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THE JOURNAL OF FINANCE e VOL. XLVII, NO. 2 « JUNE 1992

Time and the Process of Security Price
Adjustment

DAVID EASLEY and MAUREEN O'HARA*

ABSTRACT

This paper delineates the link between the existence of information, the timing of
trades, and the stochastic process of prices. We show that time affects prices, with
the time between trades affecting spreads. Because the absence of trades is corre-
lated with volume, our model predicts a testable relation between spreads and
normal and unexpected volume, and demonstrates how volume affects the speed of
price adjustment. Our model also demonstrates how the transaction price series will
be a biased representation of the true price process, with the variance being both
overstated and heteroskedastic.

FEW TOPICS IN FINANCE are of broader interest than the time series properties
of security prices. Fundamental to research on such diverse topics as security
returns, market efficiency, investor trading strategies, option behavior, and
security market design, the stochastic process of prices underlies much of the
phenomena studied in financial economics. But how the stochastic process of
prices behaves, or even what factors determine the movement between one
security price and the next remains unclear. These theoretical questions
have spurred extensive research on security price formation, much of it in the
large, and growing area of security market microstructure.

The microstructure literature investigates how prices evolve by analyzing
how traders learn from market data. This focus allows researchers to charac-
terize the time series properties of prices as a function of the information
trades reveal to the market. In the standard microstructure models, however,
time per se plays no role. In the Kyle (1985) framework, for example, all
trades are batched so that when individual orders arrive is not relevant (or
even known) to the market maker. Similarly, in the Glosten and Milgrom
(1985) sequential trade model, orders are assumed to arrive in some proba-
bilistic fashion which is independent of any time parameters. In these
models, the timing of trades is irrelevant for the behavior of prices because
time itself has no information content.

*Easley is from the Department of Economics and O’Hara is from the Johnson Graduate
School of Management, both at Cornell University. We would like to thank Doug Diamond, Joel
Hasbrouck, Eric Hughson, Murugappa Krishnan, Andy Lo, and seminar participants at Boston
College, Cornell, and the Wharton School for helpful comments. We would also like to acknowl-
edge the extremely helpful comments on an anonymous referee. An earlier version of this paper
was presented at the Western Finance Association Meetings, June 1990.
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578 The Journal of Finance

This specification makes sense if time is exogenous to the price process.
But if time can be correlated with any factor related to the value of the asset,
then the presence or absence of trade may provide information to market
participants. In this paper we demonstrate that this correlation can arise
from properties of the underlying information structure. In our model, traders
learn from both trades and the lack of trades because each may be correlated
with different aspects of information. In particular, while trade provides
signals of the direction of any new information, the lack of trade provides a
signal of the existence of any new information.

This latter effect we define as event uncertainty and it reflects the diffi-
culty that uninformed traders face in even knowing whether new information
exists. In the standard sequential trade framework used by Glosten and
Milgrom (1985) and in Kyle (1985) this event uncertainty does not arise
because an information event is assumed to have occurred. If information
events are not certain, however, then whether trade occurs at all may provide
a signal to the market. This suggests that the intervals between trades may
have information content, and hence time per se is not exogenous to the price
process.

The intuition that the absence of trade could provide information to market
participants and that this induces a bias in transaction prices is not new to
this paper. Diamond and Verrecchia (1987) used this insight to explain how
short sale constraints could impart information to no-trading intervals, and
hence affect the speed with which prices reflected adverse information.
Moreover, the basic sequential trade approach we apply to develop our
results is also not unique. Where the contribution of our paper lies is in
delineating the link between the existence of information, the timing of
trades, and the stochastic process of security prices.

Our results suggest that this link can explain a number of interesting
phenomena in security price behavior. We show that time itself affects prices;
while trades can cause price quotes to move, so too can periods of nontrading
outcomes. Our model predicts that spreads will depend on the time between
trades, with spreads decreasing as this time increases. Because the absence
of trades will be correlated with volume, our model also predicts the relation-
ship between spreads and both normal and unexpected volume. We demon-
strate that these variables also affect the speed with which prices adjust to
new information, yielding insights into how it is that markets become
efficient.

Perhaps most important, our model provides a characterization of the
underlying stochastic process of prices. Because event uncertainty is reflected
in the intensity of trades, the sequence of trades provides information beyond
that conveyed by individual transactions. For example, in our model, two sell
transactions have very different information content if they occur contigu-
ously in time than if they occur an hour apart. During the intervals between
transactions, market makers (and market participants) may revise their
beliefs about the value of the asset, a revision that will not be reflected in
transactions prices until a trade occurs. But since the timing of trades is
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Time and the Process of Security Price Adjustment 579

endogenous (depending in part on the existence of new information), the
transactions price series will be a biased representation of the underlying
“true” price process.

These biases have important implications for analyses not only of transac-
tions data but for any data series in which nonsynchronous trading is
present. Because time is not exogenous to the transactions price process,
transactions prices cannot be Markov processes. Trades in our model are
serially correlated because the probability of a trade, and thus a price
observation, is positively correlated with volume. This has the important
implication that the variance of the transaction price yields an overestimate
of the variance of the true price process. Further, both the conditional value
process and the transactions price process have nonconstant variances. These
results may be of interest both to researchers using transactions data, and to
the growing literature on security and option volatility.

In the next section we present a sequential trade model of security price
formation that incorporates the effect of event uncertainty. In Section II we
analyze the role of the time between trades, and characterize how time
affects price quotes and spreads. We also examine the interaction of volume,
quotes, and prices. Section III characterizes the stochastic process of prices,
and in particular examines how the speed of price adjustment differs with
respect to market parameters. Section IV then examines the implications of
our results for empirical research. The final section discusses some exten-
sions of our work.

I. The Model

We consider a sequential trade model similar to that of Glosten and Milgrom
(1985) or Easley and O’Hara (1987). In this model, potential buyers and
sellers trade an asset with a market maker who is responsible for quoting
prices to buy and sell. Because we are interested in the effect of information
on prices, we assume that the market maker is risk neutral and acts
competitively. This assumption rules out any direct inventory effects on the
market maker’s prices, but does retain any information effects of inventory.
For simplicity, we focus on the actions of a single market maker, but our
assumption of competitive behavior implies the existence of at least potential
competitors.’

We consider an asset whose eventual value is represented by a random
variable V. We define an information event as the occurrence of a signal ¢
about V. The signal can take on one of two values, L and H, with probabili-
ties 6 > 0 and 1 — 6 > 0. We let the expected value of the asset conditional
on the signal be E[V |y =Ll =V or E[V |y = H] = V. If no information
event has occurred, we denote this as y = 0 and the expected value of the
asset simply remains at its unconditional level V* = §V + (1 — §)V.

- 1 More detailed discussion of these assumptions and their implications are given in Easley and
O’Hara (1987).
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580 The Journal of Finance

In our model, information events need not occur, reflecting the realistic
specification that since uninformed market participants do not receive any
signals they may also not know whether any new information even exists.? If
new information always exists (as is the case in the Glosten-Milgrom model),
then the uninformed would know implicitly that others knew more and could
act accordingly. Of course, in actual market settings if new information is
known to exist it is a common practice to halt trading until the information is
publically disseminated. Similarly, if new information never arose, then the
issue of some traders having superior information is moot.

We capture this more natural “event uncertainty” that surrounds the
existence of private information by assuming that the probability that an
information event has occurred before the start of the current trading day is
a, where 0 < o < 1. We then analyze the behavior of quotes and prices
throughout the “day.” Certainly, our specification of a day is arbitrary. In
active markets, prices could adjust to new information in minutes and new
information events could occur quite frequently. In inactive markets, there
may not even be a single trade on some days. As our focus is on the effect of
event uncertainty on price adjustment, what matters for our analysis is the
learning problem confronting market participants. This is most easily char-
acterized by adopting the fiction of a trading day and assuming that informa-
tion events occur only between trading days. As we discuss in Section V,
extensions to this simple framework are certainly possible and may lead to
additional interesting insights.

