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1. Introduction

Recent research has documented that characteristics-
sorted stock portfolios earn large, predictable, and oppo-
site signed overnight and intraday returns. For example,
Hendershott et al. (2020) report that if a stock’s market
beta increases by 1, its average overnight returns increase
by 14 basis points (bps) per day while its average intra-
day returns decrease by 15 bps per day. The resulting
beta-sorted portfolio has an average “night-minus-day”
return of 73% per annum.! These patterns are particularly

* Corresponding author.

E-mail address: sgm@uga.edu (S. Malliaris).

1 The overnight return is measured from the previous close to today’s
open, the intraday return is measured from today’s open to today’s close,
and the night-minus-day return is the overnight return minus the intra-
day return. See Fig. 3 for the predictable night-minus-day return patterns
in our sample period.

https://doi.org/10.1016/j.jfineco.2023.03.002
0304-405X/© 2023 Elsevier B.V. All rights reserved.

puzzling because expected risk exposures, risk premia, and
information flows are unlikely to flip signs between night
and day.

Existing explanations have conjectured that these pre-
dictable night-minus-day returns reflect recurring price
pressures caused by order flow shocks. However, if order
flows alone are responsible for generating the return pat-
terns, then alongside the recurring swings in prices, we
should observe similarly recurring swings in order flows.
Our first novel finding is that such order flow swings do
not occur. Order imbalances near the market open are in
the same direction as the predictable overnight returns,
consistent with the prevailing explanations. Surprisingly,
however, these imbalances persist throughout the rest of
the day and thus are in the opposite direction of the pre-
dictable intraday return, deepening the night-minus-day
return puzzle.

We offer an alternative explanation of night-minus-
day return predictability. Our explanation emphasizes
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heterogeneity among liquidity providers and decreasing
information asymmetry throughout the trading day. We
build a model featuring key elements from Glosten and
Milgrom (1985) and Grossman and Miller (1988), sim-
ilar to Hendershott and Menkveld (2014). Informed or
sentiment-driven investors trade at the best bid or ask
price posted by liquidity providers. The novelty of our
model is that liquidity providers differ in their expertise.
“Fast” arbitrageurs (e.g., designated or de facto market
makers) invest in market making technology, which gives
them an advantage in separating informed order flows
from uninformed ones. “Slow” arbitrageurs (e.g., large
asset managers) invest in risk bearing capacity, which
gives them an advantage in having low inventory costs.?

Due to the difficulty of trading on information that
arrives during the thinly traded overnight session, the
amount of unpriced private information tends to be high-
est at market open (Madhavan et al., 1997; Barclay and
Hendershott, 2003). During these times, fast arbitrageurs’
information advantage allows them to “cream-skim” orders
that are less likely to be informed. Their limited risk bear-
ing capacity causes them to set asymmetric bid and ask
quotes to control their inventory risk, causing mid-quote
prices to deviate from fundamental values. Due to cream
skimming risk, slow arbitrageurs cannot undercut fast ar-
bitrageurs despite their greater risk bearing capacity. As
informed investors’ private information is revealed, cream
skimming risk subsides, and slow arbitrageurs are able to
undercut by providing cheaper liquidity, compressing price
deviations later in the day. Thus, even with persistent or-
der flows in the same direction throughout the day, we ob-
serve predictable overnight and intraday returns in oppo-
site directions.

Our model thus resolves an open question in the liter-
ature: given that trading on night-minus-day return pat-
terns is highly profitable at mid-quote or volume-weighted
average prices, even among large and liquid stocks, why
doesn’t competition from lower-cost liquidity providers
eliminate these patterns? Our model highlights that fast
arbitrageurs’ cream skimming prevents slow arbitrageurs’
entry, and thus night-minus-day returns should arise only
in a subset of assets where fast arbitrageurs can charge a
high price of liquidity due to the cream skimming mech-
anism. Testing our conjectured mechanism is empirically
challenging due to the strategic and proprietary nature of
fast arbitrageurs’ liquidity provision algorithms. Using both
standard and unique data, we design several tests to over-
come these empirical challenges.

Our first set of tests operates under the premise that
cream skimming risk near the market open allows fast ar-
bitrageurs to determine the price of liquidity for at least
some stocks in the cross section. Thus, on average, the
magnitude of predictable night-minus-day returns should
increase in the amount of predictable, uninformed or-
der flows absorbed by fast arbitrageurs near the mar-

2 In the real world, market makers have expertise in detecting high-
frequency patterns in order flows and privileged first looks at orders.
Large asset managers have low inventory costs because their liquidity
provision occurs during the process of implementing their optimal port-
folio. See Section 2 for detailed discussions.
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ket open and in fast arbitrageurs’ required returns. We
proxy for the former using retail order imbalances filled
by market makers (hereafter, RM OI) as identified by the
Boehmer et al. (2021) algorithm,> and we proxy for the
latter using the measure proposed by Nagel (2012) as
well as other market-level liquidity proxies. Supporting our
model’s predictions, we find that predictable RM OI near
the market open (hereafter, Open RM OI) strongly predicts
stocks’ night-minus-day returns and this predictive rela-
tionship is increasing in fast arbitrageurs’ required returns
from liquidity provision.

Having established the existence of an average predic-
tive relationship between Open RM OI and night-minus-
day returns, we proceed to identify the subsets of stocks
where this predictive relationship should be weaker ac-
cording to the model because slow arbitrageurs can out-
compete fast arbitrageurs and determine the price of lig-
uidity throughout the day. To test this model prediction,
we examine U.S. stocks that are dual listed in the European
stock markets. These stocks have active overseas trading
immediately prior to the US. market open, which should
reduce unpriced private information and thus curtail the
cream skimming risk for slow arbitrageurs around mar-
ket open. Consistent with this prediction, we find Euro-
pean dual-listed stocks have lower bid-ask spreads at the
U.S. open, and Open RM OI predicts night-minus-day re-
turns less strongly among these stocks. Further corrobo-
rating our proposed mechanism, we find no such effects
among stocks that are dual-listed in the Canadian stock
markets, which open at the same time as the U.S. stock
market. Finally, we use a unique dataset from the NAS-
DAQ exchange on high-frequency trading firms’ (HFT) trad-
ing to identify stocks where fast arbitrageurs provide less
liquidity near the market open. Consistent with an inter-
pretation that fast arbitrageurs have a smaller advantage
among these stocks, we find that in this subset of stocks,
Open RM OI predicts subsequent intraday returns less
negatively.

To evaluate the economic relevance of our model, we
use its predicted determinants to explain the night-minus-
day returns of the characteristics-sorted portfolios stud-
ied in the literature. Using the 17 anomaly-sorted portfo-
lios from Lou et al. (2019) (hereafter, LPS portfolios), we
find that the sign and magnitude of the average portfo-
lio night-minus-day returns can be explained by the cor-
responding average Open RM OI to a large extent, with
a cross-sectional regression R? of 71%. Consistent with
our model prediction, the cross-sectional regression slope
is more positive when the required returns from liquid-
ity provision are higher. Further corroborating the re-
sult, we show that the «’s of the night-minus-day re-
turns of these portfolios are mostly insignificant after ac-
counting for the exposure to Nagel's liquidity provision
factor.

In the last part of our analysis, given that anomaly
portfolios are simultaneously associated with predictable
night-minus-day returns and close-to-close returns, we ex-

3 Our inferences are robust to using Lee and Ready (1991) order imbal-
ances. See Section 3.3 for further discussions.
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plore whether these two types of return predictabilities
share a common source (McLean and Pontiff, 2016; Bo-
gousslavsky, 2021). We find that the expected Open RM
OI conditioned on the 17 LPS characteristics strongly pre-
dicts night-minus-day returns but does not predict close-
to-close returns. Furthermore, when we zoom into the sur-
prising finding in Hendershott et al. (2020) that the slopes
of the capital asset pricing model (CAPM) switch signs be-
tween night and day, we find that controlling for expected
Open RM OI has little effect on the relation between
CAPM beta and close-to-close returns but substantially
reduces the positive (negative) relation between CAPM
beta and overnight (intraday) returns. Both results sug-
gest that anomaly portfolios generate large and predictable
night-minus-day returns because anomaly characteristics
predict liquidity demand - but such predictable liquid-
ity demand does not appear to be the channel by which
anomaly characteristics influence expected close-to-close
returns.

1.1. Related literature

Our paper is motivated by the recent evidence that
stock characteristics-sorted long-short portfolios have siz-
able overnight and intraday returns that are similar in
magnitude but opposite in sign — a puzzling phenomenon
that is unlikely to arise from underlying risk exposures
(e.g., Berkman et al., 2012; Branch and Ma, 2012; Lou et al.,
2019; Hendershott et al., 2020, and Bogousslavsky, 2021).

Existing explanations share a focus on liquidity de-
mand. Hendershott et al. (2020) attribute the posi-
tive beta-overnight return relationship to a positive
risk-return tradeoff and the negative beta-intraday re-

turn relationship to speculators’ trading at market
open; Berkman et al. (2012) attribute night-minus-
day return predictability to retail trading demand;

Lou et al. (2019) propose a more general explana-
tion emphasizing opposing clientele trading demands
both at the market open and market close; and
Bogousslavsky (2021) argues that an overnight arbitrag-
ing constraint causes arbitrageurs to shed their holdings
right before the market close, resulting in predictable
returns of a mispricing portfolio in the last half-hour
of the trading session.* The only existing study that
provides a formal model for explaining night-minus-day
returns is Lou et al. (2019). In their model, predictable
night-minus-day returns arise due to exogenously spec-
ified opposing demands of investor clienteles at the
open and close, which can be interpreted as predicting
opposite signed order imbalances throughout a trading
day.

We propose a complementary explanation that empha-
sizes heterogeneity in liquidity provision. As a result, our
model allows for persistent order imbalances throughout
the day, as observed in the data. Furthermore, we demon-

4 Relatedly, Bogousslavsky (2016) argues that the periodicity of half-
hour intraday stock returns documented by Heston et al. (2010) is due
to the infrequent rebalancing of liquidity providers, which can also be in-
terpreted as a liquidity demand story.
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strate both theoretically and empirically that while the un-
informed order flows near the market open emphasized
by the literature are important, their predictive power for
night-minus-day returns depends on the identity of the
marginal liquidity provider as well as fast arbitrageurs’ re-
quired returns. These key determinants identified by our
model explain substantial variations in the predictable
night-minus-day returns. Our model also reconciles the
contrasting assumptions made by Lou et al. (2019) and
Bogousslavsky (2021). While both papers appeal to intra-
day variation in the availability of arbitraging capital, the
former assumes an arrival of additional arbitraging capi-
tal at the market close whereas the latter assumes with-
drawal of arbitraging capital due to an aversion to holding
overnight positions. Our model suggests that both charac-
terizations can be true if the former pertains to the behav-
ior of slow arbitrageurs and the latter pertains to that of
fast arbitrageurs.

2. A model of night-minus-day returns
2.1. Setup

We present a stylized but tractable model to transpar-
ently illustrate how the marginal liquidity provider might
change throughout the trading day. Consider a two-period
economy, t =0, 1,2, with J risky assets, a representative
sentiment-driven trader, a representative informed trader,
a competitive group of slow arbitrageurs, and a competi-
tive group of fast arbitrageurs. We call t =0 “yesterday’s
close,” t =1 “today’s open” or “open,” and t =2 “today’s
close” or “close.” We analyze a representative asset j €],
with fundamental value 7.

The common knowledge about 7 at t = 0 is normalized
to zero, i.e., vy = Eg[0] = 0. At t =1, informed traders ob-
tain private information 7 about ¥, that is, 7 = vy + n, with
n ~ U[—n, n] drawn independently for each risky asset. At
t = 2, all other market participants observe 1. Our results
do not require private information at close to be exactly
zero, but they do rely on the assumption that private in-
formation is higher at open than at close.”

For each asset, one trader arrives at t = 1. She is either
informed or sentiment-driven.® We denote the probability
that the arriving trader is informed by 7, with & ~ U[0, 1]
drawn independently for each risky asset. The trader trades
at the best available bid or ask price, using a market order.
If the trader is sentiment driven, the sign of her trade is
unrelated to the price; she buys with probability A = % and
sells otherwise. If the trader is informed, she optimizes by
trading if and only if it would be profitable given her pri-
vate information.

5 Numerous microstructure models imply that information asymme-
try declines on average over the trading day as private information ac-
quired overnight is incorporated into prices via trading (e.g., Kyle, 1985;
Glosten and Milgrom, 1985, and Easley and O’Hara, 1992). Empirically,
both Madhavan et al. (1997) and Barclay and Hendershott (2003) confirm
that information asymmetry decays over the trading day.

6 We use “sentiment-driven trade” as a catch-all term for all non-
fundamental-based, uninformed trades, which include liquidity-driven de-
mand.
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Conditional on trade, we take the expected trade size,
and hence the expected order imbalance, as an exoge-
nously given parameter in the model.” Specifically, let qq
(qp) denote the expected quantity conditional on trade at
the ask (bid), so that g4 — q, determines the expected or-
der imbalance conditional on trade in the model.® Consis-
tent with Berkman et al. (2012), night-minus-day returns
in our model will be predictable only if order imbalances
near the market open are predictable. Importantly, as we
will show in this section, these imbalances are a necessary
but not sufficient condition for night-minus-day returns to
arise.

Our model features two types of liquidity providers
with offsetting advantages. The fast type (i.e., designated or
de facto market makers) has an information advantage in
knowing the realization of 7, whereas the slow type (i.e.,
large asset management firms) only knows the distribu-
tion of m but not its realization. However, the slow type
has an advantage of lower inventory cost. Specifically, slow
arbitrageurs are risk neutral and require zero expected
profit to fill a trade, similar to the liquidity providers in
Glosten and Milgrom (1985). Fast arbitrageurs only fill a
trade if they expect to earn a required return ¢y = ¢ x
qya,p}, Where the constant ¢’ is the required return per unit
of inventory risk and g, p) is the trade size, similar to the
liquidity providers in Grossman and Miller (1988). Conse-
quently, fast arbitrageurs set bid and ask quotes asymmet-
rically around the expected fundamental value, resulting in
mid-quotes that are too high (low) when fast arbitrageurs
expect to absorb a positive (negative) liquidity demand,
similar to Hendershott and Menkveld (2014).

Our characterization of fast arbitrageurs’ information
advantage is motivated by market makers’ specialization in
detecting high-frequency order flow patterns, including but
not limited to the privileged first-look at retail order flows
through payment for order flow arrangements.® Our as-
sumption that slow arbitrageurs have a relatively lower in-
ventory cost reflects the fact that large asset management
firms’ liquidity provision occurs when they use limit or-
ders to achieve their optimal portfolio.' In contrast, mar-
ket makers have a much smaller balance sheet, mostly rely

7 The attention hypothesis put forward in Berkman et al. (2012) is one
explanation of the predictable order imbalances. More broadly, achieving
a better understanding of the specific underlying determinants of pre-
dictable demand at market open remains an interesting open question.

8 We assume sentiment-driven and informed traders place orders of
the same size such that the order size is not informative about the
trader’s type, which reflects the fact that informed traders routinely split
their orders into smaller ones to mimic the size of retail orders.

