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One seminal contribution of market microstructure to the broader finance and accounting
literature is the development of adverse selection measures based on structural models. Using
different settings|Glosten and Milgrom (1985) and Kyle| (1985) model how liquidity providers
account for adverse selection when responding to the trades of both informed and uninformed
agents. Fasley and O’Hara| (1987) add the notion that the quantity of private information
varies over time, with private information randomly arriving on some days, but not others.
Using this insight, Easley, Kiefer, O’Hara, and Paperman| (1996) estimate the PIN Model, a
structural model that extracts the amount of adverse selection in a given stock from order flow
data. The PIN model, and to a lesser extent the APIN model, have attracted considerable
attention in the accounting, corporate finance, and asset pricing literatures because they
produce much needed proxies for information asymmetryE]

This paper comprehensively examines several alternative structural microstructure mod-
els including the PIN model, the APIN model, a new extension of the PIN model-—the GPIN
model, and the OWR model. We first examine the extent to which the models can match the
observed moments of order flow and perform statistical tests on the nested models. Second,
we examine whether the models yield better inferences than mechanical heuristics based
on turnover that, by construction, misidentify private information arrival. These placebo
‘tests’, while somewhat ad-hoc, reveal how the statistical limitations of the models impact
the economic viability of the models’ inferences. To see this note that for any model to be
considered successful at identifying private information arrival, it cannot yield the same in-
ferences as a simple mechanical heuristic. Lastly, we examine the performance of the models
that survive the first two tests by assessing their ability to identify the arrival of opportunis-
tic insider trades and whether the models’ signals about the arrival of private information
are associated with smaller future price reversals.

To perform our second and third tests, we employ a variable called the Conditional

"'We refer to buyer initiated trades as ‘buys’, seller initiated trades as ‘sells’, the number of buys plus sells
as ‘turnover’, ‘order flow’ as either buys or sells, and absolute order flow imbalance as the absolute value of
the difference between buys and sells.

2A Google scholar search reveals that the PIN papers cited above alone have been cited more than 3,500
times as of this writing. Recent examples of papers that use PIN and Adj.PIN in the finance and accounting
literature include |(Chen, Goldstein, and Jiang (2007)), Duarte, Han, Harford, and Young| (2008), |Bakke and
Whited| (2010)), [Da, Gao, and Jagannathan! (2011), Ferreira, Ferreira, and Raposo| (2011)), |Akins, Ng, and
Verdi (2012), Brennan, Huh, and Subrahmanyam)| (2018), and [Bennett, Garvey, Milbourn, and Wang (2017)).



Probability of an Information Event (CPIE). CPIE is the conditional probability that
a model assigns to the arrival of private information on a particular day, given the model
parameters and data on that day. For instance, C PIEp;y is the probability of private-
information arrival on a given day, conditional on the PIN model parameters and the observed
daily order flow. In our second test, we compare a model’s CPIE with the CPIE of a
mechanical heuristic, or placebo, based solely on the level of turnover. In our third test, we
examine variation in models’ C'PI Es around insider trades as well as the association of their
CPIEs with future return reversals.

We first examine the PIN and APIN models. Specifically, we consider these models’
ability to match the observed means, variances, and covariance between buys and sells as
well as the means and variances of turnover. This analysis reveals that the PIN model
cannot match the large amount of variability of trade that we see in the data. Indeed, the
model-implied variances of buys and sells are around 550 times smaller than the variances of
actual buys and sells. The APIN model improves the fit to the data over the PIN model by
mixing between two PIN models, one with high noise trade intensity and one with low noise
trade intensity. Indeed, 99% of the firm years in the cross section have likelihood ratio (LR)
tests that reject the PIN in favor of the APIN at the 6% level or less. However, in spite of
the improved fit, our results show that the APIN model-implied variances for buys and sells
are less than half of what we see in the actual data.

To show how the statistical limitations of the PIN and APIN models affect their in-
ferences, in our second test we estimate time-series regressions of each model’s CPIE on
the CPIE from a mechanical heuristic (CPIEjyec). If the model mechanically identifies
private-information arrival from turnover, we expect that its C'PIFE)ye., will explain most
of the variation in the model’s CPIE. For instance, we compare variation in CPIEp;y
to a purely mechanical heuristic that ‘identifies’ the arrival of private information from
turnover. We call this the PIN-Mechanical Heuristic, and its C PIE is CPIEyeen prn. For-
mally, CPIEyiech pin,j: is an indicator variable with value one when turnover on day ¢ for
stock j is above the annual mean of daily turnover for stock j and zero otherwise. The
PIN-Mechanical Heuristic amounts to the economically implausible statement that private

information is sure to arrive on any day when turnover is above the mean and no private



information ever arrives on days when turnover is below the mean f

We find that both the PIN and APIN models yield inferences about the arrival of private
information that closely track mechanical heuristics based on turnover. In particular, we find
that the PIN-Mechanical Heuristic alone explains around 59% of the variation in CPIEp;n
for the median stock in our sample. Furthermore, this effect is widespread throughout the
cross-section. The APIN model is not much better. For the median stock in the sample,
the R? in a regression of CPIEp;y on CPIEpech.apIN 18 54%ﬁ Moreover, we find that
controlling for a long list of variables (including order flow imbalance as well as intra-day and
overnight squared returns) that could reasonably proxy for private-information arrival does
nothing to increase the R? in the regressions in any material way. This indicates that the
while most of the variation in CPIEp;n and C'PIFE 4p;y is mechanically related to turnover,
even the remaining variation has little to do with the arrival of private information.

Despite the PIN and APIN model’s problems, all is not lost in the quest for intuitive
measures of information asymmetry based on structural models. We also analyze two alter-
natives to the PIN and APIN models. First, we introduce a highly tractable generalization of
the PIN model (the GPIN model) that, like the PIN and APIN models, relies only on order
flow to identify private information arrival. As in the APIN model, the GPIN model allows
expected daily turnover from noise trading to be random, while keeping the same informa-
tion structure as the PIN model. However, in contrast to the APIN model, the GPIN model
does not rely on mixing only two discrete PIN models. Instead, it allows for a continuum
of PIN models. Second, we consider the OWR model, which uses returns along with order

flow to identify private information.

3That is, when examining the PIN model our working hypothesis is that we cannot infer private infor-
mation arrival from just looking at whether turnover is above or below the mean. This working hypothesis
is based on two uncontroversial, but closely related, principles. First, although turnover may be related to
the arrival of private information, it also varies for myriad reasons unrelated to private information. For
instance, turnover can increase due to disagreement (e.g., [Kandel and Pearson| 1995; |Banerjee and Kremer,
2010). Turnover is subject to calendar effects because traders coordinate trade on certain days to reduce
trading costs (Admati and Pfleiderer| [1988]). Furthermore, turnover can vary due to portfolio rebalancing
(Lo and Wang, 2000)) and taxation reasons (Lakonishok and Smidt, [1986). Thus, any model that identifies
the arrival of private information purely from turnover effectively classifies all variation in turnover as private
information related. Second, even if one were to attempt to infer private-information arrival from turnover
alone, reliable inferences cannot be gleaned from a simple heuristic based on whether turnover is low or high.

4We show in the appendix that the PIN and APIN model’s mechanical conflation of private-information
arrival with turnover is much more pronounced later in our sample. Indeed, the R?s of the regression of
CPIE on CPIE) .., from both models are consistently upwards of 70% after 2006.



Our choice of alternatives to the PIN and APIN models include one that is based on
order flow alone (the GPIN model) and another which uses order flow and returns (the OWR
model). The distinction is important because, even though the PIN and APIN models are
based on order flow alone, Kim and Stoll (2014) show evidence that order imbalance alone
does not reveal private information.ﬁ Moreover, in contemporaneous work, [Back, Crotty,
and Li (2018) develop and empirically examine a model that uses both order flow and
returns. Using their model, they make the theoretical point that order low may not reveal
private information if liquidity providers provide less liquidity for stocks with high degrees of
information asymmetry and informed traders trade less in illiquid stocks. Thus, the degree
to which a model that uses returns as well as order imbalance can detect private-information
arrival better than a model based on order flow alone is an important empirical question.

Our analysis reveals that by allowing for a continuum of PIN models, the GPIN model
can produce variation in buys, sells and turnover closer to that in the actual data. Indeed,
the mean GPIN model-implied variance is around 68% of the empirical variance for the
mean firm year in the sample. As the GPIN model’s improved performance in matching the
moments of the data suggests, the LR test rejects the PIN model at the 1% level in favor of
the GPIN model for 99% of the firm years in the cross section[]

Unlike the PIN and APIN models, we find that the mechanical heuristics along with
turnover and turnover squared explain only between 4% and 10% of the variation in C PI Egpry
and CPIFEowp for the median stock. This stands in contrast to the 64% R? for the PIN
model and 56% for the APIN model. Furthermore, adding variables such as order flow
imbalance, intra-day, and overnight squared returns dramatically increases the R? in the
regressions to 35% for the GPIN model and 43% for the OWR model. This indicates that

variation in CPIEgprny and C'PIEowg is related to variables that are plausibly connected

°Both in |Glosten and Milgrom| (1985) and [Kyle (1985) models, prices must adjust to reflect to the
arrival of private information. However, |[Easley, Kiefer, O’Hara, and Paperman|(1996) do not use this price-
response mechanism when developing the PIN model, instead they rely only on the implications of |Glosten
and Milgrom (1985) to the relation between order imbalance and private information arrival.

°Tt is important to note that the OWR model differs from the PIN, APIN, and GPIN models in that
it does not attempt to model the number of buys and sells. Instead, the OWR model focuses on the net
imbalance between buys and sells (i.e., y.). This implies that moments such as the variance of turnover and
the covariance between buys and sells, which figured prominently in our analysis of the PIN, APIN, and
GPIN models above, are not available under the OWR model.



to private information arrival. Thus, unlike the PIN and APIN models, the GPIN and OWR
models do not identify private-information arrival mechanically from turnover.

As neither the GPIN and OWR models suffer from the same problems as the PIN
and APIN models, one obvious question is which model performs better in identifying pri-
vate information arrival. Therefore, we use the GPIN and OWR CPIFEs (CPIEgp;y and
CPIEowr) to compare the two models’ ability to identify private-information arrival in the
context of insider trades and return continuation. |(Cohen, Malloy, and Pomorski (2012) pro-
pose a method to identify instances of opportunistic insider trades. Their results show that
these trades are profitable, suggesting they reveal private information. Therefore, under the
working hypothesis that opportunistic insiders will trade up to the point that prices reveal
their information, C'PIEs should be higher coincident with opportunistic trades and decline
after the trades. Furthermore, Hasbrouck (1988, 1991a/b) point out that non-information-
related price changes (e.g., liquidity shocks) should be subsequently reversed, while infor-
mation related trades should not. Therefore, under this working hypothesis a model that
properly identifies private information should have a C'PIFEs that is associated with smaller
future price reversals/]

Our results suggest that measures of private information from the OWR or GPIN models
are promising alternatives to PIN. This being said, the OWR model performs somewhat
better in our tests than the GPIN model. The superior performance of the OWR model
is perhaps not surprising given that it uses returns along with order flow data rather than
simply order flow data as with GPIN. What is perhaps surprising given the theoretical
arguments of Back, Crotty, and Li (2018) is that a model based on order flow alone (GPIN)
seems to identify private-information arrival at all.