Trade in this market can arise from uninformed and/or informed traders.
We assume that informed traders are risk neutral and take prices as given.
This assumption rules out strategic behavior by informed traders, but may be
realistic given the trading mechanism and the potential existence of multiple
informed traders. The uninformed’s behavior is more problematic. We as-
sume that some of the uninformed trade for liquidity reasons arising from the
timing of consumption or portfolio considerations.? There may be other
uninformed traders, however, whose demands reflect more complex motiva-
tions such as price sensitivity or individual-specific trading rules. These
factors may influence the willingness of any uninformed trader to trade at
any specific time or price. For the uninformed as a whole, we assume that a
fraction vy are potential sellers and a fraction 1 — y are potential buyers. If at
time ¢ an uninformed buyer checks the quote, the probability that he will

2 In actual markets, this uncertainty over whether there is any new information is reflected in
the existence of the Dow-Jones Rumor Wire. As its name suggests, the Rumor Wire prints
rumors of new information. Since uninformed traders will lose to traders who have private
information, the rumor wire essentially reflects the event uncertainty we model here.

3 The presence of traders who are uninformed is necessary for the existence of trade by a
rational market maker. If everyone who wants to trade with the market maker has superior
information and is trading for speculative purposes, then the market maker loses on any trade
he completes. Similarly, the uninformed, if they are rational, must not be trading solely for
speculation.
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Time and the Process of Security Price Adjustment 581

trade is ¢2 > 0, with an uninformed seller’s trading probability defined
similarly as 5 > 0.4

Our assumptions on risk neutrality and competitive behavior for the
market maker dictate that the market maker’s price quotes yield zero
expected profit conditional on a trade at the quote. Since informed traders
will profit at the market maker’s expense, the probability that a trade is
actually information-based is clearly important for determining these prices.
We assume that if an information event occurs the market maker expects the
fraction of trades made by the informed to be u.5 This fraction of trades need
not reflect the fraction of the trader population that observes the signal.
Indeed, it may be that, following an information event virtually all trades
come from informed traders, in which case u will be close to one. However,
specifying the mechanics of the order arrival process requires modelling both
individual trader behavior and any frictions which might be present in the
trading mechanism. The difficulty of this task led Glosten and Milgrom
(1985) to adopt the simplifying convention of an exogenous arrival process
whose parameters correspond to a simple probabilistic structure. We also
adopt this structure. This framework is clearly an oversimplification, but
since the probabilities can be viewed as the outcomes of the underlying
problem, it does provide a reasonable way to characterize the arrival process.
For our analysis here, we require that 0 < u < 1. The case of u = 1 is easy to
analyze (we address it in footnotes) and although the statement of some of
our results change, none of the intuition is affected.

Trade occurs throughout the trading day. We divide the trading day into
discrete intervals of time denoted ¢ = 1,2, --. Each time interval is long
enough to accommodate at most one trade.® This timing specification is

4 We can also allow explicit price dependence in the uninformed’s demands by having the
probability of trade be a function of price or price and the expected value of the asset. With
continuity, slope, and boundary conditions we can show via a fixed point theorem that a unique
equilibrium exists. However, this generalization adds to the complexity of the analysis and it
reduces our ability to characterize the equilibria. Further, in an asymmetric information
economy, demand functions can be very badly behaved. Unless attention is restricted to special
examples demand need not be downward sloping or even continuous. Our point of view is that
over the relevant range of prices (V, V) price sensitivity of aggregate demand is probably not an
important issue. In any case, since it is not clear what assumptions on price sensitive demand
are reasonable, we have chosen to present the analysis with simple random demand.

5 There is an alternative version of the details of the information and trading process which is
consistent with our reduced form model. Suppose that if an information event occurs then at
each time one trader selected at random becomes informed with probability u. Upon becoming
informed the trader makes a trade and leaves. If there has been no information event or if, as
happens with probability 1 — u, no one was selected to see the information, the trader who
checks the quote is uninformed. This interpretation results in the same reduced form as in the
text and so it generates the same analysis.

6 The exact length of a trading interval is clearly arbitrary in our model. Inspection of the
Institute for the Study of Securities Markets transactions data suggests that trades rarely occur
more frequently than every five seconds and so this could be a reasonable specification. Since
trading frequency differs dramatically between markets, however, for empirical work the
appropriate length of an interval may differ across markets.
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similar to that of Diamond and Verrecchia (1987) and allows us to capture
the possibility that during some intervals no trades may occur.

In our model, trade takes place in a sequential fashion with traders
randomly selected to trade according to the probabilities given above. In
particular, at each time ¢ the market maker announces the bid and ask
prices at which he is willing to trade one unit of the asset. Similarly, at each
time ¢ a trader is selected to trade and has the option of buying one unit of
stock at the market maker’s ask price, selling one unit at the market maker’s
bid price, or not trading at all.

If the trader selected is an informed trader then she will buy if she has
seen a high signal and the ask price is below V; she will sell if she has seen a
low signal and the bid price is above V. Note that since the informed trader is
risk neutral, she will always transact provided that prices are not at their
full information value. If the trader selected is an uninformed trader, then
whether he buys, sells, or doesn’t trade at all depends on the trader’s type
and motivation for trading.

This trading structure can be understood most easily by reference to the
tree diagram given in Figure 1. In our model, at the first node nature selects
whether an information event occurs. If there is an information event, then
the type of signal (either L or H) is determined at the second node. These
two nodes are reached only at the beginning of the day. From this point,
traders are selected at each time ¢ to trade based on the probabilities
described above. Thus, if an information event has occurred, an informed
trader is selected with probability u, and she then chooses either to buy or
sell. Similarly, with probability (1 — x) an uninformed trader is selected and
he may choose to buy, sell, or not trade. If no information event has occurred,
then all traders are uninformed and the trader selected may choose to buy,
sell, or not trade with the indicated probabilities. For trade in the next time
interval, only the trader selection process is repeated, so the game proceeds
from the right of the dotted line on the tree diagram. This continues
threughout the day.

There are two points to note about the differences between this structure
and the approach found in other sequential trade models. First, the addition
of the event uncertainty adds another “state” to the underlying game ana-
lyzed in Glosten and Milgrom (1985), the implications of which are discussed
in more detail in Easley and O’Hara (1987). For our analysis here, what
matters is how this affects the trade outcomes. As the diagram indicates, if
there is no information event, then all trades are actually from the unin-
formed. Second, in our model the probability of a trader arriving in the next
period is one. This differs (in interpretation, but not in implications) from the
specification of Diamond and Verrecchia (1987) who assume that there is a
1 — v (v > 0) probability that no trader will arrive. Our specification allows
the trading intensity of the informed (the u) to be quite large, while still
retaining the ambiguity over the underlying information structure for the
uninformed market participants.

Given this market structure, it may be that no trade actually occurs in
some time interval. This can occur in our model only when an uninformed
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Informed Trader Sells

Uninformed Seller Sells

Uninformed Seller Doesn't Trade

Uninformed Buyer Buys

Uninformed Buyer Doesn't Trade

Uninformed Seller Sells

Uninformed Seller Doesn't Trade

Uninformed Buyer Buys
Uninformed Buyer Doesn't Trade
Uninformed Seller Sells

Uninformed Seller Doesn't Trade

Uninformed Buyer Buys

Uninformed Buyer Doesn't Trade

Figure 1. Tree Diagram of the Trading Process. « is the probability of an information
event, 6 is the probability of a low signal, u is the probability that the trade comes from an
informed trader, v is the probability that an uninformed trader is a seller, and ¢5(e®) is the
probability that the uninformed trader will actually trade. Nodes to the left of the dotted line
occur only at the beginning for the trading day; nodes to the right are possible at each trading
interval.

trader checks the quotes and decides for portfolio reasons (as captured by the
¢S and €? probabilities) not to trade. Notice that this can occur both when
there has been an information event and when there has not (since the no
trade outcome can be found at the ends of each of these two branches). Hence,
a no-trade observation does not in itself reveal whether there has been an
information event.