9 For example, as of 2021, Citadel Securities executed over 40% of all
U.S.-listed retail volume. Citadel Securities likely has better knowledge re-
garding retail order flows than its competitors. See U.S. Congress, “Game
Stopped? Who Wins and Loses When Short Sellers, Social Media, and Re-
tail Investors Collide,” hearings before the House Financial Services Com-
mittee, testimony of Kenneth Griffin, 117th Congress, Feb. 18, 2021.

10 For example, Eduardo Repetto (Chief Investment Officer at Dimen-
sional Fund Advisors) states, “We really like to act as a liquidity
provider..In some sense we have an advantage over a market maker
since we do not have inventory costs. We want to hold the securi-
ties that we buy for our portfolios.” See Pichardo, Raquel. September 17,
2007. “Applied Scientist: Face to Face with DFA’s Eduardo Repetto.” Pen-
sions & Investments, https://www.pionline.com/article/20070917/PRINT/
70914035/applied-scientist-face- to-face- with-dfa-s-eduardo-repetto.
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on internal capital, and employ costly high-frequency trad-
ing technology, so their goal is to maximize profit with
a minimal inventory position rather than earning the risk
premium on their inventory position.!!

2.2. Agents’ optimization

We denote “slow” and “fast” arbitrageurs using the sub-
scripts s and f, respectively. At each t =1, 2, there is a
round of trading. Both types of arbitrageurs post limit or-
ders simultaneously and thus cannot learn from one an-
other’s quotes.'> Any market participant may use mar-
ketable orders to trade with these limit orders. Both types
of arbitrageurs, as well as informed traders, maximize their
expected terminal wealth at t = 2.

At t =2, n is observed by all participants including slow
arbitrageurs, so fully competitive and risk neutral slow
arbitrageurs set bid (bs:) and ask (as¢) prices to break
even in equilibrium at bs; =as5 =V=vp+1, and slow
arbitrageurs are the marginal investor at t = 2. Fast arbi-
trageurs continue to face inventory costs, so they optimize
at t =2 by using market orders to trade with slow arbi-
trageurs’ limit orders and offload their inventory.

At t =1, agents’ optimization problems are more sub-
tle. Sentiment-driven traders buy with a probability A = %
and sell otherwise. Informed traders optimize by choos-
ing whether or not to trade with any extant limit orders
at t = 1; they buy if and only if n > a e {as;, a5}, or sell
short if and only if 7 < b e {bf, bs1}. Their position’s ex-
pected value per share, conditional on trading, is

if long,

if short. (1)

¥ ({a.b)) = {'3(5”(',;’“7 O

When there is no ambiguity about the relevant ask and bid
prices, we will drop the {a, b} and simply refer to the ex-
pected value conditional on informed trades as .

Recall that slow arbitrageurs know the distributions of
m and 7, but do not know the realization of either as of
t = 1. They can form their expectation of 7t conditional on
their posted quotes being best, which we denote 7, with
subscript a (ask) or b (bid) when needed to avoid ambigu-
ity. Under this expectation, recalling that vg = 0, they solve
for bid and ask prices as follows

(1 =7a) (M) (a5,1) + (7o) (1 = Py (a51))(a51 — ¥ (@5,1)) = 0(2)

1 “Fast” and “slow” characterize differences in information gathering
and processing systems rather than trade execution speeds. Both market
makers and large asset management companies have access to high speed
trading systems either internally or via intermediaries, but they specialize
in forming predictive signals over high and low frequencies, respectively.

12 In practice, it is difficult for slow arbitrageurs to learn 7 because mar-
ket makers can often use payment-for-order-flow arrangements to inter-
nalize orders at prices not immediately observable to slow arbitrageurs,
and because which limit orders are posted by market makers is also un-
known to slow arbitrageurs.

13 Fast arbitrageurs who carry a positive (negative) inventory into t = 2
will have a reservation selling (or buying) price of ¥ — ¢, (or ¥+ ¢,), and
thus gladly trade with slow arbitrageurs using a market order at . In
the real world, fast arbitrageurs’ overnight inventory costs are higher than
their intraday inventory costs, so our use of ¢, and ¢, is a lower bound on
fast arbitrageurs’ incentives to offload their inventory to slow arbitrageurs.
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(1 = 72p) (A) (=bs.1) + (7p) (P (bs.1)) (Y (bs.1) — bs.1) =(g)

where @, (x) is the cumulative distribution function of 7
evaluated at x. In both equations, the first term (which
is positive) represents the expected profits from trading
against a sentiment-driven counterparty. The second term
(which is negative) represents the expected losses from
trading against an informed counterparty.

Conditional on a conjectured 7,4, slow arbitrageurs solve
(2) by setting an ask price which we denote by the func-

tion s(#,),"
n<1 /1= ﬁg)
a1 =5() = ———=——", (4)
TTq
The prices that solve Eqgs. (2) and (3) are sustained in
equilibrium only if slow arbitrageurs’ expectation 7 cor-
rectly reflects meeting an informed counterparty condi-
tional on their quotes and fast arbitrageurs’ quotes. Note
that 7 will generally not equal the unconditional expec-
tation Eg[m], because in some states of the world (specif-
ically, those states with low realizations of =), fast arbi-
trageurs’ limit orders will undercut slow arbitrageurs’ or-
ders, and hence slow arbitrageurs’ orders will not be hit.
Thus, slow arbitrageurs face an adversely selected subset
of counterparties. In a world without fast arbitrageurs, 7
equals its unconditional expectation, and the analysis re-
duces to Glosten and Milgrom (1985).

The fast arbitrageur’s problem is simpler: they observe
7 and hence simply post prices a; 1, bs; which solve

(1 =) (agy = ca) + (T)(1 = Py (ag)) (a1 — e — ¥ (@) =0,

)

(1 =) (W) (=bg1 = cp) + (1) (Py (b)) (¥ (b) = bsy —cy) =0
(6)

The solution is denoted by the function f(r), where!®

TCq+1N— \/nzcg +n2(1 —-m?)
- .

(7)

Thus, when c is nonzero, fast arbitrageurs post an ask price
higher than (and bid price lower than) the conditional ex-
pected fundamental value.

Figure 1 visualizes this ask price curve for n =5 and
¢’ = 1. In the left panel, we plot the fast arbitrageur’s ask
price as a function of 7 for g = 1.5, the bid price by
ag1+bsq ]

ag1=f(m) =

for g, = 0.5, and the associated mid-quote mg; =
With qq > g, we observe asymmetric ask and bid price
curves, and the midpoint of ask and bid quotes deviates
from the expected fundamental value (i.e, my; > Eo(D) =
0). In the right panel, we compare the ask price curve
to the expected fundamental value conditional on a trade

14 See Appendix A for brief discussion of this calculation. While we fo-
cus on ask prices in the main text, note the slow arbitrageur’s expression
o 1y
for the bid price is similar: bs; = —

—Ty—n+y /202 (1-12)

15 Again, bid prices are similar: by; = 5
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occurring at the ask, Ej (¥|trade). The difference between
these two lines captures the post-trade price deviation
conditional on a trade occurring at the ask price, as op-
posed to the pre-trade price deviation illustrated in the
left panel. Both pre-trade and average post-trade price de-
viations are increasing in fast arbitrageurs’ required re-
turns from liquidity provision. As we will see below, these
deviations give rise to night-minus-day returns because
overnight returns reflect fast arbitrageurs’ required returns
from providing liquidity, while intraday returns reflect the
correction of these deviations as slow arbitrageurs replace
fast arbitrageurs in determining the price of liquidity.

However, given that fast arbitrageurs’ t = 1 quotes gen-
erate profits that cover their inventory costs, one may
wonder why slow arbitrageurs with no capital constraints
do not undercut fast arbitrageurs by posting a narrower
bid-ask spread at open. As we demonstrate below, this is
because the fast arbitrageur’s superior information about
7 exposes the slow arbitrageur to adverse selection risk.
The analyses of the bid prices are similar, so we focus on
the ask prices to avoid duplication.

2.3. Adverse selection

Slow arbitrageurs face two types of adverse selec-
tion. First, informed traders have more precise informa-
tion about the fundamental value. Second, fast arbitrageurs
have an informational advantage in knowing m, enabling
them to disproportionately fill the marketable orders from
sentiment-driven traders. Thus, if a slow arbitrageur places
limit orders at t =1, those orders will be predominantly
filled when the counterparty is informed, as shown in the
following Lemma.

Lemma 1 (Cream skimming risk). Suppose a slow arbi-
trageur posts an ask price a5 = s(7 ). The ask price will be
competitive if and only if

7= f7H(s(7)).

where f~1(a) is the inverse of f(7) as defined in Eq. (7).

(8)

Proof. See Appendix A. O

Our analysis will focus on this cream skimming adverse
selection, because this interplay between fast and slow ar-
bitrageurs determines the identity of the marginal liquidity
provider, and hence the predictable night-minus-day re-
turn. Intuitively, suppose a slow arbitrageur posts a limit
order, expecting that she meets an informed trader with
probability 7. If fast arbitrageurs observe a true s that is
sufficiently low compared to 7, they will post a narrower
spread than slow arbitrageurs and fill these orders. That
is, fast arbitrageurs will “cream-skim” orders when coun-
terparties are most likely to be uninformed. Understanding
this, slow arbitrageurs have to set a wider spread than they
would have done in the absence of competition from fast
arbitrageurs, which makes it difficult for them to undercut
fast arbitrageurs’ quotes despite their advantage in cost of
capital.

Our proposed cream skimming mechanism is related
to Hoffmann (2014), which explores the effects of fast
traders’ ability to update stale limit orders to prevent
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E[V|hit ask]

Fig. 1. Fast Arbitrageurs’ Ask (Bid) Price Curve. This figure plots an example of our model’s equilibrium ask price posted by fast arbitrageurs (solid line)
in the presence of unpriced private information (described by parameters n =5, ¢, = 1.5, ¢, = 0.5), along with bid and midquote prices (left panel) and the
expected fundamental value conditional on a trade occurring at ask prices, E;[¥|trade] (right panel). The x-axis gives the probability of meeting an informed
trader, . The unconditional expected value of the asset is zero, so that the difference between the dotted line and zero in the left panel corresponds to
the positive deviation of the fast arbitrageur’s midquote from the pre-trade fundamental value. In the right panel, the difference between the solid and
dashed lines is the predictable price deviation conditional on a market buy, which is equal to fast arbitrageurs’ required return, ¢, = ¢’ x qq.

them from being picked off by late-arriving (also dubbed
“slow”) traders. Similar to our results, he shows that slow
traders post wider quotes than fast traders. However, his
model focuses on bargaining power among monopolis-
tic, sequentially-arriving, short-lived traders with heteroge-
neous speed, whereas our model features competitive fast
and slow liquidity providers that coexist simultaneously in
the market and endogenously become the marginal liquid-
ity provider under different market conditions.

2.4. Equilibrium

Equilibrium in this economy is defined by the arbi-
trageurs’ limit orders a1 and ay 4, such that, conditional
on all agents’ choices, both types of arbitrageurs correctly
assess their counterparties’ expected informedness. The
following proposition characterizes slow arbitrageurs’ ask
prices in the presence of fast arbitrageurs.

Proposition 1 (Endogenous limited participation). For any
7t, a slow arbitrageur is willing to price her limit order at
s(#) if and only if

AlLRY ©

As long as Eq. (9) is satisfied by some 7 < [0, 1], then the
equilibrium 7 will solve

fQR —1) =s#).

<7T.

(10)

For m < * = f~1(s()), slow arbitrageurs’ quotes are infe-
rior to fast arbitrageurs’ quotes and thus fast arbitrageurs de-
termine the price of liquidity at t = 1.

Proof. See Appendix A. O

Limited participation arises because slow arbitrageurs
understand fast arbitrageurs’ information advantage and
hence form their equilibrium assessment of 7 such that,
given their ask price s(7), the average likelihood of meet-
ing an informed counterparty is indeed 7. Hence, their ask
prices are above those of fast arbitrageurs in the region of
7w < m*. In effect, slow arbitrageurs withdraw from setting
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the price of liquidity in this region despite their advantage
of requiring a lower return from liquidity provision.

Fast arbitrageurs’ information advantage increases in
the amount of unpriced private information (n). We plot
ask prices for fast and slow arbitrageurs for several values
of n in Fig. 2. When the amount of unpriced private infor-
mation is large (left panel, n = 5), fast arbitrageurs deter-
mine the price of liquidity for almost all assets (7* ~ 1).
With a moderate amount of unpriced private information
(middle panel, n = 3), fast (slow) arbitrageurs determine
the price of liquidity for assets with low (high) realizations
of m. Lastly, when the amount of unpriced private infor-
mation is small (right panel, n = 0.75), slow arbitrageurs
determine the price of liquidity for all assets (w* =0).
Thus, slow arbitrageurs end up being the marginal liquid-
ity providers not just for stocks with little informed trading
(small n), but also for stocks with lots of informed trading
(high 7).

For the assets where fast arbitrageurs determine the
price of liquidity at the market open, the following Propo-
sition characterizes the determinants of the price deviation
and the resulting night-minus-day return.

Proposition 2 (Determinants of predictable night-minus-day
returns). For an asset with m < mt*, the price at market open
(t =1) is determined by fast arbitrageurs and thus deviates
from expected fundamental values; the price at market close
(t =2) is determined by slow arbitrageurs and thus is equal
to fundamental value. As a result, overnight returns and in-
traday returns will have opposite signs in expectation, gener-
ating expected night-minus-day returns that are increasing in
¢ and (qq — qp).