Even though the OWR model performs better than the GPIN model, the GPIN model is
a promising alternative to the PIN and APIN models in applications that require measures
of adverse selection that are not based on returns. For instance, there are a large variety
of corporate finance applications that involve cross-sectional analysis of announcement day

returns for various corporate events. If a corporate finance researcher interested in the

"Even though the calculation of the CPI Eow r uses returns, our return continuation tests are constructed
to avoid a mechanical relation between CPIEow r and future returns. See further discussion in Section



impact of information asymmetry on announcement day returns for a particular event, i.e. a
merger announcement, was to run a cross-sectional regression of announcement day returns
on CPIEow g, the coefficients and R? in the regressions would be biased since the dependent
variable was used to compute C'PI Eow r. However, if the researcher chose to use CPIEgpry,
this would not be a problem

Naturally, there are other alternatives to the PIN and APIN models besides the GPIN
and OWR models. For instance, (Cipriani and Guarino (2014) extend the predecessor of
the PIN model, the Easley, Kiefer, and O’Hara/ (1997) model, to allow informed traders to
receive imprecise signals. We do not consider their model because it requires meaningful
periods during day without trade. Indeed, |[Easley, Kiefer, O’Hara, and Paperman| (1996)
note that the discrete time likelihood function of |[Easley, Kiefer, and O’Hara (1997), which
is similar to that of |Cipriani and Guarino| (2014), cannot be computed for data sets with
many trades per dayﬂ Easley, Engle, O’'Hara, and Wu (2008) develop an alternative version
of the PIN model with a time-varying measure of private information arrival. We show in
the Internet Appendix A that, even though the Easley, Engle, O’Hara, and Wu (2008) model
performs better than the APIN and PIN models, the |Easley, Engle, O’Hara, and Wu (2008)
model also mechanically identify private information from turnover in the later part of our
sample period. Like our paper, Back, Crotty, and Li (2018) estimate a series of models of
private information arrival, including the PIN and APIN models. However, their empirical
approach is very different from ours. We focus on comparing the implied moments of these
models with the actual data, comparing the models with mechanical heuristics, and using
opportunistic insider trades as well return reversals to examine the relative performance of
the models, while they do not. On the other hand, their paper provides an extensive analyses

of their hybrid-PIN model, so we do not consider it in this paper.

8 Another application in which a measure of adverse selection based on order flow alone is needed is in
Easley, Kiefer, and O’Hara| (1997). They regress daily prices for Ashland, Inc. on the lagged price and
a measure analogous to CPIFEpry. |[Easley, Kiefer, and O’Hara| (1997) note that if the PIN model used
information about returns then the coefficients in their regression would be biased, because the independent
variable in their regression would be mechanically related to the dependent variable.

9Both [Easley, Kiefer, and O’Hara (1997) and Cipriani and Guarino (2014)) estimate their models for one,
single stock: Ashland, Inc. |Cipriani and Guarino (2014) uses Ashland, Inc. data in 1995 when Ashland,
Inc. had only about 90 trades per day. In contrast, for the average stock in our sample, the average number
of trades is around 3,800 per day and the average trading activity intensified after 2000. Exxon-Mobil, for
instance, has an average of about 62,000 trades per day in 2012.



This paper contributes to the extensive and growing literature in finance and accounting
that employs measures of private information. We do so by showing that the two most
commonly used adverse selection proxies in the literature, the PIN and the Adj.PIN are
unreliable. In addition, this paper contributes to an emerging literature that uses daily
measures of private information. In a contemporaneous paper, [Brennan, Huh, and Sub-
rahmanyam (2018)) examine high-frequency measures of good and bad news in event study
settings. In contrast, we use C'PIE to shed light on how the various models identify private
information. A related literature shows that the PIN model does not fit the order flow data
well. For instance, (Gan, Wei, and Johnstone (2014) show that the PIN and APIN models
poorly describe the empirical distribution of order flow. While these results are suggestive
of problems with these models, the fact that they do not match some of the moments of the
order flow distribution does not imply that PIN and Adj.PIN fail to capture the variable
of economic interest, namely private-information arrival. We contribute to this literature
because we show that these models’ statistical limitations impact how these models iden-
tify private-information arrival by using CPIEp;y and CPIEp;y. Furthermore, we also
evaluate two alternatives to the PIN and APIN models — the GPIN and OWR models.

The remainder of the paper is as follows. Section || outlines our data. Section [2[ shows
that the PIN and APIN models do not match the variability of noise trading in the data
and, as a result, produce inferences that mimic mechanical turnover heuristics. Section

analyzes the GPIN and OWR models. Section || concludes.

1 Data

To estimate the PIN, APIN, GPIN, and OWR models, we collect trade and quote data for
all NYSE stocks between 1993 and 2012 from the NYSE TAQ database. We require that the
firms in our sample have only one type of common stock (i.e., a single PERMNO and share code
10 or 11), are listed on the NYSE (exchange code 1), and have at least 200 days worth of
non-missing observations for the year. Our sample contains 1,060 stocks per year on average,
of which about 36% (25%) are in the top (bottom) three Fama-French size deciles. For each
stock in the sample, we classify each trade as either a buy or a sell, following the Lee and

Ready (1991) algorithm. We estimate the PIN, APIN and GPIN models for each stock j

7



using a sample consisting of the number of buys and sells for each day (B;; and S;;). In our
regression analysis, we also use the daily absolute order flow imbalance (|B;; — S;¢|), and
turnover (turn;, = Bj; + Sj.).

The OWR model requires intra-day and overnight returns as well as order imbalance.
Following OWR we compute the intra-day return on day ¢ as the volume-weighted average
price (VWAP) during the trading day ¢ minus the opening quote midpoint on day t plus
dividends issued on day t, all divided by the opening quote midpoint on day t. We compute
the overnight return on day t as the opening quote midpoint on day ¢+ 1 minus the VWAP
on day ¢, all divided by the opening quote midpoint on day ¢. Thus, the open-to-open return
from day t to day t+1 is the sum of the intra-day and overnight returns. We follow OWR by
removing systematic effects from returns to obtain measures of idiosyncratic overnight and
intra-day returns (r,;; and r4;¢). We compute order imbalance (y. ;) as the daily share
volume of buys minus the share volume of sells, divided by the total share volume. Like
OWR, we remove days around unusual distributions or large dividends, as well as CUSIP or
ticker changes. We also drop days for which there are missing overnight returns, intra-day
returns, order imbalance, buys, or sells. See the Internet Appendix for further details.

There are two differences between our empirical procedures and those of OWR. First,
OWR estimate y. as the idiosyncratic component of order flow imbalance divided by shares
outstanding. We do not follow this procedure in defining y. because we find that it produces
noisy estimates. Specifically, we find that y. defined as shares bought minus shares sold
divided by shares outstanding, as in OWR, suffers from scale effects late in the sample,
when order flow is several orders of magnitude larger than shares outstanding. Second,
OWR remove a whole trading year of data surrounding distribution events, but we remove
only one trading week [-2,42] around these events.

We also examine a sample of opportunistic insider trades, as defined in |Cohen, Malloy,
and Pomorski (2012), from the Thomson Reuters’ database of insider trades. In order to
classify a trader as opportunistic or routine, we require three years of consecutive insider
trades. We classify a trader as routine if she places a trade in the same calendar month
for at least three years. All non-routine insiders’ trades are classified as opportunistic. Our

event sample includes 32,944 opportunistic insider trades.



Table |1| contains summary statistics for all the variables used to estimate the models.
Panel A gives summary statistics for our entire sample and for opportunistic insider trading
days. Panel B displays the distributions of some moments of buys, sells, and turnover for

each stock-year in the entire sample.

2 Do the PIN and APIN Models Mechanically Identify
Private Information?

This section shows that the PIN and APIN models do not match the variability of noise
trading in the data and, as a result, produce inferences that mimic mechanical heuristics

that identify private-information arrival based on the level of turnover.

2.1 The PIN Model

The |[Easley, Kiefer, O’Hara, and Paperman (1996) PIN model posits the existence of a
liquidity provider who receives buy and sell orders from both noise traders and informed
traders. Fig. [1| shows a tree diagram of the model. At the beginning of each day, if there
is no private signal (which occurs with probability 1 — «), buy and sell orders arrive at the
normal mean rate of noise trade (eg for buys, eg for sells and eg + €g for turnover). If the
informed receive a signal (positive with probability ¢ and negative with probability 1 — §),
they join the noise traders and trade at the rate p. In this case, mean turnover is eg +€g + .
It is important to note at this point that, under the PIN model, private-information arrival
is necessarily the only cause for increases in expected daily turnover.

Formally, let B;; (S5;+) represent the number of buys (sells) for stock j on day ¢, ©prn; =
(o), i1, €B;, €s;,6;) be the vector of PIN model parameters for stock j, and Dprnj: =
©pin, Bji, Sji] be the vector of PIN model parameters together with the daily number
of buys and sells. The likelihood of observing a given number of buys and sells on day ¢
(L(Dpin,jt)) is equal to the likelihood of observing B;; and S;; on a day without private
information (Ly;(Dprnjt)), added to the likelihood of B;; and S;; on a day with posi-
tive private information (L;+(Dpsn j.)) and the likelihood of negative private information
(Li-(Dpin,je)). Conditional on the occurrence or non-occurrence of an information event,

B;; and S;,; are independent Poisson random variables. For details about Lyx(Dprn i),

9



Li+(Dpin i) and Li-(Dpyy i) and their computation, see the Internet Appendix.

Let I;; be a dummy equal to one if the informed receive a private signal about stock j
on day t and zero otherwise. CPIEp;y ;; is the econometrician’s conditional probability of
private-information arrival given the data observed on day ¢, and the PIN model parameters.
That is, CPIEpn j+ = P [l;; = 1|Dpn j+]. According to Bayes’ theorem:

Li-(Dprnjt) + Li+(Dpinjt)
Li-(Dpinjt) + Li+(Dpinjt) + Lni(Dpinjt)

In the absence of buy and sell data for day ¢, an econometrician would assign probability

CPIEpiyji = (1)

a; = E[CPIEpy ;4| to the arrival of private information for stock j on day ¢, where the
expectation is taken with respect to the joint distribution of B;; and S;;.

We estimate the PIN model numerically via maximum likelihood for every firm-year in our
sample. Specifically, we maximize Hle L(Dprn ). Maximization of this likelihood function
is prone to numerical issues because of two features of the data. First, days with thousands
of buys and sells are common. As a result, attempting to directly compute the exponentials
and factorials in the Poisson distributions in Ly;(Dprn jt), Li+(Dpin i), and Li-(Dprn.jt)
often generates values that are too large to be represented by a typical computer. To address
this problem we follow Duarte and Young (2009) and compute Ly (Dpin jt), Li+(Dpinjt),
and L;-(Dprn;+) by first computing their logarithms. For instance, consider the compu-
tation of Ly;(Dprn ). The direct computation of {n; = In[Ly;(Dprn,ji)| does not result
in numerical overflow problems even for very large numbers of trades because B;; and S,
enter ¢ multiplicatively instead of as exponents in Ly;(Dpyy ji). Moreover, the negative
terms in £y; net out with the positive terms, resulting in values of /y; that can be read-
ily exponentiated to compute Ly;(Dprn ). As in the computation of Ly(Dprn i), we
compute L;+(Dprn ji), and Li-(Dpyn,j¢) as the exponential of {7+ = In[L+(Dprn ;)] and
(- = In[L;-(Dprn,jt)]- Second, the PIN model likelihood functions often take values very
close to zero, which makes the estimation susceptible to local optima. To get around this
problem, we follow Duarte and Young| (2009) by using ten different sets of starting points

and choosing the parameter estimates associated with the largest final likelihood Value.m

10Moreover, for our first set of starting points, we choose e and eg values equal to the sample means of
buys and sells, a equal to 1%, ¢ equal to 50% and u equal to the mean absolute value of order flow imbalance.
We do this in order to ensure that at least one of the starting points is centered properly. The other nine
starting points are randomized.