What is important to stress, however, is that this no-trade outcome is more
likely to occur when there is no new information. If there is no information
event, then the probability of no trade is y(1 — %) + (1 — v)( — €?). Con-
versely, given that an information event has occurred, this probability falls
to (1 — wly(1 — €5) + 1 — v)A — €B)] because now there are both informed
and uninformed traders in the market. A market maker observing a no-trade
outcome, therefore, must consider the possibility that the lack of trade may
signal that no new information exists.

A final issue to be addressed is the evolution of prices throughout the day.
The market maker and the uninformed traders are Bayesians who know the
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584 The Journal of Finance

structure of the market. What they do not know is whether an information
event has occurred, whether it is good or bad news given that it has occurred,
or whether any particular trader is informed. Each market participant can
watch the market, however, and observe all trading activity. Over time, this
allows the market maker (and the uninformed) to learn about the first two
unknowns and revise their beliefs. It is this revision that causes quotes, and
thus prices, to adjust.

We outline this quote-setting process for the first trade of the day. To
determine his price quotes, the market maker must calculate the expected
value of the asset conditioned on the type of trade that can occur. This
requires determining the conditional probability of the low value V. If no
signal has occurred, this probability remains unchanged at é. If an informa-
tion event has occurred then Pr{V = V} is one if the signal is low and zero if
the signal is high. The market maker’s updating formula is thus:

8(Q) =Pr(V=V|Q =1 -Pr{y =L|Q} +
0-Pr{¥ =H|Q} +6Pr{¥ =0|Q}, (1)

where @ denotes the trade outcome. As the market maker is Bayesian, these
conditional probabilities are given by Bayes rule:

Pr{¥ = X | Q}
Pr{¥ = X}Pr{Q| ¥ = X}

T Pr{Y=LIPr{Q|¥ =L} + Pr{¥ = H)Pr{Q|¥ = H} @)
+Pr{¥ = 0}Pr{Q| ¥ = 0}.

The explicit probabilities can be derived from the tree diagram given in
Figure 1. Hence, to calculate the probability that a low signal occurred given
a sale, Pr{y = L| S}, note that Pr{y = L} = a6 and that Pr{S|y =L} =
(x + (1 = w)yeS). The probabilities Pr{S |y = H} and Pr(S|y = 0} can be
calculated similarly so that:

8(ap + a1 - u)ye’)
(dap + (1 — ap)yeS)” (3)

To calculate Pr{y = 0| S}, note that Pr{y =0} =1 — o and Pr{S |y = 0} =
5
ve®, so

Pr{¥ = L|S} =

(1 - a)ye®
(Bom + (1 - ozp,)'yes) '

The market maker’s conditional § given a sale, therefore, is then:

Pr{¥ =0|S} = (4)

ap + 5y(1 — ap)
6,(S;) =6 > 6. 5
(5) = o| ey )

As is apparent, the market maker increases the probability he attaches to V
given that someone wants to sell to him. The amount of this adjustment
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Time and the Process of Security Price Adjustment 585

depends on the probability attached to an information event having occurred
(a) and on the fraction of trades from the informed (u). If there is no
possibility of an information event or there are no trades by informed traders,
then there is no adjustment to §, i.e., § = 6(S;). It is easy to demonstrate that
in the case of a buy the market maker decreases the probability he attaches
to V, given the conditions on o and u noted above.

Given these conditional expectations, the market maker can set initial bid
and ask quotes. The initial bid is the expected value of the asset given that a
sale takes place. Hence

oV(ap + eSvy(1 — ap)) + (1 = 8)VeSy(1 — ap)
dap + ¢Sy (1 — au) ’

E[VISI] =b, = (6)

The initial ask is the expected value of the asset given that a buy occurs, so
E[V|B,] = q,

V(P - y)(1 —ap) + (1= 8)V(an + €?(1 - v)(1 - au))
B (1—6)ap.+eB(1 —’y)(l — ap) )

As has been noted by several authors (see Glosten and Milgrom (1985),
Copeland and Galai (1983)), these prices diverge from V * to reflect the risk of
information-based trading.

Having described the structure of the model and determined initial equilib-
rium quotes, we can now turn our attention to the question of how prices
evolve in this market. Before proceeding to the analysis of our model,
however, there are several aspects of our modeling approach that deserve
comment. The sequential time-based framework we analyze is very different
from the approach taken in many recent studies of asset prices. Following the
work of Kyle (1985), numerous authors (see, for example, Admati and
Pfleiderer (1988) and Kyle (1989) on strategic behavior; and Brown and
Jennings (1989) and Grundy and McNichols (1989) on technical analysis)
have modeled the trading process in a rational expectations framework in
which orders are batched by the market maker and are cleared at a single
price. In these papers either traders submit market orders which will be
executed at whatever price it takes to clear the market, or traders are
allowed to submit the price contingent orders that arise from negative
exponential utility and normal distributions. In either of these frameworks it
is possible to calculate linear rational expectations equilibria.’

(7)

" Outside of the examples used in the multiperiod rational expectations models, when price
contingent demands are allowed it is typically not possible to calculate equilibria. Although
equilibria have been shown to exist for the generic economy (see Jordan (1982)), they are so
complex that it is hard to imagine how they could arise in any real market. Further, even the
simple rational expectations examples have multiple equilibria. In addition to the usual nonre-
vealing equilibrium, these economies have a fully revealing equilibrium with traders condition-
ing on price and their own net trade. It is not obvious that this equilibrium is less plausible than
the nonrevealing equilibrium, in fact it is more robust in that it always exists.
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While this approach has provided a number of important insights into
market phenomena, it is not amenable to the issue we study in this paper.
One reason is that in a batch-clearing system, the aggregation of orders
obliterates the information revealed by nontrading intervals. As we show,
the lack of trade can affect the adjustment path of prices in potentially
important ways. A second and related difficulty is that trades clear at a
single price. In our model, as in actual markets, the bid-ask spread plays an
important role and we demonstrate how the distinction between quotes and
transaction prices may be crucial for empirical researchers. Finally, our focus
on the adjustment path of prices requires a model of how individual prices
are set and how, they, in turn, adjust over time. A sequential trading model
captures this evolutionary process by focussing on how the market maker
learns, how this affects the speed of price adjustment, and what this implies
for the efficiency of markets. An added benefit of this focus on individual
prices is that our model provides a framework for empirical investigations
using transaction data. In the next section, we begin our investigation of the
price adjustment process by determining how both trade and the absence of
trade affect the revision of beliefs and hence the adjustment of prices.

II. Volume and Quotes

At each time ¢ there are three possible outcomes for the trading process:
the trader who checks the quotes may buy (B), sell (S) or choose not to trade
(N). We let Q,€[B, S, N] represent the outcome of the trading process at ¢.
As the day proceeds the market maker observes and learns from the sequence
of past trading outcomes. By the beginning of period ¢ he has seen a history
Q"' =(Q,,Q,, -, Q,_,) which may cause his beliefs to change. His beliefs
at the beginning of period ¢ are given by Bayes rule and are represented by
o= Pr{y = L| @}, 05, = Pr{y = H|Q"} and p, = Pr{y = 0| Q1.
These are the conditional probabilities of the three possible events: a signal
has occurred and it is low, a signal has occurred and it is high, and no signal
has occurred.

The market maker’s bid in period ¢ is the expected value of the asset
conditional on the history, Q "%, and a sale at ¢, @, = S. The bid at ¢ is then

b,=Pr{y=L|Q"',S}V+Pr{y=H|Q"',S}V+Pr{y=0|Q"",S}V*.

The evolution of prices is determined by the evolution of beliefs. So to
understand the stochastic process of prices, we need to analyze the stochastic
process of beliefs.

One way to examine these beliefs is to consider how the existence of an
information event affects the probability of a trade occurring in any time
period. We know that if no information event has occurred, the probability of
no trade in any time interval is y(1 — €5) + (1 — 7)1 — €?). Conversely, if
an information event has occurred the probability of no trade is (1 — w)ly(1 —
€5) + (1 = v)( — €?)], which is smaller because informed traders are sure to
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trade. Thus trade is positively correlated with the occurrence of an informa-
tion event. The market maker uses this property to update his beliefs. As the
following proposition shows, if no trade occurs in some time interval, the
market maker raises his probability that no information event has occurred.