Proof. See Appendix A. O

Two types of variation in unpriced information are rele-
vant. First, cross-sectionally, fast arbitrageurs are less likely
to be the marginal liquidity provider for assets with less
unpriced private information around market open (e.g., Eu-
ropean dual-listed stocks, as we discuss in 4.3.1). Second,
fast arbitrageurs are less likely to be the marginal liquid-
ity provider at market close when intraday trading has re-



Z. Lu, S. Malliaris and Z. Qin Journal of Financial Economics 148 (2023) 175-200

Ask Price Ask Price Ask Price

5 5

4 4

3 3

00 02 04 06 08 0 " 00 02 04 06 08 10 " 0 02 04 06 06 o "

Fast Ask, n=3 ----- Slow Ask, n=3 -.... E[V|Ask Hit] Fast Ask.n=0.75 ==-== Slow Ask, n=0.75 E[V|Ask Hit]

FastAsk,n=5 ----- Slow Ask,n=5 ... E[V|Ask Hit]

Fig. 2. Unpriced Private Information and the Marginal Liquidity Provider. This figure plots an example of our model’s equilibrium ask prices for fast
and slow arbitrageurs when unpriced private information is large (left panel, n = 5), moderate (middle panel, n = 3), and small (right panel, n = 0.75), for
an asset with expected fundamental value vy = 0. Each panel also plots the expected fundamental value conditional on a trade executed at the best ask
(dotted line). For all panels, the x-axis gives the probability of meeting an informed trader, 7. In the left panel, at market open, for almost all 7, the ask
price of fast arbitrageurs with inventory cost ¢, = 0.5 (solid line) undercuts the slow arbitrageur’s ask price (dashed line). In the middle panel, with lower n,
slow arbitrageurs’ ask prices allow them to determine the price of liquidity where 7 is high, while fast arbitrageurs determine the price of liquidity where
7 is low. In the right panel, when unpriced private information is low, both slow and fast arbitrageurs post narrower quotes, but slow arbitrageurs’ ask
price (dashed line) falls below that of fast arbitrageurs. In all plots, over the regions where fast arbitrageurs determine the price of liquidity, the marginal
ask prices exceed conditional fundamental values, and over the regions where slow arbitrageurs determine the price of liquidity, the marginal ask prices
equal conditional fundamental values on average.

duced the unpriced private information.'® For the subset of Fast arbitrageurs absorb order imbalances in the morn-
stocks where fast arbitrageurs determine the price of lig- ing and then pass on the same imbalances to slow ar-
uidity at market open, both pre-trade midquotes and prices bitrageurs near the market close. To the extent that fast
of executed trades deviate from expected fundamental val- arbitrageurs tend to enter positions passively and exit
ues, as illustrated in Fig. 1, leading to predictable night- them actively, their exits generate order imbalances later
minus-day returns that are increasing in fast arbitrageurs’ in the day which are of the same sign as those at open.
inventory cost and in the expected order imbalance ab- Unlike the open imbalances, these latter imbalances do
sorbed. For the subset of stocks where slow arbitrageurs not generate additional price pressure, because slow ar-
determine the price of liquidity, midquotes and executed bitrageurs have large amounts of capital to accommo-
trade prices equal expected fundamental values and there date accumulated sentiment-driven demand and hold po-
is no predictable night-minus-day return. sitions over longer horizons. As a result, while overnight

returns are driven by market makers’ inventory costs asso-
ciated with absorbing order imbalances at open, intraday
returns are driven by the increasing importance of slow
arbitrageurs in setting the price of liquidity. Hence, the
model can accommodate the negative correlation between
overnight and intraday returns even when accompanied by
Prediction 1. While predictable night-minus-day returns order imbalances that have the same sign at open and at
imply opposite movements in prices at market open and close.

throughout the rest of the day, the associated order imbal-
ances need not exhibit similar swings.

2.5. Testable implications

Below we summarize testable predictions from the key
economic forces characterized in the model.

Prediction 2. Cross-sectional differences in predictable
night-minus-day stock returns align with cross-sectional

Proof. See Appendix A. O differences in the predictable liquidity demand absorbed
by fast arbitrageurs near market open, and the magnitude
Our model includes two key components: heteroge- of this cross-sectional relationship increases in fast arbi-
neous liquidity providers and variation in unpriced pri- trageurs’ required returns from liquidity provision.
vate information throughout the trading day. Both compo-
nents are necessary for night-minus-day returns to occur Proof. See Appendix A. O

in conjunction with persistent imbalances. Without hetero-
geneous liquidity providers, our model reduces to a stan-
dard price pressure story, in which persistent order imbal-
ances cannot give rise to recurring swings in prices. With-
out variation in unpriced private information, the impor-
tance of each type of liquidity provider in setting the price
would not vary throughout the trading day.

With these two components, order flows need not
change sign throughout the day to generate price reversals.

The intuition for Prediction 2 is that, due to cream
skimming risk, fast arbitrageurs are the marginal liquid-
ity provider for selected assets around market open. The
predictable night-minus-day returns are compensation for
fast arbitrageurs’ liquidity provision, and the magnitude
increases in fast arbitrageurs’ required returns. However,
among the subset of assets where fast arbitrageurs do not
determine the price of liquidity, the above patterns should
be attenuated, as we discuss in the following prediction.

16 Therefore, our model implications still hold when the assumption that Predlctlon..?f. Among StO.CkS for which n is S.mall and 7 is
private information is fully revealed at t =2 is relaxed, as long as n at more positive, slow arbitrageurs are more likely to deter-
t =2 is sufficiently small. mine the price of liquidity; and thus among these stocks,
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the relationship between fast arbitrageurs’ liquidity provi-
sion and future returns will be attenuated.

Proof. See Appendix A. O

There are several illustrative cases to consider. For
stocks with small n, the risk of providing liquidity to an
informed counterparty is low. Crucially, both types of ar-
bitrageurs know this, so slow arbitrageurs will typically be
able to undercut fast arbitrageurs and determine the price
of liquidity, as shown in Fig. 2 above. That is, as unpriced
private information n becomes smaller, the threshold 7*
(below which fast arbitrageurs undercut slow ones) ap-
proaches zero, so the importance of fast arbitrageurs’ in-
formation advantage - the likelihood of fast arbitrageurs
observing mw < r* - shrinks.

For stocks with large n, if 7 is low, the risk of pro-
viding liquidity to an informed counterparty is again low.
But only fast arbitrageurs know this, so slow arbitrageurs’
quotes are inferior to fast arbitrageurs’ among these stocks.
As a result, among stocks with large n, slow arbitrageurs’
quotes only bind if 7 is high (formally, with large n,
equilibrium 7* is more positive, so w > r* only if 7 is
high).

Aggregating over these cases, our model predicts that
fast arbitrageurs will tend to be the marginal liquidity
provider when n is large and the realization of 7 is low,
while slow arbitrageurs will tend to be the marginal lig-
uidity provider when n is small, or when n is large and
is high.!” Prediction 3 is testable in two ways. First, the re-
lationship between expected night-minus-day returns and
expected liquidity provision of fast arbitrageurs should at-
tenuate among stocks where n is predictably low at open.
We investigate this aspect of Prediction 3 in Section 4.3.1.
Second, m is privately observed by fast arbitrageurs, so
by definition it is not predictable. However, we can still
test Prediction 3 conditional on the realized liquidity pro-
vision of fast arbitrageurs. The idea is that fast arbi-
trageurs’ choice to reduce their liquidity provision around
market open is a signal that w > m* (either because of
small n or large ), which implies they are less likely
to determine the price of liquidity. Therefore, when fast
arbitrageurs provide less liquidity, liquidity demand ab-
sorbed by fast arbitrageurs will predict future returns less
strongly.

3. Data and measurement
3.1. Sample construction

We start by collecting data from the Center for Re-
search in Security Prices (CRSP) database for all U.S. com-
mon stocks listed on the NYSE, AMEX, and NASDAQ stock
exchanges. We then merge the CRSP data with the NYSE
Trade and Quote (TAQ) database using the TAQ-CRSP link
table provided by Wharton Research Data Services (WRDS).

7 In our model, fast arbitrageurs provide liquidity only if they are the
marginal liquidity provider. In practice, for reasons outside the model
(e.g., rebate arbitraging), fast arbitrageurs may still provide some liquidity
even at times when slow arbitrageurs determine the price of liquidity.
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Our sample begins on January 4, 1993 due to the avail-
ability of TAQ data. See Section 1 of the Internet Ap-
pendix for a detailed description of the merge proce-
dure. We impose the following data filters. First, like
Hendershott et al. (2020), we drop stock days with an in-
traday return of over 1000% or when the open price is
missing. Second, to mitigate microstructure issues and en-
sure that our results are not driven by small and illig-
uid stocks, we require the following for a stock to be in-
cluded in the sample at the end of month t: (i) the stock’s
median daily trading volume in month t is greater than
1,000 shares, (ii) the stock has no more than one miss-
ing open price from CRSP in month t, and (iii) following
Lou et al. (2019), stocks need to have a price above $5 and
a market capitalization above the NYSE bottom quintile at
the end of month t. The night-minus-day return patterns
are similar but larger in magnitude among microcap and
low-priced stocks.

3.2. Measurement of overnight and intraday returns

We compute the intraday return (rp 4) on day d as,

P;lose
™p.d = sopen — 1+ (11)
F,
and the overnight return (ry 4) from the close of day d — 1
to the open of day d as,

1+ Tclose-to-close,d -1, (12)

I'ng =
N 1+71pg

where TI'ggse-to-close.d 1S the close-to-close return on day d.
The daily night-minus-day return is then,

(13)

Following Lou et al. (2019), our main specification of
P{Pe" is the volume-weighted average price between 9:30
am and 10:00 am. We also use the midquotes at 9:45 am
and 10:00 am as alternative specifications of P;P*" in ro-
bustness tests, which are reported in Section 4 of the Inter-
net Appendix. We compute T'¢jose to-close. 4 USINg the closing
trade prices from TAQ as P;"’Se and adjust for stock splits
and dividends.'®

'NMD.d =TNd — TDd-

3.3. Measurement of liquidity demand absorbed by fast
arbitrageurs

Our model predicts that night-minus-day returns
are driven by fast arbitrageurs’ liquidity provision.
Our empirical proxies for fast arbitrageurs’ liquid-
ity provision are the order imbalances computed
based on the Lee and Ready (1991) algorithm and the
Boehmer et al. (2021) (hereafter, B]JZZ) algorithm. The
advantage of the Lee-Ready algorithm is that it can classify
all trades in the TAQ database as either buyer- or seller-

8 Hendershott et al. (2020) use the open price from CRSP,
Berkman et al. (2012) use the first midquote after market open,
and Bogousslavsky (2021) uses the midquote at 9:45 am. The night-
minus-day return predictability is larger in magnitude when a price
closer to the market open is used as P;"" (see related discussions in
Bogousslavsky (2021)).
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initiated, so the resulting buy-minus-sell order imbalance
is available starting in 1993."° However, in our model
and in practice, fast arbitrageurs can be on the aggres-
sive side of trades and other types of traders (e.g., slow
arbitrageurs) can be on the passive side of trades, so the
Lee-Ready order imbalance is at best a noisy measure of
fast arbitrageurs’ liquidity provision.2°

BJZZ note that after the implementation of Regulation
National Market System (Regulation NMS) in 2005, trades
at non-midpoints with a subpenny price improvement are
predominantly retail marketable orders filled by whole-
salers and brokers. These orders are recorded in TAQ with
exchange code “D”, and the buy/sell direction of these
trades can be identified by the magnitude of the subpenny
price improvements. While the order imbalances captured
by the BJZZ algorithm are commonly used as a proxy for
retail trading demand,?! the BJZZ order imbalances also
reflect wholesalers’ incentives to internalize these order
flows (Barardehi et al., 2021). Thus, the BJZZ order im-
balances map nicely onto our theoretical model - these
trades are internalized by market makers likely because
they have a lower probability of being informed. Further-
more, given that the BJZZ order imbalances are known to
be filled by market makers (i.e., the fast arbitrageurs in our
model), they are not contaminated by non market mak-
ers’ liquidity provision. Therefore, we consider the BJZZ or-
der imbalances to be a more accurate proxy for fast arbi-
trageurs’ liquidity provision than the Lee-Ready order im-
balances. The disadvantage of using the BJZZ order imbal-
ance is its shorter sample period: following the convention
in the WRDS data manual, we are only able to compute
it in the post-October 2006 period when subpenny price
improvements become more prevalent.

In our empirical analysis, we refer to the BJZZ order im-
balances as the retail order imbalance absorbed by mar-
ket makers (hereafter, RM OI), the Lee-Ready order imbal-
ance as the total order imbalance (hereafter, OI), and the
difference between Ol and RM OI as Non-RM Ol. We use
RM OI as our main proxy for the liquidity provision by
fast arbitrageurs and then use OI as the alternative proxy
when conducting robustness tests over the full sample pe-
riod. We scale order imbalance variables by daily trad-
ing volumes (both in number of shares) at the stock level
and then compute value-weighted order imbalance ratios
at the portfolio level. All our inferences remain qualita-
tively the same when we scale the order imbalances by the

9 We thank Craig Holden and Stacey Jacobsen for making their SAS
code used in Holden and Jacobsen (2014) available for performing the Lee
and Ready algorithm. We thank Greg Eaton, Stacey Jacobsen, Zhengzi Li,
and Vincent Bogousslavsky for helpful discussions of these SAS codes.

20 Fast arbitrageurs are often on the active side of trades. In our model,
fast arbitrageurs are on the passive side at t = 1, but on the active side
at t = 2. Empirically, our data on high-frequency trading firms (more de-
tails in Section 4.3.2) show that these de facto market makers are on the
passive (aggressive) side for 49% (51%) of the dollar trading volume when
they trade with other types of traders.

21 While the BJZZ order imbalance is not a perfect measure of retail or-
der flows (e.g., it does not capture limit retail order flows), it has quickly
become the standard proxy for retail order flows due to the lack of alter-
native measures that cover a broad panel of stocks.
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stock’s total shares outstanding, which we report in Sec-
tion 2 of our Internet Appendix.

4. Empirical results

4.1. Evaluating the existing price pressure hypothesis
(Prediction 1)

Existing explanations for night-minus-day return pre-
dictability focus on the role of order flow shocks.
Berkman et al. (2012) emphasize price pressures at market
open, arguing that “attention-based retail trading causes
prices to temporarily deviate from fundamental values at
the open of the typical trading day.” Other studies em-
phasize opposing price pressures that arise both at the
market open and close, either from different clienteles as
in Lou et al. (2019), where “[s]Jome investors may prefer
to trade at or near the morning open while others may
prefer to trade during the rest of the day up to and in-
cluding the market close”; or from the same clientele as
in Hendershott et al. (2020), where “[a] speculator buys
higher beta stocks at the open and reverses her position
approaching the close”.

If predictable order flow shocks solely determine the
predictable night-minus-day returns of the characteristic-
sorted portfolios studied in the literature, then the
opposite-signed overnight and intraday returns of these
portfolios should be associated with corresponding
opposite-signed order flows near the market open and
over the rest of the trading day.

We test this benchmark price pressure hypothesis us-
ing the 17 portfolios studied by Lou et al. (2019) (the “LPS
portfolios”). These are anomaly-sorted long-short portfo-
lios that are value-weighted and rebalanced monthly. As
shown by Panel A of Fig. 3, these portfolios tend to
have average ry and rp that are large in magnitude but
opposite in sign. We summarize the common compo-
nent of these portfolios’ night-minus-day returns using the
Bayesian stochastic discount factor (SDF) estimator pro-
posed by Kozak et al. (2020). The resulting SDF implied
night-minus-day mean-variance efficient (hereafter, NMD
MVE) portfolio is a simple linear combination of the LPS
portfolios.?? The weights are constant over time and nor-
malized by the sum of their absolute values so that the
NMD MVE portfolio remains a zero-cost one-dollar long-
short portfolio. For comparison, we also construct the cor-
responding SDF based on the close-to-close returns of the
LPS portfolios (RET MVE). Table 1 reports the NMD MVE
and RET MVE weights, which have opposite signs for 12
out of the 17 portfolios. We explore this difference more
in Section 5.2.

Panel A of Fig. 3 shows that the NMD MVE portfo-
lio has average overnight and intraday returns of 13% and
—15% per annum, respectively. Panel B of Fig. 3 further
shows that the average overnight and intraday returns of
the NMD MVE portfolio have CAPM alphas of 12% and

22 Kozak et al. (2020) show that their SDF coefficients are proportional
to the weights of a L2-norm constrained MVE portfolio, which works bet-
ter out of sample than the unconstrained MVE portfolio. Appendix B pro-
vides a detailed description of the NMD MVE portfolio construction.
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Fig. 3. Predictable Overnight and Intraday Returns. This figure plots the
average overnight (ry) and intraday (rp) returns (Panel A) and CAPM al-
phas (Panel B) of the 17 high-minus-low Lou, Polk, and Skouras (2019,
LPS) portfolios and the night-minus-day mean variance efficient (NMD
MVE) portfolio in annualized percentage points. The portfolio returns are
measured between February 1, 1995 and December 31, 2020.

