parentheses next to the coefficients. The estimated intercept and coefficient 

from these time-series regressions are denoted by α and β , respectively. Returns are 

in annualized percentage points. The sample period is from January 1998 to Decem- 

ber 2020 when Daily Rev is available. 

Portfolio αCAPM t-stat αDaily Rev t-stat βDaily Rev t-stat 

r ewma 
N 

42.75 (4.69) 3.74 (0.58) 0.65 (3.91) 

r N 39.11 (3.65) 6.92 (1.05) 0.57 (3.28) 

TURNOVER 39.06 (4.45) 10.93 (1.66) 0.59 (4.20) 

IVOL 34.43 (2.90) −8.58 ( −1.18) 0.83 (3.99) 

r D −30.89 ( −2.44) 14.70 (1.41) -0.82 ( −3.29) 

BETA 28.11 (3.31) 9.49 (1.20) 0.46 (3.18) 

MOM 24.84 (4.16) 14.94 (1.33) 0.12 (0.52) 

INDMOM 17.09 (3.32) 9.35 (1.39) 0.12 (0.84) 

r ewma 
D 

−15.44 ( −1.66) 9.92 (1.43) -0.46 ( −2.77) 

ROE −12.97 ( −1.90) 4.78 (0.78) -0.35 ( −2.78) 

ME 11.32 (3.18) 26.19 (5.73) -0.27 ( −3.51) 

INV 10.17 (2.17) 0.90 (0.19) 0.17 (2.64) 

STR −9.17 ( −1.07) 18.44 (2.12) -0.51 ( −2.45) 

ACCRUALS −7.18 ( −2.14) −8.17 ( −1.29) 0.02 (0.16) 

ISSUE 6.52 (1.30) −2.52 (-0.48) 0.18 (1.85) 

SUE 3.75 (1.19) 5.72 (1.27) -0.06 (-0.62) 

BM -0.25 (-0.05) 15.27 (2.48) -0.24 ( −1.79) 

NMD MVE 25.73 (4.55) 2.76 (0.67) 0.39 (3.67) 

Table 7 

Explaining Close-to-close and Night-minus-day Returns using Predicted Open RM OI. This table 

presents Fama and MacBeth (1973) regressions of next month’s average night-minus-day returns (NMD), 

close-to-close returns (RET), or RM OI in the first half-hour trading interval (Open RM OI) on the pre- 

dicted Open RM OI based on stock-characteristics ( ̂ Open RM OI ) in the current month. The prediction 

model for ̂ Open RM OI is trained using data after January 2010 (see the main text for details). Columns 

(1) through (3) report the estimates based on the full sample period from February 1995 to December 

2020 for NMD and RET and from October 2006 to December 2020 for RM OI. Columns (4) through (6) 

report the out-of-sample estimates based on the period before January 2010. We report t-statistics com- 

puted based on Newey and West (1987) standard errors with 12 lags in the parentheses. Returns are in 

basis points (bps) per day and the order imbalances are in basis points of daily trading volume. ∗∗∗ , ∗∗ , 

and ∗ indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

Full Sample Out-of-Sample 

NMD i,t RET i,t Open RM OI i,t NMD i,t RET i,t Open RM OI i,t 
(1) (2) (3) (4) (5) (6) 

̂ Open RM OI i,t−1 5.83 ∗∗∗ −0.22 1.42 ∗∗∗ 8.48 ∗∗∗ −0.41 0.64 ∗∗∗

(5.90) ( −0.46) (9.90) (6.71) ( −0.54) (7.77) 

Constant 2.60 5.25 ∗∗∗ 0.10 4.26 4.56 ∗∗ −0.10 

(1.19) (3.73) (0.95) (1.25) (2.17) ( −0.45) 

N 602,124 602,124 294,171 373,387 373,387 65,467 

Adjusted R 2 0.01 0.001 0.03 0.02 0.002 0.004 

 

 

 

 

 

 

 

 

 

 

tune the learning rate, and fit the model using the data

between January 2010 and December 2020. We then use

the fitted GBDT model to generate predicted Open RM OI

( ̂ Open RM OI t ) over the full sample period, so that the pe-

riod prior to January 2010 is strictly out-of-sample. 

In Table 7 , we use ̂ Open RM OI t−1 to predict night-

minus-day returns, close-to-close returns, and Open RM

OI in month t using a Fama and MacBeth (1973) regres-

sion. We find that ̂ Open RM OI t positively predicts next

month’s night-minus-day returns in Column (1) and Open

RM OI in Column (3), with t−statistics equal to 5.9 and
193 
9.9, respectively. In contrast, ̂ Open RM OI t predicts close- 

to-close returns with a negative but insignificant coef- 

ficient in Column (2), with a t−statistic of only −0 . 5 . 