Proposition 1. If there is no trade at time t then the probability of no
information event rises and the probabilities of a high or a low signal fall, i.e.,
Pot+1 > Po.> Priv1 < Pr, and pg ..y < py,. Further, the relative probability
of a low to a high signal is unchanged, i.e.,

Pr.t Pre+1

PH PH t+1

Proof: All proofs are given in the appendix.

One implication of Proposition 1 is that the market maker learns from the
lack of trade, as well as from actual transactions. The information content of
a no-trade observation differs from that of a transaction, however, because it
conveys only information on the existence of a signal and not also on its
direction. Consequently, the market maker does not change the relative
probabilities of high and low signals, but does change their absolute
probabilities.

This change in beliefs means that the market maker will change his quotes
even though no transaction has occurred. Because the market maker believes
it less likely that an information event has occurred, he moves his bid and
ask closer to V*. Proposition 2 demonstrates that this can cause quotes, and
thus prices, to rise or fall depending on their position at time ¢.

Proposition 2: Suppose there is no trade in period t. Then at time t + 1:

A. The bid rises if b, < V* and falls if b, > V* ie, b,,; > b, if b, < V*and
b1 < b, ifb,> V™

B. The ask falls if a, > V* and rises if a, < V¥ ie, a,,; <a, if a,> V*
and a,,; > a, ifa, < V*

As Proposition 2 demonstrates, both the bid and ask move in response to
the absence of trade. What may seem paradoxical is that quotes do not
always move in the same direction. The reason for this is that quotes are
moving toward V*, the unconditional expectation of V, and not toward the
signal-based values of V or V. Consequently, if the bid, for example, was
above V* it will fall; if it was below V* it will rise.®

This movement, in turn, has implications for the bid-ask spread. At date ¢
the spread is 8, = a, — b,. By Proposition 2 if a, > V* > b, the ask price falls,

81In each period, bid and ask prices bracket the current expected value of the asset. This
differs, of course, from V* (the prior expected value) as the market maker’s expectation changes
in response to trades.
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the bid price rises, and thus the spread narrows (i.e., 8,,; < 8,) if there is no
trade at date ¢. This narrowing of the spread reflects the information
conveyed by a no-trade outcome. Specifically, the spread exists because of the
possibility of trading with an informed trader. When no trade occurs, the
market maker lowers the probability he attaches to an information event
having occurred and so reduces the probability he attaches to a trade being
from an informed trader. The effect this has on the spread is summarized in
the following corollary.

Corollary 1: Suppose a, > V* > b,. If there is no trade in period t, then the
spread in period t + 1 will be smaller than the spread in period t.

Our result that the absence of trade leads to smaller spread is the opposite
of the effect predicted by Diamond and Verrecchia (1987). In their model, the
absence of trade in a period is bad news because it is more likely to occur
when informed traders are precluded from selling by short sale prohibitions.
However, if these prohibitions are relaxed, then the absence of trade in their
model has no information content at all. By contrast, in our model, the
absence of trade is more likely to occur when no information event (either
good or bad) has occurred.® With trade now “safer” the market maker
reduces his spread.

This result that the absence of trade can affect future prices and spreads
suggests an interesting parallel to a result we derived in earlier work on the
effects of trade size on subsequent prices. In Easley and O’Hara (1987) we
demonstrated that transaction prices recover following block trades because
the occurrence of a small transaction lowered the market maker’s belief that
new information existed. Consequently, order size was an important variable
in the price process. In this paper, the absence of trade plays a similar role,
causing the market maker to narrow his spread in response to increasing
time between trades. What is intriguing about the effect demonstrated here
is that it suggests that time between trades may play an important role in
the behavior of prices. We return to this issue in Section IV where we discuss
the empirical implications of our model.

Since the level of quotes is affected by both transactions and no-trade
outcomes, an important issue to consider is how these variables affect the
adjustment of quotes over time. To address this issue we need to characterize
what variables the market maker uses (or keeps track of) in setting his
quotes for time ¢ + 1. In our model, the market maker’s quotes are condi-
tional expected values, so to determine his prices we must determine his
beliefs. Suppose that in the past ¢ trading intervals the market maker has
observed n, no trades, 3, buys, and s, sells. The market maker’s beliefs given

9 There is another literature examining the link of public information and trading behavior
(see, for example, Jain (1988) and Kim and Verrecchia (1991)). If traders know that an
announcement is imminent, it is usually the case empirically that volume decreases as traders
delay their trades until after the news arrival. As our focus is on private information whose very
existence is uncertain, this literature is not directly relevant to our analysis.
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this trading history are then given by (where the ¢ subscripts have been
dropped):

Pr{y = 0]Q"} = (1 - a)(v¢5) (1 = v)e®)°[(1 = &) (v¢5) (1 = v)e?)”

+(1 = w)"[ed(n+ (1= w)ves) (1 - W)@ - 7)e?)’

-1

ra(l - 0)((1 - wye) (u+ (1 - w1 -)e®)’]] . (®)

with the probabilities of low and high signals calculated similarly.

What is important to notice is that since beliefs depend on (n,, 8,, s,),
quotes will also depend on these variables. In particular, the bid at time
t + 1 can be written as:

bt+1 = Pr{‘/’ = L' ng s, +1, 6»:}2
+Pr{y=H|n,, s,+1,8}V+Pr{y=0|n,s,+1,8}V* (9)

Expressing the bid, or ask, in this form reveals that quotes at time ¢ depend
not only on the most recent trade, but also on the total numbers of previous
buys, sales, and no-trade outcomes. Indeed, to describe the stochastic proc-
esses of quotes, equation (9) demonstrates that we need only know the total
numbers of no trades, buys, and sales; the process does not depend on any
other variables.

From the perspective of a market observer, this result has two important
implications. First, quotes at each point in time will depend in a specific way
on the outcomes of previous trading periods. Consequently, since the se-
quence of trading outcomes matters for determining future quotes, watching
past market outcomes is informative. Second, since the respective numbers of
buys, sales, and no trades matters (indeed, determines prices), the total
amount of trade or volume affects price behavior. In particular, because
volume is related to the number of no-trade outcomes and the number of
no-trade outcomes is related to the probability of an information event, prices
at time ¢ + 1 depend on the volume of trade as of time ¢.

To explore these implications more fully, it is useful to delineate how
specific variables affect the stochastic process of prices. We know from above
that quotes at time ¢ + 1 depend solely on the information conveyed by the
trading outcome (n,, 8,, s,). By definition, volume to time ¢ is given by
v, = s, + B, and, similarly, the market maker’s inventory position at time ¢ is
given by i,=s,— (8, It is easy to show that knowledge of (v,,1i,,¢t) is
equivalent to (n,, B,, s,). Hence, if you know the total volume, the market
maker’s inventory position, and the time you can determine the market
maker’s quotes for trades at time ¢ + 1.

Suppose, however, that you knew only inventory and time. It is easy to
show that (i,, ¢) is a sufficient statistic for (3,, s,) but that it is not sufficient
for (n,, 8,, s,). Hence, if it were never possible for a no-trade outcome to occur,
knowledge of (i,,¢) would be sufficient to determine future quotes. In the
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Glosten and Milgrom (1985) transaction-based model, for example, an ob-
server of the market could simply track inventory (or more crudely, the
imbalance of buys and sells) to know how the market maker would set
quotes. Once we allow for the possibility of nontrading outcomes, however,
this is no longer true: we need to follow volume as well as inventory to
predict the level of quotes at time ¢ + 1.

Alternatively, suppose that instead of tracking inventory and volume, you
simply tracked the sequence of past prices. This is the approach taken in
recent papers on technical analysis by Grundy and McNichols (1989) and
Brown and Jennings (1989). They show that past prices carry information
about future prices, so price-based technical analysis is valuable. Past prices
also carry information in our framework, but they are not sufficient statistics
for all past market information. It is easy to demonstrate that given any
price sequence, the distribution of future quotes and prices will differ depend-
ing on volume. So although price-based technical analysis is valuable, price
and volume-based technical analysis is even more valuable.’