—15%, respectively.>> Hence, adjusting for market exposure
accounts for only 1% per annum out of the 28% per annum
predictable night-minus-day return. While we already ex-
clude microcap stocks, we further demonstrate the robust-
ness of this pattern by reporting the corresponding return
patterns among S&P 500 stocks in Section 4 of our Internet
Appendix. We find that the predictable night-minus-day
returns remain economically large in the S&P 500 sample,
with the NMD MVE portfolio earning overnight and intra-
day CAPM alphas of 11% and —13%, respectively.

To contrast the expected night-minus-day return pat-
tern with the expected order imbalance pattern, we plot
the average cumulative return of the NMD MVE portfolio

23 We compute the CAPM alphas of these portfolios by regressing their

ry and rp on the overnight and intraday returns of the market port-
folio, respectively, to allow for different overnight and intraday mar-
ket betas as well as the different overnight and intraday market ex-
cess returns (Cooper et al., 2008; Bondarenko and Muravyev, 2022, and
Boyarchenko et al., 2022).
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Table 1

Mean-Variance Efficient Portfolio Weights. This table compares
the night-minus-day mean-variance efficient (NMD MVE) and close-
to-close mean-variance efficient (RET MVE) portfolios in terms of
their mean-variance efficient loadings. We report the loadings in
percentage points for each of the 17 high-minus-low Lou, Polk, and
Skouras (2019, LPS) portfolios. The sample period is between Febru-
ary 1, 1995 and December 31, 2020.

Signal NMD MVE Weights (%)  RET MVE Weights (%)
p —10.49 -6.51
it 14.96 -4.39
rewma —4.60 1.28
rewma 15.58 -4.24
BETA 3.02 -1.81
IVOL 6.46 -8.90
BM 7.21 -1.71
ISSUE —-3.00 -12.33
ACCRUALS 0.90 -6.20
INV 3.05 -10.52
ROE -2.43 5.14
ME 9.68 —-6.61
SUE 2.15 9.37
MOM 3.19 8.00
STR -2.58 5.81
TURNOVER 6.56 6.02
INDMOM 4.14 -1.16

over 30-minute intervals beginning at the previous day’s
market close and continuing until the current day’s close
in Fig. 4. We then plot the hypothetical order imbalances
under the benchmark price pressure hypothesis in Panel A
of Fig. 4, which depicts hypothetical order imbalances that
follow the observed returns by being positive around the
market open and negative over the rest of the day. Panel
B presents the true average order imbalance of the NMD
MVE portfolio in the data. We find that the true average
Ol is not only positive near the market open, but also re-
mains positive throughout the rest of the day. That is, the
order imbalance pattern does not mirror the price pattern.

We conduct formal tests of these order imbalance pat-
terns in Table 2. Panel A tests the significance of the time-
series mean of the order imbalance associated with the
NMD MVE portfolio. If the stock characteristics used to
form the portfolio do not predict order imbalances, then
the mean order imbalance should be zero. Instead, we find
that the average OI of the NMD MVE portfolio is posi-
tive and statistically significant at the 1% level for each
of 13 half-hour trading intervals. In the subsequent rows,
we separately examine RM OI and Non-RM Ol in the post-
October 2006 sample when such data are available. During
this period, the average Ol remains positive and statisti-
cally significant for all 13 half-hour trading intervals, albeit
with smaller magnitudes across the board. The average RM
OI and Non-RM OI are also all positive and statistically sig-
nificant across the 13 half-hour trading intervals, with RM
OI accounting for about one-fourth to one-third of the total
order imbalance.

Panel B tests the significance of the autocorrelation be-
tween the order imbalances associated with the NMD MVE
portfolio in the first half-hour interval (i.e., the market
open) and those in each of the 12 remaining half-hour in-
tervals. Specifically, we estimate a time-series predictive
regression using daily data and conduct inference using
Newey and West (1987) standard errors with 21 lags. Con-
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Table 2

The Predictable Order Imbalances of the NMD MVE Portfolio. This table presents the predictable order imbalance pattern of the night-minus-day mean-variance efficient (NMD MVE) portfolio across 30-minute
trading intervals. Each column presents the ending point of a 30-minute trading interval during market trading hours, with the first (last) column ending at 10:00 AM (4:00 PM). Panel A reports the time series
average of the order imbalances (in basis points per the daily trading volume in shares) and Panel B reports the autocorrelation coefficient between order imbalances in the first interval and those in each of the
12 remaining intervals. Ol is order imbalances identified by the Lee and Ready (1991) algorithm, RM Ol is the retail order imbalance absorbed by market makers identified by the Boehmer et al. (2021) algorithm,
and Non-RM OI is the difference between the two. Order imbalances for the NMD MVE portfolio are computed by multiplying the value-weighted order imbalances for each of the 17 LPS long/short portfolios
by their corresponding NMD MVE portfolio weight, and then summing the products. We report t-statistics in parentheses, computed based on Newey and West (1987) standard errors with 21 lags. In the first

row for the full sample, OI is measured between February 1, 1995 and December 31, 2020. In the subsequent rows, O, RM OI, and Non-RM OI are measured between October 1, 2006 and December 31, 2020.

Panel A - Average Predictable Order Imbalances

10:00 AM 10:30 AM 11:00 AM 11:30 AM 12:00 AM 12:30 AM 1:00 PM 1:30 PM 2:00 PM 2:30 PM 3:00 PM 3:30 PM 4:00 PM
OI (Full Sample) 11.92 8.97 8.08 7.34 6.79 5.93 5.45 4.48 4.65 5.30 6.53 5.30 5.07
(13.45) (12.45) (12.43) (12.91) (13.29) (12.44) (11.72) (10.11) (11.23) (11.33) (10.93) (9.76) (5.70)
(o) 4.88 3.68 3.24 3.07 2.81 2.85 222 2.52 2.30 2.34 2.73 2.73 2.11
(8.78) (10.96) (10.83) (11.09) (11.08) (12.93) (10.25) (12.31) (11.18) (10.85) (11.24) (9.84) (4.44)
RM OI 1.88 1.23 1.07 0.96 0.86 0.83 0.77 0.73 0.71 0.79 0.77 0.79 0.45
(19.80) (18.31) (19.00) (17.72) (18.44) (16.81) (18.11) (18.26) (15.22) (17.69) (17.57) (16.18) (6.88)
Non-RM OI 3.00 2.45 217 2.11 1.95 2.02 1.45 1.79 1.59 1.55 1.94 1.94 1.66
(5.66) (7.43) (7.52) (7.90) (8.00) (9.72) (6.92) (8.94) (7.81) (7.51) (8.26) (7.17) (3.53)
Panel B - Autocorrelation Coefficients
Predictive Coef 10:00 AM 10:30 AM 11:00 AM 11:30 AM 12:00 AM 12:30 AM 1:00 PM 1:30 PM 2:00 PM 2:30 PM 3:00 PM 3:30 PM 4:00 PM
OI (Full Sample) 1.00 0.20 0.13 0.11 0.09 0.08 0.07 0.04 0.06 0.07 0.08 0.07 0.11
(9.82) (8.65) (8.84) (6.99) (7.08) (6.30) (4.17) (7.46) (6.19) (6.97) (4.90) (5.77)
(o) 1.00 0.10 0.06 0.05 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.05
(4.66) (5.28) (4.47) (2.78) (1.71) (1.67) (2.27) (2.78) (2.01) (2.51) (1.55) (3.22)
RM OI 1.00 0.24 0.16 0.12 0.10 0.10 0.08 0.06 0.06 0.06 0.06 0.08 0.05
(14.23) (11.73) (9.13) (8.35) (8.66) (6.97) (6.15) (4.38) (5.08) (4.87) (5.54) (2.43)
Non-RM OI 1.00 0.10 0.06 0.05 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.04
(4.75) (5.03) (4.40) (2.56) (1.56) (1.53) (2.21) (3.06) (1.89) (2.49) (1.49) (2.95)
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Fig. 4. Returns and Order Imbalances of the NMD MVE Portfolio. This figure plots the average cumulative returns and order imbalances of the night-
minus-day mean variance efficient (NMD MVE) portfolio over 30-minute intervals of a trading day. Cumulative returns are computed from the previous
pr pelose

day’s close as e — 1= %ﬁ;‘;se“ -1, where 147, 4= -~ and P] is the volume-weighted price in the 30-minute interval T in day d. Both panels
d-1 T d

report the observed cumulative returns. Panel A presents the hypothetical order imbalance pattern under the benchmark price pressure hypothesis that
order imbalances and returns are positively correlated. Panel B reports the average Lee and Ready (1991) order imbalances in the data. The sample period
is between February 1, 1995 and December 31, 2020.

sistent across OI, RM OI, and Non-RM OI, the NMD MVE market open, but also positive throughout the rest of the
portfolio’s order imbalances in the first half-hour positively day. These patterns hence challenge the benchmark price
predict its order imbalances in each of the remaining 12 pressure hypothesis: if the positive expected order imbal-
half-hour intervals of the day, with 29 out of the 36 auto- ance near the market open causes the predictably positive
correlations being significant at the 5% level. ry of the NMD MVE portfolio, why would its similarly pos-
Together, the above results suggest that the expected itive expected order imbalances over the rest of the day
order imbalances associated with the NMD MVE port- cause a predictably negative rp?
folio are in the same direction throughout the trading Our model provides a resolution to this puzzle. Fast ar-
day. Our results are related to Berkman et al. (2012)'s bitrageurs absorb the order imbalances in the morning and
finding that stocks attracting retail investors’ attention then pass on the same imbalances to slow arbitrageurs
have more positive retail order imbalances at the market near the market close.?* Slow arbitrageurs would be will-
open and more positive night-minus-day returns. While ing to accept lower compensation for absorbing the order

Berkman et al. (2012)’s finding highlights the role of retail
order imbalances in driving the night-minus-day returns,
we show it cannot be the full explanation. Both RM OI and
OI of the NMD MVE portfolio are not only positive near the

24 For example, fast arbitrageurs fill a market buy order in the morning
and then close their short position with a market buy order of their own
near the market close. As a result, persistent order imbalances do not im-
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imbalances, but they are deterred by cream skimming risk
at open. As a result, overnight returns are driven by market
makers’ inventory costs associated with absorbing order
imbalances at open, whereas intraday returns are driven by
the increasing importance of slow arbitrageurs in setting
the price of liquidity. Hence, our model generates opposite
movements in prices at market open and over the rest of
the day with persistent order imbalances throughout the
day. To further evaluate our proposed mechanism, we now
turn to testing the other predictions from our model.

4.2. Determinants of predictable night-minus-day returns
(Prediction 2)

Prediction 2 states that predictable night-minus-day re-
turns are driven by two factors: the predictable liquidity
demand absorbed by fast arbitrageurs near market open
and fast arbitrageurs’ required returns from liquidity pro-
vision.

We first explore the effect of predictable liquidity de-
mand absorbed by fast arbitrageurs near market open.
Our main proxy for fast arbitrageurs’ liquidity provision
near market open is RM OI in the opening half-hour
(Open RM OI). In order to capture the relationship de-
scribed in Prediction 2 between expected night-minus-day
returns and expected order imbalances absorbed by fast ar-
bitrageurs, we run a two-stage least squares (2SLS) panel
regression at the stock-day level with day fixed effects.
Specifically, in the first stage we regress order imbalances
on their one-day lagged values to generate expected order
imbalances,?® and in the second stage we regress stocks’
night-minus-day returns on the instrumented order imbal-
ances. The resulting 2SLS regression coefficient thus cap-
tures the relation between the expected night-minus-day
returns and expected liquidity provision conditioned on
the lagged order imbalances.

Panel A of Table 3 reports the 2SLS regression co-
efficients. Column (1) shows that the regression coeffi-
cient on instrumented Open RM OI is 1.18 and statisti-
cally significant, suggesting that a one basis point increase
in stocks’ expected Open RM OI (per daily trading vol-
ume) is associated with a 1.18 basis point increase in ex-
pected night-minus-day returns per day. These results are
consistent with the prediction that expected liquidity de-
mand absorbed by fast arbitrageurs near market open is
an important driver of the predictable night-minus-day re-
turns. Our results are also consistent with the findings in
Berkman et al. (2012), although their interpretation em-
phasizes the role of retail trading demand whereas we
emphasize the role of liquidity provision from fast arbi-
trageurs.

Next, we examine the role of fast arbitrageurs’ re-
quired returns from liquidity provision. We use several
proxies to measure these required returns. We first fol-

ply that the fast arbitrageurs will accumulate a large inventory position
over time in our model.

25 In Section 3 of the Internet Appendix, we report the first stage re-
gression results to demonstrate the relevance of the instrument. The F-
statistics are all well above 10, suggesting that our instruments are un-
likely to be weak.
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low Nagel (2012) and use the daily reversal strategy re-
turn of Lehmann (1990) (henceforth, Daily Rev) to measure
market makers’ required returns from liquidity provision.26
We then use the predictive model in Nagel (2012) to
compute the expected returns from liquidity provision
(Dai/ly\Rev). More details on the construction of Daily Rev
and Da@\Rev are offered in Appendix B.

Building on the 2SLS regression from Column 1 of Panel
A of Table 3, we add an indicator variable, High Dai/ly\Rev
(that is equal to one when Dai/ly\Rev is above the sample
median), and its interaction with instrumented Open RM
Ol, to test whether the relation between expected Open
RM OI and expected night-minus-day returns is different
when market makers’ required returns are different. Col-
umn (2) in Panel A of Table 3 shows that the coefficient
on the interaction is 0.64 and significant at the 1% level. A
one basis point increase in expected Open RM OI is asso-
ciated with a 0.89 (1.53) basis point increase in expected
night-minus-day returns in low (high) Dai/ly\Rev periods.
Column (3) shows that the results are similar if we define
High Dai/ly\Rev using Daﬁy\Rev computed over expanding
estimation windows with no-look-ahead bias. Lastly, as
Nagel (2012) discusses, required returns from liquidity pro-
vision can increase due to higher volatility or higher com-
pensation per unit of risk. To examine the latter effect,
we redefine the indicator variable High Daﬁy\Rev using the
conditional Sharpe Ratio of Daily Rev estimated following
Eq. (25) of Nagel (2012). We find in Column (4) that the
positive relation between instrumented Open RM OI and
night-minus-day return is also significantly stronger when
the conditional Sharpe Ratio of Daily Rev is high.

The recent literature has preferred to proxy for the
required returns from liquidity provision using Daily Rev
rather than bid-ask spreads because, as Nagel (2012) ar-
gues, the former is not affected by asymmetric information
in a model with a representative market maker. However,
in the presence of heterogeneous liquidity providers, Daily
Rev can nevertheless be affected by asymmetric informa-
tion. In particular, Daily Rev arises in our model when pri-
vate information is not fully revealed at market close and
fast arbitrageurs become the marginal liquidity provider
for some proportion of stocks at market close. Because this
proportion can increase in asymmetric information, Daily
Rev can be positively associated with both ¢’ and asym-
metric information. Therefore, for robustness tests, we use
alternative liquidity proxies that also are related to market
makers’ required returns to test Prediction 2.

