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Abstract

The integration of algorithmic trading and reinforcement learning, known as AI-

powered trading, has significantly impacted capital markets. This study utilizes a

model of imperfect competition among informed speculators with asymmetric infor-

mation to explore the implications of AI-powered trading strategies on speculators’

market power, information rents, price informativeness, and market liquidity. Our

results demonstrate that informed AI speculators, even though they are “unaware”

of collusion, can autonomously learn to employ collusive trading strategies. These

collusive strategies allow them to achieve supra-competitive profits by strategically

under-reacting to information, even in the absence of explicit communication or coor-

dination that might breach conventional antitrust regulations. Algorithmic collusion

emerges from two distinct mechanisms. The first mechanism is collusion via price-

trigger strategies (“artificial intelligence”), while the second stems from learning biases

(“artificial stupidity”) and homogenization. The former is evident only when there

is limited price efficiency and information asymmetry. In contrast, the latter persists

even under conditions of high price efficiency or severe information asymmetry. As

a result, in a market with prevalent AI-powered trading, both price informativeness

and market liquidity can suffer, reflecting the influence of both artificial intelligence

and stupidity.
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1 Introduction

The integration of algorithmic trading and reinforcement-learning (RL) algorithms, com-
monly known as AI-powered trading, has the potential to reshape capital markets
fundamentally and presents new regulatory challenges. Notably, AI-powered trading
bots have consistently delivered remarkable profits in the equity and forex markets, show-
casing their prowess and effectiveness through established track records.1 Additionally,
supported by compelling survey evidence and industry studies,2 AI has proven highly
effective in portfolio management, with the emergence of AI advisors surpassing human
advisors in actively managed equity funds. This noteworthy trend is not confined to
quantitative hedge funds; it also finds manifestation among industry behemoths like
BlackRock and JPMorgan, further underlining the significance and widespread adoption
of AI-powered trading strategies in the investment management arena.

Consequently, policymakers, regulators, and financial market supervisors worldwide
have recognized AI as a regulatory priority, directing their attention to how AI techniques
are applied in financial markets to comprehend the associated implications and assess
potential systemic risks.3 Security and Exchange Commission (SEC) Chair Gary Gensler,
in particular, has cautioned against the possibility of AI destabilizing the global financial
market if big tech-based trading companies monopolize AI development and applications
within the financial sector. The challenge for the SEC lies in promoting competitive and
efficient markets amid the rapid adoption of AI technologies, as AI might be optimized
to benefit sophisticated speculators at the expense of other investors, potentially com-
promising competition and market efficiency. Moreover, while many AI proponents
argue that algorithms can be designed without the unconscious biases present in human
decision-making, regulators acknowledge the biases inherent in reinforcement learning
processes due to factors like artificial stupidity. They have repeatedly highlighted the
potential for AI to inadvertently amplify biases that could lurk in their designers, further
jeopardizing competition and market efficiency.

This paper aims to analyze the behavior of AI-powered trading algorithms that possess

1The Meta Trade Bot (https://metatradebot.com) serves as a recent example, widely covered by the
media. This sophisticated, cloud-hosted AI trading system has undergone meticulous development and
testing over several years, evidencing its capabilities with a commendable track record.

2According to BarclayHedge Poll, 56% of hedge fund respondents stated they employed AI or machine
learning in their investment processes. Moreover, the JPMorgan Chase Survey found that more than 50%
of the 835 institutional and professional traders surveyed believed AI technologies would exert the most
significant influence on trading in the next three years.

3For example, the SEC proposed novel rules concerning the application of AI technologies (SEC, 2023).
Additionally, the European Securities and Markets Authority (ESMA) published a report on AI utilization
within EU securities markets (Bagattini, Benetti and Guagliano, 2023).
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private information, investigating the significant effects they have on the market power
of informed AI traders and the overall price efficiency of capital markets. It is crucial to
note that AI algorithms do not merely imitate human behavior. In a similar vein to how
decision theory and psychology literature have provided insights into modeling human
behavior in an economic context, laying the foundation for modern finance research,
comprehending the dynamics of capital markets with the prevalence of AI-powered
trading algorithms requires insights into algorithmic behavior akin to the “psychology”
of machines (Goldstein, Spatt and Ye, 2021).

Specifically, we extend the influential framework introduced by Kyle (1985) by incor-
porating three novel dimensions. First, it considers the involvement of multiple informed
speculators within a repeated-game context. Second, it introduces a representative
preferred-habitat investor, whose net demand flows need to be absorbed by other agents
in the market. Third, the model introduces a market maker who takes into account both
inventory and pricing error, going beyond the limited focus on price error alone, as seen
in Kyle (1985). By combining theoretical rigor with practical relevance, our model serves
as a valuable laboratory for exploring the profound implications of AI-powered trading
strategies on the market power of informed traders and price informativeness. Our main
focus is to utilize Q-learning algorithms as a proof-of-concept illustration of algorithmic
collusion and its consequent effects on price informativeness. Q-learning algorithms,
known for their simplicity, transparency, and economic interpretability, have provided the
foundation for various variants of reinforcement learning procedures that have driven
significant advancements in the field of AI.

In our experimental framework, informed AI speculators utilize Q-learning algorithms
to drive their trading decisions. Our study includes multiple informed AI speculators,
a representative preferred-habitat investor, a continuum of atomistic and homogeneous
noise traders, and a market maker. The market maker updates its belief about the
asset’s fundamental value by closely monitoring the total order flows generated by
both informed AI speculators and noise traders. This belief formation process relies on
“historical data” encompassing past total order flows and corresponding asset values.
Furthermore, the market maker employs a statistical learning approach to understand
the demand curve of the representative preferred-habitat investor. This understanding
is achieved by analyzing historical data that includes past order flows of the preferred-
habitat investor and corresponding market prices of the asset. Consequently, the market
maker utilizes a data-driven procedure to adaptively construct its conditional expectation
of the asset’s value and its estimate of the preferred-habitat demand curve. Remarkably,
our findings indicate that this data-driven pricing rule converges autonomously to a
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pricing rule that closely resembles the hypothetical scenario where the market maker
possesses rational expectations, is knowledgeable about the preferred-habitat demand
curve, and comprehends the collusive behavior among informed AI speculators in the
market. This observation highlights the effectiveness of the data-driven approach in
achieving pricing consistency despite the presence of complex market dynamics involving
informed AI speculators and the preferred-habitat investor.

To ascertain whether informed AI speculators’ behaviors exhibit collusion due to
the intelligence of the algorithms, we begin by analyzing the fundamental theoretical
properties of tacit collusion. This analysis assumes that both the informed speculators and
the market maker possess rational expectations and have a comprehensive understanding
of the preferred-habitat demand curve. We highlight how tacit collusion changes across
diverse market structures and information environments. This theoretical investigation
enables us to establish a baseline understanding of collusive behavior in the presence
of asymmetric information and the market maker’s endogenous strategic pricing rules.
Furthermore, it lays the groundwork for our experimental study on the AI trading behav-
ior, wherein we assess whether the observed collusion of informed AI speculators aligns
with the theoretical predictions under rational expectations and perfect knowledge of the
preferred-habitat demand curve. As a particularly noteworthy contribution, we establish a
novel theory on the impossibility of collusion under information asymmetry. This theory
presents a distinctive and intuitive perspective, emphasizing that informed speculators
cannot exploit pricing errors to achieve collusive outcomes, given the already high level of
efficiency in prices that accurately reflects the fundamental value. The value of this theory
lies in its theoretical insights and novelty, as it illuminates a distinct mechanism separate
from existing theories on the impossibility of collusion under information asymmetry in
the context of product market competition, as previously posited by Abreu, Milgrom and
Pearce (1991) and Sannikov and Skrzypacz (2007).

Furthermore, as another theoretical contribution, our research demonstrates that in
scenarios where preferred-habitat investors play a substantial role in price formation,
resulting in prices that are not highly efficient, tacit collusion among informed speculators
can be sustained through the use of price-trigger strategies. The effectiveness of these
strategies is contingent upon the level of information asymmetry in the market, which
should not be overly severe, and the number of informed speculators, which should not
be excessively large. In addition, we show that collusion capacity increases and price
informativeness reduces, when the number of informed speculators drops, information
asymmetry reduces, the subjective rate of time preference (“impatience”) declines, or
preferred-habitat demand elasticity rises.
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Our numerical findings provide compelling evidence that informed AI speculators can
collude and achieve supra-competitive profits by strategically manipulating excessively
low order flows, even in the absence of explicit coordination that would constitute an
antitrust infringement. The significance of information exchange in collusion among
multiple firms operating within a market has been well-established in existing research in
experimental economics and game theory. To demonstrate this key idea, we intentionally
focus on relatively naive Q-learning algorithms that solely rely on one-period-lagged
asset prices, without incorporating more extensive lagged data or their own order flow
information. Remarkably, our study illustrates that these algorithms can intelligently
communicate and collaborate using just one period of historical prices, when the trading
environment is excessively complex relative to the AI algorithms. These algorithmic
collusion behaves exactly like what the theory would predict across diverse market
structures and information environments. Even more strikingly, in the scenarios where
the trading environment is too challenging or complex for the AI algorithms, informed
AI speculators can still collude and achieve supra-competitive profits by manipulating
excessively low order flows, as long as the algorithms are equally naive. Therefore,
the emergence of algorithmic collusion can be attributed to two distinct sources or
mechanisms.

The first mechanism, known as algorithmic collusion through price-trigger strategies
or collusion due to “artificial intelligence,” bears resemblance to its theoretical counterpart
– collusion through price-trigger strategies – when both the informed speculators and the
market maker possess rational expectations and have a comprehensive understanding
of the preferred-habitat demand curve. When one informed AI speculator deviates
from the agreed collusive order flow level by increasing its magnitude intentionally
or randomly, the asset price reacts unfavorably for the other informed AI speculator.
Consequently, they seek to optimize their own performance by selecting a different order
flow level, often leading to a more aggressive approach. This, in turn, negatively impacts
the deviating informed AI speculator. While the underlying mechanisms between the
algorithmic collusion and the economic collusion may differ, despite that both are through
price-trigger strategies, the resulting patterns exhibit notable similarities. At the heart
of both, the punishment threat effectively serves as a deterrent to discourage individual
speculators from breaking the collusion and pursuing higher profits.