One way to characterize our results on the role of volume is to recognize
that the stochastic process (n,, 8,, s,) is Markov. Consequently, any variables
with similar information content must also be Markov processes. In Easley
and O’Hara (1987), we showed that prices alone and prices and inventory
together would not in general be Markov processes. Hence, it is not surpris-
ing that these variables are not sufficient statistics for the price process
derived in this paper. As the following proposition demonstrates, however, it
is the case that (v,, i,, ) is a Markov process. Consequently, the volume of
trade, inventory, and time all matter in adjustment of prices to information.

Proposition 3: The stochastic processes (n,, s,, 3,) and (i,,v,,t) are Markov.
That is, the distribution of (R,, 1, S;41> Bes1)s OF (B441, V41, ¢ + 1), depends on
(n,, s;, B,), or (i, v, t), but is otherwise independent of the history of the
process.

It may seem paradoxical that allowing the market maker to learn from the
lack of trades as well as from transactions means that volume now matters in
the stochastic process of prices. Yet, it is precisely because no-trades can
occur that the aggregate total of transactions provides information. It is easy
to see that the probability the market maker assigns to no new information is
increasing in the number of no trade outcomes r, and decreasing in the
volume v,. Hence, the market maker interprets v, as a signal of the existence
of information. Since the market maker’s inventory results from any imbal-

0 One could ask whether this would also occur in the two period rational expectations
examples with endownment uncertainty employed by Grundy and McNichols (1989) and Brown
and Jennings (1989). In the Grundy and McNichols model even per capita volume has an infinite
expectation, so conditioning on it is troublesome. In the Brown and Jennings model price and
volume together reveal all information. So if traders can condition on contemporaneous market
statistics (as they are doing with price conditioning) the equilibrium is revealing and technical
analysis has no value.
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Time and the Process of Security Price Adjustment 591

ance in trades, watching i, then provides a signal of the direction of any new
information.

It is important to stress, however, that the stochastic process of prices also
depends on time. Although volume per se is informative, it is volume as of a
certain time ¢ that affects the distribution of prices at time ¢+ 1. This
dependence means that where the market maker sets his quotes at time ¢ + 1
depends upon the volume he has observed as of time ¢{. Consequently, the
spread a market maker sets at any point in the day will also depend on the
volume in the market up to that point.

Characterizing exactly how this dependence affects the size of the spread is
complicated, however, by the fact that the sequence of trades also affects the
placement of the spread. In particular, a large number of buy orders may
indicate both that a signal has occurred and that the signal was high. These
two effects will move bid and ask prices toward V, causing the spread to
narrow as prices approach the upper bound. In this case, the narrowing of the
spread reflects the market maker’s increasing confidence in the direction of
the signal. This convergence effect of volume is addressed in more detail in
the next section.

For our purposes here, however, it is also important to delineate the pure
effect on spreads that arises from volume alone. To see this, we must abstract
from the directional effects of trades by considering how volume affects prices
in the absence of any inventory or trade imbalance effects. This volume effect
can be isolated by considering a trade sequence that does not affect the
market maker’s relative beliefs on the signal’s direction. Hence, suppose that
at time ¢ the market maker has learned no new directional information.
Thus, the relative probabilities of a high and low signal must be unchanged
from their values at time 0. (Note that the absolute size of these probabilities
need not be the same, however, as the market maker may have revised his
beliefs about the existence of any new information).

As the following proposition demonstrates, this “existence’ revision occurs
as a result of volume. All else equal, the greater the volume the more likely
it is that the market maker believes an information event has occurred.
Hence the size of the spread at time ¢ + 1 will be correlated with the volume
up to time ¢.

Proposition 4: Suppose low and high signals are equally likely and unin-
formed traders are equally likely to buy or sell, i.e., (1 — v)eZ = ye5. Suppose
further that in period t the market maker’s beliefs about the relative probabil-
ity of a low or high signal are unchanged from period 1, i.e., p;, = py,. Then
the spread at period t will be larger the greater is the volume up to period t.

There are two reasons why this result is of interest. First, in the absence of
event uncertainty it is not the case that volume affects spreads. For example,
in the Glosten-Milgrom model the total volume to time ¢ is irrelevant. If at
time ¢ the market maker’s relative probabilities of a high and low signal
were unchanged from time 0, then his spread would be identical to his initial
spread no matter what the volume in the market. That is not the case here.
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Because the market maker can revise his beliefs on the existence of informa-
tion, the spread at time ¢ can be very different from that at time 0.

A second aspect of this result is it illustrates the important role volume
plays in the market maker’s learning process and hence in the adjustment of
prices to information. Because volume is providing information to the market
maker on event uncertainty, the behavior of prices depends on the level of
volume. The proposition illustrates these effects on the size of the spread, but
it is also the case that volume affects the movement of prices. These price
movements, in turn, reflect the efficiency of the market, and hence volume
may be an important factor in the process of price adjustment. In the next
section we investigate these issues by examining how volume influences the
speed with which prices adjust to information.

II1. Prices and Efficiency

To consider the dynamic behavior of the market, we first need to define the
stochastic process of market prices. Because we distinguish between clock
time and trade time, this price process must be specified with some care. In
particular, we must incorporate the property that beliefs on the asset’s value
may change during nontrading intervals.

We define the stochastic process of conditional expected values { p}} by

a,if @, =B
pr=|bifQ =358
E[V|Q"', N]ifQ,=N.

This process is a martingale because it is a sequence of conditional expecta-
tions where E[P/ ,| Q1= E[E[V|Q'™']| Q'] = E[V |Q‘] = P}. Unfortu-
nately, this process is not observable because we do not know the market
maker’s expectation in the absence of a trade.!!

A transaction price arises only when a trader chooses to buy or sell. From a
statistical perspective, we can view this transactions price process as being
formed by an optional sampling of the sequence of conditional expected
values { p}'}. In particular, we can define the sequence of transaction prices
by:

p; = p{ where t; = min{¢: ¢t > ¢, ; and @, # N}.

This transaction price process is observable but the fact that it is formed by
optional sampling leads to interesting and complex statistical properties.
These complexities arise because the sampling times are not independently
and identically distributed but are instead partially chosen by traders who

1 Note that it is not legitimate to approximate E[V | Q =1, N1by the average of the bid and
ask at £. It is easy to show that the spread need not be centered on the expected value of the
asset.
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may be informed about the evolution of the price process. The time between
trades, therefore, need not be independent of the evolution of the price
process. Moreover, the variance of the process will also reflect this sampling
bias as will the time series properties of security returns.

Other researchers have noted optional sampling problems in transactions
data with respect to nonsynchronous issues (see for example Scholes and
Williams (1977) and Lo and MacKinley (1990)). In these analyses, however,
the probability that a security does not trade in any time period is assumed
uncorrelated with the behavior of the underlying true process.!? Nonsyn-
chronous trading in these models introduces timing problems (and hence
spurious time series correlations) but does not reflect any underlying bias in
returns. The optional sampling problem in our analysis is more severe. Here
the sampling problem is correlated with movements in the actual underlying
price process. We discuss the implications of this dependence for empirical
work in the next section. What needs to be determined for our characteriza-
tion of the price process, however, is how this dependence affects the dynamic
(or time series) behavior of prices. To address this issue we need to examine
how the stochastic process of transactions prices differs from that of the
“true” price process.

In the standard sequential trade model without event uncertainty, Glosten
and Milgrom (1985) demonstrated that the sequence of transactions prices is
a martingale with respect to the sequence of trades. In our model with event
uncertainty, the same martingale result applies. Moreover, because any
martingale is also a martingale with respect to past realizations of the
random variable, prices in our model are a martingale with respect to all past
prices. In standard finance terminology, our prices would be said to be
weak-form efficient.

Transaction prices do not form a martingale, however, with respect to full
information and so they are not strong form efficient. While prices can thus
differ from full information values, over time prices converge to full informa-
tion or strong-form efficient values. It is easy to demonstrate that transac-
tions prices converge to the appropriate value: V* if no signal has occurred.
V if a low signal has occurred or V if a high signal has occurred.!?