In Panel B of Table 3, we replace Dai/ly\Rev with ex-
pected spread, expected liquidity, and expected volatility at
the market level. Our spread measure is the daily dollar-
volume-weighted effective spread from TAQ, and our lig-

26 Note that in our model, reversals occur entirely intraday. To gener-
ate predictable Daily Rev within our model (i.e., reversal over the subse-
quent day), we can relax the simplifying assumption of full information at
market close. In this case, fast arbitrageurs will be the marginal liquidity
provider for some stocks at market close, leading to incomplete intraday
reversal and hence predictable Daily Rev. Alternatively, we can relax the
assumption that slow arbitrageurs’ required returns of liquidity provision
are zero. In this case, we interpret Nagel's measure as the common com-
ponent of required returns for fast and slow arbitrageurs.


pcollin
Highlight


Z. Lu, S. Malliaris and Z. Qin Journal of Financial Economics 148 (2023) 175-200

Table 3

Predictable Order Imbalances and Night-minus-day Returns. This table examines the relation between expected night-minus-
day (NMD) returns and expected order imbalances. In Panel A, we report daily two-stage least squares (2SLS) panel regressions
of NMD returns on Open RM OI, which are instrumented (instru.) by their one-day lagged values. Open RM Ol is the retail order
imbalances absorbed by market makers in the first half-hour trading interval identified by the Boehmer et al. (2021) algorithm.
Column (2) adds an interaction term with an indicator variable that is equal to one when Nagel (2012)'s measure of fast ar-
bitrageurs’ required returns (Daily Rev) is above the sample median. Columns (3) and (4) use two alternative proxies for the
required returns (respectively, a construction of Nagel's measure that avoids look-ahead bias and the conditional Sharpe ratio
of Nagel's measure). Panel B reports robustness results using aggregate expected spread, liquidity, and volatility as alternative
proxies for the required returns. Panel C performs the analyses in Panel A using Lee and Ready (1991) order imbalance over a
longer sample period. All models include Day fixed effects. We report t-statistics in parentheses based on robust standard er-
rors two-way clustered by firm and day. Returns are in basis points per day and order imbalances are in basis points per daily
trading volume. RM OI becomes available from October 1, 2006, OI from February 1, 1995, and Daily Rev, aggregate expected
spread, liquidity, and volatility from January 1, 1998. The sample period ends December 31, 2020. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% level, respectively.

Panel A - RM OI

NMD;
€)) (2) (3) (4)
Open RM OI;; (instr.) 1.18* 0.89% 0.87++ 0.82***
(8.46) (5.36) (5.20) (4.82)
Open RM OI;; (instr.) x High Daily Rev, 0.64**
(2.23)
——— No Look Ahead
Open RM Ol;; (instr.) x High Daily Rev, 0.68**
(2.38)
Open RM Ol;; (instr.) x High Daily Rev SR, 0.74*
(2.68)
Day Fixed Effects Yes Yes Yes Yes
N 6,184,322 6,184,322 6,184,322 6,184,322
Panel B - Alternative Liquidity Proxies
NMD; ¢
(1) (2) (3) (4) (5)
Open RM Ol;; (instr.) 0.74"* 0.67+ 0.78%* 0.84** 0.75%*
(3.79) (3.43) (4.56) (4.75) (4.74)
. . —— ARIMA(5,1,0)
Open RM Ol;; (instr.) x High Spread, 0.85***
(3.02)
. . —— ARIMA(2,13)
Open RM OI;; (instr.) x High Spread, 0.96%*
(3.36)
. . —— ARIMA(5,1,0)
Open RM Ol;; (instr.) x High Amihud, 0.80***
(2.77)
. . —— ARIMA(0,13)
Open RM OI;; (instr.) x High Amihud, 0.68**
(2.34)
Open RM OI;, (instr.) x High VIX; 0.97*+
(3.31)
Day Fixed Effects Yes Yes Yes Yes Yes
N 6,184,322 6,184,322 6,184,322 6,184,322 6,184,322
Panel C - OI
NMD;,
(1) (2) (3) (4)
Open OI;; (instr.) 0.15%+ 0.09*+* 0.09*** 0.09***
(18.15) (11.65) (11.43) (11.39)
Open OI;; (instr.) x High Daily Rev, 0.11%
(6.66)
. . ——— No Look Ahead
Open OI;; (instr.) x High Daily Rev, 0.11%*
(6.80)
Open OI;, (instr.) x High Daily Rev SR, 0.11%
(6.75)
Day Fixed Effects Yes Yes Yes Yes
N 12,190,348 10,689,613 10,689,613 10,689,613
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uidity measure is the daily Amihud (2002) illiquidity mea-
sure. We winsorize these variables at the 1% level for each
trading day and compute the cross-sectional mean to ar-
rive at the market-level measure. We then compute the
market-level expected spread (liquidity) using two ARIMA
models selected under the Akaike information criterion.?’
Our expected volatility measure is VIX. Consistent with the
results in Panel A, we find that the positive relation be-
tween instrumented Open RM Ol and night-minus-day re-
turn is significantly stronger when expected spread, ex-
pected illiquidity, or expected volatility is high.

We conduct further robustness tests in Panel C of
Table 3 by performing the analyses in Panel A using Lee-
Ready Ol over a longer sample period. We again find that
expected Open OI is positively related to the expected
night-minus-day returns and that this relation is stronger
in high Damev periods. Consistent with our discussions
in Section 3.3 that OI is a more noisy measure of fast arbi-
trageurs’ liquidity provision, we find that the 2SLS regres-
sion coefficient on Open OI is much smaller at 0.15 (com-
pared to that on Open RM OI of 1.18). For brevity, going
forward, we report the results of robustness tests using
Lee-Ready OI in Section 3 of the Internet Appendix.®

Taken together, our empirical tests in this sec-
tion demonstrate a strong positive relation between ex-
pected night-minus-day returns and expected order imbal-
ances absorbed by fast arbitrageurs, and this positive re-
lation is stronger when the required returns of fast arbi-
trageurs are high.

4.3. Marginal liquidity providers (Prediction 3)

Our next set of tests examines our prediction that when
fast arbitrageurs are less likely to determine the price of
liquidity, order imbalances absorbed by fast arbitrageurs
should cause smaller price deviations and less return pre-
dictability.

4.3.1. Dual listed stocks

As we discuss in Prediction 3, fast arbitrageurs are less
likely to determine the price of liquidity when unpriced
private information is small. To the extent that unpriced
private information tends to be low for large-cap, liquid,
and high institutional ownership stocks, Prediction 3 is
consistent with existing evidence that these stocks exhibit

27 Qur first ARIMA model is selected among ARIMA (0 <p<21,0<
d <2,q=0), where p, d, and q are the number of lags, differences,
and moving averages, respectively. The selected model is ARIMA(5,1,0)
for computing both the expected spread and the expected liquidity.
Our second ARIMA model is selected among ARIMA (0 < p<21,0<d <
2,0 < q<21). The selected model for computing the expected spread
is ARIMA(2,1,3) and the selected model for computing the liquidity is
ARIMA(0,1,3).

28 Qur 2SLS regression coefficients capture the relation between ex-
pected order imbalances and expected night-minus-day returns, which
reflects market makers’ inventory costs. These coefficients can be con-
trasted with Breen et al. (2002)'s evidence on the relation between real-
ized order imbalances and realized returns, which additionally reflects the
information content of the unexpected component of order imbalances.
Consistent with this notion, our 2SLS regression coefficients are less pos-
itive than those reported by Breen et al. (2002).
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weaker night-minus-day return predictability. But such ev-
idence is also consistent with other types of limits to arbi-
trage being smaller among these stocks.

We thus conduct a sharper test of the cream skim-
ming mechanism underlying Prediction 3 using dual-listed
stocks. For most U.S. stocks, the accumulation of unpriced
private information during the thinly traded overnight ses-
sion leads to high information asymmetry at open. Yet, a
small set of U.S. stocks are actively traded before the U.S.
market open because they are dual-listed in the European
stock markets. For these stocks, overnight information flow
is incorporated into prices through overseas trading and
thus the amount of unpriced information at the U.S. mar-
ket open is likely to be relatively smaller. Thus, according
to Prediction 3, slow arbitrageurs are more likely to be the
marginal liquidity suppliers for these stocks at U.S. market
open, which leads to a weaker relation between fast arbi-
trageurs’ liquidity provision and price deviations.

To test this model implication, we identify U.S. stocks
dual-listed in the European stock markets using Compustat
Global (hereafter, European dual-listed stocks). We match
these European dual-listed stocks to non-dual-listed U.S.
stocks from the same industry with the closest market
capitalization at the end of each month, which we refer
to as the U.S. control sample.”? We focus on the sample
between October 2006 and December 2020, during which
Open RM OI are available. The sample contains 84 Euro-
pean dual-listed stocks per day on average.

Similar to our earlier analysis, we run a 2SLS panel re-
gression of daily night-minus-day returns on instrumented
Open RM OI that includes day fixed effects to estimate
the relationship between expected night-minus-day re-
turns and expected liquidity provision. We conduct infer-
ence using t-statistics computed from two-way clustered
standard errors at the firm and day levels. Columns (1)
and (2) of Table 4 show the contrasting coefficients for the
European dual-listed stocks and the U.S. control sample,
respectively. While the 2SLS regression coefficient on in-
strumented Open RM OI is positive and significant in the
U.S. control sample, similar to our earlier results based on
the full cross-section of U.S. common stocks, the coefficient
is insignificant among European dual-listed stocks. To test
whether the relation between expected Open RM OI and
the expected night-minus-day returns is different between
these two groups, we combine the two samples and add
a dual-listing indicator variable as well as its interaction
with instrumented Open RM OI to the regression in Col-
umn (3). We find that the 2SLS coefficient on the interac-
tion term is —0.12 (t = —2.6), which offers strong support
for the prediction that the positive relation between Open
RM OI and night-minus-day returns is weaker when over-
seas trading reduces unpriced private information at U.S.
market open.3°

29 See Appendix B for more details on our dual-list sampling procedure.
30 As an additional test, cream skimming risk should also be reduced
when a fixed basket of stocks is traded. Consistent with this intuition,
Section 4 of the Internet Appendix shows that expected Open RM Ol is
not significantly related to expected night-minus-day returns among ex-
change traded funds (ETFs). However, this ETF test may have low power
relative to our stock-level test.
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Table 4

Predictable Order Imbalances and Night-minus-day Returns Among Dual-listed Stocks. This table reports the results of two-stage
least squares (2SLS) panel regressions of night-minus-day returns on RM OI at the market open (Open RM OI) instrumented (instru.)
by its one-day lagged value among overseas dual-listed stocks. Day fixed effects are included. In Columns (1) and (4), we report the
results using U.S. stocks that are dual-listed on European and Canadian exchanges, respectively. In Columns (2) and (5), we report
the results in a control sample of market capitalization- and industry-matched non-dual-listed U.S. stocks. In Columns (3) and (6), we
combine the dual-listed and control samples, and indicate dual-listed firms with Dual-list;,. We report t-statistics in parentheses based
on robust standard errors two-way clustered by firm and day. Returns are in basis points per day and order imbalances are in basis
points of daily trading volume. The sample period is between October 1, 2006 and December 31, 2020. ***, **, and * indicate statistical
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significance at the 1%, 5%, and 10% level, respectively.

Sample: Europe DL U.S. Control Europe + U.S. Canada DL US. Control ~ Canada + US.
NMD; ;
(1) (2) (3) (4) (5) (6)
Open RM Ol;; (instr.) -0.02 0.09** 0.09** 0.04* 0.10* 0.09*
(-1.12) (2.22) (2.26) (1.70) (2.23) (1.95)
Open RM Ol;; (instr.) x Dual-list;, —0.12% —0.05
(—2.64) (-1.05)
Dual-list; ¢ -0.70 3.93*
(-0.49) (2.47)
Day Fixed Effects Yes Yes Yes Yes Yes Yes
N 302,106 294,693 596,799 335,438 345,826 681,264

One potential concern is that our results above are not
related to the cream-skimming mechanism but rather due
to other confounding effects of being dual-listed. To ad-
dress this concern, we present the same analysis using
U.S. stocks dual-listed in Canadian stock markets (hereafter,
Canadian dual-listed stocks). Because Canadian stock mar-
kets open at the same time as U.S. stock markets, Cana-
dian dual-listed stocks would not have active trading prior
to the U.S. market open. Consequently, our model predicts
that the positive relation between Open RM OI and night-
minus-day returns should not be weaker among Canadian
dual-listed stocks. The results in Columns (4) through (6)
of Table 4 support this model prediction. In particular, Col-
umn (6) shows that the regression coefficient on the in-
teraction term between the Canadian dual-listing indicator
and Open RM Ol is insignificant at —0.05 (t = —1.1), which
contrasts with the negative and significant coefficient on
the corresponding European dual-listing interaction term
in Column (3). These results together suggest that over-
seas trading immediately before U.S. market open, rather
than dual-listing status in general, attenuates the relation
between Open RM OI and night-minus-day returns.

Finally, we further verify the cream skimming mecha-
nism by investigating bid-ask spreads. There are two rea-
sons why spreads should be narrower for European dual-
listed stocks at the US market open. First, microstructure
models featuring asymmetric information (e.g. Glosten and
Milgrom (1985)) predict a narrower bid-ask spread when
unpriced private information is low. Second, our model
predicts that slow arbitrageurs with low inventory costs
are more likely to determine the price of liquidity when
unpriced private information is low. Finding lower spreads
among European dual-listed stocks would be consistent
with either or both of these channels, but finding higher
spreads would serve as disconfirmatory evidence for our
proposed mechanism.

We follow Bogousslavsky and Collin-Dufresne (2022) in
computing the log dollar-weighted effective spreads in the
first 30 min of the market open. We regress the log spread
on the dual-listing indicator controlling for commonly used
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determinants of the bid-ask spread and the day fixed
effects in the combined sample of European dual-listed
stocks and the U.S. control stocks. Control variables include
turnover (i.e., the total daily trading volume divided by
shares outstanding), volatility (i.e., the standard deviation
of daily close-to-close returns in the previous month), 13F
institutional ownership percentage at the previous quarter-
end (from Thomson/Refinitiv), and the price and market
capitalization as of the prior day.>!

Columns (1) to (3) of Table 5 show that spreads are in-
deed smaller among European dual-listed stocks than the
U.S. control sample with and without controls. After con-
trolling for these commonly used determinants of bid-ask
spreads, the regression coefficient on the dual-listing indi-
cator remains negative and highly statistically significant.
The magnitude of the regression coefficient is also rela-
tively stable across the three specifications, ranging from
—0.54 to —0.70, suggesting that the European dual-listed
stocks on average have an effective bid-ask spread that
is 42% to 50% lower near the market open. In contrast,
Columns (4) to (6) show that the bid-ask spreads of Cana-
dian dual-listed stocks are higher than the matched non-
dual-listed stocks, although the difference is not statisti-
cally significant in the presence of control variables. These
results are consistent with the notion that European dual-
listed stocks have lower unpriced private information upon
U.S. market open, thus further corroborating Prediction 3.