10



These same two features of the data also plague direct computation of CPIEp;y in
Equation (1| with numerical overflow and underflow problems. To address this problem we

first define 1,0 = max{lyy, s+, ¢;-}. We then compute CPIEpy as:

e(e[-&- 7€max) _|_ 6(51— *Emax)

(2)

CPIEpin i = (N T—tmax) § oUrs —max) 4 ol —Cmax)

The equation above handles days with thousands of buys and sells because it replaces direct
computation of the likelihoods (Ln;(Dpin,jt), Li+(Dpinjt), and Li-(Dprn,je)) in Equation
with their logs (¢ny, ¢1+,¢7-). It also handles days when the denominator of Equation
is such a small positive number that typical computer systems cannot distinguish it from
zero. The computation of C'PIFEp;y using Equation [2| avoids this problem because the
denominator of Equation [2| has a lower bound of one.

It is important to note that Equation 2| addresses a computational problem, not a math-
ematical problem. Equation [2| is not an approximation or an arbitrary normalization of
Equation (1} In fact, a simple algebraic manipulation shows that these expressions are equiv-
alent. Thus, Equation [2| is a mathematically-sound way to rewrite Equation (1| in order to
avoid computational problems that would lead to a large number of missing C'PIEp;n ob-
servations. Indeed, direct computation of Equation [I| would result in the complete loss of all
CPIFEpry observations for the median stock by 2004.

Panel A of Table [2| contains summary statistics for the parameter estimates of the PIN
model as well as the cross-sectional sample means and standard deviations of CPIEp;y.
These statistics show that, as expected, the mean C'PIEp;y behaves like the parameter aE

Panels A and B of Fig. [2] plot the simulated and real order flow for Exxon-Mobil in
1993 and 2012 respectively, with buys on the horizontal axis and sells on the vertical axis.
Simulated data are marked as transparent dots and real data are marked with ‘Xx.” The
simulated data are generated using Exxon-Mobil’s estimated PIN model parameters for 1993
and 2012. These data are useful in illustrating the intuition for how the PIN model works.

In particular, the real data in Panels A and B of Fig. [2| show that noise trade displays

1Tn unreported results, we observe that the PIN model « increases over time, rising from about 30% in
1993 to 50% in 2012. The increase in our PIN model o parameters is somewhat larger than that in |[Brennan,
Huh, and Subrahmanyam| (2018). This small difference arises because we have a smaller number of stocks
since we apply sample filters similar to those in OWR. Without these filters, the increase in our PIN model
« parameters from 1993 to 2012 is comparable to that in |Brennan, Huh, and Subrahmanyam) (2018)).
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a large amount of variation. To see this note that the real data lie mostly around the
positively sloped dotted line. |Glosten and Milgrom (1985) imply that informed trading causes
order tmbalance. However, variation along the positively sloped line necessarily involves
simultaneous changes to both the number of buys and sells, not the imbalance between
them. Therefore, this variation must be related to realizations of a common noise-trade
factor in buys and sells. These noise trade shocks are related to the factors that impact
turnover but are unrelated to private information arrival.

The simulated data in Panels A and B of Fig. [2| display far less variability in noise trade
than the real data. Instead of falling along the positively sloped dotted line, the simulated
data fall into three categories corresponding to the nodes of the tree in Fig. The data
in these three categories create the distinct dark clusters in Panels A and B. In each panel,
two of the clusters are made up of days characterized by relatively large absolute order flow
imbalance, with a large number of sells (buys) and relatively few buys (sells). These are
private-information days. The third group of days, which creates the southwest clusters in
Panels A and B, has relatively low numbers of buys and sells because there is no private-
information arrival.

The extremely tight clustering of the simulated data in the southwest region in Panels
A and B of Fig. [2| renders the PIN model unable to match the high level of variation in
turnover due to noise trade that we see in the actual data. The PIN model’s assumption
that buys and sells are conditionally Poisson implies that, according to the model, all the
observations should fall within these three tight clusters. Consider, for example, the no-
information node in Panel B of Fig. 2 According to the PIN model, on such days, buys and
sells have an expected arrival rate of 29,123 and 33,146, respectively. The no-information
cluster is thus centered on this point. Adding the arrival rates of buys and sells shows
that the model implies that no-information days have an average turnover (i.e., the sum of
buys and sells) of 62,269 with a standard deviation of about 250 (\/GQ,W) Thus, the
Poisson assumption causes the model to infer that 95% of days without private information

have turnover between 61,779 and 62,759. In the real data plotted in Panel B, on the other

12The reader may recall that a Poisson random variable has a standard deviation equal to the square root
of the mean and that Poisson random variables are approximately normal for large arrival rates.
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hand, 95% of the days have turnover between 34,960 and 103,778. Moreover, the real data
lie mostly around the positively sloped dotted line and hence variation in the real data is
mostly due to noise trade. Thus, the PIN model is unable to match the large amount of
variation in turnover due to noise trade that we see in the actual data.

The inability of the model to match the high levels of turnover variation stemming from
noise trade is also apparent when we consider the model-implied versus actual moments.
Consider the data in 2012 (Panel B of Fig. [2). While the model can match the means
of buys, sells and turnover it cannot match their variances. Indeed, the implied mean of
turnover under the PIN model is 104% of the actual mean, while the implied variance of
turnover under the model is only 0.8% of the actual Variance.ﬁ Moreover, under the PIN
model, private information shocks are the only reason for increases in expected buys and
sells and thus expected turnover. As a result, the PIN model implied covariance of buys and
sells is necessarily non-positive (-342 in Panel B) The data, on the other hand, strongly
indicates the presence of noise trade shocks. That is, shocks to both buys and sells that
increase turnover without increasing order imbalance. As a result, the covariance of buys
and sells in the data is positive (76,840,307 for Exxon-Mobil in 2012).

The PIN model’s inability to match the variation in noise trading has severe implications
for the way the model identifies private-information arrival for Exxon-Mobil in 1993 and
2012. To see this, consider Panels C and D of Fig. which plot CPIEp;N as function
of turnover. These plots show that the PIN model is essentially ‘sure’ that any day with
turnover even slightly above a particular threshold (near the mean) is a private-information
day (CPIEp;ny = 1). On the other hand, any day with turnover below this threshold
is classified as a day with no private information (CPIEp;y = 0). Recall that, under the
model, the arrival of private information is the only reason for increases in expected turnover.
As a result, the model infers that any day with ‘extreme’ high turnover (i.e., turnover larger
than the mean) is a private-information day and all other days are not. Thus, CPIEp/yN

mimics a dummy variable that is equal to one when turnover is above some threshold (near

13See the Internet Appendix for the formulas of the PIN model implied moments.

14Gince noise trade arrives at a constant rate while informed trade increases the arrival rate of either
buys or sells but not both, the PIN model imposes a negative covariance between buys and sells. As
Duarte and Young (2009) show, the covariance between buys and sells under the PIN model is given by
covp s = (ap)?(§ — 1)§, which is necessarily non-positive.
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the mean) and zero otherwise. Thus, the model’s inability to match the variation in noise
trading causes it to mechanically identify private information from turnover.ﬁ

The PIN model’s inability to match the variability of the noise trading is a problem, not
only for Exxon-Mobil, but for nearly all of the stocks in our sample. To see this, consider the
PIN model-implied mean and variance of turnover in Panel B of Table [2| compared to the
empirical turnover mean and variance in Panel B of Table[l] The mean model-implied mean
of turnover is about 91% of the actual mean (3,371/3,695), which indicates that the PIN
model is able to capture the first moment of turnover. However, the mean model-implied
variance is only 0.2% (84,948/46,848,275) of the mean empirical variance. More than just
XOM, the PIN model’s problem in matching the variation in noise trading has severe and
widespread implications for the way the model identifies private-information arrival. To show
this, we introduce the PIN-Mechanical Heuristic.

The PIN-Mechanical Heuristic, or PIN-Mechanical dummy, treats any day with above
(below) average turnover as a private-information (no private-information) day:

0, if turn,; < turn;

CVP[E’Mech,P[N,j,t = 1

(3)

,if turnge > turng,

where turn; is the average daily turnover computed over the same sample period as we
used to compute the PIN model parameters. We then run the regression CPIEpy ;i =
Bo,; + Brj X CPIEyeeh pint + €5 for each stock j in the sample. For each stock j and
day t, we calculate CPIEprn j+ and CPIEyech pin,; using data and estimates of the PIN
model parameters for the entire calendar year containing day tE

The results in Table [3| show that C'PIFEp;y is very closely approximated by the PIN-

Mechanical dummy. Note that since C'PIEjeen, prn is @ dummy variable, the intercept (5o,;)

15Note that this mechanical identification of private information does not necessarily relate to the pos-
sibility that informed traders may sometimes choose to trade on days with high liquidity or turnover (see
Collin-Dufresne and Fos, [2016). Naturally, it is possible that informed traders do trade on some days with
high turnover. However, our point is that the PIN model mechanically identifies all days with above average
turnover as definitely private-information days and all days with below average turnover as definitely not
private-information days.

16Naturally, market makers and traders do not have all of this information on day ¢. Therefore CPIEp; Njt
and CPIEcch,pIn,j,+ cannot be used to set prices or conduct trading strategies. However, they are useful to
gauge the similarity between the PIN model and a mechanical heuristic of private-information arrival. Such
an assessment is important to researchers who do observe order flow, PIN model parameters, and turnover
over their entire sample period and thus can construct both measures for use in their work.
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in the regression is the expected value of C'PI Ep;xy when turnover is below the mean. Simi-
larly, the sum of the coefficients (5y ;+ f1,;) is the expected value of C PIEp;y when turnover
is above the mean. The coefficient estimates in Specification 1 of Table [3|reveal that for days
with turnover below the mean (C'PIEyieen prny = 0), the median stock’s CPIEpy is close to
zero, around 0.06. In contrast, for days with turnover above the mean (CPIFEyech pin = 1),
CPIEp;y for the median stock is 0.79 (0.73 +0.06). Furthermore, the median R? is 59%.

A natural question is whether, despite the high R?s in Specification 1, CPI Errech.PIN
oversimplifies the relation between C'PIEp;y and turnover. To address the possibility of a
more complicated, non-linear relation between CPIFEp;y and turn, we regress C PIEp;n
on turn, turn?, and CPI Efech,prn. Specification 2 of Table [3| displays the results of these
regressions. The small difference of 5% in the median R?s between Specifications 1 and 2
indicates that turn and turn? add little to the explanatory power of CPIEpsech pin, a simple
dummy variable based only on turnover.m

One potential explanation for the results in Specification 1 of Table [3] is that while
turnover and the mechanical heuristic explain nearly 60% of the variation in CPIEp;y,
it is possible that it is the unexplained variation in CPIFEpry that captures the arrival of
private information. Specification 3 addresses this possibility by including a series of control
variables that are plausibly related to the arrival of private information. To come up with
a list of such variables, we look to the OWR and PIN models for guidance. Specifically,
the PIN model suggests that the daily absolute order flow imbalance (|B — S|) is related to

private-information arrivalm Moreover, the OWR model suggests that the squared intra-

2

%), squared order imbalance (y?) and the three associated

day and overnight returns (r2, r
interaction terms (rq X r,, 74 X Yo and 7, X y.) vary with private-information arrival Thus,

if the variation in C' PI Epry that is unexplained by turnover successfully captures the arrival

1"Note that the interpretation of the coefficients (8y and 1) from Specification 1 does not carry over to
Specification 2 because CPIEjycch,prn is, by construction, mechanically related to turn and turn?. That
is, Bp is no longer the expected value of CPIEp;Ny when turnover is less than its mean and the sum of the
coefficients By + B is no longer the expected value of CPIEp;n when turnover is greater than its mean. As
such, we focus on the difference in the R?s across Specifications 1 and 2, which tells us the contribution of
turn and turn? relative to CPIEpcch, prn in explaining variation in CPIEp;N.