For robustness, we also conduct out-of-sample tests in 

the pre-January 2010 period in Columns (4) through (6) 

and similarly find that ̂ Open RM OI t positively and signifi- 

cantly predicts next month’s night-minus-day returns and 

Open RM OI, but it does not significantly predict close- 

to-close returns. Overall, we fail to find evidence that ex- 

pected Open RM OI is related to expected close-to-close 

returns. 
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Table 8 

Explaining the Relation Between Beta and Night-minus-Day Returns. This table 

presents the post-formation CAPM beta ( βCAPM ), average close-to-close returns (RET), 

overnight returns ( r N ), and intraday returns ( r D ) , as well as their respective CAPM al- 

phas ( α) for both the univariate CAPM beta portfolios (Panel A) and bivariate CAPM 

beta portfolios (Panel B). The bivariate CAPM beta portfolios control for ̂ Open RM OI 

and have similar average values of ̂ Open RM OI across beta deciles. The sample period 

is between February 1, 1995 and December 31, 2020. We report t-statistics computed 

based on Newey and West (1987) standard errors with 21 lags in the parentheses under 

the coefficients. Returns are in annualized percentage points and expected Open RM OI 

is in basis points of daily trading volume. 

Panel A - Univariate βCAPM Portfolios 

Decile βCAPM RET r N r D αCAPM 
RET 

αCAPM 
N 

αCAPM 
D 

1 0.50 11.32 2.05 9.27 4.12 −3.13 7.41 

(17.47) (4.96) (1.34) (4.91) (2.50) ( −3.05) (5.38) 

2 0.66 11.53 3.20 8.24 2.77 −2.99 5.85 

(29.00) (4.44) (1.95) (3.93) (1.78) ( −3.34) (4.63) 

3 0.77 11.82 3.00 8.62 1.95 −4.01 5.89 

(30.69) (4.04) (1.47) (3.65) (1.23) ( −4.07) (4.57) 

4 0.86 11.82 4.15 7.48 1.11 −3.37 4.45 

(30.79) (3.88) (2.05) (3.09) (0.71) ( −3.82) (3.52) 

5 0.92 12.25 5.59 6.38 0.92 −2.32 3.08 

(47.62) (3.58) (2.64) (2.41) (0.58) ( −2.37) (2.46) 

6 1.02 12.31 5.17 6.88 0.00 −3.42 3.22 

(63.80) (3.46) (2.15) (2.46) (0.00) ( −3.67) (2.86) 

7 1.12 13.10 9.46 3.29 -0.23 0.30 -0.71 

(81.11) (3.23) (3.91) (1.07) (-0.16) (0.34) (-0.66) 

8 1.24 12.34 10.10 1.73 −2.16 0.01 −2.73 

(51.95) (2.69) (3.53) (0.50) ( −1.26) (0.01) ( −2.11) 

9 1.46 12.14 13.97 −2.47 −4.51 2.79 −7.77 

(40.37) (2.34) (4.55) (-0.61) ( −2.13) (2.03) ( −4.31) 

10 1.79 13.56 22.74 −10.29 −6.37 9.48 −16.76 

(30.85) (2.02) (5.93) ( −2.02) ( −1.86) (4.37) ( −5.67) 

10 - 1 1.28 2.24 20.68 −19.56 −10.49 12.61 −24.16 

(15.26) (0.37) (6.41) ( −4.08) ( −2.31) (4.33) ( −6.26) 

Panel B - Bivariate βCAPM Portfolios 

Decile βCAPM RET r N r D αCAPM 
RET 

αCAPM 
N 

αCAPM 
D 

1 0.56 11.37 3.02 8.33 3.58 −2.55 6.27 

(21.20) (4.85) (1.96) (4.43) (2.46) ( −2.81) (5.27) 

2 0.74 12.00 3.56 8.27 2.48 −3.13 5.62 

(33.81) (4.37) (1.98) (3.91) (1.99) ( −4.09) (5.87) 

3 0.82 11.65 3.21 8.26 1.34 −4.06 5.34 

(58.14) (4.00) (1.70) (3.61) (1.17) ( −6.20) (5.89) 

4 0.91 12.21 4.31 7.67 0.93 −3.51 4.43 

(52.05) (3.75) (2.02) (3.06) (0.79) ( −5.09) (4.76) 

5 0.98 12.75 4.51 7.94 0.81 −3.74 4.44 

(74.39) (3.73) (2.03) (3.04) (0.70) ( −5.55) (5.11) 

6 1.05 13.83 5.09 8.40 1.19 −3.63 4.66 

(85.84) (3.78) (2.20) (2.98) (1.05) ( −5.32) (5.27) 

7 1.13 12.92 4.92 7.67 -0.48 −4.24 3.62 

(79.67) (3.27) (1.96) (2.53) (-0.42) ( −5.93) (3.84) 

8 1.22 12.52 5.77 6.36 −1.76 −3.97 2.01 

(62.69) (2.88) (2.13) (1.95) ( −1.39) ( −5.36) (1.89) 

9 1.33 13.99 6.60 6.85 −1.37 −3.74 2.11 

(58.14) (2.97) (2.29) (1.94) (-0.89) ( −4.16) (1.57) 

10 1.54 13.85 10.66 2.56 −3.62 -0.83 −3.00 

(48.60) (2.40) (3.16) (0.59) ( −1.65) (-0.66) ( −1.64) 

10 - 1 0.98 2.49 7.63 −5.77 −7.19 1.71 −9.27 

(17.44) (0.54) (3.08) ( −1.63) ( −2.26) (0.89) ( −3.64) 

 

 

 

5.2.2. Alternative channels 

The fact that expected Open RM OI conditioned on

anomaly characteristics does not predict close-to-close re-

turns indicates that these anomaly characteristics relate
194 
to Open RM OI differently from how they relate to ex- 

pected close-to-close returns (e.g., via risk or mispric- 

ing). However, a common cause could still underlie the 

characteristics-sorted close-to-close and night-minus-day 
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returns if the cross-sectional relation between these char-

acteristics and night-minus-day returns operates through a

channel other than expected Open RM OI. We explore this

open-ended question by focusing on the opposite signed

slopes of the capital asset pricing model (CAPM) between

night and day, given its important implications for asset

pricing theories ( Hendershott et al., 2020 ). 

