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 THE JOURNAL OF FINANCE * VOL. XLVII, NO. 2 * JUNE 1992

 Time and the Process of Security Price
 Adjustment

 DAVID EASLEY and MAUREEN O'HARA*

 ABSTRACT

 This paper delineates the link between the existence of information, the timing of
 trades, and the stochastic process of prices. We show that time affects prices, with
 the time between trades affecting spreads. Because the absence of trades is corre-
 lated with volume, our model predicts a testable relation between spreads and
 normal and unexpected volume, and demonstrates how volume affects the speed of
 price adjustment. Our model also demonstrates how the transaction price series will
 be a biased representation of the true price process, with the variance being both
 overstated and heteroskedastic.

 FEW TOPICS IN FINANCE are of broader interest than the time series properties
 of security prices. Fundamental to research on such diverse topics as security
 returns, market efficiency, investor trading strategies, option behavior, and
 security market design, the stochastic process of prices underlies much of the
 phenomena studied in financial economics. But how the stochastic process of
 prices behaves, or even what factors determine the movement between one
 security price and the next remains unclear. These theoretical questions
 have spurred extensive research on security price formation, much of it in the
 large, and growing area of security market microstructure.

 The microstructure literature investigates how prices evolve by analyzing
 how traders learn from market data. This focus allows researchers to charac-
 terize the time series properties of prices as a function of the information
 trades reveal to the market. In the standard microstructure models, however,
 time per se plays no role. In the Kyle (1985) framework, for example, all
 trades are batched so that wheni individual orders arrive is not relevant (or
 even known) to the market maker. Similarly, in the Glosten and Milgrom
 (1985) sequential trade model, orders are assumed to arrive in some proba-
 bilistic fashion which is independent of any time parameters. In these
 models, the timing of trades is irrelevant for the behavior of prices because
 time itself has no information content.

 *Easley is from the Department of Economics and O'Hara is from the Johnson Graduate
 School of Management, both at Cornell University. We would like to thank Doug Diamond, Joel
 Hasbrouck, Eric Hughson, Murugappa Krishnan, Andy Lo, and seminar participants at Boston
 College, Cornell, and the Wharton School for helpful comments. We would also like to acknowl-
 edge the extremely helpful comments on an anonymous referee. An earlier version of this paper
 was presented at the Western Finance Association Meetings, June 1990.
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 578 The Journal of Finance

 This specification makes sense if time is exogenous to the price process.
 But if time can be correlated with any factor related to the value of the asset,
 then the presence or absence of trade may provide information to market
 participants. In this paper we demonstrate that this correlation can arise
 from properties of the underlying information structure. In our model, traders
 learn from both trades and the lack of trades because each may be correlated
 with different aspects of information. In particular, while trade provides
 signals of the direction of any new information, the lack of trade provides a
 signal of the existence of any new information.

 This latter effect we define as event uncertainty and it reflects the diffi-
 culty that uninformed traders face in even knowing whether new information
 exists. In the standard sequential trade framework used by Glosten and
 Milgrom (1985) and in Kyle (1985) this event uncertainty does not arise
 because an information event is assumed to have occurred. If information
 events are not certain, however, then whether trade occurs at all may provide
 a signal to the market. This suggests that the intervals between trades may
 have information content, and hence time per se is not exogenous to the price
 process.

 The intuition that the absence of trade could provide information to market
 participants and that this induces a bias in transaction prices is not new to
 this paper. Diamond and Verrecchia (1987) used this insight to explain how
 short sale constraints could impart information to no-trading intervals, and
 hence affect the speed with which prices reflected adverse information.

 Moreover, the basic sequential trade approach we apply to develop our
 results is also not unique. Where the contribution of our paper lies is in
 delineating the link between the existence of information, the timing of
 trades, and the stochastic process of security prices.

 Our results suggest that this link can explain a number of interesting
 phenomena in security price behavior. We show that time itself affects prices;
 while trades can cause price quotes to move, so too can periods of nontrading
 outcomes. Our model predicts that spreads will depend on the time between
 trades, with spreads decreasing as this time increases. Because the absence

 of trades will be correlated with volume, our model also predicts the relation-
 ship between spreads and both normal and unexpected volume. We demon-
 strate that these variables also affect the speed with which prices adjust to
 new information, yielding insights into how it is that markets become
 efficient.

 Perhaps most important, our model provides a characterization of the
 underlying stochastic process of prices. Because event uncertainty is reflected
 in the intensity of trades, the sequence of trades provides information beyond
 that conveyed by individual transactions. For example, in our model, two sell
 transactions have very different information content if they occur contigu-
 ously in time than if they occur an hour apart. During the intervals between
 transactions, market makers (and market participants) may revise their
 beliefs about the value of the asset, a revision that will not be reflected in
 transactions prices until a trade occurs. But since the timing of trades is
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 Time and the Process of Security Price Adjustment 579

 endogenous (depending in part on the existence of new information), the
 transactions price series will be a biased representation of the underlying
 "true" price process.

 These biases have important implications for analyses not only of transac-
 tions data but for any data series in which nonsynchronous trading is
 present. Because time is not exogenous to the transactions price process,
 transactions prices cannot be Markov processes. Trades in our model are
 serially correlated because the probability of a trade, and thus a price
 observation, is positively correlated with volume. This has the important
 implication that the variance of the transaction price yields an overestimate
 of the variance of the true price process. Further, both the conditional value
 process and the transactions price process have nonconstant variances. These
 results may be of interest both to researchers using transactions data, and to
 the growing literature on security and option volatility.

 In the next section we present a sequential trade model of security price
 formation that incorporates the effect of event uncertainty. In Section II we
 analyze the role of the time between trades, and characterize how time
 affects price quotes and spreads. We also examine the interaction of volume,
 quotes, and prices. Section III characterizes the stochastic process of prices,
 and in particular examines how the speed of price adjustment differs with
 respect to market parameters. Section IV then examines the implications of
 our results for empirical research. The final section discusses some exten-
 sions of our work.

 I. The Model

 We consider a sequential trade model similar to that of Glosten and Milgrom
 (1985) or Easley and O'Hara (1987). In this model, potential buyers and
 sellers trade an asset with a market maker who is responsible for quoting
 prices to buy and sell. Because we are interested in the effect of information

 on prices, we assume that the market maker is risk neutral and acts
 competitively. This assumption rules out any direct inventory effects on the
 market maker's prices, but does retain any information effects of inventory.
 For simplicity, we focus on the actions of a single market maker, but our
 assumption of competitive behavior implies the existence of at least potential
 competitors. 1

 We consider an asset whose eventual value is represented by a random
 variable V. We define an information event as the occurrence of a signal A
 about V. The signal can take on one of two values, L and H, with probabili-
 ties 6 > 0 and 1 - 6 > 0. We let the expected value of the asset conditional
 on the signal be E[V I = L] = V or E[V I = H] = V. If no information
 event has occurred, we denote this as A = 0 and the expected value of the
 asset simply remains at its unconditional level V* = 6 V + (1 - 6)V.

 1 More detailed discussion of these assumptions and their implications are given in Easley and
 O'Hara (1987).
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 580 The Journal of Finance

 In our model, information events need not occur, reflecting the realistic
 specification that since uninformed market participants do not receive any
 signals they may also not know whether any new information even exists.2 If
 new information always exists (as is the case in the Glosten-Milgrom model),
 then the uninformed would know implicitly that others knew more and could
 act accordingly. Of course, in actual market settings if new information is
 known to exist it is a common practice to halt trading until the information is
 publically disseminated. Similarly, if new information never arose, then the
 issue of some traders having superior information is moot.

 We capture this more natural "event uncertainty" that surrounds the
 existence of private information by assuming that the probability that an
 information event has occurred before the start of the current trading day is
 Ol, where 0 < a < 1. We then analyze the behavior of quotes and prices
 throughout the "day." Certainly, our specification of a day is arbitrary. In
 active markets, prices could adjust to new information in minutes and new
 information events could occur quite frequently. In inactive markets, there
 may not even be a single trade on some days. As our focus is on the effect of
 event uncertainty on price adjustment, what matters for our analysis is the
 learning problem confronting market participants. This is most easily char-
 acterized by adopting the fiction of a trading day and assuming that informa-
 tion events occur only between trading days. As we discuss in Section V,
 extensions to this simple framework are certainly possible and may lead to
 additional interesting insights.