18We also control for (|B — S|?) to address any potential non-linearities in the relation between |B — S|
and CPIEPIN.

19Gee Section below.
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of private information then we would expect that including these variables in the regression
should substantially increase the R?s from those in Specifications 1 and 2. The results in
Specification 3 indicate that this is not the case. In fact, these controls increase the average
R? for the median stock by only 2% over the 64% average R? in Specification 2. Moreover,
the average R? for the stocks at the fifth and 95 percentiles are similarly unaffected by the
inclusion of the control variables@ In summary, our results strongly support the conclusion

that the PIN model mechanically identifies the arrival of private information from turnover.

2.2 The APIN model

Duarte and Young (2009) extend the PIN model to address some of its shortcomings in
matching the order flow data. The APIN model does so by allowing the intensity of noise
trade arrivals to vary due to random disturbances (called symmetric order flow shocks)
that simultaneously increase both the expected number of buyer- and seller-initiated noise
trades. These shocks arrive at the beginning of the day with probability §. On days without
(with) a symmetric order flow shock, buy and sell orders from uninformed traders arrive
according to Poisson distributions with intensities ep (€5 + Ap) and €g (€5 + Ag). As with
the PIN model, the APIN model posits that at the beginning of each day, informed investors
receive a private signal with probability a. If the private signal is positive, buy orders from
the informed traders arrive according to a Poisson distribution with intensity pup. If the
private signal is negative, informed sell orders arrive according to a Poisson distribution with
intensity pug. If the informed traders receive no private signal, they do not trade.

Fig. [3| shows that the APIN model is best thought of as a mixture of two independent
PIN models with different intensities of noise trading arrival and mixture weights § and 1—86.
That is, on days with no symmetric order flow shock, the APIN model is similar to the PIN
model with a noise trading intensity of eg 4+ €5. These days correspond to the branches

in the bottom of the tree in Fig. [3] On the other hand, on days with a symmetric order

20The R2s in Table |3| also allow us to examine how pervasive the mechanical conflation of private-
information arrival with turnover is in the cross section. Stocks with the lowest (highest) R2s are those
for which variation in CPIEpjech, prv explains the least (most) variation in CPIEp;n. To show graph-
ically how this conflation varies in the cross section, we select two stocks whose R2s of the regressions
CPIEpin,j+ = Boj+ P1,j X CPIEcch,pin,jt + €5, using data in 1993 (first year of our sample) and 2012
(last year of our sample) are at the 5. The results are in the Internet Appendix.
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flow shock, the APIN model is similar to a second PIN model with a higher noise trading
intensity: eg 4+ €5 + A + Ag. These days correspond to the branches in the top of the tree
in Fig. [3

As with the PIN model, we define C PIE 4p;y as the probability of an information event
conditional on both the model parameters and the data observed that day. An application
of Bayes’ rule results in a formula that expresses CPIFE  prn as function of the likelihood of
each branch in the tree in Fig. [3] The same numerical problems that plague the estimation
of the PIN model also plague the estimation of the APIN model. As such, we adopt the same
procedures that we use to estimate the PIN model and to calculate C'PIEp;y to estimate
the APIN model and to calculate CPIE p;n. See the Internet Appendix for details about
the likelihood function, and the C PIE op;n calculation.

Panel A of Table |4| contains summary statistics for the APIN model parameter estimates
as well as the cross-sectional sample means and standard deviations of CPIFE spry. These
statistics show that, as expected, the mean C'PIFE 4 p;y behaves like the parameter a.

The graphs in Panels A and B of Fig. 4| are useful in illustrating the intuition for how
the APIN model works. Panels A and B of Fig. 4| present the same real buy and sell data for
XOM in 1993 and 2012 as those in Fig. 2| In contrast to Fig. [2] Fig. [ presents simulated
data from the APIN model rather than from the PIN model.

The simulated data from the APIN model falls into six discrete categories corresponding
to the nodes of the tree in Fig. The data in these categories create two groups of three
distinct dark clusters in Panels A and B. The first group, the three black clusters to the
southwest correspond to the bottom three nodes of the tree in Fig. The second group,
the three black clusters to the northeast, represent days with increased noise trade and
correspond to the three nodes at the top of the tree in Fig. [3, Both the southwest and
northeast groups have one black cluster that sits on the positively sloped dotted line. These
are the no-information days. The cluster with negative (positive) private-information days
sits north (east) of the non-information cluster. Thus, the APIN model mixes between the
‘northeast’ PIN model which has high levels of noise trade and the ‘southwest’ PIN model
which has low levels of noise trade.

The simulated data in Panels A and B of Fig. display far less variability in noise

17



trade than the real data. Like the PIN model, the APIN model is able to match the mean
of turnover—the implied mean is 102% of the actual mean in 20127 However, the APIN
model-implied turnover variance for XOM is only 60% of the actual variance. Thus, while
mixing between two PIN models improves the APIN model’s ability to fit the data relative
to the PIN model, the APIN model still dramatically underestimates the variation in noise
trade. In Panels A and B of Fig. [4]this failure to match the noise trade variance is manifest in
the model’s inability to generate buy and sell data that vary continuously along the positive
sloped dotted line. As a result, the model perceives any day with turnover slightly above
(below) the mean of each group of three distinct dark clusters as extremely unlikely.

Panels C and D plot CPIE p;n as function of turnover. These panels show that the
model’s identification of private information is based solely on turnover. The lower (higher)
turnover level indicated with a vertical line represents the expected turnover conditional on
the absence (presence) of a symmetric order flow shock. The position of these lines along
with the variation in CPIFE 4p;n between zero and one across these lines indicates that the
APIN model is performing the mechanical identification of private information from one of
the two PIN models. To see this first consider the ‘southwest” PIN model in Panels A and
B. The APIN model considers any day in this part of the graph that doesn’t overlap with
these three dots as an extreme outlier. Thus, the ‘southwest’ PIN model is 100% certain
that all days to the immediate northeast/(southwest) of its dashed line are information
(non-information) days. Similarly, the ‘northeast” PIN model is 100% certain that any day
immediately northeast (southwest) of its dashed line is an information (non-information)
day. This creates the distinctive light/dark/light /dark (cyan/magenta/cyan/magenta when
printed in color) pattern in the shading of the data in Panels A and B of Fig.

As we saw with the PIN model, the APIN model’s inability to match the variability
of the noise trade visible in the actual data is a problem, not only for Exxon-Mobil, but
for nearly all of the stocks in our sample. To see this consider the APIN model-implied
mean and variance of turnover in Panel B of Table |4 compared with the empirical turnover
mean and variance in Panel B of Table [Il The mean model-implied mean of turnover is

about 97% of the actual mean (3,575/3,695). However, the mean model-implied turnover

21 Formulae for the implied moments of the APIN model are provided in the Internet Appendix.
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variance from the APIN model is only around 42% (19,491,309/46,848,275) of the empirical
variance. Thus, even though the APIN model improves on the PIN model’s ability to match
the empirical turnover variance, it still vastly underestimates the variability of turnover and
thus the variability of noise trade. Panel B of Table 4] also displays the results of likelihood
ratio (LR) tests between the APIN and the PIN model?| As the APIN model’s improved
performance in matching the moments of the data suggests, on average the LR test rejects
the PIN model in favor of the APIN model at a p-value of 0.01. Indeed, 99% of the firm
years in the cross section have LR tests that reject the PIN in favor of the APIN at the 6%
level.

The APIN model’s inability to capture the variation in noise trading has severe and
widespread implications for the way the APIN model identifies private information arrival.
To show this, let the indicator SOS;; take the value of one if a symmetric order flow shock

occurs for stock 7 on day t and zero otherwise. Let the APIN-Mechanical Heuristic be defined

as:
0, if turn;; < E[turn|SOS;: = 0]
CPIE )1, if Efturn|SOS;, = 0] < turn;, < E[tum|SOS“:O];E[tumwosj’t:l}
Mech,APIN,J,t - 07 lf E[t’LLTTL‘SOS]',t:O];-E[tUT’nl»SOSj’t:1} S tu’rnj7t < E[t’u,’rn‘SOSji — 1}
1, if turn;; > Efturn|SOS;; = 1].

(4)

Analogous to our analysis of the PIN model, we compare time series variation in CPIE p;n

with variation in C'PIEjjech, aprn by running the following regression for each stock j in our
sample: CPIEprn i = Poj + Br,j X CPIENceh,APIN,jt + 5j,t-|§|

The results in Table [5| show that, similar to our PIN model findings, CPIEpry is

very closely approximated by the APIN Mechanical Heuristic, not only for Exxon-Mobil,

but throughout the cross section. For the median stock, the APIN Mechanical dummy

explains nearly 55% of the variation in C PIE pry. Furthermore, the coefficient estimates

22The APIN model nests the PIN model. To see this, consider the APIN model and let § = 0 and g = pp.

ZThe expected turnover conditional on no symmetric order flow shock is E[turn|SOS;; = 0] = eg + €5 +
a(1—6)us+adpup while the expected turnover conditional on symmetric order flow shock is E[turn|SOS;; =
1] =ep+es+Ap+ Ag+ ol —0)us + adpp. Note that the mechanical heuristic above depends on the
parameters of the APIN model. To address the possibility that our regression results are driven by this
dependency, we also use an alternative mechanical heuristic based only on the turnover data, where the
break points are determined using a k-means algorithm. The results are similar to those reported below and
are in the Internet Appendix.
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highlight the economically incongruous relation between turnover and the probability of
private-information arrival implied by the APIN model. To see this note that the intercept
for the median stock (8 ;) is 0.135, while 3, ; is 0.691. Thus for a typical stock, CPIEapin
jumps dramatically back and forth between 0.135 to 0.826 (0.135+0.691) based only on
the level of daily turnover. It is difficult to see how this peripatetic relation between the
probability of private-information arrival and turnover is economically sensible.
Specification 2 of Table [5| displays the results of regressions of C PIE 4p;y on turn, turn?,
and CPIEpech aprn. The small difference of 1% in the median R?s of Specifications 1 and 2
indicates that turn and turn? add little to the explanatory power of CPIE Mech, APIN - OPeC-
ification 3 shows the results from regressions including the same series of control variables
that we used to analyze the PIN model. These controls increase the R? for the median stock
by only 5% over the 55% R? in Specification 1@ Therefore, the portion of the variation
in CPIFE pry that is unexplained by turnover does not capture the arrival of private in-
formation either. In summary, these results strongly support the conclusion that, like the
PIN model, the APIN model mechanically identifies the arrival of private information from

turnover.

3 Two Alternatives to the PIN and APIN Models

Section and Section show that the GPIN and OWR models do not mechanically
identify private-information arrival from turnover. Section compares the GPIN and the
OWR models.

3.1 The GPIN model

In this section, we present a generalization of the PIN model that addresses the limitations
of both the PIN and APIN models described in Section 2] As in the APIN model, the GPIN
model allows expected daily turnover due to noise trading to be random, while keeping the
same information structure as the PIN model. However, in contrast to the APIN model,

the GPIN model does not rely on mixing two discrete PIN models. Instead, it allows for

24As we do with the PIN model, we show graphically how the conflation of CPIEspry and
CPIEech, aprn varies in the cross section. The results are in the Internet Appendix.
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a continuum of PIN models. That is, the GPIN model allows noise trade intensity to vary
continuously rather than switch between high and low noise trade intensity regimes.

Fig. |5 presents the tree structure for the GPIN model. Under the GPIN model noise
trade on any day t is a Poisson random variable with intensity \;. Of these trades, (1 —6)\,
are expected to be seller-initiated and 6\; buyer-initiated, where 6 is a constant between
zero and one. Identical to the PIN and APIN models, the informed traders receive a signal
with probability a. On days where the informed receive a signal (positive with probability
0 and negative with probability 1 — d), they join the noise traders and initiate a number of
trades given by a Poisson distribution with intensity n\;, where n is a constant.