Specifically, to isolate the variation in CAPM beta that

is independent of expected Open RM OI, we perform

10-by-10 conditional double sorts first on 

̂ Open RM OI and

then on CAPM beta at the end of each month t . For each of

the resulting 100 portfolios, we calculate value-weighted

close-to-close, overnight, and intraday returns in month

t + 1 . Next, within each CAPM beta decile, we average

across the 10 ̂ Open RM OI portfolios to get the bivariate

CAPM beta decile portfolios, which have similar values of
̂ Open RM OI across the decile portfolios. 

For context, Panel A of Table 8 first reports the uni-

variate portfolio sort results based on CAPM beta. We

observe a strongly positive (negative) monotonic relation

between βCAPM and overnight (intraday) returns. Specif-

ically, if a stock’s market beta increases by 1, its aver-

age overnight returns increase by 6.4 basis points (bps)

per day, while its average intraday returns decrease by

6.1 bps per day, which is in line with the findings of

Hendershott et al. (2020) . 34 The univariate CAPM beta

10 − 1 portfolio generates a significant −10 . 5% per annum

close-to-close return CAPM alpha ( αCAPM 

RET 
), consistent with

the well-known betting-against-beta effect ( Frazzini and

Pedersen, 2014 ). Its overnight return alpha ( αCAPM 

N 
) is

12 . 6% per annum and its intraday return alpha ( αCAPM 

D 
) is

−24 . 2% per annum, a puzzling phenomenon highlighted by

Hendershott et al. (2020) . 

In Panel B of Table 8 , we report the results for the bi-

variate CAPM beta portfolios that control for ̂ Open RM OI .

We find there remains a strongly increasing post-formation

CAPM beta across the ascending deciles of the bivariate

CAPM beta portfolios, which results in a post-formation

beta of 0.98 for the 10 − 1 portfolio. The 10 − 1 bivariate

and univariate CAPM beta portfolios generate very similar

average close-to-close returns ( 2 . 49% vs. 2 . 24% per annum).

In contrast, the 10 − 1 bivariate CAPM beta portfolio has a

much smaller r N and r D at 7 . 6% and −5 . 8% per annum, re-

spectively, compared to the 20 . 7% and −19 . 6% generated by

its univariate counterpart. Noticeably, the 10 − 1 bivariate

CAPM beta portfolio has an insignificant αCAPM 

N 
that is 86%

smaller compared to its univariate counterpart and a sig-

nificant αCAPM 

D 
that is 62% smaller. For robustness, we again

conduct an out-of-sample test in the pre-January 2010 pe-

riod and find qualitatively similar results (see Section 4 of

the Internet Appendix). Therefore, controlling for expected

Open RM OI has little effect on the relation between CAPM

beta and close-to-close returns, but it substantially reduces

the positive beta- r N relation and the negative beta- r D rela-

tion. 
34 The magnitude of the beta-return relation is smaller here since we 

examine value-weighted portfolios and use the volume-weighted open 

price to compute returns. 

195 
Overall, our results in this section suggest that the 

channels that connect anomaly characteristics to night- 

minus-day returns are different from the channels that 

connect anomaly characteristics to expected close-to-close 

returns. 

6. Conclusion 

We develop a heterogeneous agent model to un- 

derstand the predictability of night-minus-day returns. 

In our model, two different types of arbitrageurs with 

offsetting advantages endogenously determine the price 

of liquidity at different times of the day. At the market 

open, when unpriced private information is more plentiful, 

fast arbitrageurs’ information advantages allow them to 

cream-skim and charge a high price for liquidity. As pri- 

vate information gets incorporated into prices throughout 

the trading day, slow arbitrageurs’ advantages in bearing 

inventory risk become more important and they become 

the marginal liquidity provider, leading to predictable 

night-minus-day returns. 

By providing the microfoundation that gives rise to the 

limited participation of these heterogeneous arbitrageurs, 

our model leads to novel testable predictions that are 

borne out in the data. First, we document that the order 

imbalances associated with the predictable night-minus- 

day returns persist throughout the trading day, which chal- 

lenges the prevailing explanations that focus on liquid- 

ity demand but is consistent with our model. Second, 

we show that cross-sectional differences in predictable 

night-minus-day returns align with liquidity demand ab- 

sorbed by fast arbitrageurs near market open, and this re- 

lationship increases in fast arbitrageurs’ required returns 

from liquidity provision. Third, we validate our proposed 

cream-skimming mechanism by identifying two subsets 

of assets where fast arbitrageurs are unlikely to be able 

to determine the price of liquidity – specifically, Euro- 

pean dual-listed stocks that have active overseas trading 

before the U.S. open and stocks where high frequency 

firms choose to intermediate a smaller fraction of trades. 