Algorithmic collusion through price-trigger strategies introduces a paradoxical situa-
tion regarding price informativeness. This paradox arises because algorithmic collusion
through price-trigger strategies relies on the informativeness of prices, specifically the
ability of an informed AI speculator to deduce the order flows of other informed AI
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speculators from observed prices. When price informativeness is high, it becomes easier
for an informed AI speculator to accurately infer the order flows of others, thus facilitating
algorithmic collusion. The paradox emerges because the presence of strong price informa-
tiveness, where prices are sensitive to new information and are not primarily driven by
noise trading flows, makes it simpler for informed AI traders to discern each other’s order
flows. This heightened ability to deduce others’ actions strengthens collusion among the
speculators. However, as collusion becomes stronger, it compromises the overall price
informativeness of the market. The collusion among informed AI speculators distorts
the information content of prices, reducing their ability to accurately reflect underlying
fundamentals and impeding the efficiency of price formation. Consequently, in a capital
market where AI-powered trading is prevalent and algorithmic collusion through price-
trigger strategies exists, perfect price informativeness or perfect price efficiency becomes
unattainable.

The second mechanism, referred to as algorithmic collusion through learning bias
(sometimes termed “artificial stupidity”)4 and homogenization, relies upon a hub-and-
spoke conspiracy.5 Despite the learning bias originating from the algorithms’ intrinsic
imperfections, informed speculators, even while ostensibly competing, may exploit
these shared biased algorithms to sustain supra-competitive profits, as a form of this
hub-and-spoke conspiracy. Johnson and Sokol (2021) underscore the prevalence of
this “hub-and-spoke” AI-driven algorithmic collusion in the context of e-commerce
platforms. This conspiracy tends to surface when informed speculators base their AI-
driven trading systems on the same foundational models, potentially leading to a high
level of homogenization as noted by Bommasani et al. (2022), among others. In the
context of the Q-learning process, the emergence of learning bias is directly tied to
the inconsistency in statistical learning, which results from exploitation. This inherently
biased algorithm prompts the informed speculator to under-react to its private information
in the trading, relative to the optimal trading strategy in the non-collusive competitive
setting. Such an under-reaction can lead to the realization of supra-competitive profits,
a scenario more likely to occur if there’s a widespread homogenization in the use of
algorithms among speculators. This situation is further compounded when no speculator
seeks to gain an advantage by utilizing superior algorithms in contrast to others.

4Learning bias, also known as algorithm bias or AI bias, manifests when an algorithm produces results
that are systemically skewed due to erroneous assumptions in the learning process.

5In the setting of product market competition, a hub-and-spoke conspiracy is a metaphor used to
describe a cartel that includes a firm at one level of a supply chain, such as a buyer or supplier, who
acts like the “hub” of a wheel. Vertical agreements up or down the supply chain act as the “spokes.”
Anti-competitive effects can occur, when multiple competitors use the same AI pricing algorithm supplied
by a common service provider who acts as a hub (e.g., Johnson and Sokol, 2021).
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Related Literature. The topic of autonomous cooperation among multiple Q-learning
agents in repeated games has garnered significant attention from researchers in the artifi-
cial intelligence and computer science community over the past decades (e.g., Sandholm
and Crites, 1996; Tesauro and Kephart, 2002). Given the widespread adoption of AI tech-
nologies in pricing decisions across various marketplaces, Waltman and Kaymak (2008)
demonstrate that Q-learning firms typically learn to attain supra-competitive profits in
repeated Cournot oligopoly games with homogeneous products, even though a perfect
cartel is usually unattainable. Klein (2021) also examines the strategies employed by
algorithms in a context where firms selling homogeneous products alternate in adjust-
ing prices to support supra-competitive profits. Recently, in a noteworthy contribution,
Calvano et al. (2020) study collusion by AI algorithms in a logit model of differentiated
products, uncovering not only the existence of supra-competitive profits but also pin-
pointing how algorithms might learn to sustain collusive outcomes through grim-trigger
strategies. Expanding upon this, our paper extensively broadens the AI experimental
framework, moving from a scenario of perfect information and a static demand curve
to one imbued with asymmetric information and an strategically-determined demand
scheme. We characterize the various types of AI algorithmic collusion, whether occurring
through price-trigger strategies or through learning biases and homogenization, across
diverse market environments.

Inspired by the simulation-based studies on AI algorithmic collusion, empirical re-
search has also emerged, demonstrating that the use of AI algorithms in setting product
prices can lead to collusion, resulting in heightened supra-competitive prices (e.g., Assad
et al., 2023). Additionally, recent studies have started to focus on policy interventions
aiming to obstruct the ability of algorithms to collude, thereby ensuring the maintenance
of competitive prices. Specially, based on simulation-based studies, Johnson, Rhodes and
Wildenbeest (2023) show that platform design can benefit consumers and the platform,
but that achieving these gains may require policies that condition on past behavior and
treat sellers in a non-neutral fashion. Harrington (2019) delves into critical policy issues
surrounding the definition of collusion. Harrington (2019) provides discussions on policy
issues, such as whether collusion should necessarily entail an explicit agreement among
conspirators, or if it might be more aptly defined as the maintenance of elevated prices,
sustained by a reward-and-punishment scheme.

Our paper is one of the first few that study how the widespread adoption of AI-
powered trading strategies would affect capital markets. The work of Colliard, Foucault
and Lovo (2022) is closely related to our research as it also explores the emergence of
algorithmic collusion in capital markets through the interactions of Q-learning algorithms.
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However, there are notable differences in their focus compared to our paper. Specifically,
Colliard, Foucault and Lovo (2022) concentrate on AI-powered oligopolistic market
makers, whereas our study centers on AI-powered oligopolistic informed traders who face
perfectly competitive market makers. Colliard, Foucault and Lovo (2022) delve into how
AI-powered market makers strategically mitigate adverse selection by leveraging their
market power, which is sustained through algorithmic collusion. Their research sheds
light on the strategies employed by market makers to cope with the challenges posed by
private information and to optimize their outcomes within an oligopolistic environment.
In contrast, our paper complements the aforementioned works by examining how AI-
powered informed traders exploit their private information and exert their market power
through algorithmic collusion. We investigate the dynamics and implications of collusion
among informed traders in the presence of perfectly competitive market makers. By
focusing on the perspective of informed traders, we provide additional insights into
the strategies employed by these participants to leverage their private information and
maximize their profits through collusion.

2 Model

This model extends the influential framework introduced by Kyle (1985) by incorporat-
ing three novel dimensions. First, it considers the involvement of multiple informed
speculators within a repeated-game context. Second, it introduces a representative
preferred-habitat investor, whose net demand flows need to be absorbed by other agents
in the market (e.g., Vayanos and Vila, 2021). Third, the model introduces a market maker
who takes into account both inventory and pricing error, going beyond the limited focus
on price error alone, as seen in Kyle (1985).

By blending theoretical rigor with practical relevance, this model offers a valuable
laboratory for exploring the implications of AI-powered trading behaviors on both
algorithmic collusion and price efficiency. Importantly, the theoretical results produced
by the model act as a foundational benchmark for the characterization and categorization
of AI-powered trading behaviors in simulated experiments.

2.1 Economic Environment

Time is discrete, indexed by t = 1, 2, · · · , and it runs forever. There are I ≥ 2 risk-neutral
informed speculators, a representative noise traders, a representative preferred-habitat
investor, and a market maker. The economic environment is stationary, and all exogenous
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shocks are independent and identically distributed across periods.
In each period t, an asset is available for trading, with its fundamental value, denoted

as vt, being realized at the end of that period. Each period consists of two distinct steps:
the beginning and the end. We examine the problem in period t in reverse order. At the
end of the period, the fundamental value of the asset, vt, becomes observed by all agents.
It is drawn from a normal distribution N(v, σ2

v ). Here, v represents the mean and σ2
v the

variance of the distribution, with v set to 1 for convenience. After the realization of the
fundamental value vt, trading profits for all agents in period t are determined.

At the beginning of the period, the informed speculators, noise trader, and preferred-
habitat investor submit their order flows. Simultaneously, the market maker sets the
asset’s price, denoted as pt. Specifically, at the beginning of the period, the noise trader
submits its order flow ut to either buy ut units of the asset if ut > 0 or take a short
position of ut if ut < 0, with ut following a normal distribution N(0, σ2

u), where zero is the
mean and σ2

u is the variance. The informed speculators perfectly know the value vt, but
they are unaware of ut when submitting their order flows. The informed speculators are
indexed by i ∈ {1, · · · , I}. Each speculator i, whose order flow is xi,t, understands that
its choice of xi,t will influence pt by shifting the market clearing condition and revealing
information. The informed speculator i chooses its order flows {xi,t}t≥0 to maximize the
expected present value of the profit stream:

E

[
∞

∑
t=0

ρt(vt − pt)xi,t

]
, (2.1)

where ρ ∈ (0, 1) is the subject discount rate.

Preferred-Habitat Investor’s Demand Curve. Contrary to the uninformed speculator in
Kyle (1989), the preferred-habitat investor does not derive information about vt from pt.
Instead, this investor has a linear demand curve for the net trading flow zt that slopes
downward:

zt = −ξ(pt − v), with ξ > 0. (2.2)

The rationale behind this specification is straightforward: the preferred-habitat investor
focuses solely on the ex-ante expected fundamental value, v, and tends to buy more of the
asset when pt − v is more negative, interpreting this as a stronger indication that the asset
is undervalued. This demand curve is proportional to the spread between the ex-ante
expected fundamental value and the market price. Graham (1973) calls this spread a
safety margin.

The average holding of the preferred-habitat investor in this type of asset, denoted
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as z, is often substantial. Consequently, this leads to an approximately very small price
elasticity of demand, represented as ε ≈ ξ/z. Studies indicate that preferred-habitat
investors with low price elasticity of demand play an important role in shaping asset
prices (e.g., Greenwood and Vayanos, 2014; Vayanos and Vila, 2021; Greenwood et al.,
2023).

The demand curve of the preferred-habitat investor, as specified in equation (2.2),
mirrors that of the “long-term investor” in the model by Kyle and Xiong (2001). This
becomes clear, especially when we recognize that v is the fair value of the asset to risk
neutral investors as v = E[vt]. According to this demand curve, the preferred-habitat
investor always provides liquidity to the market. When the price falls further below the
ex-ante fundamental value, v, in the market, the preferred-habitat investor will buy more
of the asset. Analogous to Kyle and Xiong (2001), we can justify the demand curve, as
outlined in (2.2), through a rational choice made by the preferred-habitat investor under
certain assumptions. These assumptions are summarized in Lemma 1. The proof is in
Appendix A.