An interesting aspect of this convergence behavior is its relation to trading
volume. As was demonstrated in the previous section, the stochastic process
of prices depends on volume, and so not surprisingly does the stochastic
process of transactions prices. Characterizing how this relationship affects
the convergence of prices, however, requires specifying the components of

2 Diamond and Verrecchia’s (1987) analysis also involves a sampling problem induced by
short sale constraints, but this sampling problem is a result of the trading mechanism and not of
the underlying price process. Hence, their censored sampling problem differs from that here in
that the sampling problem in our model arises endogenously from the information structure.

13 The distribution of trades is different if no event has occurred, if a low signal has occurred or
if a high signal has occurred. The market maker is a Bayesian who observes the distribution of
trades. So convergence of beliefs, and thus prices, to the correct value is a standard Bayesian
learning result.
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volume in more detail. In particular, trading volume can be thought of as
containing a component due to liquidity (or uninformed) trades and a compo-
nent due to informed trades. When there has been no information event, then
by definition there can be no informed trading but the amount of liquidity
trades should be unaffected. We can thus define “normal” volume as this
expected level of 11qu1d1ty trading. Let v; = s; + 8, be the volume to time j
and let e = [(1 — v)eS + v€®] be the expected 11qu1d1ty based volume per
period. Then Proposition 5 shows that the level of volume and the price
movement are related by the underlying event uncertainty.

Proposition 5: In the absence of an information event, volume converges to its
normal level and prices converge to V*. More precisely, for any n > 0,

v
L _e >nand | p, — V*| <9, for some j =7} = 0.
J

T

lim Pr{

One way to interpret Proposition 5 is that “It takes volume to move
prices.” Indeed, the proposition actually provides the stronger result that in
the absence of abnormal volume prices converge to a level contained in the
interval of initial quotes, i.e., V*e(b,, ;). In this sense, absent abnormal
volume prices do not move. While prices can (and will) deviate from V* and
volume can (and will) deviate from its normal level, such movements can
only be temporary in the absence of an information event. This suggests that
event uncertainty and its effect on the price process may provide one explana-
tion for the oft-observed empirical relationship between prices and volume
(see Karpoff (1987) for a survey of the empirical work in this area).

While the proposition demonstrates that volume affects convergence and
we know that prices do indeed converge to their “correct” level (either V, V,
or V*), it would also be useful to know how quickly this occurs. Since prices
only converge in the limit, the obvious answer is that it takes an infinite
amount of time. However, a more useful answer would be to determine how
quickly prices approximately reach their strong-form efficient levels. One
way to characterize this is to calculate first passage times, or essentially how
long it takes on average for prices to first reach some prespecified bound
around the strong-form level. This is the approach taken by Diamond and
Verrecchia (1987) in their analysis of short sale constraints. An alternative
approach is to calculate the actual rate of convergence of the stochastic
process, and then use that as a benchmark in comparing how various
parameters affect the rate of convergence. This is the approach taken by
Easley and O’Hara (1991) in their analysis of the effects of order form on
price behavior.

Both approaches provide a means of characterizing the speed of price
adjustment; both are also related in the sense that the answers they give will
be comparable. For our analysis here, we find it more intuitive to character-
ize the underlying stochastic process by its rate of price convergence. Since
our concern is with the behavior of the process, this approach allows us to
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explicitly measure its behavior with respect to the underlying information
structure.

To state our results, we need a few definitions. Since in our model transac-
tion prices are a sample of quotes and by equations (6) and (7) quotes are
linear combinations of beliefs, it is sufficient to provide rates of convergence
for beliefs. For each signal iy define the probability on trades p¥ =
(P¥(N), P¥(B), P¥(S)), with representative element p¥(Q) the probability of
trade @ given the signal y. Now for two probabilities on trades, p¥ and p*’,
the entropy of p¥ relative to p¥ is defined by

Ly(p¥)= > p*Q)log
Qe{N,B,S}

(10)

r"(Q) )
p(Q) ]

This standard measure in statistics has the property that it is always
non-negative and is zero if and only if p¥ = p¥’. It essentially measures the
distance between p¥ and p¥’.

Using these definitions we can state our rate of convergence results, the
intuition of which can be conveyed by a simple example. Suppose that a low
signal has occurred. We know that the posteriors converge almost surely, i.e.,
or: = L, pg: = 0, pp, — 0 a.s. It also follows directly from the Strong Law of
Large Numbers that the posteriors of a Bayesian observing an i.i.d. process
converge exponentially to their almost sure limits. Consequently, we show
that almost surely oy, /po;, converges to zero exponentially at rate I,.(p H)
and almost surely p,,/p;, converges to zero exponentially at rate I, ( r9).
The linearity of the equilibrium quotes in beliefs then implies that quotes
converge to V exponentially at a rate equal to the minimum of I,2( p) and
I, p°). So transaction prices converge exponentially in clock time at this
rate. Our second result is on the comparative behavior of price processes. We
show that increasing the fraction of trades from the informed or reducing
normal volume, increases the relative entropy between p’ and either p or
p°. These increased relative entropies increase the rate of convergence
because they increase the information content of observing trades. These
results are summarized in the following proposition.!*

Proposition 6: Quotes, and thus transaction prices, converge to their strong
form efficient values at exponential rates (in clock time). If signal { occurs, the
exponential rate of convergence is r(://) = Min{1,,«( Y)Y # Y}, wherel oi( oY)
is the entropy of p*’ relative to p*. That is, zf signal y occurs then Iat

E[V|Yy]l| <exp —r(¥) and |b,— E[V |¢]]| < exp — r(y) for all large t, al-
most surely. These rates of convergence are increasing in the fraction of trades

4 Proposition 7 applies to the case of 0 < p < 1. If 4 = 1, then when no signal occurs the
market maker learns in finite time almost surely. He knows that there is no information event
as soon as he observes no trade or any sequence of trades with both buys and sells. Alternatively,
if a low signal occurs his posterior probability on a low signal at time ¢ is po, = ad/[ad + (1 —
a)(y€e5)?]. This sequence of beliefs converges to one and the rate of convergence is decreasing in
normal volume. The analysis for a high signal is similar.
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from the informed, and, when the uninformed are equally likely to buy or sell,
decreasing in normal volume.

The convergence results in Proposition 6 provide insights into how prices
adjust in securities markets. Increasing the fraction of trades from the
informed hastens this adjustment process because their trading activity
reveals the underlying information. Perhaps not surprisingly, the greater
the fraction of trades from the informed (when an information event occurs)
the faster this adjustment occurs. The role of volume is more intriguing. As
the proposition demonstrates, greater normal trading volume actually slows
the adjustment of prices to information. This occurs because in markets with
more uninformed or liquidity trading the trades from informed traders can be
hidden more effectively. Consequently, it takes the market maker longer to
learn the information and this slows the rate at which prices reflect full
information.!®

That volume can affect the placement and adjustment of prices across time
may seem an intuitively obvious concept. One interesting aspect of this
result, however, is that it differs from the predictions of earlier work by Kyle
(1985). In Kyle’s model, orders are batched and all trades clear at a single
price. Kyle shows that altering normal volume has no effect on prices
because the single informed trader strategically increases (or decreases) his
trade size to maintain his expected relative share. Consequently, in his
model increasing normal volume affects the profits of the informed, but not
the adjustment of prices.

One obvious question that arises is whether our volume results continue to
hold if the informed adjust their trading behavior. A complete analysis of this
issue requires allowing either endogenous entry of informed traders or defin-
ing some explicit strategic link between pu and volume. As our model is a
partial equilibrium competitive analysis, it is not amenable to this exercise.
We can, however, characterize the polar case in which the informed adjust
completely. That is, if following an information event, all trades are actually
from the informed. This corresponds to assuming that u = 1 and has the
practical implication that since the informed are already making all the
trades there is no way that any strategic choice could result in a larger role
for the informed. Proposition 7 demonstrates that even with this complete
role for the informed our results on volume and prices remain.

Proposition 7: Suppose p. = 1. Then the initial spread is decreasing in normal
volume, and the rate of convergence of quotes, and thus transactions prices, to
their strong form efficient values is also decreasing in normal volume.