Among these assets, we show that the liquidity demand 

absorbed by fast arbitrageurs less strongly predicts future 

returns. 

Our analysis demonstrates one novel channel by which 

the strategic interactions among arbitrageurs give rise to 

intraday variations in the identity of the marginal in- 

vestor, providing new insights into the price formation 

process. These insights help explain substantial variations 

in the predictable night-minus-day returns of anomaly 

characteristics-sorted portfolios and, more broadly, high- 

light the complexity inherent in assessing the welfare im- 

plications of new technologies in market making: while 

improvements in high-frequency trading technology might 

lead the presence of HFTs to be associated with increas- 

ingly narrow spreads, these technologies may nevertheless 

make liquidity more costly overall. 
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Appendix A 

Solutions of (2) and (5) 

Slow arbitrageurs’ ask price solves Eq. (2) . Given that

η is uniformly distributed between [ −n, + n ] , Pr (η > a ) =
n −a 
2 n , and E [ η| η > a ] = 

n + a 
2 , for | a | ≤ n . Thus, Eq. (2) be-

comes 

(1 − ˜ π) 
(

1 

2 

)
(a s, 1 ) + ( ̃  π) 

(
n − a s, 1 
2 × n 

)(
a s, 1 − n + a s, 1 

2 

)
= 0 , 

(A.1)

and has the solution given in the main text, 

a s, 1 = s ( ̃  π) = 

n 

(
1 − √ 

1 − ˜ π2 
)

˜ π
. 

The fast arbitrageur’s ask price solves Eq. (5) which, given

the distributions of π and η, equates to 

(1 − π) 
(

1 

2 

)
(a f, 1 − c a ) + (π ) 

(
n − a f, 1 

2 × n 

)(
a f, 1 − c a −

n + a f, 1 

2 

)
= 0 ,

(A.2)

and has the solution 

a f, 1 = f (π ) = 

πc a + n −
√ 

π2 c 2 a + n 

2 (1 − π2 ) 

π
. 

Proof of Lemma 1 

To begin, we define the inverse functions f −1 (x ) and

s −1 (x ) . Note that both f (x ) and s (x ) are monotonic for x ∈
(0 , 1) , so the inverses are well behaved on the range of f

and s . To complete the definition of the inverses, we define

f −1 (a ) = 0 if a ≤ f (0) , 

and 

f −1 (a ) = 1 if a ≥ f (1) . 

We define s −1 (a ) in the same way, so that both inverses

are well-defined for all a . 
196
Next, consider x, y , such that f (x ) = s (y ) , and x, y ∈ 

(0 , 1) . In this case, by construction, both arbitrageurs’ 

quotes are the same. Furthermore, x = f −1 (s (y )) . To com- 

plete the proof, note that ∀ x ′ < x , f (x ′ ) < s (y ) . That is, for

˜ π = y , if the realization of π is below x , the fast arbi- 

trageur’s ask is lower than the slow arbitrageur’s ask, and 

hence the slow arbitrageur’s ask is not competitive. 

Statement and Proof of Lemma 2 

Lemma 2 (Slow arbitrageurs’ profits). The presence of fast 

arbitrageurs at t = 1 makes slow arbitrageurs unwilling to 

quote a narrow spread. Suppose a slow arbitrageur posts an 

ask price a s, 1 at t = 1 . Relative to an economy with only 

slow arbitrageurs, the existence of competition from fast ar- 

bitrageurs reduces slow arbitrageurs’ expected welfare by 

∫ f −1 (a s, 1 ) 

0 

V s, 1 (a s, 1 , π) φπ dπ, (A.3) 

where V s, 1 is defined in Eq. (A.4) below, φπ is the probability 

density function of π , and Eq. (A.3) is positive for all nonzero 

f −1 (a s, 1 ) . 

Proof . For a conjectured ask price a s, 1 and a realization π , 

slow arbitrageurs expect a filled order to be worth 

 s, 1 (a s, 1 , π) = (1 − π)(λ)(a s, 1 ) + (π )(1 − �η(a s, 1 ))(a s, 1 − ψ(a )) . 

(A.4) 

In the absence of fast arbitrageurs, slow arbitrageurs’ valua- 

tion given the ask being hit is given by 

E 0 [ V s, 1 | Fast absent ] = 

∫ s −1 (a s, 1 ) 

0 

V s, 1 (a s, 1 , π) φπ dπ

+ 

∫ 1 

s −1 (a s, 1 ) 
V s, 1 (a s, 1 , π) φπ dπ, (A.5) 

where the first term on the right hand side is positive, and 

the second term is negative. It follows from Lemma 1 that in 

the presence of fast arbitrageurs, this becomes 

E 0 [ V s, 1 | Fast present ] = 

∫ s −1 (a s, 1 ) 

f −1 (a s, 1 ) 
V s, 1 (a s, 1 , π) φπ dπ

+ 

∫ 1 

s −1 (a s, 1 ) 
V s, 1 (a s, 1 , π) φπ dπ. (A.6) 

The difference in these two expectations is 

∫ f −1 (a s, 1 ) 