Lemma 1 (Demand Curve). If the preferred-habitat investor possesses exponential utility with
an absolute risk aversion coefficient of η, then the demand curve has the functional form of (2.2),
where the slope ξ is given by 1/(ησ2

v ).

Moreover, the concept of specifying exogenous net demand curves within the frame-
work of a noisy rational expectation equilibrium also shares similarities with studies
conducted by Hellwig, Mukherji and Tsyvinski (2006) and Goldstein, Ozdenoren and
Yuan (2013), among others. The fundamental idea is to capture relevant institutional
frictions and preferences in a parsimonious and tractable manner. Notably, our net
demand curves can be reinterpreted as “noisy supply curves” in these prior works by
introducing a new variable z̃t ≡ −(ut + zt). Specifically, z̃t represents the total trading
supply provided by the noisy trader and the preferred-habitat investor to absorb the
trading demand of informed speculators. The total supply z̃t follows an exogenous noisy
supply curve defined as:

z̃t = −ut + ξ(pt − v), (2.3)

where −ut can be reinterpreted as the unobservable demand or supply shock in the
context of the prior works mentioned above.

Market Maker’s Pricing Rules. Trading occurs through the market maker, whose role is
to absorb the order flow while minimizing pricing errors. The market maker observes
the combined order flow of informed speculators and noise traders, represented by
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yt = ∑I
i=1 xi,t + ut, as well as the order flow of the preferred-habitat investor, denoted by

zt. However, the market maker cannot distinguish between order flows from informed
speculators and noise traders. Instead, they can only make statistical inferences about the
fundamental value vt based on the combined order flow yt = ∑I

i=1 xi,t + ut and not on
individual order flows. The market maker sets the price pt to jointly minimize inventory
and pricing errors according to the following objective function:

min
pt

E

[
(yt + zt)

2 + θ(pt − vt)
2
∣∣∣∣yt

]
, (2.4)

where θ > 0 represents the weight the market maker places on minimizing pricing
errors. Here, E [·|yt] denotes the market maker’s expectation over vt, conditioned on the
observed combined order flow yt and its belief about how informed speculators would
behave in the equilibrium.

The market maker’s objective, as described in (2.4), captures both the inventory cost
and asymmetric information faced by the market maker. The term (yt + zt)2 represents
the inventory-holding costs borne by the market maker. Its quadratic form is adopted
for tractability, consistent with the literature (e.g., Mildenstein and Schleef, 1983). The
term θ(pt − vt)2 captures the market maker’s efforts to reduce pricing errors arising from
asymmetric information. Assigning a weight, represented by θ, to the pricing error serves
as a reduced-form method to encapsulate factors such as the benefits of dynamically
increasing the trading flows from a growing client base or competing with other trading
platforms.6 As θ approaches zero, the price pt is primarily determined by the market
clearing condition, yt + zt = 0, as in the model of Kyle and Xiong (2001). Conversely,
as θ increases towards infinity, the price pt is primarily determined by the pricing-error
minimization condition, pt = E [vt|yt], as in the model of Kyle (1985).

Given the repeated-game nature of this framework involving multiple informed
speculators, various equilibria with tacit collusion may emerge. We identify three types of
equilibria: the non-collusive equilibrium, the perfect cartel equilibrium, and the collusive
equilibrium sustained by price-trigger strategies. Throughout this analysis, we assume
that the market maker is aware of the specific equilibrium in which informed speculators
are participating. Specifically, we consider the linear and symmetric equilibrium in which

6Similarly, in the context of e-commerce platforms, it’s often assumed that the platform aims to
maximize a weighted average of per-unit fee revenues and consumer surplus (see, e.g., Johnson, Rhodes
and Wildenbeest, 2023). Assigning a weight to the consumer surplus in this context acts as a reduced-form
method. This captures aspects such as the benefits of dynamically expanding the consumer base over time
and competing with rival platforms.
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the trading strategy of the informed speculators is characterized by

xi,t = χ(vt − v), for any i = 1, · · · , I. (2.5)

The first-order condition of the minimization problem (2.4) leads to

pt =
ξ

ξ2 + θ
yt +

ξ2

ξ2 + θ
v +

θ

ξ2 + θ
E [vt|yt] ,

where E [vt|yt], according to Bayesian updating, is

E [vt|yt] = v + γyt, with γ =
Iχ

(Iχ)2 + σ2
u/σ2

v

Therefore, the pricing rule of the market maker is

pt = v + λyt, with λ =
θγ + ξ

θ + ξ2

2.2 Noncollusive Nash Equilibrium

We use the superscript N to denote the variables in the noncollusive Nash equilibrium.
At the beginning of the period t, each informed trader i solves the following problem:

xN(vt) = argmax
xi

E

[
(vt − pt) xi

∣∣∣∣vt

]
, (2.6)

where E [·|vt] is informed investor i’s expectation conditional on the privately observed
vt and its belief about how the market maker would set the price in the equilibrium
pt = pN(yt). Here, pN(·) is a pricing function that is determined in the equilibrium
characterized as follows:

pN(yt) = v + λNyt, with λN =
θγN + ξ

θ + ξ2 and γN =
IχN

(IχN)2 + (σu/σv)2 . (2.7)

And, yt is the combined order flow of informed speculators and noise traders, character-
ized by

yt = xi + (I − 1)xN(vt) + ut. (2.8)

The non-collusive Nash equilibrium can be summarized in the following proposition.
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Proposition 2.1. The order flow and price in the non-collusive Nash equilibrium are

xN(vt) = χN(vt − v) and pN(vt) = v + λNyt, respectively,

where χN and λN satisfy

χN =
1

(I + 1)λN and λN =
θγN + ξ

θ + ξ2 with γN =
IχN

(IχN)2 + (σu/σv)2

The expected profit is
πN =

(
1 − λN IχN

)
χNσ2

v

The price informativeness, denoted by IN , is defined as the logged signal-noise ratio of prices, that
is, IN = log

[(
IχN)2

(σv/σu)
2
]
.

2.3 Perfect Cartel Equilibrium

Consider a cartel that consists all I informed speculators under perfect collusion. The
cartel is a monopolist who chooses each informed speculator’s order flow to maximize
total profits. Because informed speculators are symmetric, the cartel solves the following
problem

xM(vt) = argmax
xi

E

[
(vt − pt) xi

∣∣∣∣vt

]
, (2.9)

where E [·|vt] is informed investor i’s expectation conditional on the privately observed
vt and its belief about how the market maker would set the price in the equilibrium
pt = pM(yt). Here, pM(·) is a pricing function that is determined in the equilibrium
characterized as follows:

pM(yt) = v + λMyt, with λM =
θγM + ξ

θ + ξ2 and γM =
IχM

(IχM)2 + (σu/σv)2 . (2.10)

And, yt is the combined order flow of informed speculators and noise traders, character-
ized by

yt = Ixi,t + ut. (2.11)

The perfect cartel equilibrium can be summarized in the following proposition.

Proposition 2.2. The order flow and price in the perfect cartel equilibrium are

xM(vt) = χM(vt − v) and pM(vt) = v + λMyt, respectively,
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where χM and λM satisfy

χM =
1

2IλM and λM =
θγM + ξ

θ + ξ2 with γM =
IχM

(IχM)2 + (σu/σv)2

The expected profit is
πM =

(
1 − λM IχM

)
χMσ2

v

The price informativeness, denoted by IM, is defined as the logged signal-noise ratio of prices, that
is, IM = log

[(
IχM)2

(σv/σu)
2
]
.

2.4 Collusive Nash Equilibrium

Information asymmetry is a significant characteristic of capital markets, rendering stan-
dard grim trigger strategies less viable due to the challenges in accurately observing and
monitoring each other’s actions.7 However, tacit collusion can still be sustained under
information asymmetry through price-trigger strategies with imperfect monitoring. If an
informed speculator can reliably infer other informed speculators’ total order flows from
the market price, collusive incentives can be created.

The concept of tacit collusion sustained by price-trigger strategies was first introduced
by Green and Porter (1984). Even with imperfect monitoring, agents can establish collu-
sive incentives by allowing non-collusive competition to occur with positive probability.
Abreu, Pearce and Stacchetti (1986) further characterize optimal symmetric equilibria
in this context, revealing two extreme regimes: a collusive regime and a punishment
regime featuring a non-collusive reversion. In the collusive regime, informed speculators
implicitly coordinate on order flows less aggressive than the order flows in the static
non-collusive Nash equilibrium. If the price breaches a critical level, suspicion of cheat-
ing arises, leading to a non-collusion reversion. In the punishment regime, informed
speculators trade non-collusively with low profits.

Price-Trigger Strategies. We now describe the collusive Nash equilibrium sustained by
price-trigger strategies under information asymmetry, as studied by Green and Porter
(1984). Specifically, we focus on the symmetric collusive Nash equilibrium in which
all I informed traders choose the same collusive order flow, denoted by xC(vt). Such

7Tacit collusion sustained by grim trigger strategies has been a subject of extensive research, with
pioneering work by Fudenberg and Maskin (1986) and Rotemberg and Saloner (1986), among other notable
contributors. Recent studies have delved into the impact of such tacit collusion sustained by grim trigger
strategies on pricing in capital markets (e.g., Opp, Parlour and Walden, 2014; Dou, Ji and Wu, 2021a,b; Dou,
Wang and Wang, 2023).
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trading strategies are sustained by a price-trigger strategy: Firms will initially submit
their respective order flows xC(vt), and will continue to do so until the market price falls
below a trigger price q(vt) if vt < v or goes above a trigger price q(vt) if vt > v, and
then they will trade non-collusively for the duration (we will specify this to be T − 1
periods) of a reversionary episode. At time t, the state of world is “normal,” denoted by
st = 0, if (a) vt−1 = v and st−1 = 0, or (b) pt−1 ≤ q(vt−1) and vt−1 > v and st−1 = 0, or
(c) pt−1 ≥ q(vt−1) and vt−1 < v and st−1 = 0, or (d) pt−T > q(vt−T) and vt−T > v and
st−T = 0, or (e) pt−T ≤ q(vt−T) and vt−T < v and st−T = 0. Otherwise, at time t, the state
of world is “reversionary,” denoted by st = 1. In other words, st = 0 if price trigger is not
violated at t − 1 and st−1 = 0, or price trigger is violated at t − T and st−T = 0; otherwise,
st = 1.