4.3.2. HFT liquidity provision

In this subsection, we provide an alternative test of
Prediction 3 using direct data on the liquidity provision of
high-frequency traders (HFT). As we explain in our discus-
sions of Prediction 3, to the extent that fast arbitrageurs’

31 Qverseas trading prior to U.S. open reveals information and may
cause the volatility of overnight (intraday) returns of European dual-listed
stocks to be higher (lower) than that of the non-dual-listed stocks. Using
the volatility of close-to-close returns avoids this issue. Since RM OI is
not needed, we conduct the test over the full Daily TAQ sample period
between September 10, 2003 and December 31, 2020.
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Table 5
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Bid-ask Spreads for Dual-listed Stocks. This table reports the panel regressions of the dollar-weighted effec-
tive spread in the first half-hour trading interval (Open Spread) on a dual-list indicator (Dual-list;,) as well as
control variables (definitions in the main text). The sample contains dual-listed stocks and their capitalization-
and industry-matched non-dual-listed U.S. stocks between September 10, 2003 and December 31, 2020, when
the Daily TAQ files are available. The first (last) three columns focus on European (Canadian) dual-listed firms
and the matched non-dual-listed U.S. stocks. Day fixed effects are included. All variables are log-transformed
except for institutional ownership. We report t-statistics in parentheses based on robust standard errors two-
way clustered by firm and day. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively.

log(Open Spread); ¢

European Dual-list

Canadian Dual-list

(1) (2) (3) (4) (5) (6)
Dual-list; —0.54** —0.70*** —0.59*** 0.11* —-0.05 -0.03
(-9.19) (-12.62) (-8.61) (1.84) (-0.85) (-1.20)
log(Turnover); ; —0.23"* —0.16*** —0.29* —0.21%=
(-11.12)  (-1041) (-14.57)  (-16.90)
log(Volatility); 0.64* 0.38"* 0.84** 0.31%*
(19.00) (17.29) (25.70) (19.36)
Institutional Ownership;,_; 0.17* —0.32%*
(1.95) (-6.98)
log(Price); ¢ 1 —0.04 0.10%*
(-1.47) (3.56)
log(Market Capitalization);;_; —0.33% —0.43**
(-18.61) (—32.60)
Day Fixed Effects Yes Yes Yes Yes Yes Yes
N 788,952 671,520 640,669 907,183 820,358 806,207
Adjusted R? 0.14 0.27 0.46 0.07 0.20 0.50

choice to reduce their liquidity provision around market
open is a signal of 7 > 7* (i.e., of small n or of large ),
liquidity demand absorbed by fast arbitrageurs should pre-
dict future returns less strongly when HFTs choose to pro-
vide less liquidity around market open.

We measure HFT activity using a unique dataset from
the NASDAQ exchange on HFT liquidity provision. The
database includes all trades that occur on the NASDAQ
exchange (excluding the opening, closing, and intraday
crosses) for 120 stocks between 2008 and 2009. The
database includes a buy and sell indicator, which classifies
trades into buyer initiated and seller initiated ones. Cru-
cially, the database also provides information on whether
a HFT is involved in a trade and whether the HFT is pro-
viding or seeking liquidity.>?> For each stock-day, we com-
pute the HFT Liq Ratio as the ratio of the trading volume
(in shares) for which HFTs are providing liquidity to the to-
tal trading volume on the NASDAQ exchange in each of the
half-hour trading intervals. We focus on the HFT Liq Ratio
in the first half hour when cream skimming activity is ex-
pected to be the highest (Open HFT Liq Ratio).3> A lower
realized Open HFT Liq Ratio indicates that fast arbitrageurs
observe small n or large 7 near the market open and thus
they choose to intermediate a smaller fraction of trades.

Since 7 is unpredictable in our model, instead of the
2SLS regression approach used in our earlier tests, we test

32 See Brogaard et al. (2014) for a detailed data description. We thank
Phil Mackintosh and Heinrich Lutjens at NASDAQ OMX for providing the
data.

33 Consistent with the notion that HFTs are more selective in choosing
stocks for which to provide liquidity near the market open, Figure 6 of the
Internet Appendix shows that the distribution of HFT Liq Ratio is more
dispersed and the frequency of near-zero realized values is much higher
for the first half-hour trading interval compared to the last half-hour trad-
ing interval.
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how the predictive relation between realized Open RM OI
and subsequent intraday returns varies with the realized
Open HFT Liq Ratio. Specifically, we regress the intraday
return (from the second half-hour trading interval to the
close) on Open RM OI, Open HFT Liq Ratio, and their inter-
action term. The estimation result is presented below (day
fixed effects are included, but not reported for brevity):

r? = 0.10 x Open RM OI;; —7.33 xOpen HFT Liq Ratio
(t=1.58) (t=—0.95)

(r_0'25291) xOpen HFT Liq Ratio; x Open RM OI;; + €.
We find that the coefficient on the interaction term is
negative and significant, with a t-statistic of —2.2 based
on two-way standard errors clustered by firm and day.
This result is consistent with the prediction that liquid-
ity demand absorbed by fast arbitrageurs will predict fu-
ture returns less strongly among stocks for which fast
arbitrageurs choose to intermediate a smaller fraction of
trades.

Overall, both of our tests in this section support
Prediction 3 and the cream skimming mechanism in our
model.

5. Explaining the night-minus-day returns of
characteristics sorted portfolios

5.1. Explaining the night-minus-day returns of the 17 LPS
portfolios

We next explore the ability of our model to explain the
predictable night-minus-day returns of the 17 LPS charac-
teristics sorted portfolios. In Panel A of Fig. 5, we plot the
average night-minus-day return against the average Open
RM OI for these portfolios. We find that the sign and mag-
nitude of a portfolio’s average Open RM OI tend to match
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Fig. 5. Open RM OI and Night-minus-Day Returns of 17 LPS Portfolios.
This figure plots the average night-minus-day (NMD) return against the
average retail order imbalance absorbed by market makers in the first
half-hour trading interval (Open RM OI) of the 17 high-minus-low Lou,
Polk, and Skouras (2019, LPS) portfolios. In Panel A, we report the scat-
ter plot and the regression line in the full sample period. In Panel B, we
report the scatter plot and the regression line in periods with high and
low required returns from liquidity provision, respectively. NMD returns
are in annualized percentage points and Open RM OI is in basis points
of daily trading volume. The sample period is between October 2006 and
December 2020 when Open RM OI is available.

that of its average night-minus-day returns. Imposing the
model prediction, we use a linear model without an in-
tercept to fit the cross-sectional relation between average
Open RM OI and average night-minus-day returns and find
a cross-sectional R? of 71%.

The cross-sectional slope in Panel A of Fig. 5 can be in-
terpreted as the average returns of fast arbitrageurs from
providing liquidity at the open. Panel B of Fig. 5 further
shows that this slope is positively correlated with our
proxy for the expected returns from liquidity provision.
Specifically, similar to the analysis in Section 4.2, we use
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Daﬁy\Rev to define periods with high and low expected
returns from liquidity provision. We find that the cross-
sectional slope is twice as large in the high Dai/ly\Rev pe-
riod compared to the low DaTy\Rev period. The cross-
sectional R? is similar in magnitude between the two peri-
ods, at 62% and 66%, respectively.

In addition to the cross-sectional analysis above, we an-
alyze the time-series relation between the returns from
liquidity provision and night-minus-day returns in Table 6.
For each of the 17 LPS portfolios and the NMD MVE port-
folio, we regress their night-minus-day returns on con-
temporaneous Daily Rev. We use the monthly average
in these regressions to allow for non-synchronization of
daily returns. We interpret the intercept from this regres-
sion as an o because both the dependent and explana-
tory variables are excess returns. For ease of comparison,
we also include the «“APM previously presented in Fig. 3.
We find that accounting for exposure to Daily Rev re-
sults in an insignificant oDV Rev for 14 out of the 17 LPS
anomaly portfolios, more than double the number of in-
significant a“APM, In the last row, we focus on the NMD
MVE portfolio that summarizes the cross-sectional night-
minus-day return predictability across the 17 LPS portfo-
lios. We find that Daily Rev largely explains this portfolio’s
average night-minus-day returns (25.7% per annum), leav-
ing a statistically insignificant P2l Rev of 2.8% per annum
(t =0.67). Overall, our model’s predicted determinants ac-
count for a substantial portion of the cross-sectional and
time-series variability in the night-minus-day returns of
the 17 LPS portfolios.

5.2. A common cause of night-minus-day and close-to-close
returns?

The fact that the stock characteristics underlying the
17 LPS portfolios - many of which are known to deter-
mine the cross-section of close-to-close returns - gener-
ate predictable night-minus-day returns raises a tantalizing
conjecture that expected close-to-close returns and night-
minus-day returns might share the same common cause.
Our analysis thus far has presented theory and evidence
supporting the idea that when conditions allow for cream-
skimming to occur at market open, night-minus-day re-
turns are determined by Open RM OI and fast arbitrageurs’
required returns to liquidity provision. Do these economic
forces underlying night-minus-day returns also influence
close-to-close returns?

5.2.1. Predicted open RM OI

We first explore whether the Open RM Ol predicted
by the 17 LPS stock characteristics is related to expected
close-to-close returns. To test this prediction, we train a
gradient boosted decision tree (GBDT) model using these
17 characteristics to predict Open RM OI over the follow-
ing month. We choose a non-linear model because the
recent literature has shown that a linear combination of
stock characteristics does not sufficiently capture the vari-
ation in expected returns (Freyberger et al., 2020). We fol-
low Gu et al. (2020) in using shallow trees with a max-
imum depth of 7 to reduce overfitting. We set the num-
ber of trees to be 2000, use five-fold cross validation to
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Explaining the Night-minus-day Returns of 17 LPS Portfolios. This table presents
univariate regressions of the monthly average night-minus-day returns of the 17
high-minus-low Lou, Polk, and Skouras (2019, LPS) portfolios and the night-minus-
day mean-variance efficient (NMD MVE) portfolio on either the market excess return
(CAPM) or the Nagel (2012) short-term reversal strategy return (Daily Rev). We report
t-statistics computed based on Newey and West (1987) standard errors with 12 lags
in the parentheses next to the coefficients. The estimated intercept and coefficient
from these time-series regressions are denoted by « and B, respectively. Returns are
in annualized percentage points. The sample period is from January 1998 to Decem-

ber 2020 when Daily Rev is available.

Portfolio oCAPM t-stat Paily Rev t-stat BPaily Rev t-stat
rguma 42.75 (4.69) 3.74 (0.58) 0.65 (3.91)
Iy 39.11 (3.65) 6.92 (1.05) 0.57 (3.28)
TURNOVER  39.06 (4.45) 10.93 (1.66) 0.59 (4.20)
IVOL 3443 (2.90) —8.58 (-1.18) 0.83 (3.99)
Ip -30.89  (-2.44) 14.70 (1.41) -0.82 (-3.29)
BETA 28.11 (3.31) 9.49 (1.20) 0.46 (3.18)
MOM 24.84 (4.16) 14.94 (1.33) 0.12 (0.52)
INDMOM 17.09 (3.32) 9.35 (1.39) 0.12 (0.84)
rgwma -1544  (-1.66) 9.92 (1.43) -0.46 (-2.77)
ROE -12.97  (-1.90) 4.78 (0.78) -0.35 (—2.78)
ME 11.32 (3.18) 26.19 (5.73) -0.27 (-3.51)
INV 10.17 (2.17) 0.90 (0.19) 0.17 (2.64)
STR -9.17  (-1.07) 18.44 (2.12) -0.51 (—2.45)
ACCRUALS -7.18  (-2.14) -8.17 (-1.29) 0.02 (0.16)
ISSUE 6.52 (1.30) -2.52 (-0.48) 0.18 (1.85)
SUE 3.75 (1.19) 5.72 (1.27) -0.06 (-0.62)
BM -0.25 (-0.05) 15.27 (2.48) -0.24 (-1.79)
NMD MVE 25.73 (4.55) 2.76 (0.67) 0.39 (3.67)

Table 7

Explaining Close-to-close and Night-minus-day Returns using Predicted Open RM OI. This table
presents Fama and MacBeth (1973) regressions of next month’s average night-minus-day returns (NMD),
close-to-close returns (RET), or RM OI in the first half-hour trading interval (Open RM OI) on the pre-
dicted Open RM 0Ol based on stock-characteristics (Opm OI) in the current month. The prediction
model for Open RM Ol is trained using data after January 2010 (see the main text for details). Columns
(1) through (3) report the estimates based on the full sample period from February 1995 to December
2020 for NMD and RET and from October 2006 to December 2020 for RM OI. Columns (4) through (6)
report the out-of-sample estimates based on the period before January 2010. We report t-statistics com-
puted based on Newey and West (1987) standard errors with 12 lags in the parentheses. Returns are in
basis points (bps) per day and the order imbalances are in basis points of daily trading volume. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Full Sample

Out-of-Sample

NMD; RET;, = Open RM O,  NMDj, RET;,  Open RM OI;;
(1) (2) 3) (4) (5) (6)
Open RM Ol;, ,  5.83+* —0.22 142+ 8.48+ —0.41 0.64"+*
(590)  (-0.46) (9.90) (6.71)  (-0.54) (7.77)
Constant 2.60 525+ 0.10 426 456" ~0.10
(1.19) (3.73) (0.95) (1.25) (217) (—0.45)
N 602,124 602,124 294,171 373387 373,387 65,467
Adjusted R? 0.01 0.001 0.03 0.02 0.002 0.004

tune the learning rate, and fit the model using the data
between January 2010 and December 2020. We then use
the fitted GBDT model to generate predicted Open RM OI
(Opem 0I,) over the full sample period, so that the pe-
riod prior to January 2010 is strictly out-of-sample.

In Table 7, we use Open/RMOltq to predict night-
minus-day returns, close-to-close returns, and Open RM
Ol in month t using a Fama and MacBeth (1973) regres-
sion. We find that Opem Ol; positively predicts next
month’s night-minus-day returns in Column (1) and Open
RM OI in Column (3), with t—statistics equal to 5.9 and
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9.9, respectively. In contrast, Opem Ol; predicts close-
to-close returns with a negative but insignificant coef-
ficient in Column (2), with a t—statistic of only —0.5.
For robustness, we also conduct out-of-sample tests in
the pre-January 2010 period in Columns (4) through (6)
and similarly find that Opem OI; positively and signifi-
cantly predicts next month’s night-minus-day returns and
Open RM OI, but it does not significantly predict close-
to-close returns. Overall, we fail to find evidence that ex-
pected Open RM OI is related to expected close-to-close
returns.
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Explaining the Relation Between Beta and Night-minus-Day Returns. This table
presents the post-formation CAPM beta (BA"™), average close-to-close returns (RET),
overnight returns (ry), and intraday returns (rp), as well as their respective CAPM al-
phas («) for both the univariate CAPM beta portfolios (Panel A) and bivariate CAPM
beta portfolios (Panel B). The bivariate CAPM beta portfolios control for Opm ol
and have similar average values of Opem OI across beta deciles. The sample period
is between February 1, 1995 and December 31, 2020. We report t-statistics computed
based on Newey and West (1987) standard errors with 21 lags in the parentheses under
the coefficients. Returns are in annualized percentage points and expected Open RM OI

is in basis points of daily trading volume.