0 

V s, 1 (a s, 1 , π) φπ dπ, (A.7) 

as desired. V s, 1 is positive everywhere in the region 

[0 , f −1 (a s, 1 )] because f −1 (a s, 1 ) ≤ s −1 (a s, 1 ) . This means that 

if slow arbitrageurs post a s, 1 that delivers zero profit in an 

economy without fast arbitrageurs, the same a s, 1 will result 

in expected losses when fast arbitrageurs are present. Given 

the potential for slow arbitrageurs to suffer a loss, their equi- 

librium quotes depend upon the extent to which fast arbi- 

trageurs can cream-skim throughout the trading day. �

Proof of Proposition 1 

Suppose both types of arbitrageurs appear in the mar- 

ket. The fast arbitrageur observes π , and prepares to post 
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an ask price f (x = π) . The slow arbitrageur does not ob-

serve π , but she can make an estimate about the circum-

stances under which any given ask price s (y ) would be hit.

Specifically, for any given y , she can solve for ˆ x such that

f ( ̂  x ) = s (y ) , by calculating ˆ x = f −1 (s (y )) . Thus, if the slow

arbitrageur posts an ask price of s (y ) , she expects that the

fast arbitrageur will undercut her if and only if they ob-

serve π < ˆ x . She therefore concludes that with an ask price

s (y ) , she can capture the market for π ∈ [ ̂ x , 1] , but she will

lose the market for π ∈ [0 , ̂  x ) . 

Given that she wins the market in those states of the

world where π ∈ [ ̂ x , 1] , it remains for her to calculate the

circumstances under which it would be profitable to do so

(i.e., to sell at a price s (y ) in the states of the world where

π ∈ [ ̂ x , 1] ). Note that π is distributed uniformly, so its con-

ditional expectation is simply in the middle of the region

[ ̂ x , 1] ; she expects to meet an informed counterparty with

probability ˆ x +1 
2 . Her entry is (weakly) profitable if and only

if 

s 

(
ˆ x + 1 

2 

)
≤ s (y ) , (A.8)

i.e., the break-even ask price conditional on the expected

informedness of her counterparty ( ̃  π ) given the states of

the world in which her ask is hit is no higher than the ac-

tual ask price s (y ) that would win her that segment of the

market. More specifically, following Lemma 1 , it is prof-

itable for a slow arbitrageur to post an ask price s (y ) if

s (y ) ≥ s 

(
ˆ x + 1 

2 

)
, (A.9)

s (y ) ≥ s 

(
f −1 (s (y )) + 1 

2 

)
, (A.10)

Rearranging to eliminate the inverse functions, the slow ar-

bitrageur is willing to enter at an ask price s (y ) if and only

if 

y ≥ f −1 (s (y )) + 1 

2 

, (A.11)

f (2 y − 1) ≥ s (y ) . (A.12)

Given competitive slow arbitrageurs, profits will be driven

to zero and the above will hold with equality; i.e., if

(9) holds for at least one y ∈ [0 , 1] , then the equilibrium

y will obey 

f (2 y − 1) = s (y ) . (A.13)

Note that segmentation will arise as long as f (0) <

s 
(

1 
2 

)
. This is because when f (0) ≥ s 

(
1 
2 

)
, slow arbitrageurs

will be the marginal liquidity providers for all π . Given

f ( 0 ) = c, f (0) < s 
(

1 
2 

)
implies c < 

n −n 
√ 

1 −0 . 5 2 

0 . 5 . Simplifying

gives (A.14) , the upper bound for c. 

c ≡ n × (2 −
√ 

3 ) . (A.14)

If c > c , fast arbitrageurs’ cost of capital is too high for

them to profitably provide liquidity, even if they observe

π = 0 . In this case, slow arbitrageurs are always the

marginal liquidity provider. 
197 
At t = 2 , slow arbitrageurs are fully informed, so they 

set the competitive risk-neutral bid and ask at b s, 2 = a s, 2 = 

˜ v = v 0 + η. Fast arbitrageurs’ reservation values will reflect 

any accumulated inventory from t = 1 , so they will be will- 

ing to sell at a price above ˜ v − c b to offload their pos- 

itive inventory and buy at price below 

˜ v + c a to offload 

their negative inventory. Because fast arbitrageurs’ reserva- 

tion sales price is below slow arbitrageurs’ bid, and fast 

arbitrageurs’ reservation purchase price is above slow arbi- 

trageurs’ ask, fast arbitrageurs will take advantage of slow 

arbitrageurs’ quotes to offload their inventory at t = 2 , and 

exit the market. The ask and bid prices at t = 2 are pinned 

down by slow arbitrageurs’ valuations rather than fast ar- 

bitrageurs’ reservation value because fast arbitrageurs’ de- 

mand for liquidity at t = 2 is finite (equal to their accu- 

mulated inventory over a trading day) whereas slow arbi- 

trageurs’ supply of liquidity is substantially larger (unlim- 

ited in the model). 