Similar to Green and Porter (1984), we assume that the state variable st is a common
knowledge to all agents. When st = 1, the equilibrium order flows and price are
characterized in Section 2.2. We now focus on characterizing the equilibrium order flow
xC(vt) and price pC

t for the case of st = 0.
We focus on linear policy functions for the case of st = 0:

xC(v) ≡ χC(v − v), (2.12)

pC(y) = v + λCy. (2.13)

We specify the price-trigger function q(v) using the expected price under the coordinated
trading conditional on v, denoted by pC(v) ≡ E

[
pC(y)|v

]
. Specifically, plugging (2.12)

into (2.13) and taking expectation over u, we obtain that pC(v) ≡ v + λC IχC(v − v). The
trigger price is specified as follows:

q(v) ≡
{

pC(v) + λCσuω, if v > v
pC(v)− λCσuω, if v < v,

(2.14)

where ω > 0 is a parameter that characterizes the tightness of the price trigger.
Equation (2.14) warrants further in-depth discussion on several important points.

First, when v > v, informed investors have incentives to buy a large amount of the
asset, which boosts up its price. As a result, when v > v, a meaningful price-trigger
strategy would punish the potential deviating counterparty by reverting to non-collusive
Nash equilibrium once the market price goes above certain high-level threshold q(v).
In contrast, when v < v, informed investors have incentives to sell a large amount of
the asset, which suppresses down its price. As a result, when v < v, a meaningful
price-trigger strategy would punish the potential deviating counterparty by reverting
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to non-collusive Nash equilibrium once the market price falls below certain low-level
threshold q(v). Second, there is no price threshold when v = v because no informed
investor would have incentives to trade in this case. Third, although there are infinitely
many different ways of specifying the functional form of the price threshold q(v), we focus
on a specification that ensures a linear model solution as in Kyle (1985) and statistically
meaningful. Each informed investor can infer from the price pt = pC(yt) that the noise
trading order should be ût = [pt − q(vt)]/λC. If ût is excessively positive when vt > v, say
ût > ωσu for certain constant ω > 0, the informed investor would suspect that some other
informed investors might have deviated from the implicit agreement. Analogously, if ût is
excessively negative when vt < v, say ût < −ωσu for certain constant ω > 0, the informed
investor would suspect that some other informed investors might have deviated from the
implicit agreement. Fourth, the multiplier σu ensures that the probability of price-trigger
violation is independent of the magnitude of noisy trading, σu, in the collusive Nash
equilibrium.

Given that st = 0, let JC(χi) denote each informed trader i’s expected present value
of future profits, when investor i chooses xi,t = χi(vt − v) and all other I − 1 informed
investors choose xC(vt). That is,

JC(χi) = E
[(

vt − pC(yt)
)

χi(vt − v)
]

+ ρJC(χi)P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

+ E

[
T−1

∑
τ=1

ρτπN(vt+τ) + ρT JC(χi)

]
P

{
Price trigger is violated in period t

∣∣∣∣χi, χC
}

,

(2.15)

where pC(·) is the pricing function of market makers in the collusive Nash equilibrium
and

yt = χi(vt − v) + (I − 1)xC(vt) + ut. (2.16)

The probability of price trigger violation is

P {Price trigger is not violated in period t}
= E [P (pt ≤ q(vt)|vt) 1{vt > v}] + E [P (pt ≥ q(vt)|vt) 1{vt < v}]

= E
[
Φ(σ−1

u (χC − χi)(vt − v) + ω)1{vt > v}
]
+ E

[
Φ(σ−1

u (χi − χC)(vt − v) + ω)1{vt < v}
]

,

where Φ(·) is the CDF of the standard normal distribution.
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Impossibility of Collusion When Efficient Prices Prevail. The following proposition
highlights the impossibility of achieving collusion in an environment closely resembling
the standard Kyle benchmark (Kyle, 1985), where efficient prices prevail. In this setting,
prices are determined by the market maker, who sets them approximately at the expec-
tation of the fundamental value, conditional on the observed total order flow. In other
words, efficient prices in this context are unbiased estimates of the fundamental asset
value, and they minimize pricing errors. The proof can be found in Appendix B.

Proposition 2.3 (Impossibility of Collusion When Efficient Prices Prevail). If θ is large or ξ

is small, there is no collusive Nash equilibrium that can be sustained by price-trigger strategies for
any σu/σv > 0.

Sustaining coordination through price-trigger strategies requires two conditions: (i)
price informativeness needs to be sufficiently high to ensure that there is sufficient capacity
for monitoring, which has been emphasized by Abreu, Milgrom and Pearce (1991) and
Sannikov and Skrzypacz (2007), and (ii) price impact of informed speculators’ order
flows needs to be sufficiently low to ensure that there is sufficient room for significant
informational rents.

However, in cases where θ is large or ξ is small, the environment closely resembles
the standard Kyle benchmark (Kyle, 1985). In this scenario, it is important to note that
λC becomes approximately equal to γC. Importantly, in this case, low price impact
endogenously reflects a proportionally high information asymmetry, captured by σu/σv.
Despite the aggressive trading by informed speculators induced by low price impact, the
negative effect of information asymmetry and the positive effect of informed order flows
on price informativeness balance each other out in this environment. As a result, the two
necessary conditions (i) and (ii) cannot coexist simultaneously in an environment close to
the standard Kyle benchmark environment, where efficient prices prevail.

Proposition 2.3 carries intrinsic value in terms of theoretical insights and novelty,
setting it apart from existing theories on the impossibility of collusion under information
asymmetry, as posited by Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz
(2007). These prior theories emphasize that, when prices are not informativeness, “false
positive” errors, made by triggering punishments, occur on the equilibrium path dispro-
portionately often, erasing all benefits from collusion. In contrast, Proposition 2.3 offers a
distinctive intuitive perspective, highlighting that informed speculators cannot exploit
pricing errors to achieve collusive outcomes due to the already high level of efficiency in
prices, which accurately reflect the fundamental value. The absence of substantial pricing
errors essentially renders collusion infeasible, as there exists limited scope for market
manipulation based on price discrepancies. In summary, Proposition 2.3 sheds light on
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the interplay between efficient pricing, information asymmetry, and collusive behavior
in financial markets. By demonstrating the impracticality of collusion in environments
characterized by efficient prices, our findings contribute to a deeper understanding of
market dynamics and the implications of information asymmetry on collusion strategies.

Existence of Collusion with a Significant Preferred-Habitat Investor. The following
proposition shows that collusion sustained by price-trigger strategies exists when the
preferred-habitat plays an important role in price formation (i.e., when prices are not
very efficient). But, when information asymmetry, captured by σu/σv, is too large, no
collusion can be sustained through price-trigger strategies even though prices are not
very efficient. Moreover, when the number of informed speculators, denoted by I, is too
large, no collusion can be sustained through price-trigger strategies even though prices
are not very efficient. The proof is in Appendix C.

Proposition 2.4 (Existence of Collusion with a Significant Preferred-Habitat Investor). If θ

is sufficiently small or if ξ is sufficiently large, there exists a collusive Nash equilibrium that can
be sustained by price-trigger strategies for σu/σv and I that are not too large

When σu/σv is too large, price informativeness is low, and thus price-trigger strategies
are difficult to sustain. This is because when prices are not informativeness, agents
to make “false positive” errors by triggering punishments on the equilibrium path
disproportionately often, erasing all benefits from collusion. The key idea is exactly the
same as that of Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz (2007).

If θ is small or if ξ is large, the price is primarily determined by the market clearing
condition, which is probably not an unbiased estimate of the fundamental value with
minimum pricing errors. If market clearing condition dominates, low price impact
does not reflect a proportionally high information asymmetry; as a result, it allows
informed speculators trade aggressively, thereby leading to higher price informativeness.
Consequently, the necessary conditions (i) and (ii) can hold simultaneously when the
preferred-habitat investor plays an important role in price formation.

Properties of Collusion Sustained by Price-Trigger Strategies. To characterize whether
informed speculators trade in a tacitly collusive manner based on observable outcomes, it
is necessary to derive the testable properties of collusion.

Proposition 2.5 (Supra-competitive nature of collusion). In the price-trigger collusive equilib-
rium, it holds that

πM ≥ πC > πN, (2.17)

17

Electronic copy available at: https://ssrn.com/abstract=4452704



If we define ∆C ≡ πC − πN

πM − πN , inequalities in (2.17) can be summarized as ∆C ∈ (0, 1].

Clearly, a greater ∆C signifies a higher collusion capacity. We use ∆C as a measure
for collusion capacity, as in Calvano et al. (2020). Similar measures are also adopted
in empirical studies to identify collusion capacity (e.g., Dou, Wang and Wang, 2023).
Below, we derive how collusion capacity, ∆C, and price informativeness, IC, change across
various market structures and information environments. The proof of the following
proposition can be found in Appendix D.

Proposition 2.6 (Effects of Market Structures and Information Environments). If θ is
sufficiently small or if ξ is sufficiently large, the price-trigger collusive Nash equilibrium satisfies
the following properties:

(i) I ↑ =⇒ ∆C ↓ & IC ↑

(ii) σu/σv ↑ =⇒ ∆C ↓ & IC ↑

(iii) ρ ↑ =⇒ ∆C ↑ & IC ↓

(iv) ξ ↑ =⇒ ∆C ↑ & IC ↓

3 AI-Powered Trading Algorithms

The theoretical results above hinge on the assumption that the informed speculators and
the market maker have rational expectations in the sense that they can perfectly figure out
(i) the order flows of other informed speculators (known by informed speculators but not
the market maker due to information asymmetry), (ii) the distribution of noise trading
flows, and (iii) the distribution of the fundamental value of the asset. Furthermore, both
the informed speculators and the market maker are sufficiently astute, with the specula-
tors able to communicate amongst themselves. This allows the informed speculators to
collectively reach and sustain a price-trigger strategy characterized by χC(v) and q(v),
as detailed in (2.12) to (2.14). Meanwhile, this also allows the market maker perfectly
understands the collusion scheme of these speculators.

It remains uncertain whether autonomous, model-free AI algorithms can learn to
sustain tacit collusion during trading – and thereby generate supercompetitive profits –
in line with the theoretical predictions above based on stringent, and at times, unrealistic
assumptions. Specifically, in this section, we investigate the capability of RL algorithms
to attain tacit collusion and generate supercompetitive trading profits when the machines
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have no direct knowledge of order flows from their counterparts or are oblivious to
the distribution of noisy trading flows and the fundamental values of assets. If these
algorithms demonstrate such capability, our study further delves into the mechanisms
driving these algorithmic collusive behaviors. RL is the type of machine learning in which
the algorithm learns by itself through autonomous trial-and-error experimentation.