Panel A - Univariate S“""MPortfolios

Decile BCAPM RET N Ip oA aghe™ asho™
1 0.50 11.32 2.05 9.27 412 -3.13 7.41
(17.47) (496) (1.34)  (491)  (250) (=3.05) (5.38)
2 0.66 11.53 3.20 8.24 2.77 -2.99 5.85
(29.00) (4.44) (1.95)  (3.93)  (1.78) (=3.34)  (4.63)
3 0.77 11.82 3.00 8.62 1.95 -4.01 5.89
(30.69) (4.04) (1.47) (3.65)  (123) (-407) (457)
4 0.86 11.82 4.15 7.48 1.11 -3.37 4.45
(30.79)  (3.88) (2.05)  (3.09)  (0.71)  (-3.82)  (3.52)
5 0.92 12.25 5.59 6.38 0.92 -2.32 3.08
(47.62) (3.58) (2.64) (241)  (058) (=2.37)  (2.46)
6 1.02 12.31 5.17 6.88 0.00 —3.42 3.22
(63.80) (3.46) (2.15)  (246)  (0.00) (=3.67) (2.86)
7 1.12 13.10 9.46 3.29 -0.23 0.30 -0.71
(81.11)  (3.23) (3.91) (1.07)  (-0.16)  (0.34)  (-0.66)
8 1.24 12.34 10.10 1.73 -2.16 0.01 —2.73
(51.95) (2.69) (3.53) (0.50) (-126)  (0.01)  (=2.11)
9 1.46 12.14 13.97 —-2.47 —4.51 2.79 -7.77
(4037) (2.34) (455) (-0.61) (=2.13)  (2.03)  (-431)
10 1.79 13.56 22.74 -10.29 -6.37 9.48 -16.76
(30.85) (2.02) (5.93) (=2.02) (-1.86) (437) (=5.67)
10 -1 1.28 2.24 20.68 -19.56 -10.49 12.61 -24.16
(1526) (0.37) (641) (-4.08) (-231) (433) (-6.26)
Panel B - Bivariate S¢"MPortfolios
Decile ~ BCAPM RET Iy Ip afitM ™ afht™
1 0.56 11.37 3.02 8.33 3.58 -2.55 6.27
(2120) (4.85) (1.96)  (4.43)  (246) (-2.81) (527)
2 0.74 12.00 3.56 8.27 2.48 -3.13 5.62
(33.81)  (437) (1.98) (3.91)  (1.99)  (-4.09) (5.87)
3 0.82 11.65 3.21 8.26 1.34 —4.06 5.34
(58.14)  (4.00) (1.70)  (3.61)  (1.17)  (=620)  (5.89)
4 0.91 12.21 431 7.67 0.93 -3.51 4.43
(5205) (3.75) (202) (3.06)  (0.79)  (=5.09)  (4.76)
5 0.98 12.75 4.51 7.94 0.81 -3.74 4.44
(7439)  (3.73) (2.03)  (3.04)  (0.70)  (=5.55)  (5.11)
6 1.05 13.83 5.09 8.40 1.19 —3.63 4.66
(85.84) (3.78) (2.20)  (2.98)  (1.05) (=532)  (5.27)
7 1.13 12.92 4.92 7.67 -0.48 —4.24 3.62
(7967) (327) (1.96)  (2.53)  (-042) (-5.93)  (3.84)
8 1.22 12.52 5.77 6.36 -1.76 -3.97 2.01
(62.69) (2.88) (2.13) (1.95) (-139) (=5.36)  (1.89)
9 1.33 13.99 6.60 6.85 -1.37 -3.74 2.11
(58.14) (297) (229) (1.94)  (-089) (-4.16)  (1.57)
10 1.54 13.85 10.66 2.56 -3.62 -0.83 -3.00
(48.60) (2.40) (3.16)  (0.59)  (-1.65) (-0.66) (—1.64)
10 -1 0.98 2.49 7.63 -5.77 -7.19 1.71 -9.27
(17.44) (0.54) (3.08) (=1.63) (-226) (0.89)  (-3.64)

5.2.2. Alternative channels

The fact that expected Open RM OI conditioned on
anomaly characteristics does not predict close-to-close re-
turns indicates that these anomaly characteristics relate

to Open RM OI differently from how they relate to ex-
pected close-to-close returns (e.g., via risk or mispric-
ing). However, a common cause could still underlie the
characteristics-sorted close-to-close and night-minus-day
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returns if the cross-sectional relation between these char-
acteristics and night-minus-day returns operates through a
channel other than expected Open RM OI. We explore this
open-ended question by focusing on the opposite signed
slopes of the capital asset pricing model (CAPM) between
night and day, given its important implications for asset
pricing theories (Hendershott et al., 2020).

Specifically, to isolate the variation in CAPM beta that
is independent of expected Open RM OI, we perform
10-by-10 conditional double sorts first on Open/ﬂ/l Ol and
then on CAPM beta at the end of each month t. For each of
the resulting 100 portfolios, we calculate value-weighted
close-to-close, overnight, and intraday returns in month
t +1. Next, within each CAPM beta decile, we average
across the 10 Open/m Ol portfolios to get the bivariate
CAPM beta decile portfolios, which have similar values of
Open/m OI across the decile portfolios.

For context, Panel A of Table 8 first reports the uni-
variate portfolio sort results based on CAPM beta. We
observe a strongly positive (negative) monotonic relation
between BAPM and overnight (intraday) returns. Specif-
ically, if a stock’s market beta increases by 1, its aver-
age overnight returns increase by 6.4 basis points (bps)
per day, while its average intraday returns decrease by
6.1 bps per day, which is in line with the findings of
Hendershott et al. (2020).3* The univariate CAPM beta
10 — 1 portfolio generates a significant —10.5% per annum
close-to-close return CAPM alpha (oelgé%’M), consistent with
the well-known betting-against-beta effect (Frazzini and
Pedersen, 2014). Its overnight return alpha (o{APM) is
12.6% per annum and its intraday return alpha («$"P™) is
—24.2% per annum, a puzzling phenomenon highlighted by
Hendershott et al. (2020).

In Panel B of Table 8, we report the results for the bi-
variate CAPM beta portfolios that control for Open/m Ol
We find there remains a strongly increasing post-formation
CAPM beta across the ascending deciles of the bivariate
CAPM beta portfolios, which results in a post-formation
beta of 0.98 for the 10 — 1 portfolio. The 10 — 1 bivariate
and univariate CAPM beta portfolios generate very similar
average close-to-close returns (2.49% vs. 2.24% per annum).
In contrast, the 10 — 1 bivariate CAPM beta portfolio has a
much smaller ry and rp at 7.6% and —5.8% per annum, re-
spectively, compared to the 20.7% and —19.6% generated by
its univariate counterpart. Noticeably, the 10 — 1 bivariate
CAPM beta portfolio has an insignificant APM that is 86%
smaller compared to its univariate counterpart and a sig-
nificant "M that is 62% smaller. For robustness, we again
conduct an out-of-sample test in the pre-January 2010 pe-
riod and find qualitatively similar results (see Section 4 of
the Internet Appendix). Therefore, controlling for expected
Open RM OI has little effect on the relation between CAPM
beta and close-to-close returns, but it substantially reduces
the positive beta-ry relation and the negative beta-rp rela-
tion.

34 The magnitude of the beta-return relation is smaller here since we
examine value-weighted portfolios and use the volume-weighted open
price to compute returns.
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Overall, our results in this section suggest that the
channels that connect anomaly characteristics to night-
minus-day returns are different from the channels that
connect anomaly characteristics to expected close-to-close
returns.

6. Conclusion

We develop a heterogeneous agent model to un-
derstand the predictability of night-minus-day returns.
In our model, two different types of arbitrageurs with
offsetting advantages endogenously determine the price
of liquidity at different times of the day. At the market
open, when unpriced private information is more plentiful,
fast arbitrageurs’ information advantages allow them to
cream-skim and charge a high price for liquidity. As pri-
vate information gets incorporated into prices throughout
the trading day, slow arbitrageurs’ advantages in bearing
inventory risk become more important and they become
the marginal liquidity provider, leading to predictable
night-minus-day returns.

By providing the microfoundation that gives rise to the
limited participation of these heterogeneous arbitrageurs,
our model leads to novel testable predictions that are
borne out in the data. First, we document that the order
imbalances associated with the predictable night-minus-
day returns persist throughout the trading day, which chal-
lenges the prevailing explanations that focus on liquid-
ity demand but is consistent with our model. Second,
we show that cross-sectional differences in predictable
night-minus-day returns align with liquidity demand ab-
sorbed by fast arbitrageurs near market open, and this re-
lationship increases in fast arbitrageurs’ required returns
from liquidity provision. Third, we validate our proposed
cream-skimming mechanism by identifying two subsets
of assets where fast arbitrageurs are unlikely to be able
to determine the price of liquidity - specifically, Euro-
pean dual-listed stocks that have active overseas trading
before the U.S. open and stocks where high frequency
firms choose to intermediate a smaller fraction of trades.
Among these assets, we show that the liquidity demand
absorbed by fast arbitrageurs less strongly predicts future
returns.

Our analysis demonstrates one novel channel by which
the strategic interactions among arbitrageurs give rise to
intraday variations in the identity of the marginal in-
vestor, providing new insights into the price formation
process. These insights help explain substantial variations
in the predictable night-minus-day returns of anomaly
characteristics-sorted portfolios and, more broadly, high-
light the complexity inherent in assessing the welfare im-
plications of new technologies in market making: while
improvements in high-frequency trading technology might
lead the presence of HFTs to be associated with increas-
ingly narrow spreads, these technologies may nevertheless
make liquidity more costly overall.
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Appendix A

Solutions of (2) and (5)

Slow arbitrageurs’ ask price solves Eq. (2). Given that
n is uniformly distributed between [—n, +n], Pr(n > a) =
524, and E[n|n > a] = %4, for |a| <n. Thus, Eq. (2) be-

Wv
comes
a! . (h—a n+a
(1-7)(3 )@+ @) (4 - 55 <o,
(A1)

and has the solution given in the main text,

_. n(1-v1-7?)
as1 =5S(T) = -

The fast arbitrageur’s ask price solves Eq. (5) which, given
the distributions of 7 and 7, equates to

a-m(3) @1 =+ 0 () (a1 - ca - ) =0,
(A2)

and has the solution

TCa+n— \/nzcg +n2(1 —m2)

ag1=f(m) = P

Proof of Lemma 1

To begin, we define the inverse functions f~1(x) and
s~1(x). Note that both f(x) and s(x) are monotonic for x €
(0,1), so the inverses are well behaved on the range of f
and s. To complete the definition of the inverses, we define

fHNa@)=0if a< f(0),
and
@) =1ifa> f(1).

We define s—!(a) in the same way, so that both inverses
are well-defined for all a.
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Next, consider x,y, such that f(x) =s(y), and x,y ¢
(0,1). In this case, by construction, both arbitrageurs’
quotes are the same. Furthermore, x = f~1(s(y)). To com-
plete the proof, note that Vx' < x, f(x’) < s(y). That is, for
7t =y, if the realization of m is below x, the fast arbi-
trageur’s ask is lower than the slow arbitrageur’s ask, and
hence the slow arbitrageur’s ask is not competitive.

Statement and Proof of Lemma 2

Lemma 2 (Slow arbitrageurs’ profits). The presence of fast
arbitrageurs at t =1 makes slow arbitrageurs unwilling to
quote a narrow spread. Suppose a slow arbitrageur posts an
ask price agq at t =1. Relative to an economy with only
slow arbitrageurs, the existence of competition from fast ar-
bitrageurs reduces slow arbitrageurs’ expected welfare by

fas1)
[ Ve mogndr, (A3)
where Vg 1 is defined in Eq. (A.4) below, ¢y is the probability
density function of m, and Eq. (A.3) is positive for all nonzero

f71 (as,])-

Proof. For a conjectured ask price asq and a realization 7,
slow arbitrageurs expect a filled order to be worth

Vor (@51, 70) = (1= 1) () (@51) + () (1 = Dy (a5,1)) (@51 — ¥ (@)).
(A4)

In the absence of fast arbitrageurs, slow arbitrageurs’ valua-
tion given the ask being hit is given by

s71(as1)
Eo[Vs.1|Fast absent] = / Vs1(asq, m)prdm
0

1

[ V@ mgadr, (AS5)
s71(as1)

where the first term on the right hand side is positive, and

the second term is negative. It follows from Lemma 1 that in

the presence of fast arbitrageurs, this becomes

s71(as1)

Eo[V; 1|Fast present] :/ Vs1(as1, w) @ dm

f @)
1
+ / Vi1(a51, m)@rdm. (A6)
s71(as1)

The difference in these two expectations is

f'(as1)
/0 Vi1 (G50, 70 )bredr

as desired. Vi1 is positive everywhere in the region
[0, f~1(as,1)] because f~1(ag1) <s'(as1). This means that
if slow arbitrageurs post as that delivers zero profit in an
economy without fast arbitrageurs, the same a5 will result
in expected losses when fast arbitrageurs are present. Given
the potential for slow arbitrageurs to suffer a loss, their equi-
librium quotes depend upon the extent to which fast arbi-
trageurs can cream-skim throughout the trading day. O

(A7)

Proof of Proposition 1
Suppose both types of arbitrageurs appear in the mar-
ket. The fast arbitrageur observes 7, and prepares to post
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an ask price f(x=). The slow arbitrageur does not ob-
serve 7r, but she can make an estimate about the circum-
stances under which any given ask price s(y) would be hit.
Specifically, for any given y, she can solve for X such that
f(®) =s(y), by calculating £ = f~1(s(y)). Thus, if the slow
arbitrageur posts an ask price of s(y), she expects that the
fast arbitrageur will undercut her if and only if they ob-
serve 7 < X. She therefore concludes that with an ask price
s(y), she can capture the market for 7 € [X, 1], but she will
lose the market for 7 € [0, X).

Given that she wins the market in those states of the
world where 7 ¢ [%, 1], it remains for her to calculate the
circumstances under which it would be profitable to do so
(i.e., to sell at a price s(y) in the states of the world where
7 € [%, 1]). Note that 7 is distributed uniformly, so its con-
ditional expectation is simply in the middle of the region
[%,1]; she expects to meet an informed counterparty with
probability ’?%1 Her entry is (weakly) profitable if and only
if

5(;@51) <s).

i.e,, the break-even ask price conditional on the expected
informedness of her counterparty (77) given the states of
the world in which her ask is hit is no higher than the ac-
tual ask price s(y) that would win her that segment of the
market. More specifically, following Lemma 1, it is prof-
itable for a slow arbitrageur to post an ask price s(y) if

s@y) = s(’?)

[ sy)) +1
o) .