 Trade in this market can arise from uninformed and/or informed traders.
 We assume that informed traders are risk neutral and take prices as given.
 This assumption rules out strategic behavior by informed traders, but may be
 realistic given the trading mechanism and the potential existence of multiple
 informed traders. The uninformed's behavior is more problematic. We as-
 sume that some of the uninformed trade for liquidity reasons arising from the
 timing of consumption or portfolio considerations. 3 There may be other
 uninformed traders, however, whose demands reflect more complex motiva-
 tions such as price sensitivity or individual-specific trading rules. These
 factors may influence the willingness of any uninformed trader to trade at
 any specific time or price. For the uninformed as a whole, we assume that a
 fraction -y are potential sellers and a fraction 1 - -y are potential buyers. If at
 time t an uninformed buyer checks the quote, the probability that he will

 2In actual markets, this uncertainty over whether there is any new information is reflected in
 the existence of the Dow-Jones Rumor Wire. As its name suggests, the Rumor Wire prints
 rumors of new information. Since uninformed traders will lose to traders who have private
 information, the rumor wire essentially reflects the event uncertainty we model here.

 3The presence of traders who are uninformed is necessary for the existence of trade by a
 rational market maker. If everyone who wants to trade with the market maker has superior
 information and is trading for speculative purposes, then the market maker loses on any trade
 he completes. Similarly, the uninformed, if they are rational, must not be trading solely for
 speculation.
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 Time and the Process of Security Price Adjustment 581

 trade is cB > 0, with an uninformed seller's trading probability defined
 similarly as Es > 0.4

 Our assumptions on risk neutrality and competitive behavior for the
 market maker dictate that the market maker's price quotes yield zero

 expected profit conditional on a trade at the quote. Since informed traders
 will profit at the market maker's expense, the probability that a trade is
 actually information-based is clearly important for determining these prices.
 We assume that if an information event occurs the market maker expects the

 fraction of trades made by the informed to be I. This fraction of trades need
 not reflect the fraction of the trader population that observes the signal.

 Indeed, it may be that, following an information event virtually all trades

 come from informed traders, in which case It will be close to one. However,
 specifying the mechanics of the order arrival process requires modelling both
 individual trader behavior and any frictions which might be present in the

 trading mechanism. The difficulty of this task led Glosten and Milgrom
 (1985) to adopt the simplifying convention of an exogenous arrival process

 whose parameters correspond to a simple probabilistic structure. We also
 adopt this structure. This framework is clearly an oversimplification, but
 since the probabilities can be viewed as the outcomes of the underlying
 problem, it does provide a reasonable way to characterize the arrival process.

 For our analysis here, we require that 0 < It < 1. The case of , = 1 is easy to
 analyze (we address it in footnotes) and although the statement of some of
 our results change, none of the intuition is affected.

 Trade occurs throughout the trading day. We divide the trading day into
 discrete intervals of time denoted t = 1, 2, * . . Each time interval is long
 enough to accommodate at most one trade.6 This timing specification is

 4 We can also allow explicit price dependence in the uninformed's demands by having the
 probability of trade be a function of price or price and the expected value of the asset. With

 continuity, slope, and boundary conditions we can show via a fixed point theorem that a unique

 equilibrium exists. However, this generalization adds to the complexity of the analysis and it
 reduces our ability to characterize the equilibria. Further, in an asymmetric information

 economy, demand functions can be very badly behaved. Unless attention is restricted to special
 examples demand need not be downward sloping or even continuous. Our point of view is that
 over the relevant range of prices (V, V) price sensitivity of aggregate demand is probably not an
 important issue. In any case, since it is not clear what assumptions on price sensitive demand
 are reasonable, we have chosen to present the analysis with simple random demand.

 5 There is an alternative version of the details of the information and trading process which is
 consistent with our reduced form model. Suppose that if an information event occurs then at

 each time one trader selected at random becomes informed with probability ,u. Upon becoming

 informed the trader makes a trade and leaves. If there has been no information event or if, as

 happens with probability 1 - ,, no one was selected to see the information, the trader who

 checks the quote is uninformed. This interpretation results in the same reduced form as in the
 text and so it generates the same analysis.

 6 The exact length of a trading interval is clearly arbitrary in our model. Inspection of the
 Institute for the Study of Securities Markets transactions data suggests that trades rarely occur
 more frequently than every five seconds and so this could be a reasonable specification. Since

 trading frequency differs dramatically between markets, however, for empirical work the

 appropriate length of an interval may differ across markets.

This content downloaded from 128.178.60.74 on Thu, 31 Jan 2019 13:24:40 UTC
All use subject to https://about.jstor.org/terms



 582 The Journal of Finance

 similar to that of Diamond and Verrecchia (1987) and allows us to capture

 the possibility that during some intervals no trades may occur.
 In our model, trade takes place in a sequential fashion with traders

 randomly selected to trade according to the probabilities given above. In
 particular, at each time t the market maker announces the bid and ask
 prices at which he is willing to trade one unit of the asset. Similarly, at each
 time t a trader is selected to trade and has the option of buying one unit of

 stock at the market maker's ask price, selling one unit at the market maker's
 bid price, or not trading at all.

 If the trader selected is an informed trader then she will buy if she has

 seen a high signal and the ask price is below V; she will sell if she has seen a
 low signal and the bid price is above V. Note that since the informed trader is
 risk neutral, she will always transact provided that prices are not at their
 full information value. If the trader selected is an uninformed trader, then
 whether he buys, sells, or doesn't trade at all depends on the trader's type
 and motivation for trading.

 This trading structure can be understood most easily by reference to the
 tree diagram given in Figure 1. In our model, at the first node nature selects
 whether an information event occurs. If there is an information event, then

 the type of signal (either L or H) is determined at the second node. These
 two nodes are reached only at the beginning of the day. From this point,
 traders are selected at each time t to trade based on the probabilities
 described above. Thus, if an information event has occurred, an informed
 trader is selected with probability ,u, and she then chooses either to buy or

 sell. Similarly, with probability (1 - it) an uninformed trader is selected and
 he may choose to buy, sell, or not trade. If no information event has occurred,
 then all traders are uninformed and the trader selected may choose to buy,
 sell, or not trade with the indicated probabilities. For trade in the next time
 interval, only the trader selection process is repeated, so the game proceeds
 from the right of the dotted line on the tree diagram. This continues
 throughout the day.

 There are two points to note about the differences between this structure
 and the approach found in other sequential trade models. First, the addition
 of the event uncertainty adds another "state" to the underlying game ana-
 lyzed in Glosten and Milgrom (1985), the implications of which are discussed
 in more detail in Easley and O'Hara (1987). For our analysis here, what
 matters is how this affects the trade outcomes. As the diagram indicates, if
 there is no information event, then all trades are actually from the unin-
 formed. Second, in our model the probability of a trader arriving in the next
 period is one. This differs (in interpretation, but not in implications) from the
 specification of Diamond and Verrecchia (1987) who assume that there is a
 1 - -y (-y > 0) probability that no trader will arrive. Our specification allows
 the trading intensity of the informed (the ,u) to be quite large, while still
 retaining the ambiguity over the underlying information structure for the
 uninformed market participants.

 Given this market structure, it may be that no trade actually occurs in
 some time interval. This can occur in our model only when an uninformed
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 Informed Trader Sells

 es Uninformed Seller Sells

 / Uninformed Seller Doesn't Trade

 Low g ~ Y eB Uninformed Buyer Buys
 Information
 Event /

 Occurs Uninformed Buyer Doesn't Trade

 Informed Trader Buys
 Signal5 s Uninformed Seller Sells

 H Sigha l I ~ Uninformed Seller Doesn't Trade

 Information B
 Event Uninformed Buyer Buys

 Does Not

 Doccu Not \:Uninforrned Buyer Doesn't Trade

 es Uninformed Seller Sells

 Uninformed Seller Doesn't Trade

 B Uninformed Buyer Buys
 Prior to the During the
 Trading Day I Trading Day B

 Uninformed Buyer Doesn't Trade

 Figure 1. Tree Diagram of the Trading Process. a is the probability of an information

 event, 6 is the probability of a low signal, A is the probability that the trade comes from an
 informed trader, -y is the probability that an uninformed trader is a seller, and 5S(5 B) is the
 probability that the uninformed trader will actually trade. Nodes to the left of the dotted line

 occur only at the beginning for the trading day; nodes tQ the right are possible at each trading
 interval.

 trader checks the quotes and decides for portfolio reasons (as captured by the
 es and EB probabilities) not to trade. Notice that this can occur both when
 there has been an information event and when there has not (since the no
 trade outcome can be found at the ends of each of these two branches). Hence,
 a no-trade observation does not in itself reveal whether there has been an
 information event.