3.1 Q-Learning

We examine Q-learning algorithms, exploring whether AI-powered trading algorithms can
autonomously achieve tacit collusion under asymmetric information, without the overt
acts of communication or agreements typically seen in competition law infringements
(Harrington, 2018). Our experimental design and methodology are similar to the studies
of Calvano et al. (2020) and Asker, Fershtman and Pakes (2022). They explored product
market competition without the complexities of asymmetric information or endogenous
pricing rules.

Our main objective is to employ Q-learning algorithms as a proof-of-concept illustra-
tion, shedding light on the potential of algorithmic collusion and its consequential effects
on the informativeness of prices. While reinforcement learning encompasses different
variants (e.g., Watkins and Dayan, 1992; Sutton and Barto, 2018), our choice to focus on
Q-learning is motivated by several reasons. First, Q-learning serves as a foundational
framework for numerous reinforcement learning algorithms, upon which many recent
AI breakthroughs are built. However, it is important to note that AI trading algorithms
currently in use may not exclusively rely on Q-learning principles. Second, Q-learning
holds substantial popularity among computer scientists in practical applications. Third,
Q-learning algorithms possess simplicity and transparency, offering clear economic in-
terpretations, in contrast to the black-box nature of many machine learning and AI
algorithms. Finally, Q-learning shares a common architecture with more sophisticated
reinforcement learning algorithms.

The fundamental rationale behind the Q-learning algorithm, akin to all reinforcement
learning approaches, rests on the principle that actions leading to higher past payoffs
are prioritized for future occurrences compared to actions generating lower profits.
Consequently, through multiple rounds of exploration and experimentation, Q-learning
algorithms can adapt their actions towards achieving optimal outcomes, even in the
absence of prior knowledge concerning the problem at hand. Below, we outline the
Q-learning algorithm employed by a generic informed speculator i ∈ {1, · · · , I}.
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Bellman Equation and Q-Function. Informed speculator i’s intertemporal optimization
problem, specified in (2.1), is usually solved recursively using the dynamic programming
approach and the associated Bellman equation:

Vi(s) = max
x∈X

{
E [(v − p)x|s, x] + ρE

[
Vi(s′)|s, x

]}
, (3.1)

where X is the set of available actions, s is the current state, s′ represents the state in the
next period, the first term on the right-hand side, E [(v − p)x|s, x], is the expected payoff
of the current period, and the second term, ρE [Vi(s′)|s, x], is the continuation value.

The Bellman equation (3.1) reflects the recursive formulation of dynamic control
problems, as described by Bellman (1954) and Ljungqvist and Sargent (2012), among
others. The value function Vi(s), a function of the state s, and its associated Bellman
equation focus on the equilibrium path. However, instead of focusing solely on the
optimal value of each state Vi(s) along the equilibrium path, we can extend our analysis
to the counterfactual value of each state-action pair, denoted as Qi(s, x), which captures
scenarios even off the equilibrium path. By definition, Qi(s, x) is the same value as what’s
in the curly brackets of the Bellman equation (3.1):

Qi(s, x) = E [(v − p)x|s, x] + ρE
[
Vi(s′)|s, x

]
. (3.2)

Intuitively, the Q-function value, Qi(s, x), can be interpreted as the quality of action
x at state s. The optimal value of a state, Vi(s), is the maximum of all the possible
Q-function values of state s. That is, Vi(s) ≡ maxx∈X Qi(s, x). By substituting Vi(s′)
with maxx′∈X Qi(s′, x′) in equation (3.2), we can establish a recursive formula for the
Q-function as follows:

Qi(s, x) = E [(v − p)x|s, x] + ρE

[
max
x′∈X

Qi(s′, x′)
∣∣∣∣s, x

]
. (3.3)

When both |S| and |X| are finite, the Q-function can actually be represented as an
|S| × |X| matrix, which is often referred to as the Q-matrix.

State Variables. State variables, st, are essential for characterizing the recursive relation
presented in equation (3.3). While the choice of state variables is not unique, in principle,
st can encompass any information that informed AI speculator i has observed up to the
beginning of period t. This includes both public and the private information available
to the speculator. We utilize the smallest possible set of state variables in st that can
generate tacit collusion sustained by price-trigger strategies. Drawing from the insights

20

Electronic copy available at: https://ssrn.com/abstract=4452704



in Section 2.4, we include the market price of the asset from the preceding period t − 1,
denoted by pt−1, as part of st. We incorporate vt instead of vt−1 in the state variable st

because informed AI speculators engage in trading activities in period t after observing
vt at the beginning of period t, thereby necessitating the inclusion of vt as part of the
state variable in period t. Consequently, the state variable st is defined as st ≡ {pt−1, vt}.
Put simply, we equip the informed AI speculator with a one-period memory to trace
history for decision-making, similar to the approach in Calvano et al. (2020). One could
also include the informed AI speculator’s own lagged order flow xi,t−1, a piece of private
information only known by informed AI speculator i, and even more lagged asset prices
and order flows, as a state variable. In our simulation experiments, we observed that
enlarging the state variable st augments the degree of tacit collusion among informed
AI speculators, leading to higher trading profits. Thus, our deliberate choice to solely
incorporate pt−1 and vt sets a stringent bar for the Q-learning algorithms to reach tacit
collusion within our economic environment. Furthermore, the Q-learning algorithm with
state variables st ≡ {pt−1, vt} exhibits a convergence speed significantly faster than those
incorporating a more extensive list of state variables.8

Q-Learning Algorithm. If informed AI speculators possessed knowledge of their Q-
matrices, determining the optimal actions for any given state would be straightforward.
In essence, Q-learning algorithms serve as methods to estimate this Q-matrix without
knowing the underlying distribution E [·|s, a] or observing sufficient off-equilibrium pairs
(s, x) in the data. These algorithms address both challenges concurrently: They employ
Monte Carlo methods, backed by the law of large numbers, to estimate the underlying
distribution E[·|s, x], while simultaneously conducting trial-and-error experiments to
produce off-equilibrium counterfactuals.

The iterative experimentation starts from an arbitrary initial Q-matrix of informed
AI speculator i, denoted by Q̂i,0, and updates the estimated Q-matrix Q̂i,t recursively.
Observing st ≡ {pt−1, vt}, informed AI speculator i chooses its order flow xi,t, following
one of two experimentation modes, which we describe in detail below. After receiving
the total quantity of market orders, the market maker determines the price pt according
to its own pricing rules described in Subsection 3.2.

The evolution of informed AI speculator i’s state variable si,t is given by si,t+1 ≡
{pt, vt+1}, where vt+1 is randomly drawn from the distribution N(v, σ2

v ). The price pt

depends on the noise trading flow, which remains unknown to informed AI speculators
when they make decisions.

8When dealing with an extensive list of state variables, deep Q-learning algorithms become indispensable.
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The Q-learning algorithm employs a recursive update process for informed AI specu-
lator i to refine its estimated Q-matrix. The learning equation governing this update is as
follows:

Q̂i,t+1(st, xi,t) = (1 − α) Q̂i,t(st, xi,t)︸ ︷︷ ︸
Past knowledge

+ α

[
(vt − pt)xi,t + ρ max

x∈X
Q̂i,t(st+1, x)

]
,︸ ︷︷ ︸

Present learning based on a new experiment

(3.4)

where α ∈ [0, 1] captures the learning rate, st is the state that the iteration t concentrates
on, st+1 is randomly drawn from the Markovian transition probability conditional on st,
and the action variable xi,t is chosen as follows:

xi,t =

{
argmaxx∈X Q̂i,t(st, x), with prob. 1 − εt, (exploitation)
x̃ ∼ uniform distribution on X, with prob. εt. (exploration)

(3.5)

Here, Q̂i,t(s, x) is the estimated Q-matrix of informed AI speculator i in the t-th iteration,
and (vt − pt)xi,t is the trading profit in iteration t if the order flow of informed AI
speculator i is xi,t. With probability 1 − εt, the Q-learning is in the exploitation mode with
xi,t to be set as the maximizer of the estimated Q-matrix, Q̂i,t(st, x). On the other hand,
with probability εt, the Q-learning is in the exploration model with xi,t to be randomly
drawn from the uniform distribution on X.9 As t approaches infinity, the pre-specified
exploration probability εt monotonically decreases to zero.

In equation (3.4), we see that during iteration t, the estimated Q-matrix for informed
AI speculator i, denoted as Q̂i,t(s, x), undergoes an update exclusively at the state-action
pair (st, xi,t). The new value is updated to Q̂i,t+1(st, xi,t). However, all other state-action
pairs remain unchanged. In other words, Q̂i,t+1(s, x) = Q̂i,t(s, x) for cases where s ̸= st

or x ̸= xi,t. This updated value is computed as a weighted average of accumulated
knowledge based on the previous experiments, Q̂i,t(st, xi,t), and learning based on a
new experiment, (vt − pt)xi,t + ρ maxx∈X Q̂i,t(st+1, x). A key distinction between the Q-
learning recursive algorithm (3.4) and the Bellman recursive relation (3.1) lies in how they
handle expectations. Q-learning algorithm (3.4) does not form expectations about the
continuation value due to the unknown Markovian transition probability of st+1. Instead,
it directly discounts the continuation value based on the randomly realized state st+1 in
the t + 1 iteration.

It is crucial to note that the learning rate, denoted by the weight α, plays a significant
role in the Q-learning algorithm, balancing past knowledge against present learning

9For simplicity, we adopt a uniform distribution. However, a more intelligent distribution choice could
make exploration both more efficient and less costly.
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based on a new experiment. A higher value of α not only indicates a greater impact
of present learning on the Q-matrix value update but also implies a quicker forgetting
of past knowledge, potentially leading to biased learning. This can be seen from the
following expression:

Q̂i,t(st, xi,t) ≈
∞

∑
τ=0

α(1 − α)τ

[
(vt−τ − pt−τ)xi,t−τ + ρ max

x∈X
Q̂i,t−τ(st+1−τ, x)

]
︸ ︷︷ ︸

Learning based on the experiment in iteration t − τ

, (3.6)

when t is large and εt has decayed almost to 0. Specifically, when α is not close to 0, the
weights given by α(1 − α)τ decay so rapidly with τ that it jeopardizes the applicability of
the LLN.

In the presence of randomness in the underlying environment, such as the noise
traders’ order flow ut and asset value vt in our model, a sufficiently small value of α is
crucial for ensuring low bias in learning. However, a smaller value of α requires more
iterations, and thus it incurs a greater computational cost. In contrast, for a relatively
large α, it may cause the LLN to fail, thereby leading to biased learning. Moreover, if α is
excessively small relative to the decay speed of the exploration rate εt, biased learning
may arise from the insufficient exploration.