Proof of Proposition 2 

Note that when fast arbitrageurs determine the price 

of liquidity – i.e., when fast arbitrageurs are the marginal 

liquidity provider at both the ask and the bid – this en- 

tails π ≤ Min 

{
π ∗

a , π
∗
b 

}
. Thus, the relationship between ask 

(bid) price and the fundamental values conditional on 

trades occurring at the ask (bid) price is given by 

E 1 [ v 2 | ask ] = a − c ′ × q a , (A.15) 

and 

E 1 [ v 2 | bid] = b + c ′ × q b . (A.16) 

That is, the trade price deviates from post-trade expected 

fundamental values when fast arbitrageurs determine the 

price of liquidity. Next, considering pre-trade midquotes, 

the above can be rearranged to give 

a = E 1 [ v 2 | ask ] + c ′ × q a , (A.17) 

b = E 1 [ v 2 | bid] − c ′ × q b . (A.18) 

and thus 

a + b = E 1 [ v 2 | ask ] + c ′ × q a + E 1 [ v 2 | bid] − c ′ × q b . (A.19)

Now suppose temporarily that (i) the expected fundamen- 

tal value of the asset conditional on no trade is equal to 

its ex ante fundamental value; i.e., the absence of trade is 

uninformative, and (ii) trade at the ask is as likely as trade 

at the bid. By the law of iterated expectations, 

v 0 = P r(ask ) × E 1 [ v 2 | ask ] + P r(bid) × E 1 [ v 2 | bid] 

+ P r (neither ) × E 1 [ v 2 | neither] , (A.20) 

and thus under the aforementioned (i) and (ii), 

v 0 = 

E 1 [ v 2 | ask ] + E 1 [ v 2 | bid] . 

2 

, (A.21) 

and hence 

a + b 

2 

− v 0 = 

1 

2 

c ′ ( q a − q b ) , (A.22) 

Lastly, note that, as we relax conditions (i) and (ii), 

because higher ask prices and lower bid prices will de- 

ter informed counterparties, the factor of proportionality 
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will change, but the direction of the relationship will not

change. 

Thus, more generally, for an asset with π < π ∗, the pre-

trade price at market open, m 1 , is given by the fast arbi-

trageur’s midquote, and deviates from expected fundamen-

tal value, 

E [ ( m 1 − v 0 ) | π ] ∼ c ′ × (q a − q b ) . (A.23)

The price at market close, m 2 , is given by the slow arbi-

trageur’s midquote, and does not deviate from fundamen-

tal value, 

E [ m 2 ] = E ( v 2 ) , (A.24)

and t = 2 prices conditional on trade equal conditional ex-

pected values. Thus, averaging across all stocks, overnight

returns (m 1 − v 0 ) and intraday returns (v 2 − m 1 ) will have

opposite signs in expectation, generating night-minus-day

returns that are (i) increasing in q a , (ii) decreasing in q b ,

and (iii) whose magnitude increases when c ′ increases. 

Proof of Prediction 1 

Propositions 1 and 2 establish that liquidity demand ab-

sorbed by fast arbitrageurs around market open will corre-

late positively with overnight returns. However, at market

close, slow arbitrageurs determine the price of liquidity.

Thus, intraday returns are given by the difference in fast

and slow arbitrageurs’ price of liquidity, which generates

reversals irrespective of ongoing order imbalances. 

Proof of Prediction 2 

In the cross-section, the expected overnight returns in-

crease in expected order imbalances at open (i.e., at t = 1 )

and in fast arbitrageurs’ required returns, as shown by

Eq. (A.23) of Proposition 2 . Away from market open, once

slow arbitrageurs become the marginal liquidity provider,

order imbalances no longer exert any price pressure; per-

sistent order imbalances will no longer increase price devi-

ations, but rather price deviations will decrease . Therefore,

predictable intraday returns are opposite to the overnight

returns, generating predictable night-minus-day returns. 

Proof of Prediction 3 

The relationship between π and the identity of the

marginal liquidity provider follows immediately from the

result that slow arbitrageurs determine the price of liq-

uidity when π > π ∗. The relationship between n and the

identity of the marginal liquidity provider follows from

the equilibrium condition (10) . Specifically, π ∗ that solves

(10) is increasing in n , as shown by Fig. 2 . To see why, re-

call that equilibrium requires, given some baseline n = n 0 ,

the relationship f (π ∗
0 ; n 0 ) = s ( 

π∗
0 
+1 

2 ; n 0 ) to hold. Now con-

sider a positive perturbation in n ; n 1 = n 0 + ε. To begin,

suppose slow arbitrageurs conjecture π ∗
n = n 1 = π ∗

0 
. At the

original intersection point π ∗
0 , fast arbitrageurs expect to

meet an informed counterparty with probability π ∗
0 

, so

their expected loss from trading against informed traders

increases with the increased n and thus they have to raise

their ask price, i.e., f (π ∗
0 ; n 1 ) = f (π ∗

0 ; n 0 ) + δ f . The slow

arbitrageurs, who do not observe realized π , expect to

meet an informed counterparty with probability 
π∗

0 
+1 

>
2 

198 
π ∗
0 . Therefore, slow arbitrageurs’ expected loss from trad- 

ing against informed traders increases more with the in- 

creased n , and thus slow arbitrageurs raise their ask price 

by a larger amount, i.e., s ( 
π∗

0 
+1 

2 ; n 1 ) = s ( 
π∗

0 
+1 

2 ; n 0 ) + δs > 

f (π ∗
0 ; n 1 ) = f (π ∗

0 ; n 0 ) + δ f . Thus, for n = n 1 , at the orig- 

inal intersection point π ∗
0 

, fast arbitrageurs’ break-even 

ask price is lower than slow arbitrageurs’ break-even ask 

price. If f (π ∗
0 ; n 1 ) < s ( 

π∗
0 
+1 

2 ; n 1 ) , then slow arbitrageurs 

will trade with an informed counterparty with probabil- 

ity between π = π ∗ > π ∗
0 

and π = 1 and thus slow arbi- 

trageurs have to increase their conjectured π ∗
n = n 1 . There- 

fore, as n decreases, slow arbitrageurs are more likely to 

determine the price of liquidity at market open (i.e., they 

determine the price of liquidity for a wider range of π ). 