The parameter )\; is drawn from a Gamma distribution with shape parameter r and scale
parameter p/(1—p). The fact that \; is drawn from a Gamma distribution makes the model
particularly tractable because this implies that the number of buys, sells and turnover are
distributed as a mixtures of Negative Binomzial distributionsﬁ This dramatically simplifies
the numerical estimation of the model. C'PIFEgpyy is calculated in the same way as in the
PIN model. See the Internet Appendix for a detailed discussion of the model, the likelihood
function, and the CPIEgpry calculation. Panel A of Table [6] contains summary statistics
for the parameter estimates of the GPIN model. Panel A also contains summary statistics
of the cross-sectional sample means and standard deviations of CPIEgprn @

Panels A and B of Fig. [6] present a stylized example to illustrate the central intuition for
how the GPIN model works. Analogous to the plot in Figs. [2| and [ for the PIN and APIN
models, Panels A and B of Fig. [§] plot simulated and real order flow data for Exxon-Mobil
during 1993 and 2012. The simulated data comprise three types of days, and thus three
distinct clusters. In contrast to the PIN and APIN models, these clusters are not tightly
clustered rounded regions. Instead, under the GPIN model the clusters form three positively
sloped lines. The center line has a low proportion of imbalanced trades and thus represents

days with no private information. The top and bottom lines represent private information

25The mixture of the Poisson and Gamma distributions is the well-known Negative Binomial distribution
(see |Casella and Berger, [2002)).

26We also estimate the GPIN model for every stock in our sample in the period ¢t € [-312, —60] before
opportunistic insider trades. These parameter estimates are used to compute the CPIEgp;n in Section [3.3
The summary statistics for the parameter estimates used in our event studies are qualitatively similar to
those in Table [6]
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days. That is, the top and bottom lines reflect a high proportion of imbalanced trades, with
either a large number of sells and relatively few buys (the top line) or a large number of
buys and relatively few sells (the bottom line).

In contrast to Figs. [2] and [4] the simulated data clusters in Panels A and B of Fig. [
overlap substantially with the actual data. Panels C and D plot CPIEgp;n as function
of turnover. As opposed to the analogous plot of the PIN and APIN models in Figs.
and {4 Panels C and D give no indication that the GPIN model mechanically identifies
private-information arrival from turnover.

Consistent with the graphs in Fig. [6] the GPIN model improves on the PIN and APIN
models’ ability to match the empirical moments of the data throughout the cross section.
Panel B of Table [6] displays the moments implied by the GPIN model. Note that the GPIN
model-implied turnover mean is about 99.9% of the actual mean (3,690/3,695) and the
mean GPIN model-implied variance is around 68% (31,792,976) of the empirical variance
for the mean firm year in the sample’] Panel C of Table [6] displays the results of likelihood
ratio (LR) tests between the GPIN and the PIN model. As the GPIN model’s improved
performance in matching the moments of the data suggests, the LR test rejects the PIN
model at the 1% level in favor of the GPIN model for 99% of the firm years in the cross
section. This stands in contrast to the 99% of the firms in the cross section that reject the
PIN model in favor of the APIN model at the 6% level.

Fig. [6] shows that, at least for XOM, the GPIN model does not mechanically conflate
turnover with private information arrival. To show that XOM is not an isolated case, Table
presents results from time-series regressions of CPIFEqgpry on the mechanical dummies.
Specification 1 in Table shows the coefficient estimates and R?s of regressions of C PI Eqprn
on CPIEyeeh pin and CPIEyeh apiny. In contrast to Tables [3] and [5], the coefficient esti-
mates are small and the R? is negligible. The results in Specifications 2 are similar despite
the inclusion of turn, turn?. This indicates that, unlike the CPIEp;ny and CPIEspin,

simple mechanical heuristics do not explain variation in CPIFEgp;y. Significantly, includ-

27See the Internet Appendix for the formulas of the GPIN model implied moments.
28The GPIN model nests the PIN model. To see this, consider the limiting case of the GPIN model in
which p — 0 and » — (ep + €5)/p. Moreover, reparameterize the GPIN model as § = eg/(ep + €s5) and

n=u/(ep +es).
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ing our control variables dramatically increases the R? from 1% in Specification 1 to 35%
in Specification 3. Therefore, a substantial fraction of the variation in CPIFEqgpry is both
orthogonal to turnover and associated with variables that are plausibly related to private
information arrival. In summary, our results suggest that the GPIN model, unlike the PIN
and APIN models, does not suffer from the debilitating problem of mechanically associating

turnover shocks with private information arrival.

3.2 The OWR model

Odders-White and Ready (2008) extend Kyle (1985) to allow for days with and without
private-information arrival. Fig. [7] shows a time line for the events in the model. Under
the OWR model, private information arrives before the opening of the trading day with
probability a. On days when private information arrives, the information is assumed to be
publicly revealed after the close of trade. There are three key quantities of interest in the
OWR model: daily net order flow (y.), the intra day return (r;), and the overnight return
(ro). In the model, the covariance matrix of these variables differs between days with and
without private-information arrival. Fconometricians can therefore use these variables to
infer whether private information has arrived or not ]

To see how the covariance matrix of (ye, 74, 1,) differs between private-information and no
private-information days, consider the covariance of the intra-day and overnight returns. This
covariance is positive on days with private-information arrival, reflecting the fact that the
information event is not completely captured in prices during the day. Thus, the revelation
of the private information after the close causes the overnight return to continue the partial
intra-day price reaction. In contrast, the covariance of the intra-day and overnight returns
is negative in the absence of private-information arrival since the market marker’s reaction
to the noise trade during the day is reversed overnight when she learns that there was no
private signal. The intuition for why the other elements of the covariance matrix of (ye, 74,
r,) differ between private-information and no private-information days is similar.

Formally, let Oownr,; = (), 0., 0uj, i, Opdjs Tpo;) be the vector of OWR parameters

29Unlike the market maker who must update prices before observing the overnight revelation of informa-
tion, econometricians using the OWR model can make inferences about the arrival of private information
after viewing the overnight price response.
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for stock j. The parameter o is the unconditional probability of private-information arrival
on any given day for stock j; ai ; is the variance of the noise in the observed order imbalance

2

(Yej); 0u; is the variance of the order imbalance from noise traders; o?

;; 1s the variance of
the private signal received by the informed traders; a}%’d’j is the variance of the public news

component of the intra-day return; o2 _ . is the variance of the public news component of the

P,0,]
overnight return. Let Dowr ji = [Oowr,j, Ye,jt> Tdjts To,jt] De the vector of model parameters
augmented to also include order imbalance, the intra-day return and the overnight return.
The likelihood function on a day without private-information arrival is Lyj(Dowrjt) =
(1 — o) fni1(Dowr,jt), where fyr(Downr,j:) is the Gaussian density with mean zero and
covariance matrix X7 ;. On the other hand, the likelihood function on a day with private-
information arrival is L;y(Dowrjt) = ajfi(Dowr,jt), where fi(Dowg,;:) is normal with
mean zero and covariance matrix Xy ;.

Let I;; be an indicator function with value one when private information arrives on day ¢
for stock j. Asis the case for the other examined models, CPIEowr j: = P [1j+ = 1|Dowr,j)-
Bayes’ theorem implies that CPI Eowg ;. is given by:

Li(Dowr,j)
Li(Dowr,jt) + Lni(Downr,jt)

CPIEowr i+ = (5)

In the absence of order flow and return data, an econometrician would assign a probability
aj = E[CPIEowr,j.) to the arrival of private information for stock j on day t, where the
expectation is taken with respect to the joint distribution of the data vector (Ye j.t, 7o.j.ts Td,jt)-

As with the PIN and APIN models, we estimate the OWR model numerically via maxi-
mum likelihood. Specifically, we maximize Hthl L(Dowr,jt), where L(Dowg ) is the sum
of Lni(Dowr,jt) and Li(Dowr,jt). In contrast to the PIN and APIN models, we do not
encounter any numerical issues in directly computing either L(Dowg,;+) or CPIEowr with
Equation [5] Table [§] contains summary statistics for the OWR parameter estimates and

CPIEow P

30As expected, we see from Table [8| that the mean CPIEpw g behaves like o in the OWR model. Note
that the estimated OWR « parameters are in general higher than those in OWR. This is due to the fact
that our definition of y. is different from that in OWR (see discussion in Section [1| above). In fact, we
get « estimates close to those reported in OWR if we define y. in the same way that they do. We also
estimate the parameter vector ©owr ; in the period ¢ € [—312, —60] before opportunistic insider trades.
These parameter estimates are used to compute the C'PIEs used in our opportunistic insider trading event
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Fig. |8 shows that, at least for XOM, the OWR model does not mechanically conflate
turnover with private information arrival. It is important to note that the OWR model
differs from the PIN, APIN, and GPIN models in that it does not attempt to model the
number of buys and sells. Instead, the OWR model focuses on the net imbalance between
buys and sells (i.e., y.). Liquidity trade in the OWR model simply adds noise to the order
imbalance and prevents the market maker from inverting the order flow to reveal the informed
investors’ private signal. This implies that moments such as the variance of turnover and
the covariance between buys and sells, which figured prominently in our analysis of the PIN,
APIN, and GPIN models above, are not available under the OWR model. Thus, the OWR
model does not allow us to construct analogs to Panel B in Tables [2] [4, and [6] as well as to
simulate the number of buys and sells data as we do in Figs. and [6]

While we cannot perform the analyses in Panel B of Tables 2] [ and [6] for the OWR
model, we can still use CPIEowr, CPIEyceh pin, CPIEyech apin, turn, and turn® to
determine whether the model mechanically conflates turnover with private information ar-
rival. Table [J presents results from time-series regressions of C PI Eoy g on the mechanical
heuristics. In contrast to Tables [3] and [} the results in Table [9] show that CPIEowg is
poorly approximated by CPIEjyech pry and CPIEyech apin. Indeed, the median R? in
Specification 1 is low, around 1.2%. Moreover adding turn and turn? to the regression
increases the R? for the median stock to only about 10%, considerably smaller than the
64% and 56% in Tables |3| and |5| for the PIN and APIN models. Hence, in contrast to the
PIN and APIN models, turnover plays little role in identifying private-information arrival
under the OWR model. Furthermore, including variables such as |B — S|, |B — S|?, r3, r2,
Y2 ra X T, Tg X Y, and 7, X y. in the regression dramatically increases the R? from around
1% in Specification 1 to nearly 45% in Specification 3. This indicates that, unlike C PIEp;n
and CPIFE prn, a substantial fraction of the variation in C'PIFEowg is both orthogonal
to turnover and associated with variables that are plausibly related to private information
arrival. Thus, the OWR model, unlike the PIN and APIN models, does not mechanically

associate private-information arrival with turnover shocks.

study. The summary statistics of the parameter estimates for the event studies are similar to those in Table

B
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3.3 Comparing the GPIN and OWR models

To gain further insight into the GPIN and OWR models’ performance, we consider two
additional working hypotheses in the contexts of opportunistic insider trades and of return
reversalsE-] Consider first the relation between CPIEowgr, CPIEqp;ny and opportunistic
insider trades. Under the working hypothesis that opportunistic insiders trade up to the
point that prices reveal their information, the C'PIFEs of both models should be higher
before and coincident with an opportunistic trade, then decline immediately following the
trade. Accordingly, we examine C'PIFEowr and CPIEgp;y around opportunistic insider
trades. Specifically, we estimate the parameter vectors ©¢prn,; and Oowg,; in the period ¢ €
[—312, —60] before each opportunistic insider trade. We then use these parameter estimates
to compute each model’s C'PIEs during the period (¢ € [—20, 20]).