Experimentation. Conditional on the state variable st, informed trader i selects its order
flow xi,t in two experimentation modes: exploitation and exploration. To determine
the mode, we employ the simple ε-greedy method, which governs the decision-making
process of the Q-learning algorithm. Specifically, as outlined in equation (3.5), informed
trader i engages in the exploration mode with an exogenous probability εt during iteration
t, whereas with a probability of 1 − εt, the trader operates in the exploitation mode. In
the exploitation mode, informed trader i selects its order flow to maximize the current
state’s Q-value, given by xi,t = argmaxx∈X Q̂i,t(st, x). Conversely, in the exploration mode,
informed trader i randomly chooses an order flow level x̃ from the set of all possible
values in X, each with equal probability. Essentially, the exploration mode guides the Q-
learning algorithm to experiment with suboptimal actions based on the current Q-matrix
approximation, Q̂i,t.

Given that informed trader i lacks prior knowledge about its Q-matrix, it becomes
evident that sufficient exploration is crucial to increase the accuracy of approximating the
true Q-matrix, even when starting from an arbitrary initial value Q̂i,0. At a minimum,
all actions must be attempted multiple times in all states, and even more so in complex
environments. However, in addition to the computational costs associated with explo-
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ration, there exists a tradeoff. An overly comprehensive exploration scheme may have
adverse effects when multiple agents interact with one another. The random selection
of actions by one informed trader introduces noise to the other traders, impeding their
learning processes.

Exploitation, as a defining characteristic of reinforcement learning algorithms, plays a
vital role in generating collusion among trading algorithms by biasing the estimation of the
Q-matrix away from its true values. This bias leads to excessive overestimation of Q-values
for certain choices that can sustain collusive profits, while simultaneously underestimating
Q-values for other choices in X. Termed as “collusion through biased learning,” this
phenomenon shares a foundation with the fundamental concept of the “bias-variance
tradeoff” in supervised machine learning algorithms — sacrificing unbiasedness to gain
stronger identification. Although Q-learning algorithms are inherently self-oriented,
they can achieve and maintain collusive profits through interactions by overestimating
the Q-values of choices that facilitate high collusive profits. Consequently, under the
influence of the biased estimated Q-matrix, informed traders lack incentives to deviate
from collusive behavior. Such behaviors constitute a unique character of AI algorithms,
which is intrinsically different from how human traders would behave.

Exploration is not only critical for approximating the true Q-matrix but also for
informed traders to learn and sustain “collusion through punishment threat.” In each
iteration t, the randomly selected choice x̃ typically differs significantly from the exploited
choice that generates collusion profits. Thus, such deviation, triggered by exploration,
provides the only opportunity for the algorithms to learn strategies related to collusion
through punishment threat.

3.2 Pricing Rule of the Adaptive Market Maker

The market maker does not know the distributions of randomness. It stores and analyzes
“historical data” on asset value, asset price, order flow from the preferred-habitat investor,
and total order flow: Dt ≡ {(vt−τ, pt−τ, zt−τ, yt−τ)}Tm

τ=1, where Tm is a large integer. The
market maker estimates the demand curve of the preferred-habitat investor and the
conditional expectation E [vt|yt] using the following linear regression models:

zt−τ = ξ0 − ξ1pt−τ, (3.7)

vt−τ = γ0 + γ1yt−τ + ϵt−τ, (3.8)

where τ = 1, · · · , Tm. The estimated coefficients are ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t, respectively,
based on the data set Dt in period t. The pricing rule adaptively adheres to the theoretical
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optimal policy using a plug-in procedure:

pt(y) = γ̂0,t +
θγ̂1,t + ξ̂1,t

θ + ξ̂2
1,t

y, (3.9)

where θ is market maker’s own choice. Therefore, the market maker is adaptive using
simple statistical models.

3.3 Repeated Games of Machines

At t = 0, each informed trader i ∈ {1, · · · , I} is assigned with an arbitrary initial Q-matrix
Q̂i,0 and state s0. Then, the economy evolves from period t to period t + 1 as follows:

(1) Informed speculator i draws a random value that determines whether it will be in
the exploration mode with probability εt or the exploitation mode with probability
1 − εt in period t. The random values drawn by different informed AI speculators
are independent. Subsequently, each informed AI speculator i submits its own order
flow xi,t.

(2) Noise traders, as a group, submit their order flow ut, which is randomly drawn
from a normal distribution N(0, σ2

u).

(3) Market makers observe the “historical data” Dt ≡ {vt−τ, pt−τ, zt−τ, yt−τ}Tm
τ=1 and

estimate the optimal pricing rule according to (3.7) – (3.9).

(4) Each informed AI speculator i realizes its profits (vt − pt)xi,t and updates its Q-
matrix according to equation (3.4).

(5) At the start of period t+ 1, the state variable for each informed AI speculator evolves
to st+1 = {pt, vt+1}. Here, vt+1 is independently drawn from N(v, σ2

v ) and it is
independent of any other variables.

The interactions of informed AI speculators and an adaptive market maker, together
with the randomness caused by noise traders and stochastic asset values in the back-
ground, make the stationary equilibrium difficult to achieve. The underlying economic
environment we study is substantially more complex than that of Calvano et al. (2020)
whose setting does not have randomness, information asymmetry, or endogenous pricing
rules. As noted by Calvano et al. (2020), the player’s optimization problem is inherently
nonstationary when its rivals vary their actions over time due to experimentation or
learning. There is no theoretical guarantee that Q-learning agents will settle on a stable
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outcome, nor that they will correctly learn an optimal policy. However, we can always
verify this in our simulations ex post to ensure that our analyses are conducted based on
the stationary equilibrium.

4 Design of Simulation Experiments

Theoretical analysis of the Q-learning programs playing repeated games is generally not
tractable. Rather than applying stochastic approximation techniques to AI agents, we
follow Calvano et al. (2020) by simulating the exact stochastic dynamic system a large
number of times to smooth out uncertainty.

Motivated by our theoretical framework, we focus on the experimental economic
environment that consists of a group of I ≥ 2 symmetric informed traders, a representative
preferred-habitat investor, a market maker, and a representative noise trader.

4.1 Discretization of State and Action Space

Because Q-learning requires a finite state and action space, we choose the following
grids for the state variable st ≡ {pt−1, vt} and action variable xi,t. For computational
efficiency, we approximate the normal distribution N(v, σv) using a sufficiently larger
number of nv grid points, V = {v1, · · · , vnv}. Our discretization ensures that these nv

grid points have equal probabilities but are unequally spaced. Specifically, the probability
of each grid point is Pk = 1/nv. The locations of grid points are chosen based on
vk = v + σvΦ−1((2k − 1)/(2nv)) for k = 1, · · · , nv, where Φ−1 is the inverse cumulative
density function of a standard normal distribution. The mathematical property of Φ−1

implies that grid points around the mean v are closer to each other than those far away
from the mean. Because the probabilities of all nv grid points of vt are the same, the
speed of convergence is significantly increased.10

10All the results are robust to the use of alternative methods to discretize the state variable vt. For
example, one commonly used method is to use nv equally spaced points over a sufficiently large interval,
e.g., [v − 6σv, v + 6σv]. The probability of each grid point is different, computed based on the probability
mass function of the normal mass function, i.e., Pk = exp

(
−(k − v)2/(2σ2

v )
)

for k = 1, · · · , nv. Compared
to the discretization method we use, this alternative method yields similar quantitative results but has
a much slower convergence. The reason is that it assigns very small probabilities to the left-most and
right-most grid points. As a result, the Q-matrix’s cells far away from the mean v are updated at much
lower frequencies than those closer to the mean. An infrequent update for the cells far away from the
mean in turn requires many more updates for other cells of the Q-matrix to stabilize. Thus, the global
convergence speed is reduced significantly due to the buckets effect. In fact, as nv → ∞, the two alternative
methods can both perfectly capture the theoretical distribution of vt but yield vastly different convergence
speed for the Q-learning programs.
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Following the guidelines offered by Calvano et al. (2020), we construct the discrete grid
points for informed traders’ order xi,t based on their optimal actions in the noncollusive
Nash equilibrium and perfect cartel equilibrium. According to our model in Section
2, the order values in the two equilibria are given by xN = (v − v)/((I + 1)λ) and
xM = (v− v)/(2Iλ). We specify informed traders’ action space by discretizing the interval
[xM − ι(xN − xM), xN + ι(xN − xM)] for v > v and [xN − ι(xM − xN), xM + ι(xM − xN)]

for v < v into nx equally spaced grid points, i.e., X = {x1, · · · , xnx}. The parameter ι > 0
ensures that firms can choose quantities beyond the theoretical levels corresponding to
the noncollusive Nash equilibrium and perfect cartel equilibrium. As the action space is
discrete, the exact quantities corresponding to the perfect cartel equilibrium may not be
feasible. Despite this, our simulations show that firms can collude with each other to a
large degree.

The grid points of price pt are similarly chosen as those of xi,t, except for considering
the impact of the representative noise trader on prices. Specifically, in our numerical
experiments, the noise trader’s order is drawn randomly from the normal distribution
N(0, σu), without imposing any discretization or truncation. In our theoretical framework
in Section 2, market makers set the price according to the total order flow yt, which is the
sum of informed traders’ order ∑I

i=1 xi,t and the noise trader’s order ut. Because ut follows
an unbounded normal distribution, the theoretical range of the price pt is unbounded. To
maintain tractability, in our numerical experiments, we set the upper bound at pH = v +

λ(I max(xM, xN) + 1.96σu) and the lower bound at pL = v + λ(I min(xM, xN)− 1.96σu),
corresponding to the 95% confidence interval of the noise trader’s order distribution,
N(0, σu). The grid points of pt are chosen by discretizing the interval [pL − ι(pH −
pL), pH + ι(pH − pL)] into np grids, i.e., P = {p1, · · · , pnp}.