(A.8)

(A9)

s(y) > s( (A.10)
Rearranging to eliminate the inverse functions, the slow ar-
bitrageur is willing to enter at an ask price s(y) if and only
if

—1
v fsy) + 1’

> (A11)

fQy—1)=s@). (A12)

Given competitive slow arbitrageurs, profits will be driven
to zero and the above will hold with equality; i.e., if
(9) holds for at least one y € [0, 1], then the equilibrium
y will obey

fQy-1)=s®). (A13)

Note that segmentation will arise as long as f(0) <
s(%). This is because when f(0) > s(3), slow arbitrageurs
will be the marginal liquidity providers for all 7. Given
f(0)=c, f(0) <s(3) implies ¢ < 1="3=0" VI-052  Simplifying
gives (A.14), the upper bound for c.

t=nx2-+3). (A14)

If ¢ >c, fast arbitrageurs’ cost of capital is too high for
them to profitably provide liquidity, even if they observe
7w =0. In this case, slow arbitrageurs are always the
marginal liquidity provider.
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At t =2, slow arbitrageurs are fully informed, so they
set the competitive risk-neutral bid and ask at bs; = a;, =
7 = vg + 7. Fast arbitrageurs’ reservation values will reflect
any accumulated inventory from t = 1, so they will be will-
ing to sell at a price above 7 —c, to offload their pos-
itive inventory and buy at price below 7+ c, to offload
their negative inventory. Because fast arbitrageurs’ reserva-
tion sales price is below slow arbitrageurs’ bid, and fast
arbitrageurs’ reservation purchase price is above slow arbi-
trageurs’ ask, fast arbitrageurs will take advantage of slow
arbitrageurs’ quotes to offload their inventory at t = 2, and
exit the market. The ask and bid prices at t = 2 are pinned
down by slow arbitrageurs’ valuations rather than fast ar-
bitrageurs’ reservation value because fast arbitrageurs’ de-
mand for liquidity at t =2 is finite (equal to their accu-
mulated inventory over a trading day) whereas slow arbi-
trageurs’ supply of liquidity is substantially larger (unlim-
ited in the model).

Proof of Proposition 2

Note that when fast arbitrageurs determine the price
of liquidity - i.e., when fast arbitrageurs are the marginal
liquidity provider at both the ask and the bid - this en-
tails 7 < Min{s;, 7} . Thus, the relationship between ask
(bid) price and the fundamental values conditional on
trades occurring at the ask (bid) price is given by

Ei[vz]ask] = a - x qq, (A15)
and
Ei[vy|bid] = b+ x qp. (A.16)

That is, the trade price deviates from post-trade expected
fundamental values when fast arbitrageurs determine the
price of liquidity. Next, considering pre-trade midquotes,
the above can be rearranged to give

a = Eq[v;]ask] + ¢ x qq, (A17)
b= Eq [U2|bld] - x qp- (AlS)
and thus

a+b = E[vy|ask] + ¢ x qq + E1[v2|bid] — ¢’ x q.  (A19)

Now suppose temporarily that (i) the expected fundamen-
tal value of the asset conditional on no trade is equal to
its ex ante fundamental value; i.e.,, the absence of trade is
uninformative, and (ii) trade at the ask is as likely as trade
at the bid. By the law of iterated expectations,

Vg = Pr(ask) x Eq1[va|ask] + Pr(bid) x Eq[v,|bid]

+ Pr(neither) x Eq[v,|neither], (A.20)
and thus under the aforementioned (i) and (ii),
Vo = Eq1[v,|ask] 42rE1[v2|bid].’ (A21)
and hence
aTer —Vo = %C/(Qa — @b). (A22)

Lastly, note that, as we relax conditions (i) and (ii),
because higher ask prices and lower bid prices will de-
ter informed counterparties, the factor of proportionality



Z. Lu, S. Malliaris and Z. Qin

will change, but the direction of the relationship will not
change.

Thus, more generally, for an asset with 7 < 7*, the pre-
trade price at market open, my, is given by the fast arbi-
trageur’s midquote, and deviates from expected fundamen-
tal value,

E[(m1 —vo)|7w] ~ ¢ x (ga — qp)- (A23)

The price at market close, m,, is given by the slow arbi-
trageur’s midquote, and does not deviate from fundamen-
tal value,

E[m;] =E(v2), (A24)

and t = 2 prices conditional on trade equal conditional ex-
pected values. Thus, averaging across all stocks, overnight
returns (m; — vp) and intraday returns (v, — mq) will have
opposite signs in expectation, generating night-minus-day
returns that are (i) increasing in qq, (ii) decreasing in g,
and (iii) whose magnitude increases when ¢’ increases.

Proof of Prediction 1

Propositions 1 and 2 establish that liquidity demand ab-
sorbed by fast arbitrageurs around market open will corre-
late positively with overnight returns. However, at market
close, slow arbitrageurs determine the price of liquidity.
Thus, intraday returns are given by the difference in fast
and slow arbitrageurs’ price of liquidity, which generates
reversals irrespective of ongoing order imbalances.

Proof of Prediction 2

In the cross-section, the expected overnight returns in-
crease in expected order imbalances at open (i.e., at t =1)
and in fast arbitrageurs’ required returns, as shown by
Eq. (A.23) of Proposition 2. Away from market open, once
slow arbitrageurs become the marginal liquidity provider,
order imbalances no longer exert any price pressure; per-
sistent order imbalances will no longer increase price devi-
ations, but rather price deviations will decrease. Therefore,
predictable intraday returns are opposite to the overnight
returns, generating predictable night-minus-day returns.

Proof of Prediction 3

The relationship between m and the identity of the
marginal liquidity provider follows immediately from the
result that slow arbitrageurs determine the price of lig-
uidity when m > 7r*. The relationship between n and the
identity of the marginal liquidity provider follows from
the equilibrium condition (10). Specifically, 7* that solves
(10) is increasing in n, as shown by Fig. 2. To see why, re-
call that equilibrium requires, given some baseline n = ng,
the relationship f(sg; ng) = s(ﬂgz+l ; ) to hold. Now con-
sider a positive perturbation in n; n; =ng+ €. To begin,
suppose slow arbitrageurs conjecture Thon, =75 At the
original intersection point 7, fast arbitrageurs expect to
meet an informed counterparty with probability j§, so
their expected loss from trading against informed traders
increases with the increased n and thus they have to raise
their ask price, ie., f(r§;n) = f(r§;ng) + 85 The slow
arbitrageurs, who do not observe realized m, expect to

meet an informed counterparty with probability HOZH
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7g. Therefore, slow arbitrageurs’ expected loss from trad-
ing against informed traders increases more with the in-
creased n, and thus slow arbitrageurs raise their ask price

by a larger amount, i.e., s(”0+

o) = (75 ) + 8 >
f(mgsng) = f(mw§; ng) + 85, Thus, for n=ny, at the orig-
inal intersection point 7, fast arbitrageurs’ break-even
ask price is lower than slow arbitrageurs’ break-even ask
price. If f(ms;ny) <s(@;n1). then slow arbitrageurs
will trade with an informed counterparty with probabil-
ity between 7w =7* > 73 and ¥ =1 and thus slow arbi-
trageurs have to increase their conjectured m;_p . There-
fore, as n decreases, slow arbitrageurs are more likely to
determine the price of liquidity at market open (i.e., they
determine the price of liquidity for a wider range of ).

Following Proposition 2, predictable night-minus-day
returns arise when fast arbitrageurs determine the price of
liquidity around market open. Therefore, predictable night-
minus-day returns are smaller when slow arbitrageurs are
more likely to determine the price of liquidity. With re-
spect to the prediction, if fast arbitrageurs’ liquidity pro-
vision occurs only when fast arbitrageurs determine the
price of liquidity, predictable liquidity provision from fast
arbitrageurs and predictable night-minus-day returns will
shrink in tandem. However, as long as fast arbitrageurs at
least occasionally provide liquidity for other reasons (e.g.,
as discussed in footnote 17 in the main text), the relation-
ship between fast arbitrageurs’ liquidity provision and the
predictable night-minus-day returns will attenuate as fast
arbitrageurs become less likely to determine the price of
liquidity.

Appendix B
B1. Construction of the LPS portfolios

We use the 17 long-short portfolios from
Lou et al. (2019) as our test assets. These portfolios
are sorted on the following characteristics: the monthly
cumulative overnight (ry, RN) and intraday (rp, RD) re-
turn, the exponentially-weighted moving average of the
overnight (rg"™!, RN EWMA) and intraday (rj"™, RD
EWMA) return in months t—1 to t— 12, idiosyncratic
volatility (IVOL), turnover (TURNOVER), CAPM beta (BETA),
month t —1 to month t — 11 return momentum (MOM),
month t short return reversal (STR), issuance (ISSUE),
return on equity (ROE), investment (INV), industry mo-
mentum (INDMOM), accruals (ACCRUALS), book to market
ratio (BM), post-earnings announcement drift (SUE), and
market capitalization (ME).

Following Lou et al. (2019), we sort all stocks into decile
portfolios based on an ascending ordering of each of these
characteristics at the end of each month t. The long-short
zero investment portfolio goes long the top decile portfo-
lio and short the bottom decile portfolio. We then calculate
the daily value-weighted close-to-close, overnight, and in-
traday portfolio returns realized in month t +1 with the
prior day’s market capitalization as the weights. The daily
night-minus-day return of the long-short portfolio is the
return on a trading strategy that goes long this portfolio
overnight and shorts it intraday.



Z. Lu, S. Malliaris and Z. Qin
B2. Construction of NMD MVE and RET MVE

To parsimoniously summarize the night-minus-day and
close-to-close return predictabilities associated with these
17 LPS portfolios, we construct their respective pricing fac-
tor using the Bayesian stochastic discount factor (SDF) es-
timator proposed by Kozak et al. (2020) (hereafter the KNS
estimator). The KNS estimator of b in Eq. (B.1) resembles a
ridge regression estimate with a L2 norm penalty term,

b= (T+yl) T

where [ is the identity matrix, I and & are the estimated
return covariance matrix and the mean of the test asset
returns, respectively, and y is the hyperparameter associ-
ated with the [? penalty term. As Kozak et al. (2020) ex-
plain, this estimator shrinks the SDF coefficients of the
naive estimator towards zero, with the shrinkage factor be-
ing stronger for the coefficients on the principal compo-
nents with smaller variance.?”

Our implementation of the KNS estimator is as follows.
We denote the night-minus-day or close-to-close returns
for the 17 LPS portfolios by F. With a time series of length
T, we estimate the sample moments by,

(B.1)

1 T
=5 F (B.2)
B 1 t?1 ,
F=5> - -7). (B.3)

t=1

To choose the optimal y, we follow Kozak et al. (2020) in
using K-fold cross-validation (CV) with K =3. We first
equally divide our sample into three subsamples and then
set a grid of potential values for y. For a given y value,
we use K —1 subsamples to estimate the in-sample mo-
ments ;s and T'js, according to Egs. (B.2) and (B.3), and

bis = (Tis + yI)_lﬁls. Then, using the withheld subsample,
we compute the out-of-sample (0O0S) moments, fLyos and
T oos. Finally, we compute the out-of-sample R? as,

(MOOS - EOOSBIS) (IU'OOS - iOOS&S)

—_
MHoos Hoos

We withhold each of the K subsamples, treat it as OOS
data, and repeat the above procedure K times. The cross-
validated R? is the average R(Z)os across these K estimates
for a given y. Then, we select the optimal y that max-
imizes the cross-validated R?. With the optimal y*, we
compute the SDF coefficient b* using the full-sample mo-
ments according to Egs. (B.1) - (B.3).

The mean-variance efficient portfolio implied by b* is a
one-dollar long and one-dollar short zero investment port-
folio with the following weight on each LPS portfolio i,
L (B.4)

17 %
i=1 bi

=1—

2
ROOS

w; =

35 Among several alternatives that Kozak et al. (2020) explore, they state
that this estimator is the natural starting point for applications of their
approach if sparsity is not required.
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When the test assets are the night-minus-day (close-to-
close) returns of the 17 LPS portfolios, the above procedure
delivers the NMD (RET) MVE portfolio. We note that the
procedure uses full-sample information. We refer readers
interested in the out-of-sample performance of the algo-
rithm above to Kozak et al. (2020). In a companion paper
(Lu and Qin, 2021), we also evaluate the OOS performance
of the NMD MVE portfolio in pricing an expanded set of
test assets.

B3. Computing portfolio-level order imbalances

We compute order imbalances as follows. First, we
measure 30-minute order imbalances for stock i at time ¢
as,

Buy;, — Sell
Olie = Volume;,
where Buy; and Sell; are the orders that are classi-
fied as buys or sells according to either the Lee and
Ready (1991) or the Boehmer et al. (2021) algorithms, and
Volume;; is the daily trading volume in shares. Next, we
compute the portfolio-level value-weighted order imbal-
ances for the decile portfolios sorted on each of the 17 LPS
characteristics as,
0I5, =Y W Oly,

ied
where wf, are the market capitalization weights for stock
i belonging to the decile d portfolio sorted on the char-
acteristic ¢ at time t. Finally, we compute the order im-
balance for the NMD MVE portfolio by applying the NMD
MVE weight (WMVE) on the order imbalances of the 17 LPS
long-short portfolios (Olfs,t)-

17
oM — 3" WMVEQLE

c=1
B4. Construction of the daily rev predictive model

The daily reversal strategy return (Daily Rev) is the
cross-sectional average of the returns of five long-short
portfolios that weight stocks proportional to the negative
of 1- to 5-day lagged daily market-adjusted returns, re-
spectively. This strategy is rebalanced daily and hedged
for time-varying market exposure following Eq. (18) of
Nagel (2012). Following Nagel (2012), we replicate the
Daily Rev strategy and use the daily returns of this re-
versal strategy beginning in 1998. From 1998 to 2020,
the estimated predictive OLS model using daily data
is Daily Rev, = —0.033 + 0.182 x VIX;_5 — 0.515 x Ry;;_5 +
0.254 x Pre-Decimalization,_5 following Eq. (19) and the
variable definitions in Nagel (2012). We confirm that the
VIX is the most important predictor. Our test results are
robust to using VIX directly to capture the time-series vari-
ation in the expected returns from liquidity provision.

B5. Identifying dual-list stocks

We identify European dual-listed stocks with any of the
following exchange codes (exchg) in Compustat Global that
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also have the same GVKEY as a U.S.-traded stock. Lon-
don Stock Exchange 194, NYSE Euronext Paris 286, NYSE
Euronext Amsterdam 104, Germany XETRA 171, Swiss Ex-
change 151, Germany Deutsche Boerse AG 154, Sweden
NASDAQ OMX Nordic 256, Italy Borsa Italiana Electronic
Share Market 209, Norway Oslo Bors ASA 228, Spain Bolsa
De Madrid 201, Denmark OMX Nordic Exchange Copen-
hagen AS 144, Finland NASDAQ OMX Helsinki Ltd 167, Bel-
gium NYSE Euronext Brussels 132, BM and F Bovespa SA
Bolsa De, Valores Mercadorias E Futuros 243. All of these
stock exchanges have trading hours that overlap with the
U.S. open. For Canadian dual-listed stocks, we use stocks
with any of the following exchange codes (exchg) in Com-
pustat Global that have the same GVKEY as a U.S.-traded
stock: Toronto Stock Exchange Canada 7, TSX Venture Ex-
change Canada 9. When we match these dual-listed stocks
by industry, we adopt the industry classification based
on the GGROUP variable from Compustat Global, i.e., the
leftmost 4 digits of Global Industry Classification Stan-
dard (GICS) code. Finally, we impose the data filters in
Section 3.1 of the main paper on both the dual-listed and
non-dual-listed U.S. stocks and then identify the market
capitalization- and industry-matched pairs.

Supplementary material

Supplementary material associated with this article can
be found, in the online version, at 10.1016/j.jfineco.2023.03.
002
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