Panel A (B) of Fig. @presents the average CPIEgprny (CPIEowr) in event time for our
sample of opportunistic insider trades. Both models show a statistically significant spike in
CPIFEs at t = 0, consistent with the arrival of private information on the day that insiders
trade. Specifically, at t = 0, the C'PI Es are more than two standard deviations higher than
the mean estimated between t € [—40,21]. While CPIEgpry rises on the day that insider
actually trades, counterintutitively it also spikes on several days after the insider trade. This
suggests that the GPIN model may be yielding ‘false positives’ in the sense that it appears
to identify the arrival of private information when we have no a priori economic reason to
suspect any such information arrival (e.g., day t+5 and day t+16 after the insider trade).
On the other hand, the CPIEowr rises a few days before the insider trades and clearly
drops after the trade. The fact that CPIFEowg increases a few days before the insider
trades suggests that whatever private signal the insider is responding to is also received by
others that attempt to act on it as well. In sum, these results suggest that both the OWR
and GPIN models capture the arrival of private information around opportunistic insider
trades. However, only the OWR model results are completely consistent with the idea that

opportunistic insiders trade up to the point that prices fully reveal private information.

31Both of these working hypotheses are not as strongly established in the literature as the hypothesis that
turnover varies for reasons unrelated to private information. Thus, these tests are only suggestive of the
models’ relative performance in identifying private arrival.
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Next we examine the relation between C PIEow g, C PIEqgprn and future return rever-
sals. A large number of papers have demonstrated that short horizon stock returns, on
average, exhibit negative unconditional serial correlation (Jegadeesh and Titman (1995)),
often called price reversals. On the other hand, the microstructure literature has long held
that the arrival of private information causes permanent price changes.@ Our working hy-
pothesis here then is that the arrival of private information should be associated with smaller
future return reversals. That is, the arrival of private information should be associated with
less negative serial correlation in returns. Therefore, we estimate the following regression

using CPIEowgr as well as CPIFEgpry, including both firm and year fixed effects:
Tjt+1 = Qjyear + Po + 1 X 14 + Bo x CPIE;; + B3 x (CPIE;; X 1) + €4 (6)

Before continuing, however, there are two issues worth clarifying. First, note that the
independent variable in this regression is the open-to-open, risk-adjusted return (r;¢1 =
Tdjt+1+ 7o j1+1) on day t + 1. Thus, there is no overlap between the intra-day and overnight
returns that are used to compute CPIEowr ;; on day t and the return on day ¢+ 1. This is
important because if we were to regress 7,41 on CPIEowg ;i+1, the resulting relation would
be mechanical due to overlapping data in the computation of both r; ;1 and CPIEowg j+1-
Second, while the OWR model relies in part on rg4 X1, ;+ to identify private-information ar-
rival, it is a one-period model and has no predictions about the relation between CPIEow g ;¢
and the correlation between r;; and r;,.;. Thus, for the regressions in this section we rely
on our working hypothesis to yield implications for the effect of private-information arrival
on the covariance between the daily returns r;, and r;,41, not on the OWR model per se.

Table reports the coefficient estimates and t-statistics for these regressions. Most
importantly, the results in Table [10] show that the estimates for 83 in the OWR and GPIN
models are positive and significant, indicating that CPIEowgr and CPIFEqpry are both
associated with smaller future return reversals. Indeed, for the OWR model, the effect is
particularly large. To see this note that a one standard deviation shock to CPIFEowg is
associated with a 65% (8.161/12.555) decline in the subsequent reversal. A one standard de-
viation shock to C PI Egpry, on the other hand, is associated with a 6% (0.414/7.147) drop in

32See [Hasbrouck| (1988, 1991ayb).
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the subsequent reversal. Finally, Table[10| presents the coefficient estimates from a regression
including both CPIEowr j+ and CPIEgprn j; and their interaction terms with r;,. After
including both C'PIEs in the regression, the coefficient estimate on CPIEgp;ny X 1y drops
by a factor of four and is rendered insignificant. The coefficient estimate on C'PIFEowgr X 1y
remains almost unchanged from Specification 2. Thus, these results suggest that both the
OWR and GPIN models capture the arrival of private information with persistent impact on
prices. However, the OWR model appears to be more strongly associated with the arrival

of such information.

4 Conclusion

This paper analyzes four structural microstructure models of private information arrival: the
PIN model, the APIN model, the OWR model and a new variant of the PIN model, the
GPIN model. We show that the PIN and APIN models cannot match the variability of noise
trade in the data and, as a result, these models are no more useful in identifying private-
information arrival than mechanical heuristics or placebos based on the level of turnover.
In contrast, our examination reveals no evidence that either the OWR or GPIN suffer from
these issues.

Further examination of the OWR and GPIN models reveals that the OWR model per-
forms somewhat better than the GPIN model in actually identifying the arrival of private
information. In sum, our results suggest that proxies for information asymmetry or private-
information arrival based on the PIN and APIN models (e.g., PIN and Adj.PIN) are
unreliable. The GPIN model is a promising alternative to the PIN and APIN models that
relies on order flow alone. On the other hand, if relying on order flow alone is not a re-
quirement, then measures of private information based on the OWR model are promising

alternatives to measures based on the APIN and PIN models.

28



References

Admati, Anat R., and Paul Pfleiderer, 1988, A theory of intraday patterns: Volume and

price variability, Review of Financial Studies 1, 3—40.

Akins, Brian K., Jeffrey Ng, and Rodrigo S. Verdi, 2012, Investor competition over informa-

tion and the pricing of information asymmetry, The Accounting Review 87, 35-58.

Back, Kerry, Kevin Crotty, and Tao Li, 2018, Identifying information asymmetry in securities

markets, The Review of Financial Studies 31, 2277-2325.

Bakke, Tor-Erik, and Toni. M. Whited, 2010, Which firms follow the market? An analysis

of corporate investment decisions, The Review of Financial Studies 23, 1941-1980.

Banerjee, Snehal, and Ilan Kremer, 2010, Disagreement and learning: Dynamic patterns of

trade, The Journal of Finance 65, 1269-1302.

Bennett, Benjamin, Gerald Garvey, Todd Milbourn, and Zexi Wang, 2017, Managerial com-

pensation and stock price informativeness, Working paper.

Brennan, Michael J, Sahn-Wook Huh, and Avanidhar Subrahmanyam, 2018, High-frequency
measures of informed trading and corporate announcements, The Review of Financial

Studies 31, 2326-2376.
Casella, George, and Roger Berger, 2002, Statistical Inference (Thomson Learning).

Chen, Qi, Itay Goldstein, and Wei Jiang, 2007, Price informativeness and investment sensi-

tivity to stock price, Review of Financial Studies 20, 619-650.

Cipriani, Marco, and Antonio Guarino, 2014, Estimating a structural model of herd behavior

in financial markets, The American Economic Review 104, 224-251.

Cohen, Lauren, Christopher Malloy, and Lukasz Pomorski, 2012, Decoding inside informa-
tion, Journal of Finance 67, 1009-1043.

Collin-Dufresne, Pierre, and Vyacheslav Fos, 2016, Insider trading, stochastic liquidity, and
equilibrium prices, Fconometrica 84, 1441-1475.

29



Da, Zhi, Pengjie Gao, and Ravi Jagannathan, 2011, Impatient trading, liquidity provision,
and stock selection by mutual funds, The Review of Financial Studies 324, 675-720.

Duarte, Jefferson, Xi Han, Jarrod Harford, and Lance A. Young, 2008, Information asym-
metry, information dissemination and the effect of regulation FD on the cost of capital,

Journal of Financial Economics 87, 24-44.

Duarte, Jefferson, and Lance Young, 2009, Why is PIN priced?, Journal of Financial Eco-
nomaics 91, 119-138.

Easley, David, Robert F. Engle, Maureen O’Hara, and Liuren Wu, 2008, Time-varying arrival

rates of informed and uninformed trades, Journal of Financial Econometrics pp. 171-207.

Easley, David, Nicholas M. Kiefer, and Maureen O’Hara, 1997, One day in the life of a very
common stock, Review of Financial Studies 10, 805-835.

— , and Joseph B. Paperman, 1996, Liquidity, information, and infrequently traded
stocks, Journal of Finance 51, 1405-1436.

Easley, David, and Maureen O’Hara, 1987, Price, trade size, and information in securities

markets, Journal of Financial Economics 19, 69-90.

Ferreira, Daniel, Miguel A. Ferreira, and Carla C. Raposo, 2011, Board structure and price

informativeness, Journal of Financial Economics 99, 523-545.

Gan, Quan, Wang C. Wei, and David J. Johnstone, 2014, Does the probability of informed
trading model fit empirical data?, FIRN Research Paper.

Glosten, Lawrence R., and Paul R. Milgrom, 1985, Bid, ask and transaction prices in a
specialist market with heterogeneously informed traders, Journal of Financial Economics

13, 71-100.

Hasbrouck, Joel, 1988, Trades, quotes, inventories and information, Journal of Financial

Economics 22, 229-252.

——, 1991a, Measuring the information content of stock trades, Journal of Finance 46,

179-207.

30



, 1991b, The summary informativeness of stock trades, Review of Financial Studies

4, 571-594.

Jegadeesh, N., and Sheridan Titman, 1995, Short-horizon return reversals and the bid-ask

spread, Journal of Financial Intermediation 4, 116-132.

Kandel, Eugene, and Neil D. Pearson, 1995, Differential interpretation of public signals and
trade in speculative markets, Journal of Political Economy 103, 831-872.

Kim, Sukwon Thomas, and Hans R. Stoll, 2014, Are trading imbalances indicative of private

information?, Journal of Financial Markets 20, 151-174.
Kyle, Albert S., 1985, Continuous auctions and insider trading, Econometrica 53, 1315-1335.

Lakonishok, Josef, and Seymour Smidt, 1986, Volume for winners and losers: Taxation and

other motives for stock trading, The Journal of Finance 41, 951-973.

Lee, Charles M. C., and Mark J. Ready, 1991, Inferring trade direction from intraday data,
Journal of Finance 46, 733-746.

Lo, Andrew W., and Jiang Wang, 2000, Trading volume: Definitions, data analysis, and
implications of portfolio theory, Review of Financial Studies 13, 257-300.

Odders-White, Elizabeth R., and Mark J. Ready, 2008, The probability and magnitude of

information events, Journal of Financial Economics 87, 227-248.

31



Table 1: Summary Statistics. Panel A presents the mean, standard deviation as well as different
percentiles of the data used to estimate the PIN, APIN, GPIN, and OWR models for the full sample
and opportunistic insider trade sample. The data include order imbalance (y.), intra-day returns
(rq), overnight returns (r,), as well as the number of buys (B) and sells (S). We compute intraday
and overnight returns as well as the number of daily buys and sells for stocks between 1993 and 2012
using data from the NYSE TAQ database, CRSP and COMPUSTAT. The intra-day and overnight
returns are risk adjusted using daily cross-sectional regressions. Our sample of opportunistic insider
trades is constructed using the method detailed in Cohen, Malloy, and Pomorski (2011). Panel B
contains summary statistics for each stock-year in the full sample. The data include the mean
number of buys (B), sells (S) and turnover (furn) as well their variances (0%, 0%, 02,,,,) and the
covariance between buys and sells (covp,g).