4.2 Initial Q-Matrix and States

We adopt the initialization method of Calvano et al. (2020) by setting the initial Q-matrix
at t = 0 using the discounted payoff that would accrue to informed trader i if the other
informed traders randomize their actions uniformly over the grid points defined by
X.11 Moreover, we consider zero trading orders from the representative noise trader,

11In reinforcement learning algorithms, another common strategy to initialize the Q-matrix is to use
optimistic initial values. That is, initializing the Q-matrix with sufficiently high values so that subsequent
iterations tend to reduce the values of the Q-matrix. This approach enables Q-learning algorithms to visit all
actions multiple times, resulting in early improvement in estimated action values. Thus, setting optimistic
initial values are in some sense equivalent to adopting a thorough exploration over the entire action space
early in the learning phase and then exploitation later on. Following this heuristic argument, we verify that
adopting higher initial values for the Q-matrix has little effect on the quantitative results after informed
traders’ Q programs fully converge.
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corresponding to the expected value of the distribution N(0, σ2
u). Specifically, for each

informed trader i = 1, · · · , I, we set the initial Q-matrix Q̂i,0 at t = 0 as follows:

Q̂i,0(pm, vk, xn) =
∑x−i∈X [vk − (v + λ(xn + (I − 1)x−i))] xn

(1 − ρ)nx
, (4.1)

for (pm, vk, xn) ∈ P×V×X.
The initial states of our simulation, s0 = {p−1, v0}, are randomly chosen. Specifically,

the value of v0 is drawn randomly from the discretized distribution of asset values, V.
The variable p−1 is randomized uniformly over the grids points of price, P.

4.3 Specification of Learning Modes

Following Calvano et al. (2020), we adopt an exponentially time-declining state-dependent
exploration rate for informed traders,

εt(vk)
= e−βt(vk), (4.2)

where the parameter β > 0 governs the speed that informed traders’ exploration dimin-
ishes over time and the variable t(vk) captures the number of times that the exogenous
state vk ∈ V has occurred in the past.12 The specification of t(vk) implies that the ex-
ploration rate is state dependent, which ensures that informed traders can sufficiently
explore their actions for all grid points of the exogenous state variable vt.

The specification (4.2) implies that initially, Q-learning programs are almost always in
the exploration mode, choosing actions randomly. However, as time passes, Q-learning
programs gradually switch to the exploitation mode.

4.4 Parameter Choice

The parameters used in our numerical experiments can be categorized into three groups
according to their roles. The environment parameters are the parameters that characterize
the underlying economic environment in our experiments. Importantly, the values of
most of these parameters are neither known to informed traders nor to the market
maker.13 They instead adopt Q-learning algorithms to learn how to make decisions in an

12In principle, we can allow informed traders to choose their exploration rate conditional on the realized
value of vt because they perfectly observe vt, which is one of their state variables st = {pt−1, vt}.

13An exception is ρ and θ. The parameter ρ is known to informed traders as this parameter captures
their own discount rates. The parameter θ is known to the representative market maker as this is their own
choice.
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unknown environment. The simulation parameters are the parameters that determine our
numerical experiments, such as the number of discrete grid points, simulation sessions,
etc. The hyperparameters are the parameters that control the machine learning process.
Below, we describe the choice of parameters for each category.

Environment Parameters. Across all simulation experiments, we set v = 1, σv = 1, and
θ = 0.1. The parameter v determines the expected value of vt, and thus we normalize
its value to unity without loss of generality. The parameter σv plays a similar role as σu

because what matters in our theoretical framework in Section 2 is the ratio σu/σv. We
thus normalize the value of σv to unity. The parameter θ determines the extent to which
the market maker focuses on price discovery. We find that the implications of different
values of θ can be analyzed similarly by varying the value of ξ. Thus, for simplicity, we
fix the value of θ at 0.1 throughout our simulation experiments.

In the baseline economic environment, we set I = 2, σu = 0.1, ρ = 0.95, and ξ = 500.
We extensively study the implications of different values for these parameters. Specifically,
we consider different number of informed traders ranging from I = 2 to I = 6, different
levels of background noise ranging from σu = e−5 to σu = e5, different discount rates
ranging from ρ = 0.5 to ρ = 0.95, and different values of ξ ranging from ξ = 0 to ξ = 500.

Simulation Parameters. Following Calvano et al. (2020), we set ι = 0.1 so that informed
traders can go beyond the theoretical bounds of actions by 10%. We choose nx = 15 and
np = 31. These grid points are sufficiently dense to capture the economic mechanism
we are interested in. Importantly, our choice of np ≈ 2nx ensures that, all else equal, a
one-grid point change in one informed trader’s order will result in a change in price pt

over the grid defined by P. If the grid defined by P is coarser, informed traders will not
be able to detect small deviations of peers even in the absence of noise, which in turn
significantly lowers the possibility of algorithmic collusion through punishment threats.

We use nv = 10 grid points to approximate the normal distribution of vt. Under

our discretization, the standard deviation of vt is σ̂v =
√

∑N
k=1 P(vk)(vk − v)2 = 0.938,

which is close to the theoretical value σv = 1. In the remainder of this paper, the
theoretical benchmarks of noncollusive Nash equilibrium and perfect cartel equilibrium
are computed using σ̂v, to be consistent with the discretization of vt adopted in our
simulation experiments.

All the results of this paper are robust if we choose a larger nv, nx, np, or ι, as long
as the hyperparameters, α and β, are adjusted accordingly to ensure sufficiently good
learning outcomes. However, the cost of using denser grids is that significantly longer
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time would be required for Q-learning algorithms to fully converge to limit strategies.
We set Tm = 10, 000 so that market makers store sufficiently long time-series data to

estimate the linear regressions (3.7) and (3.8). In our simulation experiments, we verify
that the estimates of ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t can accurately recover the preferred-habitat
investor and the conditional expectation E [vt|yt]. Increasing the value of Tm will not
change any quantitative results, but it adds more computation burden.

For each experiment with a particular choice of environment parameters, we simulate
the Q-programs by N = 1, 000 times. All the random initial states and shocks (i.e.,
vt, ut, and exploration status of each informed trader for all t ≥ 0) are independently
drawn from identical distributions across the N simulation sessions of the experiment. In
principle, the results of different experiments can differ both because of the difference in
environment parameters and the difference in the realized values of random variables. To
ensure that comparisons across different experiments are not contaminated by the latter,
we generate a large set of random variables for all N simulation sessions offline and store
in the high-powered-computing server. The same set of random values is used when we
compare results across experiments in Sections 5 and 6.

Hyperparameters. The hyperparameters that control the learning process of Q-programs
are set at α = 0.01 and β = 10−5. All results are robust to choosing different values of α

and β so long as they are in the reasonable range that ensures sufficiently good learning
outcomes. The implications of α and β for achieving collusive outcomes are discussed
extensively by Calvano et al. (2020). Our baseline choice of β implies that any action
xk ∈ X is visited purely by random exploration by 1/[(1− exp(−10−5))nx] = 6, 666 times
on average before exploration completes.14

4.5 Convergence

Strategic games played by Q-learning algorithms do not have general convergence results.
To verify convergence, Calvano et al. (2020) adopt a practical criterion by checking whether
each player’s optimal strategy does not change for 100,000 consecutive periods. Note that
convergence is determined by the stationarity of players’ optimal strategies rather than
the stationarity of players’ learned Q-matrices. In fact, in a stochastic environment, the Q-
matrix can never remain unchanged because randomly realized shocks will always result
in an update for some cells of the Q-matrix. However, the slight update in the Q matrix

14We do not have an explicit formula for the expected number of times a cell in the Q-matrix being
visited by random exploration because the state variable pt−1 in st = {pt−1, vt} is also affected by noise
traders’ random order and the pricing rule adopted by market makers.
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does not necessarily result in a change in the optimal strategies. This is why convergence
in optimal strategies can be achieved in principle, even in a stochastic environment with
Q-learning programs playing repeated games.

In general, setting a smaller value of α or β requires longer time for the program to
reach convergence. For example, with β = 10−5, informed traders’ Q-learning programs
are still doing exploration with 36.8% probability after 100,000 periods. It is almost by
definition that the optimal strategies are nonstationary with an exploration rate that is
far away from zero. Thus, a necessary condition for all Q-learning programs to reach
stationary optimal strategies is that exploration rate is virtually zero, say, after 1,000,000
periods. Moreover, with a small α, the Q-matrix is updated slowly when new information
arrives. As a result, informed traders can only slowly learn their optimal actions, which
are based on their learned Q-matrices. A sufficiently long time is needed to ensure the
convergence of optimal strategies.

Per discussions above, we adopt a more stringent criterion than the one used by Cal-
vano et al. (2020) by requiring all informed traders’ optimal strategies to stay unchanged
for 1,000,000 consecutive periods. All N = 1, 000 simulation sessions are simulated until
convergence. The number of periods needed to reach convergence varies considerably
across experiments depending on the particular choice of environment parameters. More-
over, even for the same experiment, the number of periods needed to reach convergence
can vary significantly across the N simulation sessions, depending on the realized values
of random variables. Among all the experiments we study, the number of periods to reach
convergence ranges from 2 million to 10 billion. To speed up computations, our programs
are written in C++, using −O2 to optimize the compiling process. The C++ program
is run with parallel computing in a cluster that consists of 9 high-powered-computing
servers, with 376 CPU cores in total. It takes about 1 to 30 mins to finish all N simulation
sessions in one experiment, depending on the number of iterations needed to reach
convergence.

4.6 Metrics Reflecting Collusive Behavior

Motivated by our theoretical framework in Section 2, we calculate three simple metrics
that can be indicative of potential collusive behavior among informed traders. The values
of all three metrics are computed in each simulation session over T = 100, 000 periods,
after informed traders’ optimal strategies fully converge to the limit strategies according
to the convergence criterion in Section 4.5.
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Collusion Capacity. As in Calvano et al. (2020), the degree of collusion can be reflected
by the Delta metric defined as follows:

∆C ≡ π − πN

πM − πN , (4.3)

where π ≡ ∑Tc+T
t=Tc

∑I
i=1 πi,t(vt, ut) is the average profits of all informed traders over

T periods after Q-learning programs reach convergence at Tc.15 The values of πN =

∑Tc+T
t=Tc

∑I
i=1 πN

i (vt, ut) and πM = ∑Tc+T
t=Tc

∑I
i=1 πM

i (vt, ut) are the average profit that each
informed trader would obtain, theoretically, in the noncollusive Nash equilibrium or
perfect cartel equilibrium, respectively. Specifically, according to the formulas in Section
2.2, conditional on the realized values of vt and ut in period t, an informed trader’s profit
in the noncollusive Nash equilibrium is

πN
i (vt, ut) =

[
vt − pN(IxN(vt) + ut)

]
xN(vt), for i = 1, · · · , I, (4.4)

where xN(vt) = χN(vt − v) and p(IxN(vt) + ut) ≡ v + λN(IxN(vt) + ut). Similarly,
according to the formulas in Section 2.3, conditional on the realized values of vt and ut in
period t, an informed trader’s profit in the perfect cartel equilibrium is

πM
i (vt, ut) =

[
vt − p(IxM(vt) + ut)

]
xM(vt), for i = 1, · · · , I, (4.5)

where xM(vt) = χM(vt − v) and p(IxM(vt) + ut) = v + λM(IxM(vt) + ut).
In principle, the value of ∆C should range from 0 to 1. A larger ∆C implies that

informed traders attains more supra-competitive profits. The value of ∆C can never be
larger than 1 because πM is the highest theoretically possible average profit. In fact,
because informed traders can only choose actions over discrete grids, by design, it is
not possible to obtain ∆C = 1 in our simulation experiments. However, it is possible
to achieve a ∆C below 0 under the limit strategies of informed traders. This outcome
implies that informed traders failed to learn a good approximation of the actual Q-matrix,
and as a result, they achieve average profits lower than those in the noncollusive Nash
equilibrium.