 What is important to stress, however, is that this no-trade outcome is more
 likely to occur when there is no new information. If there is no information
 event, then the probability of no trade is -y(l - es) + (1 - _y)(l _ EB). Con-
 versely, given that an information event has occurred, this probability falls
 to (1 - ,f)[ly(l _ es) + (1 - _y)(l - eB)] because now there are both informed
 and uninformed traders in the market. A market maker observing a no-trade
 outcome, therefore, must consider the possibility that the lack of trade may
 signal that no new information exists.

 A final issue to be addressed is the evolution of prices throughout the day.
 The market maker and the uninformed traders are Bayesians who know the
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 structure of the market. What they do not know is whether an information

 event has occurred, whether it is good or bad news given that it has occurred,
 or whether any particular trader is informed. Each market participant can
 watch the market, however, and observe all trading activity. Over time, this
 allows the market maker (and the uninformed) to learn about the first two
 unknowns and revise their beliefs. It is this revision that causes quotes, and
 thus prices, to adjust.

 We outline this quote-setting process for the first trade of the day. To
 determine his price quotes, the market maker must calculate the expected
 value of the asset conditioned on the type of trade that can occur. This
 requires determining the conditional probability of the low value V. If no
 signal has occurred, this probability remains unchanged at 6. If an informa-
 tion event has occurred then Pr{ V = V} is one if the signal is low and zero if
 the signal is high. The market maker's updating formula is thus:

 6(Q) = Pr{ V = V I Q} = 1 Pr{f = L I Q} +
 0 Pr{ I = H I Q} + bPr{ = OQ}' (1)

 where Q denotes the trade outcome. As the market maker is Bayesian, these
 conditional probabilities are given by Bayes rule:

 Pr{ =XI Q}

 Pr{ = X}Pr{QI = X}

 Pr{4 = L}Pr{Q = L} + Pr{= H}Pr{Q I =H} (2)

 +Pr{l = O}Pr{QI = 0}.

 The explicit probabilities can be derived from the tree diagram given in
 Figure 1. Hence, to calculate the probability that a low signal occurred given
 a sale, Pr{t,b = LI S}, note that Pr{t,b = L} = ac6 and that Pr{S I A = L} =
 (it + (1 - 4t)-yES). The probabilities Pr{S I = H} and Pr(S I = 0} can be
 calculated similarly so that:

 PrJ* =Li S (I + cS( - L)3ES Pr { = LI|S } = (b,ai + (1 - ft)ES) (3)

 To calculate Pr{tA = 01 S}, note that Pr{tA = 0} = 1 - al and Pr{ S I = 0} =
 YE ,es so

 Pr{ I = 0 | S} = (c + (1 - y)'ye5)* (4)

 The market maker's conditional 6 given a sale, therefore, is then:

 61 (s) = 6 [ cIt + cS( -( C tL) ]> 6 (5)

 As is apparent, the market maker increases the probability he attaches to V
 given that someone wants to sell to him. The amount of this adjustment
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 depends on the probability attached to an information event having occurred
 (a) and on the fraction of trades from the informed (,u). If there is no
 possibility of an information event or there are no trades by informed traders,
 then there is no adjustment to 6, i.e., 6 = 6(S1). It is easy to demonstrate that
 in the case of a buy the market maker decreases the probability he attaches

 to V, given the conditions on a and it noted above.
 Given these conditional expectations, the market maker can set initial bid

 and ask quotes. The initial bid is the expected value of the asset given that a
 sale takes place. Hence

 V= b = V(a t + e - a,t)) + (1 - 6)VC S'y(i - at)

 The initial ask is the expected value of the asset given that a buy occurs, so

 E[ V I B1] = a,

 6V(EB(1 - _y)(1 - apt)) + (1 - 6)V(at + EB(l _ a)(1 - a-))
 (1 I6)t + EB(1 _ - a,x) (7)

 As has been noted by several authors (see Glosten and Milgrom (1985),
 Copeland and Galai (1983)), these prices diverge from V* to reflect the risk of
 information-based trading.

 Having described the structure of the model and determined initial equilib-
 rium quotes, we can now turn our attention to the question of how prices
 evolve in this market. Before proceeding to the analysis of our model,
 however, there are several aspects of our modeling approach that deserve
 comment. The sequential time-based framework we analyze is very different
 from the approach taken in many recent studies of asset prices. Following the
 work of Kyle (1985), numerous authors (see, for example, Admati and
 Pfleiderer (1988) and Kyle (1989) on strategic behavior; and Brown and
 Jennings (1989) and Grundy and McNichols (1989) on technical analysis)
 have modeled the trading process in a rational expectations framework in
 which orders are batched by the market maker and are cleared at a single
 price. In these papers either traders submit market orders which will be
 executed at whatever price it takes to clear the market, or traders are
 allowed to submit the price contingent orders that arise from negative
 exponential utility and normal distributions. In either of these frameworks it
 is possible to calculate linear rational expectations equilibria.7

 7Outside of the examples used in the multiperiod rational expectations models, when price
 contingent demands are allowed it is typically not possible to calculate equilibria. Although
 equilibria have been shown to exist for the generic economy (see Jordan (1982)), they are so
 complex that it is hard to imagine how they could arise in any real market. Further, even the
 simple rational expectations examples have multiple equilibria. In addition to the usual nonre-
 vealing equilibrium, these economies have a fully revealing equilibrium with traders condition-
 ing on price and their own net trade. It is not obvious that this equilibrium is less plausible than
 the nonrevealing equilibrium, in fact it is more robust in that it always exists.
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 While this approach has provided a number of important insights into
 market phenomena, it is not amenable to the issue we study in this paper.
 One reason is that in a batch-clearing system, the aggregation of orders
 obliterates the information revealed by nontrading intervals. As we show,
 the lack of trade can affect the adjustment path of prices in potentially
 important ways. A second and related difficulty is that trades clear at a
 single price. In our model, as in actual markets, the bid-ask spread plays an
 important role and we demonstrate how the distinction between quotes and
 transaction prices may be crucial for empirical researchers. Finally, our focus
 on the adjustment path of prices requires a model of how individual prices
 are set and how, they, in turn, adjust over time. A sequential trading model
 captures this evolutionary process by focussing on how the market maker
 learns, how this affects the speed of price adjustment, and what this implies
 for the efficiency of markets. An added benefit of this focus on individual
 prices is that our model provides a framework for empirical investigations
 using transaction data. In the next section, we begin our investigation of the
 price adjustment process by determining how both trade and the absence of
 trade affect the revision of beliefs and hence the adjustment of prices.

 II. Volume and Quotes

 At each time t there are three possible outcomes for the trading process:
 the trader who checks the quotes may buy (B), sell (S) or choose not to trade
 (N). We let Qt e [B, S, N] represent the outcome of the trading process at t.
 As the day proceeds the market maker observes and learns from the sequence
 of past trading outcomes. By the beginning of period t he has seen a history

 Qt-1 = (Q1, Q2.., X Qt-) which may cause his beliefs to change. His beliefs
 at the beginning of period t are given by Bayes rule and are represented by
 PLt=Pr{=LlQt-lQ}PHt =Prbf=HlQt-1} and Pot=Pr{=O?Qt1-}.
 These are the conditional probabilities of the three possible events: a signal
 has occurred and it is low, a signal has occurred and it is high, and no signal
 has occurred.

 The market maker's bid in period t is the expected value of the asset

 conditional on the history, Qt- 1, and a sale at t, Qt = S. The bid at t is then

 b =Pr{t = LlQt-1,S}V+ Pr{t = HlQt-1,S}V+Pr{,/ = OIQt-l,S}V*.

 The evolution of prices is determined by the evolution of beliefs. So to
 understand the stochastic process of prices, we need to analyze the stochastic
 process of beliefs.

 One way to examine these beliefs is to consider how the existence of an
 information event affects the probability of a trade occurring in any time
 period. We know that if no information event has occurred, the probability of
 no trade in any time interval is -y(1 - ES) + (1 - _y)(1 _ EB). Conversely, if
 an information event has occurred the probability of no trade is (1 - 14)[Fy(l -
 ES) + (1 - y)(1 - E B)], which is smaller because informed traders are sure to
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 trade. Thus trade is positively correlated with the occurrence of an informa-
 tion event. The market maker uses this property to update his beliefs. As the
 following proposition shows, if no trade occurs in some time interval, the
 market maker raises his probability that no information event has occurred.