A. Data for Model Estimation

N Mean Std Q1 Median Q3
Full Sample
Ye 5,286,191 2.766 31.259 -10.433 3.282 18.996
T4 5,286,191 -0.004 1.500 -0.707 -0.024 0.680
T 5,286,191 0.003 1.297 -0.566 -0.024 0.525
B 5,286,191 1,876 6,917 37 220 1,128
S 5,286,191 1,842 6, 894 36 194 1,033
Opportunistic Insider Trade Sample
Ye 32,944 4.696 6.638 -0.182 3.080 9.713
T4 32,944 -0.006 0.179 -0.099 -0.003 0.092
T 32,944 0.029 0.157 -0.061 0.018 0.107
B 32,944 3,177 7,488 267 916 2,742
S 32,944 3,120 7,531 229 802 2,620

B. Stock-year Sample Moments

N Mean Std 1% Q1 Median Q3 99%
B 21,206 1,864 5,946 3 41 236 1,199 24, 848
S 21,206 1,831 5,952 3 40 208 1,095 24,734

o 21,206 12,074,193 235,656,812 10 569 11,943 284,581 141,637,980
2 21,206 11,693,254 224,595,479 8 409 8,425 236,495 139,723,237
covps 21,206 11,586,477 228,505,016 2 261 7,080 225,970 133,813,028
turn 21,206 3,695 11,897 6 81 444 2,299 49,295
2 21,206 46,848,275 915,328,225 23 1,530 34,824 974,185 542,363,794




Table 2: PIN Model Parameter Estimates and Implied Moments. This table presents the
mean, standard deviation as well as different percentiles of the parameter estimates and implied
moments for the PIN model. The sample consists of 21,206 firm-years from 1993 to 2012. The
parameter « is the unconditional probability of private-information arrival on a particular day.
The parameter ¢ represents the probability of good news, and 1 — § represents the probability of
bad news. The parameters ep and e€g represent the expected number of daily buys and sells given
no private information, and p is the expected increase in the number of trades given the arrival of
private information. C PIFEpyy is the probability of private-information arrival on a particular day,
conditional on the PIN model parameters and the observed buys and sells. C'PIFE and Std(CPIE)
are the mean and standard deviation of CPIFEp;y computed for each firm-year. Panel A reports
summary statistics for the parameter estimates and the CPIE and Std(CPIE) across all firm-
years. Panel B reports the model-implied mean, variance, covariance of buys and sells, as well as
the model-implied mean and variance of turnover calculated with the estimated parameters.

A. Model Parameters

N Mean Std 1% Q1  Median Q3 99%
«Q 21,206 0.372 0.122 0.091 0.291 0.375 0.445 0.683
é 21,206 0.607 0.209 0.043 0.484 0.625 0.762 0.977
€B 21,206 1,624.729 5,388.488 1.949 32.550 193.133 1,038.498 22,167.410
€5 21,206 1,596.070 5,368.939 2.690 35.476 185.862 956.037 21,964.720
W 21,206 312.291 593.385 6.161 43.458 160.408 314.334  2,750.986
CPIE 21,206 0.382 0.135 0.093 0.293 0.379 0.449 0.756
Std(CPIE) 21,206 0.451 0.052 0.274 0.427 0.470 0.490 0.500

B. Stock-year Implied Moments

N Mean Std 1% Q1 Median Q3 99%
B 91,206 1,702 5,523 3 41 231 1,123 92,675
g 921,206 1,668 5,523 3 40 204 1,025 92,822
o 91,206 76,061 573,245 8 310 4,119 17,242 1,400,620
o2 91,206 56,858 1,684,673 4 55 485 4,666 757,083
covps 21,206 23,985 252,844 448,891 -3,521 -504 -25 -0
furn 21,206 3,371 11,043 6 81 434 2,159 45, 644

02m 21,206 84,948 1,656,501 11 313 3,979 16,578 1,290,203




Table 3: Regressions of CPIEp;n on the Mechanical Dummy. This table reports
results from the regression: CPIEpiNj: = Bo + BiCPIEyech, pIN,jt + B2Xj: + €5, Where
CPIEech,piN,je is a dummy variable equal to one if stock j’s turnover on day ¢ is greater than
the mean daily turnover of stock j during the calendar year, and zero otherwise. X represents a
vector of covariates consisting of turn and turn? and additional controls: |B — S|, |B—S|?, squared
intra-day and overnight returns (r2, r2), squared order imbalance (y?) and the three associated in-
teraction terms (rq X 7o, 74 X Ye, and 1, X Y. ). We report median coefficient and ¢-statistic estimates
(in parentheses), as well as the 5 50" and 95" percentiles of R?. We compute Newey-West
standard errors with a lag length selected according to the Akaike Information Criterion (AIC)
from a regression of CPIEp;N on a constant, trend, and quadratic trend.

(1) (2) (3)

Intercept 0.063 0.109 0.113
(8.68) (11.38) (12.10)
CPIEpech,PIN 0.730 0.661 0.645
(44.82) (32.57) (31.67)
turn - 0.169 0.114
- (8.64) (5.20)
turn? - -0.086 -0.060
- (-5.05) (-3.47)
Controls No No Yes
R2,5% 41.63% 51.89% 54.79%
R?,50% 58.56% 63.83% 66.13%

R2,95% 73.02% 75.67% 78.06%




Table 4: APIN Model Parameter Estimates and Implied Moments. This table presents
the mean, standard deviation as well as different percentiles of the parameter estimates and implied
moments for the APIN model. The sample consists of 21,206 firm-years from 1993 to 2012. The
parameter « is the unconditional probability of private-information arrival on a particular day.
The parameter ¢ represents the probability of good news. The parameter ep (eg) represents the
expected number of daily buys (sells) given no private information, pp (us) represents the expected
additional number of buys (sells) given good (bad) news, and Ap (Ag) represents the expected
additional number of buys (sells) given an order flow shock. CPIE pry is the probability of
private-information arrival on a particular day, conditional on the APIN model parameters and
the observed buys and sells. CPIE and Std(CPIE) are the mean and standard deviation of
CPIE p;Nn computed for each firm-year. Panel A reports summary statistics for the parameter
estimates and the CPIFE and Std(CPIE) across all firm-years. Panel B reports the APIN model
implied mean, variance, covariance of buys and sells, as well as the implied mean and variance of
turnover. Panel B also includes summary statistics for Likelihood Ratio Tests comparing the fit of
the APIN model to the PIN model for each firm-year in the sample.

A. Model Parameters

N Mean Std 1% Q1 Median Q3 99%
@ 21,206 0.456 0.092 0.199 0.409 0.464 0.509 0.670
é 21,206 0.550 0.192 0.069 0.441 0.541 0.680 0.963
0 21,206 0.249 0.137 0.004 0.149 0.253 0.344 0.566
€B 21,206 1,417.934  4,570.896 1.356 25.778 158.244 866.207 19,539.850
€5 21,206 1,396.894  4,569.861 1.954 27.610 147.615 807.330 19,617.390
uB 21,206 289.891 574.594 3.752 28.838 119.176 310.285  2,664.918
uB 21,206 283.912 573.656 3.689 26.924 106.996 301.787  2,647.224
Ap 21,206 2,147.940 10,058.220 4.018 41.065 189.856 988.834 30, 725.600
Ap 21,206 2,096.510 9,934.216 3.208 33.544 159.952 907.448 29,830.650
CPIE 21,206 0.455 0.092 0.202  0.409 0.461 0.506 0.680
Std(CPIE) 21,206 0.454 0.056 0.272  0.431 0.479 0.493 0.500
B. Stock-year Implied Moments
N Mean Std 1% Q1 Median Q3 99%
B 21,206 1,804 5,635 3 42 235 1,184 93,742
S 21,206 1,771 5648 3 40 206 1,079 23, 668
0’?3 21,206 5,008,291 102,352,705 9 432 8,550 155,932 56,223,088
0'?9 21,206 4,821,736 105,048,958 3 164 3,465 95,653 52,046,962
covps 21,206 4,830,641 103,177,649 0 148 3,819 108,080 52,496,427
turn 21,206 3,575 11,281 6 81 443 2,267 47,619
o2, 21,206 19,491,300 413,403,973 14 933 20,166 475,325 212,128,415
LRT 21,206 16,245.950 22,986.340 9.203 1,062.791 5,084.253 22,398.850 90, 281.360
p-value 21,206 0.010 0.098 0 0 0 0 0.056




Table 5: Regressions of CPIEsp;n on Mechanical Dummies. This table reports re-
sults from the regression: CPIEapin it = Bo + B1CPIEyech, aPIN,jt + P2 Xt + €5+, Where
CPIENech,APIN,j¢ 1s & dummy variable, analogous to CPIEyech, prn. See the text for the defi-
nition of CPIEech,aprn. X represents a vector of covariates consisting of turn and turn? and
additional controls: |B — S|, |B — S|?, squared intra-day and overnight returns (r2, r2), squared
order imbalance (y2) and the three associated interaction terms (rg X 7o, 74 X Ye, and 7, X y.). We
report median coefficient and t-statistic estimates (in parentheses), as well as the 5%, 50" and 95"
percentiles of R?. We compute Newey-West standard errors with a lag length selected according to
the Akaike Information Criterion (AIC) from a regression of CPIFE op;y on a constant, trend, and
quadratic trend.

(1) (2) (3)

Intercept 0.135 0.149 0.153
(13.45) (14.14) (15.32)
CPIENech, APIN 0.691 0.663 0.655
(45.30) (41.89) (41.65)
turn - 0.067 0.002
- (4.76) (0.10)
turn? - -0.029 -0.002
- (-2.92) (-0.13)
Controls No No Yes
R2,5% 31.66% 39.32% 45.51%
R?, 50% 54.35% 56.07% 59.95%

R?,95% 69.75% 70.63% 74.08%




Table 6: GPIN Model Parameter Estimates and Implied Moments. This table presents
the mean, standard deviation as well as different percentiles of the parameter estimates and implied
moments for the GPIN model. The sample consists of 21,206 firm-years from 1993 to 2012. The
parameter « is the unconditional probability of private-information arrival on a particular day.
The parameter § represents the probability of good news. The parameters 6 and n represent the
relative fraction of expected buys when there is no information, and the relative increase in expected
turnover when there is private information, respectively. The arrival rate of turnover on a given
day t (\;) is drawn from a Gamma distribution with shape and scale parameter r and p/(1 — p).
CPIEgpry is the probability of private-information arrival on a particular day, conditional on the
GPIN model parameters and the observed buys and sells. CPIE and Std(CPIE) are the mean
and standard deviation of CPIEgp;n computed for each firm-year. Panel A reports summary
statistics for the parameter estimates and the CPIFE and Std(CPIE) across all firm-years. Panel
B reports the GPIN model implied mean, variance, covariance of buys and sells, as well as the
implied mean and variance of turnover. Panel B also includes summary statistics for Likelihood
Ratio Tests and corresponding p-values comparing the fit of the GPIN model to the PIN model for
each firm-year in the sample.