Following Proposition 2 , predictable night-minus-day 

returns arise when fast arbitrageurs determine the price of 

liquidity around market open. Therefore, predictable night- 

minus-day returns are smaller when slow arbitrageurs are 

more likely to determine the price of liquidity. With re- 

spect to the prediction, if fast arbitrageurs’ liquidity pro- 

vision occurs only when fast arbitrageurs determine the 

price of liquidity, predictable liquidity provision from fast 

arbitrageurs and predictable night-minus-day returns will 

shrink in tandem. However, as long as fast arbitrageurs at 

least occasionally provide liquidity for other reasons (e.g., 

as discussed in footnote 17 in the main text), the relation- 

ship between fast arbitrageurs’ liquidity provision and the 

predictable night-minus-day returns will attenuate as fast 

arbitrageurs become less likely to determine the price of 

liquidity. 

Appendix B 

B1. Construction of the LPS portfolios 

We use the 17 long-short portfolios from 

Lou et al. (2019) as our test assets. These portfolios 

are sorted on the following characteristics: the monthly 

cumulative overnight ( r N , RN) and intraday ( r D , RD) re- 

turn, the exponentially-weighted moving average of the 

overnight ( r ewma 
N 

, RN EWMA) and intraday ( r ewma 
D 

, RD 

EWMA) return in months t − 1 to t − 12 , idiosyncratic 

volatility (IVOL), turnover (TURNOVER), CAPM beta (BETA), 

month t − 1 to month t − 11 return momentum (MOM), 

month t short return reversal (STR), issuance (ISSUE), 

return on equity (ROE), investment (INV), industry mo- 

mentum (INDMOM), accruals (ACCRUALS), book to market 

ratio (BM), post-earnings announcement drift (SUE), and 

market capitalization (ME). 

Following Lou et al. (2019) , we sort all stocks into decile 

portfolios based on an ascending ordering of each of these 

characteristics at the end of each month t . The long-short 

zero investment portfolio goes long the top decile portfo- 

lio and short the bottom decile portfolio. We then calculate 

the daily value-weighted close-to-close, overnight, and in- 

traday portfolio returns realized in month t + 1 with the 

prior day’s market capitalization as the weights. The daily 

night-minus-day return of the long-short portfolio is the 

return on a trading strategy that goes long this portfolio 

overnight and shorts it intraday. 
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B2. Construction of NMD MVE and RET MVE 

To parsimoniously summarize the night-minus-day and

close-to-close return predictabilities associated with these

17 LPS portfolios, we construct their respective pricing fac-

tor using the Bayesian stochastic discount factor (SDF) es-

timator proposed by Kozak et al. (2020) (hereafter the KNS

estimator). The KNS estimator of b in Eq. (B.1) resembles a

ridge regression estimate with a L 2 norm penalty term, 

ˆ b = 

(

 + γ I 

)−1 
μ, (B.1)

where I is the identity matrix, 
 and μ are the estimated

return covariance matrix and the mean of the test asset

returns, respectively, and γ is the hyperparameter associ-

ated with the L 2 penalty term. As Kozak et al. (2020) ex-

plain, this estimator shrinks the SDF coefficients of the

naive estimator towards zero, with the shrinkage factor be-

ing stronger for the coefficients on the principal compo-

nents with smaller variance. 35 

Our implementation of the KNS estimator is as follows.

We denote the night-minus-day or close-to-close returns

for the 17 LPS portfolios by F t . With a time series of length

T , we estimate the sample moments by, 

μ = 

1 

T 

T ∑ 

t=1 

F t (B.2)


 = 

1 

T 

T ∑ 

t=1 

( F t − μ) ( F t − μ) 
′ 
. (B.3)

To choose the optimal γ , we follow Kozak et al. (2020) in

using K-fold cross-validation (CV) with K = 3 . We first

equally divide our sample into three subsamples and then

set a grid of potential values for γ . For a given γ value,

we use K − 1 subsamples to estimate the in-sample mo-

ments μIS and 
IS , according to Eqs. (B.2) and (B.3) , and

ˆ b IS = 

(

IS + γ I 

)−1 
μIS . Then, using the withheld subsample,

we compute the out-of-sample (OOS) moments, μOOS and


OOS . Finally, we compute the out-of-sample R 2 as, 

R 

2 
OOS = 1 −

(
μOOS −

∑ 

OOS 
ˆ b IS 

)′ (
μOOS −

∑ 

OOS 
ˆ b IS 

)
μOOS 

′ 
μOOS 

. 