 Proposition 1. If there is no trade at time t then the probability of no
 information event rises and the probabilities of a high or a low signal fall, i.e.,

 Po,t+l > Po,t) PL,t+l < PL,t and PH,t+l < PH,t. Further, the relative probability
 of a low to a high signal is unchanged, i.e.,

 PL,t PL,t+1

 PH,t PH,t+ 1

 Proof: All proofs are given in the appendix.

 One implication of Proposition 1 is that the market maker learns from the
 lack of trade, as well as from actual transactions. The information content of
 a no-trade observation differs from that of a transaction, however, because it
 conveys only information on the existence of a signal and not also on its
 direction. Consequently, the market maker does not change the relative
 probabilities of high and low signals, but does change their absolute
 probabilities.

 This change in beliefs means that the market maker will change his quotes
 even though no transaction has occurred. Because the market maker believes
 it less likely that an information event has occurred, he moves his bid and
 ask closer to V*. Proposition 2 demonstrates that this can cause quotes, and
 thus prices, to rise or fall depending on their position at time t.

 Proposition 2: Suppose there is no trade in period t. Then at time t + 1:

 A. The bid rises if bt < V* and falls if bt > V*, i.e., bt+1 > bt if bt < V* and
 bt+1 < bt if bt> V*.

 B. The ask falls if at > V* and rises if at < V*, i.e., at+, < at if at > V*
 and at+,> at if at <V

 As Proposition 2 demonstrates, both the bid and ask move in response to
 the absence of trade. What may seem paradoxical is that quotes do not
 always move in the same direction. The reason for this is that quotes are
 moving toward V*, the unconditional expectation of V, and not toward the
 signal-based values of V or V. Consequently, if the bid, for example, was
 above V* it will fall; if it was below V* it will rise.8

 This movement, in turn, has implications for the bid-ask spread. At date t

 the spread is Ot = at - bt. By Proposition 2 if at > V* > bt the ask price falls,

 8 In each period, bid and ask prices bracket the current expected value of the asset. This
 differs, of course, from V* (the prior expected value) as the market maker's expectation changes
 in response to trades.
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 the bid price rises, and thus the spread narrows (i.e., Ot+1 < Ot) if there is no
 trade at date t. This narrowing of the spread reflects the information
 conveyed by a no-trade outcome. Specifically, the spread exists because of the
 possibility of trading with an informed trader. When no trade occurs, the
 market maker lowers the probability he attaches to an information event
 having occurred and so reduces the probability he attaches to a trade being
 from an informed trader. The effect this has on the spread is summarized in
 the following corollary.

 Corollary 1: Suppose at > V* > bt. If there is no trade in period t, then the
 spread in period t + 1 will be smaller than the spread in period t.

 Our result that the absence of trade leads to smaller spread is the opposite
 of the effect predicted by Diamond and Verrecchia (1987). In their model, the
 absence of trade in a period is bad news because it is more likely to occur
 when informed traders are precluded from selling by short sale prohibitions.
 However, if these prohibitions are relaxed, then the absence of trade in their
 model has no information content at all. By contrast, in our model, the
 absence of trade is more likely to occur when no information event (either
 good or bad) has occurred.9 With trade now "safer" the market maker
 reduces his spread.

 This result that the absence of trade can affect future prices and spreads
 suggests an interesting parallel to a result we derived in earlier work on the
 effects of trade size on subsequent prices. In Easley and O'Hara (1987) we
 demonstrated that transaction prices recover following block trades because
 the occurrence of a small transaction lowered the market maker's belief that
 new information existed. Consequently, order size was an important variable
 in the price process. In this paper, the absence of trade plays a similar role,
 causing the market maker to narrow his spread in response to increasing
 time between trades. What is intriguing about the effect demonstrated here
 is that it suggests that time between trades may play an important role in
 the behavior of prices. We return to this issue in Section IV where we discuss
 the empirical implications of our model.

 Since the level of quotes is affected by both transactions and no-trade
 outcomes, an important issue to consider is how these variables affect the
 adjustment of quotes over time. To address this issue we need to characterize
 what variables the market maker uses (or keeps track of) in setting his
 quotes for time t + 1. In our model, the market maker's quotes are condi-
 tional expected values, so to determine his prices we must determine his
 beliefs. Suppose that in the past t trading intervals the market maker has

 observed nt no trades, At buys, and st sells. The market maker's beliefs given

 9 There is another literature examining the link of public information and trading behavior
 (see, for example, Jain (1988) and Kim and Verrecchia (1991)). If traders know that an
 announcement is imminent, it is usually the case empirically that volume decreases as traders
 delay their trades until after the news arrival. As our focus is on private information whose very
 existence is uncertain, this literature is not directly relevant to our analysis.
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 this trading history are then given by (where the t subscripts have been
 dropped):

 pr{{ = 0 Qt} = (1 _ a)(tyES)S((1 - -)B)O (1 _ U)(tyES)S((1 _ y)-B)

 ( -)n + (1 - 1)TeS)S(( 1- _ )(1 - _JEB)I3

 + oA(- - )S)S( + (1 - )(1 _ ^y)EB)O11 (8)

 with the probabilities of low and high signals calculated similarly.

 What is important to notice is that since beliefs depend on (nt, Qt St),
 quotes will also depend on these variables. In particular, the bid at time
 t + 1 can be written as:

 bt+1 = Pr{4V = LI nt, st + 1, t3}iY

 + Pr{ = H I nt, st + 1, t}V + Pr{4 = 0 l nt, st + 1, t} V*. (9)

 Expressing the bid, or ask, in this form reveals that quotes at time t depend
 not only on the most recent trade, but also on the total numbers of previous
 buys, sales, and no-trade outcomes. Indeed, to describe the stochastic proc-
 esses of quotes, equation (9) demonstrates that we need only know the total
 numbers of no trades, buys, and sales; the process does not depend on any
 other variables.

 From the perspective of a market observer, this result has two important
 implications. First, quotes at each point in time will depend in a specific way
 on the outcomes of previous trading periods. Consequently, since the se-
 quence of trading outcomes matters for determining future quotes, watching
 past market outcomes is informative. Second, since the respective numbers of
 buys, sales, and no trades matters (indeed, determines prices), the total
 amount of trade or volume affects price behavior. In particular, because
 volume is related to the number of no-trade outcomes and the number of
 no-trade outcomes is related to the probability of an information event, prices
 at time t + 1 depend on the volume of trade as of time t.

 To explore these implications more fully, it is useful to delineate how
 specific variables affect the stochastic process of prices. We know from above
 that quotes at time t + 1 depend solely on the information conveyed by the

 trading outcome (nt, it, St). By definition, volume to time t is given by
 Vt = St + /t and, similarly, the market maker's inventory position at time t is
 given by it = St - Q. It is easy to show that knowledge of (vt, it, t) is
 equivalent to (nt, jt, St). Hence, if you know the total volume, the market
 maker's inventory position, and the time you can determine the market
 maker's quotes for trades at time t + 1.

 Suppose, however, that you knew only inventory and time. It is easy to

 show that (it, t) is a sufficient statistic for (ft, st) but that it is not sufficient
 for (nt, Qt St). Hence, if it were never possible for a no-trade outcome to occur,
 knowledge of (it, t) would be sufficient to determine future quotes. In the
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 Glosten and Milgrom (1985) transaction-based model, for example, an ob-
 server of the market could simply track inventory (or more crudely, the
 imbalance of buys and sells) to know how the market maker would set
 quotes. Once we allow for the possibility of nontrading outcomes, however,

 this is no longer true: we need to follow volume as well as inventory to
 predict the level of quotes at time t + 1.