A. Model Parameters

N Mean Std 1% Q1 Median Q3 99%
« 21,206 0.314 0.209 0.00001 0.137 0.262 0.491 1.000
1) 21,206 0.562 0.186 0.175 0.430 0.546 0.683 1.000
0 21,206 0.499 0.070 0.218 0.483 0.507 0.538 0.610
n 21,206 0.446 0.368 0.00001 0.135 0.419 0.706 1
D 21,206 0.931 0.861 0.460 0.899 0.981 0.997 1.000
r 21,206 8.694 6.272 1.535 4.678 7.029 10.967 28.660
CPIFE 21,206 0.339 0.195 0.00002 0.186 0.285 0.496 1.000
Std(CPIE) 21,206 0.350 0.139 0.00000 0.303 0.376 0.466 0.499
B. Stock-year Implied Moments
N Mean Std 1% Q1 Median Q3 99%
B 21, 206 1,859 5,910 3 40 934 1,199 24,771
S 21,206 1,831 95,965 3 40 207 1,091 24,865
% 21,206 8,103,282 140,308,553 8 444 9,339 229,223 103, 328,265
0‘% 21,206 8,275,069 144,306,254 7 367 7,490 205,005 104,955,812
covp,s 21,206 7,707,312 138,562,180 1 178 5,585 178,936 93,606, 349

furn 21,206 3,690 11,870 6 81 442 2,293 49,221
o2 21,206 31,792,976 561,402,687 19 1,197 28,396 793,492 400,891,561
LRT 21,206 43,607.630 69,036.320 11.644 1,417.357 8,653.139 53,631.800 259,704.100
p-value 21,206 0.008 0.089 0 0 0 0 0.009




Table 7: Regressions of CPIEgprNn on the Mechanical Dummy. This table reports results
from the regression: CPIEgpin j+ = Bo + BiCPIENcch,j,t + 82Xt + €54, where CPIEpccp j ¢ is
a vector of dummy variables consisting of CPIEyech,prn and CPIEyicch, aprn. X represents a
vector of covariates consisting of turn and turn? and additional controls: |B — S|, |B —S|?, squared
intra-day and overnight returns (r3, r2), squared order imbalance (y?) and the three associated
interaction terms (rq X 7o, rq X Yo, and r, X y.). We report median coefficient and t-statistic
estimates (in parentheses) as well as the 5!, 50", and 95" percentiles of R?. We compute Newey-
West standard errors with a lag length selected according to the Akaike Information Criterion (AIC)
from a regression of CPIEgpry on a constant, trend, and quadratic trend.

(1) (2) (3)
Intercept 0.277 0.294 0.306
(17.42) (17.81) (21.42)
CPIEech,PIN 0.069 0.047 0.031
(3.34) (1.97) (1.53)
CPIENech, APIN 0.028 0.020 0.011
(1.50) (1.04) (0.69)
turn - 0.090 -0.162
- (3.30) (-5.92)
turn? - -0.055 0.040
- (-2.36) (1.76)
Controls No No Yes
R% 5% 0.04% 0.43% 15.59%
R?,50% 1.16% 4.41% 34.99%

R2,95% 17.47% 25.21% 66.40%




Table 8: OWR Parameter Estimates. This table presents the mean, standard deviation as well
as different percentiles of the parameter estimates for the OWR model. The sample consists of
21,206 firm-years from 1993 to 2012. The parameter « is the unconditional probability of private-
information arrival on a particular day. The parameter o, represents the standard deviation of
order imbalance due to uninformed trades, which are observed with normally distributed noise with
variance o2. The parameter o; is the standard deviation of the informed trader’s private signal,
while 0,4 and o,, are the standard deviations of the public news component of the idiosyncratic
intraday and overnight returns, respectively. CPIFEow g is the probability of private-information
arrival on a particular day, conditional on the OWR model parameters and the observed market
data. CPIE and Std(CPIE) represent the mean and standard deviation of C PI Eow r computed

for each firm-year.

N Mean Std 1% Q1 Median Q3 99%
«a 21,206 0.437 0.257 0.015 0.214 0.436 0.639 0.974
Ou 21,206 0.075 0.068 0.00001 0.022 0.062 0.109 0.309
o, 21,206 0.239 0.143 0.00001 0.137 0.221 0.332 0.603
o; 21,206 0.030 0.286 0.00001 0.013 0.021 0.027 0.047
Opd 21,206 0.010 0.005 0.00001 0.006 0.009 0.012 0.026
Opo 21,206 0.006 0.004 0.00001 0.004 0.006 0.008 0.020
CPIE 21,206 0.451 0.258 0.018 0.227 0.455 0.656 0.974

Std(CPIE) 21,206 0.137 0.047 0.00000 0.109 0.142 0.171 0.229




Table 9: Regressions of CPIEpwgr on the Mechanical Dummy. This table reports results
from the regression: CPIEowr,j,+ = Bo + BiCPIENcch,j,t + B2Xj ¢ + €, where CPIEyccn, jt is
a vector of dummy variables consisting of CPIEyech,prn and CPIEyicch, aprn. X represents a
vector of covariates consisting of turn and turn? and additional controls: |B — S|, |B —S|?, squared
intra-day and overnight returns (r3, r2), squared order imbalance (y?) and the three associated
interaction terms (rq X 7o, g X Yo, and r, X y.). We report median coefficient and t-statistic
estimates (in parentheses) as well as the 5!, 50", and 95" percentiles of R?. We compute Newey-
West standard errors with a lag length selected according to the Akaike Information Criterion (AIC)
from a regression of CPIFEopw g on a constant, trend, and quadratic trend.

(1) (2) (3)
Intercept 0.437 0.420 0.442
(27.38) (28.80) (34.70)
CPIEpech,PIN 0.049 0.066 0.028
(3.02) (4.11) (2.09)
CPIE\ech, APIN 0.011 0.019 0.009
(0.91) (1.61) (0.95)
turn - -0.082 -0.088
- (-3.71) (-4.24)
turn? - 0.055 0.040
- (2.72) (2.49)

Controls No No Yes
R% 5% 0.12% 1.56% 18.31%
R?,50% 1.24% 10.14% 43.36%

R?,95% 6.70% 38.84% 80.05%




Table 10: Return reversals. This table reports panel predictive regressions of the open-to-open,
risk-adjusted return of stock j on day t + 1 (rj4y1) on rj;, CPIE, and the interaction of r;,
and CPIE for the GPIN and OWR models. The third specification includes both CPIEgprn
and CPIEowr. All specifications include Firm and Year fixed effects, and standard errors are
clustered by Firm and Year.

(1) (2) (3)

CPIEgpIN 0.052%** 0.047***
(6.019) (6.049)
CPIEowr 0.046*** 0.040***
(4.356) (3.856)
T —7.147** —12.555%** —12.597***
(—7.461) (—6.057) (—6.239)
CPIEgpiN X 11 0.414* 0.140
(1.716) (0.537)
CPIEowR X 1t 8.161*** 8.082***
(4.158) (4.110)
Firm-Year FE Yes Yes Yes

R? 0.5% 0.6% 0.6%




Figure 1: PIN Model Tree. For a given trading day, private information arrives with probability
«. When there is no private information, buys and sells are distributed as Poisson random variables
with intensity ep and eg. Private information is good (bad) news with probability § (1 — 4). The
expected number of buys (sells) increases by i in case of good (bad) news arrival.

Buys~Poi(eg + p)
Sells~Poi(eg)

Buys~Poi(ep)
Sells~Poi(es + )

Buys~Poi(ep)
Sells~Poi(eg)



Figure 2: PIN Model Example. This figure compares real and simulated data for Exxon-Mobil (XOM) in 1993 and 2012 from
the PIN model. In Panels A and B, the real data are marked as x. The real data are shaded according to the CPIFEp;y, with
darker markers (x magenta) representing high CPIEs and lighter markers (x cyan) low CPIFEs. All the observations below
(above) the downward-sloping dashed line have turnover below (above) the annual mean of daily turnover. The upward-sloping
dotted line comes from a regression of sells on buys. High (low) probability states in the simulated data appear as a dark (light)
“cloud” of points. The PIN model has three states: no news, good news, and bad news. Panels C and D plot the CPIEs for the

real data as a function of turnover along with a dashed line indicating the mean turnover.
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Figure 3: APIN Model Tree. The APIN model is a mixture of two independent PIN models.
Shocks to the intensity of noise trading arrive with probability . These shocks increase the expected
amount of non-informed buys (sells) by Ag (Ag). As with the PIN, private information arrives
with probability . When there is no private information, and no symmetric order flow shock,
buys and sells are distributed as Poisson random variables with intensity ep and es. When a
symmetric order flow shock occurs without private information, buys and sells are distributed as
Poisson random variables with intensity eg +Ap and es+Ag. Private information is good (bad)
news with probability § (1 — ). The expected number of buys (sells) increases by up (us) in case
of good (bad) news arrival.

Buys~Poi(eg + Ap + ug)
Sells~Poi(es + Ag)

Buys~Poi(ep + Ap)
Sells~Poi(es + Ag + us)

Buys~Poi(eg + up)
Sells~Poi(es)

Buys~Poi(ep)
Sells~Poi(es + us)

‘?1}'00 Buys~Poi(ep)
Sells~Poi(es)



Figure 4: APIN Model Example. This figure compares real and simulated data for Exxon-Mobil (XOM) in 1993 and 2012
from the APIN model. In Panels A and B, the real data are marked as x. The real data are shaded according to the CPIEspjy,
with darker markers (x magenta) representing high CPIEs and lighter markers (x cyan) low CPIEs. The upward-sloping
dotted line comes from a regression of sells on buys. High (low) probability states in the simulated data appear as a dark (light)
“cloud” of points. The APIN model has six states corresponding to the high and low order flow states, and good, bad, or no news
arrival. Panels C and D plot the CPIEs for the real data as a function of turnover along with three dashed lines corresponding
to mean turnover conditional on the presence (or absence) of a symmetric order flow shock, and the mean of the two conditional
means.
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Figure 5: GPIN Model Tree. The GPIN model generalizes the PIN model by allowing the arrival
rate of noise-trading order flow (\;) to be drawn from a Gamma distribution with shape and scale
parameters r and p/(1 —p) (e.g., Ay ~ T'(r,p)). As with the PIN model, private information arrives
with probability . When there is no private information, buys and sells are distributed as Poisson
random variables with intensity 6; and (1 — 0)\;. Private information is good (bad) news with
probability § (1 —4). The expected number of buys (sells) increases proportionally by n when there
is news arrival.

Buys~Poi((6 + n)A;)
Sells~Poi((1 — 0)4,)

Buys~Poi(61;)
Sells~Poi((1 — 0 + n)A;)

Buys~Poi(64;)
Sells~Poi((1 — 0)4;)



Figure 6: GPIN Model Example. This figure compares real and simulated data for Exxon-Mobil (XOM) in 1993 and 2012
from the GPIN model. In Panels A and B, the real data are marked as x. The real data are shaded according to the CPIEgpyn,
with darker markers (x magenta) representing high CPIEs and lighter markers (x cyan) low CPIEs. The upward-sloping
dotted line comes from a regression of sells on buys. High (low) probability states in the simulated data appear as a dark (light)
“cloud” of points. The GPIN model has three states: no news, good news, and bad news. Panels C and D plot the CPIFEs for
the real data as a function of turnover along with a dashed line indicating the mean turnover.
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Figure 7: OWR Model Tree. In the OWR model, prior to markets opening, private information arrives with probability a.
Once markets open, investors submit their trades generating order imbalance (y.), and the intraday return (rq). After markets
close, private information becomes public and is reflected in the overnight return (r,). The variables (y., 74, 7o) are normally
distributed with mean zero. The covariance differs between days with private-information arrival, ¥;, and days without the
arrival of private information, X ;. When there is no private-information arrival, there is a price reversal in the overnight return
(cov(rq, o) < 0) and when there is private-information arrival there is a continuation in the returns (cov(rq,r,) > 0).

Traders submit orders Information revealed
v « . . '(y67 Td, TO) ~ N(07 ZI)
Ye, Td T, “continuation
f {
Intraday Overnight

(No) informa-
Traders submit orders tion revealed

° ’(ye; Td, Iro) ~ N(07 Z]NI)

Ye,Td r, “reversal”




Figure 8: OWR Model Example. This figure plots data for Exxon-Mobil (XOM) in 1993 and 2012 from the OWR model. In
Panels A and B, the data are marked as x. The data are shaded according to the C PT Eow gr, with darker markers (x magenta)
representing high and lighter markers (x cyan) low CPIFEs. The upward-sloping dotted line comes from a regression of sells
on buys. Panels C and D plot the C PIEs for the data as a function of turnover along with a dashed line indicating the mean
turnover.
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Figure 9: CPIEgprn and CPIEopwpgr around Insider Trades. This figure plots the average CPIEs in event time
surrounding opportunistic insider trades. The dashed lines are two standard errors from the mean estimated over the window
[-40,-20].
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