151t is useful to contrast these dynamic results with our earlier analysis of the spread.
Markets with a high probability of trade by the uninformed, and thus a large normal volume,
have a small initial spread but a slower speed of convergence to full-information prices. The
small spread occurs because there are many uninformed trades relative to informed trades. But
this makes it more difficult to detect the presence of informed traders and to discover their
information. Conversely, markets with low normal volumes have large initial spreads but faster
spreads of convergence.
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At first glance, the results of Proposition 7 may seem surprising. Even
assuming that following an information event all trades are from the in-
formed does not remove the effects of normal volume on the price path. The
reason is that in our model there still remains the uncertainty over whether
an information event has actually occurred.!® As we have demonstrated
throughout this paper, it is this underlying event uncertainty that provides a
role for volume. And it is this underlying event uncertainty that will remain
even given the trading intensity choices of the informed.

IV. Empirical Implications

Our analysis thus far has examined the effects of uncertainty over the
existence of new information on market behavior. A strength of our approach
is that we analyze the behavior of both prices and quotes. Since this structure
corresponds well to the new transaction-based data increasingly being stud-
ied by researchers, this suggests that our work may be particularly relevant
for transactions-based studies. In this section we explore this applicability by
considering the empirical implications of our model. In particular, we demon-
strate how our results on the role of time, volume, and the stochastic process
of prices may be useful in predicting security price behavior, in designing
statistical tests of security prices, and in improving our understanding of
market volatility.

Perhaps the most fundamental prediction of our model is that time affects
the behavior of prices. As we have shown, because the lack of trade may
signal that no new information exists, the time between trades (or clock time)
can itself affect prices. From an empirical perspective, this has a number of
testable implications. For example, a simple prediction of our model is that
quotes will change in the absence of trades. Cursory examination of the
transactions data series confirms that this does, indeed, occur. While the
transaction price series, by definition, changes only with trades, price quotes
do change without intervening transactions.

A related, and perhaps more important, prediction of our model is that the
spread will decrease the longer the time between transactions. Recent re-
search by Hasbrouck (1991) provides empirical support for this effect. As
Figure 3 in that paper demonstrates, following a large trade the spread
narrows over time with the absence of trades. Hasbrouck also presents
evidence that trades that arrive when the spread is wide have a greater
impact on price than those which arrive when the spread is narrow. This is
consistent with our results that the behavior of prices will differ depending
on factors such as the volume and timing of trades.

Of course, a direct test of our time-based model is to investigate the explicit
relationship between time and the price process. This is the approach taken

16 Obviously, if an information event is known to have occurred, then even one trade will cause
prices to instantly adjust to V or V because with u = 1 trade is revealing. In this case, the
whole issue of asymmetric information is academic.
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in a recent paper by Hausman and Lo (1990). Using an ordered probit
statistical model, Hausman and Lo test whether the time interval between
trades can be viewed as exogenous to the price process. They reject the
exogeneity of time at conventional statistical levels, a finding directly in
support of the predictions of our model. They note, however, that because of
the small size of the parameter estimates, the economic significance of time
may be small. This degree of importance is clearly an important question for
future research.

One implication of these results is that the behavior of security prices may
be seriously misspecified by applying standard statistical testing approaches
to transaction data. Although most studies restrict attention to transaction
price data, this stochastic process of prices can be viewed as an optional
sampling of the process of conditional expected values for the asset. As we
discussed in the previous section, this conditional expected value process is
sampled at times which are neither fixed nor independently distributed.
Trades are positively serially correlated, so the probability of a trade and
thus a price observation is positively correlated with volume. This follows
because if an information event occurs, trades are more likely to occur and
volume will be high because the informed always trade. A trade at time ¢, or
high volume up to time ¢, increases the likelihood that an information event
has occurred. And this, in turn, increases the likelihood of a trade at time
t+ 1.

One reason why this is important is that it affects the variance structure of
the price process. Let E[(P} — P} ,)?| Q'~1] be the conditional variance of
the expected asset value at time ¢. By Corollary 1 the variance at time ¢ + 1
is less than the variance at ¢ if there is no trade at ¢. Hence, roughly,
variances are positively correlated with volume. Now as trades are positively
correlated, periods of low variances tend to be grouped and occur in periods
where there is little trade. The transaction price is a sampling of the
expected value process exactly when this process has high variance—at trade
times. So, if we want the variance of the conditional value of the asset or
equivalently of the price at which trades could have occurred, the variance of
the transaction price yields an overestimate. Further, both the conditional
value process and the transaction price process have nonconstant variances.
The underlying problem is that although both price processes are martin-
gales, they are not Markov, but rather are history dependent.

While the difficulties this poses for transactions based studies are appar-
ent, this underlying problem also affects some standard techniques fre-
quently applied to daily or weekly data. In particular, a common problem in
studies calculating security returns is nonsynchronous trading (see Scholes-
Williams (1977); Lo and MacKinley (1990)). Although adjustments to deal
with this problem have been proposed, these adjustments all assume that the
nontrading interval is independent of the true return process for the stock. If,
as our analysis demonstrates, this is not correct then the nonsynchronous
trading problem can induce statistical problems even using the adjustments
proposed in the literature.
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Given these difficulties, our analysis suggests that if we can follow only
price data then the process of quotes may be the better data set. Quotes,
unlike transaction prices, occur continually and so do not have the optional
sampling problem. A researcher watching transaction prices (and ignoring
clock time and quantities) is allowing the market participants to select
random observations of the underlying price process with sampling times
correlated with the evolution of the process. This yields severe and unneces-
sary statistical problems. Quotes are observable, and, at least in our model,
carry strictly more information than do transaction prices.

Of course, even the process of quotes suffers from severe history depen-
dence. Fortunately, there are simple sufficient statistics for the history of the
process. It follows from Proposition 3 that either quotes or prices combined
with inventory, volume, and clock time are Markov processes. Rather than
using prices alone, therefore, it would be preferable to estimate the {r,, s,, 8,}
process and the functional relationships determining quotes (i.e., equation (6)
and its analog for asks). Analyzing this process would provide more informa-
tion than the price sequence, and would avoid the arbitrary restrictions on
the price process that must of necessity be imposed if the researcher is
restricted to examining only prices.!” We are currently investigating this
estimation in other research.

Our characterization of this underlying stochastic process suggests that
another area where our results may be of interest is in the specification of
option volatilities. Although the basic Black-Scholes option model requires
using a volatility estimate, more complex stochastic option volatility models
(for example, Wiggins (1987) and Hull and White (1987)) require estimates of
the parameters of the variance distribution as well. This has led to extensive
research as to whether the time series properties of the variance are better
described by an AR(1) process (see Poterba and Summers (1986)), and IMA(3)
process (see French, Schwert, and Stambaugh (1987)), or some more general
GARCH model (see Duan (1990)).

Our research provides some insights into the properties of this underlying
volatility distribution. In particular, our result that the price process is not
Markovian has important implications for appropriate representations for
these processes. For example, while the commonly assumed diffusion proc-
esses are Markovian, GARCH processes, in general, are not.!® Hence, our
research suggests that a GARCH framework may be a more appropriate
specification than some of the more standard representations.

One reason why this is important is that a GARCH process can be
motivated as resulting from time dependence in the rate of information
arrival. Our model here provides an explanation of how such time depen-

7 For example, Barclay and Litzenberger (1988) assume that the rate of return process is
determined by a Brownian motion. This structure approximates the rate of return over nontrad-
ing periods. This approximation is inconsistent, however, with our results on the stochastic
process of prices and, in particular, its variance structure.

8 As Duan (1990) points out, the only Markovian GARCH process is GARCH (0, 1) or
ARCH(1).
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dence may arise, and suggests several properties that the resulting process
may have. For example, our results on the dependence of the price process on
volume suggest that volatility will be similarly volume-affected. This is
supported by recent empirical research by Lamoreaux and Lastrapes (1990).
Moreover, our convergence results in Proposition 5 dictate that since price
movements (in the sense of prices converging to new values) require abnor-
mal (or unexpected) volume, the underlying volatility will be affected by
abnormal volume. Diz and Finucane (1991) tested this prediction of our
model using transactions data and an expectational model for expected
volume. Their results that approximately two-thirds of the volatility inter-
ventions can be explained by abnormal volume provide strong direct support
for the implications of our model.