 Alternatively, suppose that instead of tracking inventory and volume, you

 simply tracked the sequence of past prices. This is the approach taken in
 recent papers on technical analysis by Grundy and McNichols (1989) and

 Brown and Jennings (1989). They show that past prices carry information
 about future prices, so price-based technical analysis is valuable. Past prices
 also carry information in our framework, but they are not sufficient statistics
 for all past market information. It is easy to demonstrate that given any
 price sequence, the distribution of future quotes and prices will differ depend-
 ing on volume. So although price-based technical analysis is valuable, price
 and volume-based technical analysis is even more valuable.10

 One way to characterize our results on the role of volume is to recognize

 that the stochastic process (nt, ,t, st) is Markov. Consequently, any variables
 with similar information content must also be Markov processes. In Easley

 and O'Hara (1987), we showed that prices alone and prices and inventory
 together would not in general be Markov processes. Hence, it is not surpris-
 ing that these variables are not sufficient statistics for the price process
 derived in this paper. As the following proposition demonstrates, however, it

 is the case that (vt, it, t) is a Markov process. Consequently, the volume of
 trade, inventory, and time all matter in adjustment of prices to information.

 Proposition 3: The stochastic processes (nt, St, St) and (it, vt, t) are Markov.
 That is, the distribution of (nt+1, St+l, ft+l), or (it+,, vt+1, t + 1), depends on
 (nt, St' t), or (it, vt, t), but is otherwise independent of the history of the
 process.

 It may seem paradoxical that allowing the market maker to learn from the
 lack of trades as well as from transactions means that volume now matters in
 the stochastic process of prices. Yet, it is precisely because no-trades can
 occur that the aggregate total of transactions provides information. It is easy
 to see that the probability the market maker assigns to no new information is
 increasing in the number of no trade outcomes nt and decreasing in the

 volume vt. Hence, the market maker interprets vt as a signal of the existence
 of information. Since the market maker's inventory results from any imbal-

 10 One could ask whether this would also occur in the two period rational expectations
 examples with endownment uncertainty employed by Grundy and McNichols (1989) and Brown
 and Jennings (1989). In the Grundy and McNichols model even per capita volume has an infinite

 expectation, so conditioning on it is troublesome. In the Brown and Jennings model price and
 volume together reveal all information. So if traders can condition on contemporaneous market
 statistics (as they are doing with price conditioning) the equilibrium is revealing and technical
 analysis has no value.
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 ance in trades, watching it then provides a signal of the direction of any new
 information.

 It is important to stress, however, that the stochastic process of prices also

 depends on time. Although volume per se is informative, it is volume as of a
 certain time t that affects the distribution of prices at time t + 1. This
 dependence means that where the market maker sets his quotes at time t + 1

 depends upon the volume he has observed as of time t. Consequently, the
 spread a market maker sets at any point in the day will also depend on the
 volume in the market up to that point.

 Characterizing exactly how this dependence affects the size of the spread is
 complicated, however, by the fact that the sequence of trades also affects the
 placement of the spread. In particular, a large number of buy orders may
 indicate both that a signal has occurred and that the signal was high. These
 two effects will move bid and ask prices toward V, causing the spread to
 narrow as prices approach the upper bound. In this case, the narrowing of the
 spread reflects the market maker's increasing confidence in the direction of
 the signal. This convergence effect of volume is addressed in more detail in
 the next section.

 For our purposes here, however, it is also important to delineate the pure
 effect on spreads that arises from volume alone. To see this, we must abstract
 from the directional effects of trades by considering how volume affects prices
 in the absence of any inventory or trade imbalance effects. This volume effect

 can be isolated by considering a trade sequence that does not affect the

 market maker's relative beliefs on the signal's direction. Hence, suppose that
 at time t the market maker has learned no new directional information.
 Thus, the relative probabilities of a high and low signal must be unchanged
 from their values at time 0. (Note that the absolute size of these probabilities

 need not be the same, however, as the market maker may have revised his
 beliefs about the existence of any new information).

 As the following proposition demonstrates, this "existence" revision occurs
 as a result of volume. All else equal, the greater the volume the more likely
 it is that the market maker believes an information event has occurred.

 Hence the size of the spread at time t + 1 will be correlated with the volume
 up to time t.

 Proposition 4: Suppose low and high signals are equally likely and unin-

 formed traders are equally likely to buy or sell, i.e., (1 - y)cB _ 'yS. Suppose
 further that in period t the market maker's beliefs about the relative probabil-

 ity of a low or high signal are unchanged from period 1, i.e., PLt = PHt* Then
 the spread at period t will be larger the greater is the volume up to period t.

 There are two reasons why this result is of interest. First, in the absence of
 event uncertainty it is not the case that volume affects spreads. For example,
 in the Glosten-Milgrom model the total volume to time t is irrelevant. If at

 time t the market maker's relative probabilities of a high and low signal
 were unchanged from time 0, then his spread would be identical to his initial
 spread no matter what the volume in the market. That is not the case here.
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 Because the market maker can revise his beliefs on the existence of informa-
 tion, the spread at time t can be very different from that at time 0.

 A second aspect of this result is it illustrates the important role volume
 plays in the market maker's learning process and hence in the adjustment of
 prices to information. Because volume is providing information to the market
 maker on event uncertainty, the behavior of prices depends on the level of
 volume. The proposition illustrates these effects on the size of the spread, but
 it is also the case that volume affects the movement of prices. These price
 movements, in turn, reflect the efficiency of the market, and hence volume
 may be an important factor in the process of price adjustment. In the next
 section we investigate these issues by examining how volume influences the
 speed with which prices adjust to information.

 III. Prices and Efficiency

 To consider the dynamic behavior of the market, we first need to define the
 stochastic process of market prices. Because we distinguish between clock
 time and trade time, this price process must be specified with some care. In
 particular, we must incorporate the property that beliefs on the asset's value
 may change during nontrading intervals.

 We define the stochastic process of conditional expected values { p*} by

 at if Qt = B

 Pt = b if Qt = S

 E[V I Qt1, N] if Qt = N.

 This process is a martingale because it is a sequence of conditional expecta-

 tions where E[P, 1 Qt] = E[E[V I Qt+'] I Qt] = E{V I Qt] = Pt*. Unfortu-
 nately, this process is not observable because we do not know the market
 maker's expectation in the absence of a trade.1'

 A transaction price arises only when a trader chooses to buy or sell. From a
 statistical perspective, we can view this transactions price process as being
 formed by an optional sampling of the sequence of conditional expected
 values { p*}. In particular, we can define the sequence of transaction prices
 by:

 pi = p* where tj = min{t: t > tj-l and Qt * N}.

 with to = 0.

 This transaction price process is observable but the fact that it is formed by
 optional sampling leads to interesting and complex statistical properties.
 These complexities arise because the sampling times are not independently
 and identically distributed but are instead partially chosen by traders who

 1 Note that it is not legitimate to approximate E[ V I Qt- 1, N] by the average of the bid and
 ask at t. It is easy to show that the spread need not be centered on the expected value of the
 asset.
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 may be informed about the evolution of the price process. The time between
 trades, therefore, need not be independent of the evolution of the price
 process. Moreover, the variance of the process will also reflect this sampling

 bias as will the time series properties of security returns.
 Other researchers have noted optional sampling problems in transactions

 data with respect to nonsynchronous issues (see for example Scholes and

 Williams (1977) and Lo and MacKinley (1990)). In these analyses, however,
 the probability that a security does not trade in any time period is assumed
 uncorrelated with the behavior of the underlying true process.12 Nonsyn-
 chronous trading in these models introduces timing problems (and hence
 spurious time series correlations) but does not reflect any underlying bias in
 returns. The optional sampling problem in our analysis is more severe. Here
 the sampling problem is correlated with movements in the actual underlying
 price process. We discuss the implications of this dependence for empirical
 work in the next section. What needs to be determined for our characteriza-
 tion of the price process, however, is how this dependence affects the dynamic
 (or time series) behavior of prices. To address this issue we need to examine
 how the stochastic process of transactions prices differs from that of the
 "true" price process.

 In the standard sequential trade model without event uncertainty, Glosten

 and Milgrom (1985) demonstrated that the sequence of transactions prices is
 a martingale with respect to the sequence of trades. In our model with event
 uncertainty, the same martingale result applies. Moreover, because any
 martingale is also a martingale with respect to past realizations of the
 random variable, prices in our model are a martingale with respect to all past
 prices. In standard finance terminology, our prices would be said to be
 weak-form efficient.