We withhold each of the K subsamples, treat it as OOS

data, and repeat the above procedure K times. The cross-

validated R 2 is the average R 2 
OOS 

across these K estimates

for a given γ . Then, we select the optimal γ that max-

imizes the cross-validated R 2 . With the optimal γ ∗, we

compute the SDF coefficient b ∗ using the full-sample mo-

ments according to Eqs. (B.1) – (B.3) . 

The mean-variance efficient portfolio implied by b ∗ is a

one-dollar long and one-dollar short zero investment port-

folio with the following weight on each LPS portfolio i , 

w i = 

b ∗
i ∑ 17 

i =1 

∣∣b ∗
i 

∣∣ . (B.4)
35 Among several alternatives that Kozak et al. (2020) explore, they state 

that this estimator is the natural starting point for applications of their 

approach if sparsity is not required. 
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When the test assets are the night-minus-day (close-to- 

close) returns of the 17 LPS portfolios, the above procedure 

delivers the NMD (RET) MVE portfolio. We note that the 

procedure uses full-sample information. We refer readers 

interested in the out-of-sample performance of the algo- 

rithm above to Kozak et al. (2020) . In a companion paper 

( Lu and Qin, 2021 ), we also evaluate the OOS performance 

of the NMD MVE portfolio in pricing an expanded set of 

test assets. 

B3. Computing portfolio-level order imbalances 

We compute order imbalances as follows. First, we 

measure 30-minute order imbalances for stock i at time t

as, 

OI it = 

Buy it − Sell it 
Volume it 

, 

where Buy it and Sell it are the orders that are classi- 

fied as buys or sells according to either the Lee and 

Ready (1991) or the Boehmer et al. (2021) algorithms, and 

Volume it is the daily trading volume in shares. Next, we 

compute the portfolio-level value-weighted order imbal- 

ances for the decile portfolios sorted on each of the 17 LPS 

characteristics as, 

OI c dt = 

∑ 

i ∈ d 
w 

c 
it OI it , 

where w 

c 
it 

are the market capitalization weights for stock 

i belonging to the decile d portfolio sorted on the char- 

acteristic c at time t . Finally, we compute the order im- 

balance for the NMD MVE portfolio by applying the NMD 

MVE weight ( w 

MVE ) on the order imbalances of the 17 LPS 

long-short portfolios ( OI c 
LS,t 

), 

OI NMD 
t = 

17 ∑ 

c=1 

w 

MVE OI c LS,t . 

B4. Construction of the daily rev predictive model 

The daily reversal strategy return (Daily Rev) is the 

cross-sectional average of the returns of five long-short 

portfolios that weight stocks proportional to the negative 

of 1- to 5-day lagged daily market-adjusted returns, re- 

spectively. This strategy is rebalanced daily and hedged 

for time-varying market exposure following Eq. (18) of 

Nagel (2012) . Following Nagel (2012) , we replicate the 

Daily Rev strategy and use the daily returns of this re- 

versal strategy beginning in 1998. From 1998 to 2020, 

the estimated predictive OLS model using daily data 

is ̂ Daily Rev t = −0 . 033 + 0 . 182 × VIX t−5 − 0 . 515 × R M,t−5 + 

0 . 254 × Pre-Decimalization t−5 following Eq. (19) and the 

variable definitions in Nagel (2012) . We confirm that the 

VIX is the most important predictor. Our test results are 

robust to using VIX directly to capture the time-series vari- 

ation in the expected returns from liquidity provision. 

B5. Identifying dual-list stocks 

We identify European dual-listed stocks with any of the 

following exchange codes (exchg) in Compustat Global that 
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also have the same GVKEY as a U.S.-traded stock. Lon-

don Stock Exchange 194, NYSE Euronext Paris 286, NYSE

Euronext Amsterdam 104, Germany XETRA 171, Swiss Ex-

change 151, Germany Deutsche Boerse AG 154, Sweden

NASDAQ OMX Nordic 256, Italy Borsa Italiana Electronic

Share Market 209, Norway Oslo Bors ASA 228, Spain Bolsa

De Madrid 201, Denmark OMX Nordic Exchange Copen-

hagen AS 144, Finland NASDAQ OMX Helsinki Ltd 167, Bel-

gium NYSE Euronext Brussels 132, BM and F Bovespa SA

Bolsa De, Valores Mercadorias E Futuros 243. All of these

stock exchanges have trading hours that overlap with the

U.S. open. For Canadian dual-listed stocks, we use stocks

with any of the following exchange codes (exchg) in Com-

pustat Global that have the same GVKEY as a U.S.-traded

stock: Toronto Stock Exchange Canada 7, TSX Venture Ex-

change Canada 9. When we match these dual-listed stocks

by industry, we adopt the industry classification based

on the GGROUP variable from Compustat Global, i.e., the

leftmost 4 digits of Global Industry Classification Stan-

dard (GICS) code. Finally, we impose the data filters in

Section 3.1 of the main paper on both the dual-listed and

non-dual-listed U.S. stocks and then identify the market

capitalization- and industry-matched pairs. 

Supplementary material 

Supplementary material associated with this article can

be found, in the online version, at 10.1016/j.jfineco.2023.03.

002 
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