V. Conclusion

In this paper we have analyzed the effects of information event uncertainty
for market behavior. If information events are not certain to have occurred,
then as we have demonstrated the lack of trade may provide a signal to
market participants. This imparts information content to the time between
trades, causing time per se to no longer be exogenous to the price process.
Our research has delineated how this affects the behavior of quotes, spreads,
and transactions prices, and has characterized the underlying stochastic
process of prices. We have also demonstrated important divergences that
arise between transactions prices and this underlying stochastic process. As
we have discussed, these divergences have important implications for empiri-
cal work both in analyses of transactions data and in more general investiga-
tions of security price and option behavior. With the growing interest in
market microstructure research in general, and in transactions-based studies
in particular, our results should be useful in a wide variety of research
applications.

We believe that an important area for future research is to explore more
fully the implications of what we have defined as event uncertainty. As our
results here suggest, a number of market phenomena may be directly linked
to this underlying problem. For example, one simple extension is to consider
a multi-day version of the model in which information events are allowed to
happen between days. In that case, the probability of an information event by
the start of day N is

oy 1+ (1 - dn_1)an,

where «y is the probability of an informational event between days N — 1
and N and ¢, _, is the probability of an informational event having occurred
by the end of day N — 1.

One implication of this is that the spread will go up overnight, since the
probability of an informational event unambiguously rises. We conjecture
that other interesting price effects may be found by examining this issue in
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more detail. Since it is also a frequent market practice to halt trading when
it is known that new information exists, but is not yet public, incorporating
event uncertainty may also allow theoretical models to capture more accu-
rately the behavior of market institutions and prices.

Appendix
Proof of Proposition 1: Calculation shows that
) _ Po,: >p
(1 - po,e) (1 = 1) + po, o
0 _ PL,t(l - #) <p
bt (1 - po,e)(1 = 1) + po e
and
pr (1 — )
: <om,//-

PR T 1= 00 ) (L= 1) + po
Proof of Proposition 2: The bid at time ¢ + 1 is
bt+1 = E[V I QHI = (Qt’ S)] = 6t+1(Qt+1)Y+ (1 - 6t+1(Qt+1))v’
where
5 (QH_l) _ (1 - ”)pL,t(l" + (1 - IL)GS'Y) + Bpo’tes‘y
o (1 = w)[op,en + 5v(1 = (1 = po,.))] + mpo 5y

So we need to show that if §,(Q%) > ¢, i.e., b, < V*, then §,, (Q""}) < 6,(Q"),
ie., b,,, > b,. Calculation shows that §,,,(Q‘*!) < §,(Q") if and only if

_ pre(m+ (1= p)ey) + 8,5y
pre+ €5y[1 = pu(l = pg,)]

The remaining claims follow from similar calculations.

5.(Q")

Proof of Proposition 3: Trades are, by assumption, independently and
identically distributed. The processes in Proposition 3 are counting processes
for trades and time and are thus Markov.

Pr{y = L/Q')
Pr{y = H|Q"}

s—8
) . Note that this ratio is independent of n and

Proof of Proposition 4: Let p = (1 — y)e® = yeS. Then

=(1f5)

equals
quais 7

pt(1-p)o
(1 -we

5 only if s = 3. So the probability of no signal can be written

- l -«
u+(1—#)p)s'
(1-n)e

Pr{y =0|Q"} =
1—a+(1—p.)ta
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The bid and ask at ¢ can be written

b= (1 - Pr{y = 0| (@, S)})E[V |v e (L, H}, (Q",S)]
+Pr{y =0|(Q%,S)} V¥,
and
a,= (1 - Pr{y = 0|(Q, B)})E[V |ve{L, H},(Q", B)]
+Pr{y =0|(Q%, B)}V*.

So the spread in period ¢ is

T,= (1 - Pr{y = 0[(Q", B)})E[V |ve{L, H},(Q", B)]
— (1 -Pr{y=01(Q"S)}E[VIye{L, H},(Q",S)]
+ (Pr{y =0|(Q", B)} — Pr{y =0{(Q", S)})V*.

An additional buy or sale has the same affect on the probability of an
information event having occurred so

T,= (1 -Pr{y =0|(Q", B))
[E[VIve{L H}.(Q", B)]
- E[V|ye{L H},(Q,5)]].
The difference in expected values is positive and unaffected by volume.

Calculation shows that Pr{y = 0 |(Q‘, B)} is increasing in n. So the spread is
decreasing in the days volume.

Proof of Proposition 5: Almost sure convergence of prices to the correct
value is a standard Bayesian learning result. The sequence of prices { p;}
converges almost surely to the random variable p where

Vify=L
p=|Vify=H
V*¥ify =0

Almost sure convergence of average volume to its mean follows from the
Strong Law of Large Numbers. So V;/j converges almost surely to the
random variable V where

. [eify=0
e+ (1 -peifye{L, H}.

So { p;, V;/Jj} converges almost surely to { p, V}. The claim in the Proposition
is an implication of this convergence.
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Proof of Proposition 6: We prove the proposition for the case of ¢ = L,
the other cases are similar. Let pg=(1 — v)eE, D = veS and py=1-
(pg + pg)- Applying Bayes Law to find posterior probabilities as in equation
(8) we have, for each ¢,

o 1l -«
log(ﬂ) = log( ) + (n,log py + B,log pg + s,log pg)
Pri+1 ad

—(ndog((1 - 1) py) + Blog((1 — 1) ps)
+sdog(p + (1 - 1) ps)),

and

t+ 1-56
log(‘:H 1) = 1og(_‘“6 ) + (n,dog((1 — w)py) + Blog(r + (1 — p) ps)
Lt+1

+s,log((1 — w)ps)) — (nlog((1 - p) py) + B,log((1 - 1) ps)
+s,10g(u + (1 - y)ps)).

So by the Strong Law of Large Numbers

%log( forr1 ) - Z pX(Q)log(p™(Q)) - % p*(Q)log(p*(Q))

PLi+1
= —IPL(pO) <0,
and
%log( th+1) Z P (Q)log(p™(Q)) - X p*(Q)log(p™(Q))
Pre+1 Q

= —IPL(p ) <0,

Thus, py,/pr, converges almost surely to zero at exponential rate —I,z( pO)
and py, /pr, converges almost surely to zero at exponential rate —I L( pH).
By the equilibrium quote equation (6)

b,— V=0p,V+ thV"' pOtV* -V
= th(V_ Y) + pOt(V* - X)
= (th + POt)(l - 6)(‘7_ Y)

The convergence results above and simple calculation shows that py, con-
verges almost surely to zero at exponential rate —Ipz(p Hy and po, CONverges
almost surely to zero at exponential rate —I L(po) So b, — V converges
almost surely to zero at exponential rate— Mln{ Lu(p™), Ix( pO)}
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For the comparative dynamics results on p it is sufficient to show that
L(p™) and I,(p®) are increasing in p. Calculation shows that

aIpL( pH)

-0
ou

=(1- ps)log(l + ) + pBlog(+

_k __k
(1 - n)ps (1-w)ps

and
31,:(p°) ( w )
——= = (1 - pg)log{l + ———— | > 0.
ow 7R = Wps

For the comparative dynamics results on normal volume, p = pg = pg, it is
sufficient to show that I,.( p¥) and I p?) are decreasing in p. Calculation
shows that

aI H 2 -1
pL(p)z_ Ir (1+ p ) <0,
ap (1-wp (1-wp
and
oL.(p°)

=(1_u)10g(1+(#)_ﬁ<0

ap 1-u)p p

I )< I
1-wp] @Q-wp’

Proof of Proposition 7: The claim about the initial prices follows directly
from equations (2) and (3). We prove the convergence claim for the case of
low signal, the other cases are similar. If a low signal occurs the market
maker’s posterior probability on a low signal at time ¢ is py, = adlad + (1 —
a)(y €5)']. This sequence of beliefs converges to one and the rate of conver-
gence is decreasing in normal volume.

as log(l +
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