 Transaction prices do not form a martingale, however, with respect to full
 information and so they are not strong form efficient. While prices can thus
 differ from full information values, over time prices converge to full informa-
 tion or strong-form efficient values. It is easy to demonstrate that transac-
 tions prices converge to the appropriate value: V* if no signal has occurred.
 V if a low signal has occurred or V if a high signal has occurred.13

 An interesting aspect of this convergence behavior is its relation to trading
 volume. As was demonstrated in the previous section, the stochastic process
 of prices depends on volume, and so not surprisingly does the stochastic
 process of transactions prices. Characterizing how this relationship affects

 the convergence of prices, however, requires specifying the components of

 12 Diamond and Verrecchia's (1987) analysis also involves a sampling problem induced by
 short sale constraints, but this sampling problem is a result of the trading mechanism and not of
 the underlying price process. Hence, their censored sampling problem differs from that here in
 that the sampling problem in our model arises endogenously from the information structure.

 13 The distribution of trades is different if no event has occurred, if a low signal has occurred or

 if a high signal has occurred. The market maker is a Bayesian who observes the distribution of

 trades. So convergence of beliefs, and thus prices, to the correct value is a standard Bayesian
 learning result.
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 volume in more detail. In particular, trading volume can be thought of as
 containing a component due to liquidity (or uninformed) trades and a compo-
 nent due to informed trades. When there has been no information event, then

 by definition there can be no informed trading but the amount of liquidity
 trades should be unaffected. We can thus define "normal" volume as this

 expected level of liquidity trading. Let vj = sj + j be the volume to time j
 and let e = [(1 - -y)cS + 'yEB] be the expected liquidity based volume per
 period. Then Proposition 5 shows that the level of volume and the price
 movement are related by the underlying event uncertainty.

 Proposition 5: In the absence of an information event, volume converges to its

 normal level and prices converge to V*. More precisely, for any -q > 0,

 lim Pr -4|- > and I pj - V =< 0, for some j 2 T =.

 One way to interpret Proposition 5 is that "It takes volume to move
 prices." Indeed, the proposition actually provides the stronger result that in
 the absence of abnormal volume prices converge to a level contained in the
 interval of initial quotes, i.e., V * E (b1, a1). In this sense, absent abnormal
 volume prices do not move. While prices can (and will) deviate from V* and
 volume can (and will) deviate from its normal level, such movements can
 only be temporary in the absence of an information event. This suggests that
 event uncertainty and its effect on the price process may provide one explana-
 tion for the oft-observed empirical relationship between prices and volume
 (see Karpoff (1987) for a survey of the empirical work in this area).

 While the proposition demonstrates that volume affects convergence and
 we know that prices do indeed converge to their "correct" level (either V, V,
 or V*), it would also be useful to know how quickly this occurs. Since prices
 only converge in the limit, the obvious answer is that it takes an infinite
 amount of time. However, a more useful answer would be to determine how
 quickly prices approximately reach their strong-form efficient levels. One
 way to characterize this is to calculate first passage times, or essentially how
 long it takes on average for prices to first reach some prespecified bound
 around the strong-form level. This is the approach taken by Diamond and
 Verrecchia (1987) in their analysis of short sale constraints. An alternative
 approach is to calculate the actual rate of convergence of the stochastic
 process, and then use that as a benchmark in comparing how various
 parameters affect the rate of convergence. This is the approach taken by
 Easley and O'Hara (1991) in their analysis of the effects of order form on
 price behavior.

 Both approaches provide a means of characterizing the speed of price
 adjustment; both are also related in the sense that the answers they give will
 be comparable. For our analysis here, we find it more intuitive to character-
 ize the underlying stochastic process by its rate of price convergence. Since
 our concern is with the behavior of the process, this approach allows us to
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 explicitly measure its behavior with respect to the underlying information
 structure.

 To state our results, we need a few definitions. Since in our model transac-
 tion prices are a sample of quotes and by equations (6) and (7) quotes are
 linear combinations of beliefs, it is sufficient to provide rates of convergence

 for beliefs. For each signal VI define the probability on trades po =
 (PA(N), PA(B), PA(S)), with representative element pV'(Q) the probability of
 trade Q given the signal b. Now for two probabilities on trades, pVl and pt',
 the entropy of pg' relative to pV is defined by

 IPV'(P ) = S} PO(Q) log P .(Q) (10)
 Qe{ N,B,S} /p(Q

 This standard measure in statistics has the property that it is always
 non-negative and is zero if and only if po = pg". It essentially measures the
 distance between pf and pt'.

 Using these definitions we can state our rate of convergence results, the
 intuition of which can be conveyed by a simple example. Suppose that a low

 signal has occurred. We know that the posteriors converge almost surely, i.e.,

 PLt 1, PHt -? 0, Pot -? 0 a.s. It also follows directly from the Strong Law of
 Large Numbers that the posteriors of a Bayesian observing an i.i.d. process
 converge exponentially to their almost sure limits. Consequently, we show

 that almost surely PHt /PLt converges to zero exponentially at rate IPL( pH)
 and almost surely Pot /PLt converges to zero exponentially at rate IPL (PO).
 The linearity of the equilibrium quotes in beliefs then implies that quotes

 converge to V exponentially at a rate equal to the minimum of I L(pH) and

 IPL(pO). So transaction prices converge exponentially in clock time at this
 rate. Our second result is on the comparative behavior of price processes. We
 show that increasing the fraction of trades from the informed or reducing
 normal volume, increases the relative entropy between pL and either pH or
 po. These increased relative entropies increase the rate of convergence
 because they increase the information content of observing trades. These
 results are summarized in the following proposition. 14

 Proposition 6: Quotes, and thus transaction prices, converge to their strong

 form efficient values at exponential rates (in clock time). If signal A occurs, the

 exponential rate of convergence is r(/) = Min{ Ipo( pV'): /' A { }, where Ipo( pV')
 is the entropy of pV4' relative to pk. That is, if signal VI occurs then I at -
 E[V JI&II < exp - r(b) and I bt - E[V I iII < exp - r(b) for all large t, al-
 most surely. These rates of convergence are increasing in the fraction of trades

 14 Proposition 7 applies to the case of 0 < A < 1. If A = 1, then when no signal occurs the
 market maker learns in finite time almost surely. He knows that there is no information event
 as soon as he observes no trade or any sequence of trades with both buys and sells. Alternatively,

 if a low signal occurs his posterior probability on a low signal at time t is Pot = ab/[ab + (1 -
 a)(Y,ES)t]. This sequence of beliefs converges to one and the rate of convergence is decreasing in
 normal volume. The analysis for a high signal is similar.
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 from the informed, and, when the uninformed are equally likely to buy or sell,
 decreasing in normal volume.

 The convergence results in Proposition 6 provide insights into how prices
 adjust in securities markets. Increasing the fraction of trades from the
 informed hastens this adjustment process because their trading activity
 reveals the underlying information. Perhaps not surprisingly, the greater
 the fraction of trades from the informed (when an information event occurs)
 the faster this adjustment occurs. The role of volume is more intriguing. As
 the proposition demonstrates, greater normal trading volume actually slows
 the adjustment of prices to information. This occurs because in markets with
 more uninformed or liquidity trading the trades from informed traders can be
 hidden more effectively. Consequently, it takes the market maker longer to
 learn the information and this slows the rate at which prices reflect full
 information. 15

 That volume can affect the placement and adjustment of prices across time
 may seem an intuitively obvious concept. One interesting aspect of this
 result, however, is that it differs from the predictions of earlier work by Kyle
 (1985). In Kyle's model, orders are batched and all trades clear at a single
 price. Kyle shows that altering normal volume has no effect on prices
 because the single informed trader strategically increases (or decreases) his
 trade size to maintain his expected relative share. Consequently, in his
 model increasing normal volume affects the profits of the informed, but not
 the adjustment of prices.

 One obvious question that arises is whether our volume results continue to
 hold if the informed adjust their trading behavior. A complete analysis of this
 issue requires allowing either endogenous entry of informed traders or defin-

 ing some explicit strategic link between it and volume. As our model is a
 partial equilibrium competitive analysis, it is not amenable to this exercise.
 We can, however, characterize the polar case in which the informed adjust
 completely. That is, if following an information event, all trades are actually

 from the informed. This corresponds to assuming that 1A = 1 and has the
 practical implication that since the informed are already making all the
 trades there is no way that any strategic choice could result in a larger role
 for the informed. Proposition 7 demonstrates that even with this complete
 role for the informed our results on volume and prices remain.

 Proposition 7: Suppose ,u = 1. Then the initial spread is decreasing in normal
 volume, and the rate of convergence of quotes, and thus transactions prices, to
 their strong form efficient values is also decreasing in normal volume.

 15 It is useful to contrast these dynamic results with our earlier analysis of the spread.
 Markets with a high probability of trade by the uninformed, and thus a large normal volume,
 have a small initial spread but a slower speed of convergence to full-information prices. The
 small spread occurs because there are many uninformed trades relative to informed trades. But
 this makes it more difficult to detect the presence of informed traders and to discover their
 information. Conversely, markets with low normal volumes have large initial spreads but faster
 spreads of convergence.
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 At first glance, the results of Proposition 7 may seem surprising. Even
 assuming that following an information event all trades are from the in-

 formed does not remove the effects of normal volume on the price path. The
 reason is that in our model there still remains the uncertainty over whether

 an information event has actually occurred.16 As we have demonstrated
 throughout this paper, it is this underlying event uncertainty that provides a
 role for volume. And it is this underlying event uncertainty that will remain

 even given the trading intensity choices of the informed.

 IV. Empirical Implications

 Our analysis thus far has examined the effects of uncertainty over the
 existence of new information on market behavior. A strength of our approach
 is that we analyze the behavior of both prices and quotes. Since this structure

 corresponds well to the new transaction-based data increasingly being stud-
 ied by researchers, this suggests that our work may be particularly relevant

 for transactions-based studies. In this section we explore this applicability by
 considering the empirical implications of our model. In particular, we demon-
 strate how our results on the role of time, volume, and the stochastic process
 of prices may be useful in predicting security price behavior, in designing
 statistical tests of security prices, and in improving our understanding of
 market volatility.

 Perhaps the most fundamental prediction of our model is that time affects
 the behavior of prices. As we have shown, because the lack of trade may
 signal that no new information exists, the time between trades (or clock time)
 can itself affect prices. From an empirical perspective, this has a number of
 testable implications. For example, a simple prediction of our model is that
 quotes will change in the absence of trades. Cursory examination of the
 transactions data series confirms that this does, indeed, occur. While the
 transaction price series, by definition, changes only with trades, price quotes
 do change without intervening transactions.

 A related, and perhaps more important, prediction of our model is that the
 spread will decrease the longer the time between transactions. Recent re-
 search by Hasbrouck (1991) provides empirical support for this effect. As
 Figure 3 in that paper demonstrates, following a large trade the spread
 narrows over time with the absence of trades. Hasbrouck also presents
 evidence that trades that arrive when the spread is wide have a greater
 impact on price than those which arrive when the spread is narrow. This is

 consistent with our results that the behavior of prices will differ depending
 on factors such as the volume and timing of trades.

 Of course, a direct test of our time-based model is to investigate the explicit
 relationship between time and the price process. This is the approach taken

 16 Obviously, if an information event is known to have occurred, then even one trade will cause
 prices to instantly adjust to V or V because with jt = 1 trade is revealing. In this case, the
 whole issue of asymmetric information is academic.
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 in a recent paper by Hausman and Lo (1990). Using an ordered probit
 statistical model, Hausman and Lo test whether the time interval between
 trades can be viewed as exogenous to the price process. They reject the
 exogeneity of time at conventional statistical levels, a finding directly in
 support of the predictions of our model. They note, however, that because of
 the small size of the parameter estimates, the economic significance of time
 may be small. This degree of importance is clearly an important question for
 future research.

 One implication of these results is that the behavior of security prices may
 be seriously misspecified by applying standard statistical testing approaches
 to transaction data. Although most studies restrict attention to transaction
 price data, this stochastic process of prices can be viewed as an optional
 sampling of the process of conditional expected values for the asset. As we
 discussed in the previous section, this conditional expected value process is
 sampled at times which are neither fixed nor independently distributed.
 Trades are positively serially correlated, so the probability of a trade and
 thus a price observation is positively correlated with volume. This follows
 because if an information event occurs, trades are more likely to occur and
 volume will be high because the informed always trade. A trade at time t, or
 high volume up to time t, increases the likelihood that an information event
 has occurred. And this, in turn, increases the likelihood of a trade at time
 t + 1.

 One reason why this is important is that it affects the variance structure of

 the price process. Let E[(Pt* - Pt* )2 I Qt'] be the conditional variance of
 the expected asset value at time t. By Corollary 1 the variance at time t + 1
 is less than the variance at t if there is no trade at t. Hence, roughly,
 variances are positively correlated with volume. Now as trades are positively
 correlated, periods of low variances tend to be grouped and occur in periods
 where there is little trade. The transaction price is a sampling of the
 expected value process exactly when this process has high variance-at trade
 times. So, if we want the variance of the conditional value of the asset or
 equivalently of the price at which trades could have occurred, the variance of
 the transaction price yields an overestimate. Further, both the conditional
 value process and the transaction price process have nonconstant variances.
 The underlying problem is that although both price processes are martin-
 gales, they are not Markov, but rather are history dependent.

 While the difficulties this poses for transactions based studies are appar-
 ent, this underlying problem also affects some standard techniques fre-
 quently applied to daily or weekly data. In particular, a common problem in
 studies calculating security returns is nonsynchronous trading (see Scholes-
 Williams (1977); Lo and MacKinley (1990)). Although adjustments to deal
 with this problem have been proposed, these adjustments all assume that the
 nontrading interval is independent of the true return process for the stock. If,
 as our analysis demonstrates, this is not correct then the nonsynchronous
 trading problem can induce statistical problems even using the adjustments
 proposed in the literature.

This content downloaded from 128.178.60.74 on Thu, 31 Jan 2019 13:24:40 UTC
All use subject to https://about.jstor.org/terms



 Time and the Process of Security Price Adjustment 599

 Given these difficulties, our analysis suggests that if we can follow only
 price data then the process of quotes may be the better data set. Quotes,

 unlike transaction prices, occur continually and so do not have the optional
 sampling problem. A researcher watching transaction prices (and ignoring
 clock time and quantities) is allowing the market participants to select
 random observations of the underlying price process with sampling times

 correlated with the evolution of the process. This yields severe and unneces-
 sary statistical problems. Quotes are observable, and, at least in our model,
 carry strictly more information than do transaction prices.

 Of course, even the process of quotes suffers from severe history depen-
 dence. Fortunately, there are simple sufficient statistics for the history of the
 process. It follows from Proposition 3 that either quotes or prices combined

 with inventory, volume, and clock time are Markov processes. Rather than

 using prices alone, therefore, it would be preferable to estimate the { nt, st, St}
 process and the functional relationships determining quotes (i.e., equation (6)

 and its analog for asks). Analyzing this process would provide more informa-
 tion than the price sequence, and would avoid the arbitrary restrictions on
 the price process that must of necessity be imposed if the researcher is
 restricted to examining only prices.17 We are currently investigating this
 estimation in other research.

 Our characterization of this underlying stochastic process suggests that
 another area where our results may be of interest is in the specification of

 option volatilities. Although the basic Black-Scholes option model requires
 using a volatility estimate, more complex stochastic option volatility models
 (for example, Wiggins (1987) and Hull and White (1987)) require estimates of
 the parameters of the variance distribution as well. This has led to extensive
 research as to whether the time series properties of the variance are better

 described by an AR(1) process (see Poterba and Summers (1986)), and IMA(3)
 process (see French, Schwert, and Stambaugh (1987)), or some more general
 GARCH model (see Duan (1990)).

 Our research provides some insights into the properties of this underlying
 volatility distribution. In particular, our result that the price process is not
 Markovian has important implications for appropriate representations for
 these processes. For example, while the commonly assumed diffusion proc-
 esses are Markovian, GARCH processes, in general, are not.18 Hence, our
 research suggests that a GARCH framework may be a more appropriate
 specification than some of the more standard representations.

 One reason why this is important is that a GARCH process can be
 motivated as resulting from time dependence in the rate of information
 arrival. Our model here provides an explanation of how such time depen-

 17 For example, Barclay and Litzenberger (1988) assume that the rate of return process is
 determined by a Brownian motion. This structure approximates the rate of return over nontrad-
 ing periods. This approximation is inconsistent, however, with our results on the stochastic

 process of prices and, in particular, its variance structure.

 18 As Duan (1990) points out, the only Markovian GARCH process is GARCH (0, 1) or
 ARCH(1).
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 dence may arise, and suggests several properties that the resulting process
 may have. For example, our results on the dependence of the price process on
 volume suggest that volatility will be similarly volume-affected. This is
 supported by recent empirical research by Lamoreaux and Lastrapes (1990).
 Moreover, our convergence results in Proposition 5 dictate that since price
 movements (in the sense of prices converging to new values) require abnor-
 mal (or unexpected) volume, the underlying volatility will be affected by
 abnormal volume. Diz and Finucane (1991) tested this prediction of our
 model using transactions data and an expectational model for expected
 volume. Their results that approximately two-thirds of the volatility inter-
 ventions can be explained by abnormal volume provide strong direct support
 for the implications of our model.

 V. Conclusion

 In this paper we have analyzed the effects of information event uncertainty
 for market behavior. If information events are not certain to have occurred,
 then as we have demonstrated the lack of trade may provide a signal to
 market participants. This imparts information content to the time between
 trades, causing time per se to no longer be exogenous to the price process.
 Our research has delineated how this affects the behavior of quotes, spreads,
 and transactions prices, and has characterized the underlying stochastic
 process of prices. We have also demonstrated important divergences that
 arise between transactions prices and this underlying stochastic process. As
 we have discussed, these divergences have important implications for empiri-
 cal work both in analyses of transactions data and in more general investiga-
 tions of security price and option behavior. With the growing interest in
 market microstructure research in general, and in transactions-based studies
 in particular, our results should be useful in a wide variety of research
 applications.

 We believe that an important area for future research is to explore more
 fully the implications of what we have defined as event uncertainty. As our
 results here suggest, a number of market phenomena may be directly linked
 to this underlying problem. For example, one simple extension is to consider
 a multi-day version of the model in which information events are allowed to
 happen between days. In that case, the probability of an information event by
 the start of day N is

 ON-1 + (1 N-JaN,

 where aN is the probability of an informational event between days N - 1
 and N and N- 1 is the probability of an informational event having occurred
 by the end of day N - 1.

 One implication of this is that the spread will go up overnight, since the
 probability of an informational event unambiguously rises. We conjecture
 that other interesting price effects may be found by examining this issue in
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 more detail. Since it is also a frequent market practice to halt trading when
 it is known that new information exists, but is not yet public, incorporating
 event uncertainty may also allow theoretical models to capture more accu-
 rately the behavior of market institutions and prices.

 Appendix

 Proof of Proposition 1: Calculation shows that

 PO't - ~PO,t > PO't, =+ (1 - P0t)(1 - it) + Po,t

 PL,t( -)
 PL,t+ = < PL,t, L+1 (1 - PO t)(1 - it) + Po,t

 and

 PH,t( -)

 PH+1 (1 - PO t)(1 - ) + PO<t

 Proof of Proposition 2: The bid at time t + 1 is

 b E[ V I Qt+1 = (Qt, S)] = at+1( t+1) + (1 - at+1(Qt)) V,
 where

 6(Qt+l) (1 - O)PL,t( + (1 - A)c7) + 6PO,tES7
 bt+l(Q ) (1 - I)[PL,tI + CS Y(l - 4' - PO,t))] + APO,tE y

 So we need to show that if bt(Qt) > 6, i.e., bt < V*, then bt+i(Qt+l) < bt(Qt),
 i.e., bt+1 > bt. Calculation shows that at+1(Qt+1) < 5t(Qt) if and only if

 6t(QT) _ PL,t(IL + (1 - O~C-S7) + bot -6
 PL,tIl + CS11[ - 41 - PO,t)]

 The remaining claims follow from similar calculations.

 Proof of Proposition 3: Trades are, by assumption, independently and
 identically distributed. The processes in Proposition 3 are counting processes
 for trades and time and are thus Markov.

 B Prj~~~ L/Qt} Proof of Proposition 4: Let p = (1 - y)cB= ycs. Then Pr{l /HQt}

 . Note that this ratio is independent of n and

 equals only if s = ,B. So the probability of no signal can be written

 1-a

 Pr{1 = a I Qt}1 ( a ,i ' )
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 The bid and ask at t can be written

 bt = (1 - Pr{j = 0 1 (Qt, S)})E[ V Ei I {L, H}, (Qt, S)]

 + Pr{lA = O I (Qt, S) } V*
 and

 at = (1 - Pr{j = O I (Qt, B)})E[V EI {L, H}, (Qt, B)]

 + Pr{l = O I (Qt B)} V*.

 So the spread in period t is

 Tt = (1 - Pr{l = O I (Qt, B)})E[ V I I 'E {L, H}, (Qt, B)]

 - (1 - Pr{j' = 0 I (Qt, S) }) E[ V Ei I{ L, H}, (Qt, S)]

 + (Pr{j = 0 1 (Qt, B)} - Pr{j = 0 1 (Qt, S)})V*.

 An additional buy or sale has the same affect on the probability of an
 information event having occurred so

 Tt= (1-Pr{jA =0I(Qt, B))

 * [E[ V I ,/ e {L, H}, (Qt, B)]

 - E[ V I 4 E {L, H}, (Qt, S)]].

 The difference in expected values is positive and unaffected by volume.
 Calculation shows that Pr{l = 0 1 (Qt, B)} is increasing in n. So the spread is
 decreasing in the days volume.

 Proof of Proposition 5: Almost sure convergence of prices to the correct

 value is a standard Bayesian learning result. The sequence of prices { pj}
 converges almost surely to the random variable - where

 V if A = L

 P V if A=H

 LV* if = O.

 Almost sure convergence of average volume to its mean follows from the
 Strong Law of Large Numbers. So Vj/j converges almost surely to the
 random variable V where

 V- pif =O
 V= (l - zeif IsL, HI.

 So { pj, Vj /j} converges almost surely to { p, V}. The claim in the Proposition
 is an implication of this convergence.
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 Proof of Proposition 6: We prove the proposition for the case of A = L,
 the other cases are similar. Let PB = (1 - 'Y)CB, Ps = yeCS and PN = 1 -
 (PB + Ps). Applying Bayes Law to find posterior probabilities as in equation
 (8) we have, for each t,

 lo Pot+i) a tlgs
 logP = log )+ (ntlogpN + ftlogPB + Stl?gPS)

 PLt+ 1 ab

 - (ntlog((l - I)PN) + gtlog((i - A)PB)

 +stlog(,u + (1 -)Ps))

 and

 (PHt+ 1 (
 logt )=logt a ) + (ntlog((i - )PN) + ftlog(I + (1 - )PB)

 +stlog((l - I)ps)) - (ntlog((l - A)PN) + 3tlog((1 - 1B)

 +stlog(,t + (1 - H) Ps))-

 So by the Strong Law of Large Numbers

 1 Pot+1 pL(Q)log(pN(Q)) - E pL(Q)log(pL(Q)) t PLt+ 1 a.-s Q Q

 - -IL(po) <0,

 and

 -i1g\PHt+1 pL(Q)log(pH(Q)) - E pL(Q)log(pL(Q))
 t PLt+1 a.s- Q Q

 = -IPL(p H) < O,

 Thus, POt /PLt converges almost surely to zero at exponential rate -IPL(P%).
 and PHt /PLt converges almost surely to zero at exponential rate -I L( PH).

 By the equilibrium quote equation (6)

 b -V = PLtY + PHtv + PotV - V

 PHt(V V) + pot(V* - V)

 (PHt + Pot)(1 - 6)(V- V).

 The convergence results above and simple calculation shows that PHt con-
 verges almost surely to zero at exponential rate -IpL(PH) and Pot converges
 almost surely to zero at exponential rate -IPL(po). So bt - V converges
 almost surely to zero at exponential rate-Min{ IPL( pH), IPL(pO} .
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 For the comparative dynamics results on ,u it is sufficient to show that

 IPL(pH) and IPL(P0) are increasing in ,. Calculation shows that

 aIpL( H)-(1 _ p5)log1 + 71 PBogI+ 7 1 0,

 and

 3PIL(p ) -pS)log (1 ) > 0.
 a =. (1 p )1og)1P+

 For the comparative dynamics results on normal volume, P = PS = PB' it is
 sufficient to show that IPL(PH) and IPL(pO) are decreasing in p. Calculation
 shows that

 aIpL( p) _ _ _ ( -1

 ap (14~) p l ( t) p) 0
 and

 ap _ (- (Oi __p

 as log(1 + (1 < (1 A)

 Proof of Proposition 7: The claim about the initial prices follows directly
 from equations (2) and (3). We prove the convergence claim for the case of
 low signal, the other cases are similar. If a low signal occurs the market

 maker's posterior probability on a low signal at time t is Pot = cao3b + (1 -
 )(-y ES)t]. This sequence of beliefs converges to one and the rate of conver-
 gence is decreasing in normal volume.
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