15We average over T = 100, 000 periods to smooth out the stochastic underlying economic environment,
caused by the randomness in noise traders’ order ut and the stochastic variation of the asset value vt over
time. In fact, even if the underlying economic environment is stationary, as in the experiments of Calvano
et al. (2020), Q-learning programs’ optimal limit strategies may not be time invariant. Calvano et al. (2020)
show that a large fraction of sessions displays cycles in AI agents’ behavior even after convergence. We also
find such cyclical patterns in our setting if we consider a setting without noise traders and with a constant
asset value.
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Profit Gain Relative to Noncollusion. The Delta metric is informative about collusive
behavior. However, it does not tell us the relative magnitude of supra-competitive profits.
We thus also calculate the extra profit gain relative to the profits that informed traders
would obtain in the noncollusive Nash equilibrium theoretically. Specifically, the relative
profit gain is π/πN, where π and πN are calculated similarly as those in equation (4.3).

Order Sensitivity to Asset Value. Our theoretical framework indicates that informed
traders tend to be more conservative in placing their orders if there is implicit collusion.
That is, the sensitivity of trading order xi,t to the asset value vt − v is lower when
informed traders collude more. Theoretically, informed traders’ trading order xi,t is linear,
as captured by xi,t = χC(vt − v). However, in our simulation experiments with Q-learning
programs, such linearity restriction is not imposed at all. Despite this, we find that
informed traders learn roughly linear strategies (see Figure 9). Therefore, we estimate χ̂C

based on the recorded asset value and order flow {vt, xi,t}Tc+T
t=Tc

for each informed trader
i = 1, · · · , I, by running the following linear regression:

xi,t = χC
i,0 + χC

i,1vt + ϵt. (4.6)

Consistent with our theoretical framework, we find that the estimates satisfy χ̂C
i,0 ≈ −vχ̂C

i,1
in the unrestricted regression (4.6). The estimate χ̂C

i,1 captures the sensitivity of informed
trader i’s order xi,t to the asset’s value vt under the optimal trading strategies informed
by their Q-learning programs. We further compute the average sensitivity of informed
traders as χ̂C = 1

I ∑I
i=1 χ̂C

i,1.
In our theoretical framework, it should be the case that χM ≤ χC ≤ χN. Although

no restriction is imposed on the Q-learning programs, we show in Section 6 that the
estimated χ̂C also satisfies χM ≤ χ̂C ≤ χN.

5 AI Collusion under Information Asymmetry

Our model suggests that under certain conditions, informed traders can achieve supra-
competitive profits through implicit collusion when information asymmetry is small.
In this section, we conduct simulation experiments with AI traders whose trading is
powered by Q-learning programs. We are mainly interested in four questions. First, can
AI traders learn to collude through the adoption of Q-learning programs, even if they
do not communicate with each other or possess any information about the underlying
economic environment? Second, if collusion exists, what are the mechanisms that generate
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such collusive behavior among AI traders? Third, how the pricing rule adopted by market
makers affects the trading patterns of AI traders. Fourth, what are the implications of
AI-powered trading for the price informativeness of financial markets?

In Subsection 5.1, we show that when information asymmetry is small, AI traders
achieve supra-competitive profits through implicit collusion sustained by punishment
threat. The price-trigger strategies learned by AI traders are quite similar to the those
characterized by our model. In Subsection 5.2, we show that when information asymmetry
is large, AI traders achieve supra-competitive profits due to their biased learning of the
economic environment. In fact, because collusion is achieved through biased learning,
rather than punishment threat, this result is also consistent with the model’s prediction
that implicit collusion cannot be sustained by price-trigger strategies in the presence
of large information asymmetry. In Subsection 5.3, we study the role of information
asymmetry and market makers in determining AI traders’ profits and collusive behavior.
Finally, in Subsection 5.4, we study the price informativeness of financial markets and
show that perfect price informativeness is not achievable in the presence of AI traders.

5.1 Artificial Intelligence: Collusion through Punishment Threat

In this subsection, we study AI traders’ behavior when information asymmetry is small,
with σu/σv = 0.1. We focus on the baseline economic environment described in Section
4.4. The implications of alternative values of σu/σv are studied in Subsection 5.3. In the
presence of small information asymmetry, we find that AI traders are able to achieve
supra-competitive profits. Across N = 1, 000 simulation sessions, the average value
of ∆C is about 0.73 and the average profit of AI traders is about 9% higher than the
profit in the noncollusive equilibrium. Below, we examine the mechanism that leads to
supra-competitive profits.

Price-Trigger Strategy. Motivated by our model, we examine whether the optimal
strategies learned by AI traders are consistent with the price-trigger strategy illustrated in
Section 2. To this end, we study the impulse response function (IRF) after an exogenous
shock to the asset’s price, which could be caused by the realization of random trading
flows from noise traders. Specifically, in each simulation session, based on the economic
environment that the session has converged to, we consider an exogenous shock to the
asset’s price pt in period t = 3, which changes the value of pt marginally by one grid
point of price in P. Though the exogenous change in the asset’s price pt in period t = 3
is caused by the trading flows from noise traders, to investigate whether price-trigger
strategies are adopted, the direction of the price change is made to mimic the price impact
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of a profitable deviation from AI traders. That is, the exogenous change in pt is positive
if vt > v and negative if vt < v. Both AI traders play their learned optimal strategies
and the asset’s price is determined endogenously by market makers according to their
learned pricing rule in the subsequent periods, t ≥ 4.
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Note: In each simulation session, we consider an exogenous shock to the asset’s price pt in period t = 3,
which changes the value of pt marginally by one grid point of price in P. The direction of the price change
is made to mimic the price impact of a profitable deviation from AI traders. That is, the exogenous change
in pt is positive if vt > v and negative if vt < v. Both AI traders play their learned optimal strategies and
the asset’s price is determined endogenously by market makers according to their learned pricing rule in
the subsequent periods. Panel A plots the absolute percentage price deviation from the long-run mean,
i.e., |pt − E[pt]|/E[pt]. Panel B plots the two AI traders’ per-period profit deviations from the long-run
mean, i.e., (πi,t −E[πi,t])/E[πi,t] for i = 1, 2. Panel C plots the two AI traders’ absolute percentage quantity
deviations from the long-run mean, i.e., |xi,t − E[xi,t]|/E[xi,t] for i = 1, 2. All curves are average values
across N = 1, 000 sessions, where each session is independently simulated 10,000 times to smooth out the
effect of random shocks to vt and ut. We set σu/σv = 10−1. The other parameters are set according to the
baseline economic environment described in Section 4.4.

Figure 1: IRF of an exogenous price change (σu/σv = 10−1).
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In Figure 1, panel A plots the evolution of the percentage deviation of the asset’s
price pt from its long-run mean, i.e., |pt − E[pt]|/E[pt]. Panel B plots the per-period
profit deviations from the long-run mean for each AI trader, i.e., (πi,t − E[πi,t])/E[πi,t]

for i = 1, 2. Panel C plots the evolution of the absolute percentage quantity deviations
from the long-run mean for each AI trader, i.e., |xi,t − E[xi,t]|/E[xi,t] for i = 1, 2.16

In period t = 3, panel A shows that the asset’s price pt deviates from its long-run
mean by 1.2% due to the exogenous shock. Panel B shows that this exogenous price
change reduces both AI traders’ profits by 1.6% of the long-run mean. Panel C shows that
the trading quantities of both AI traders’ remain at the long-run mean because informed
traders submit their orders in period t before observing pt.

In period t = 4, panel C shows that in response to the exogenous price change in
the previous period, both traders’ orders significantly deviate from the long-run mean
by 4.2%. The AI traders’ aggressive behavior are similar to the price-trigger strategies
described in Section 2. As a result of increased trading flows from AI traders, the
percentage deviation of the asset’s price continues to increase to 4.2% of the long-run
mean (see panel A), which further enlarges both AI traders’ profit losses to −2.4% of the
long-run mean (see panel B).

In periods t ≥ 5, panel C shows that both AI traders abruptly return to the predeviation
level of quantities. As a result, both the price and profit deviation abruptly return to zero.

The patterns illustrated in Figure 1 are observed not because we take the average
over N = 1, 000 simulation sessions. In fact, we find that AI traders adopt similar
price-trigger strategies in most simulation sessions. Figure 2 plots the distribution of
the impulse responses. Although the magnitudes of quantity and price deviations differ
significantly across sessions, the [25%, 75%] and [5%, 95%] confidence intervals indicate
that price-trigger strategies are consistently adopted by AI traders.

Punishment for Deviation. According to our model in Section 2, price-trigger strategies
are implemented based on whether the price in the preceding period deviates from the
long-run mean, which could be caused by either the random orders submitted by noise
traders or the orders submitted by informed traders. Informed traders cannot distinguish

16In our model and simulation experiments, informed (AI) traders may take long (xi,t > 0) and short
(xi,t < 0) decisions depending on the sign of vt − v (see Figure 9). As vt is randomized independently
across periods and sessions, the quantities of long and short positions and the prices determined by these
positions will offset each other after taking the average. Thus, we focus on the average absolute percentage
deviations from the long-run mean when plotting the IRF for order quantities and prices. Moreover, even
after convergence, the economic environment is stochastic due to the random shocks to vt and ut. To
clearly illustrate the IRF corresponding to the optimal trading strategies of AI traders, we smooth out these
random shocks by taking the average across 10,000 independently simulated IRF for each of the N = 1, 000
simulation sessions.
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Note: The experiment is similar to that described for Figure 1. Panels A and B plot the two traders’ quantity
deviation from the long-run mean, and panels C and D plot their profit deviation from the long-run mean.
In each panel, the dotted line represents the median value, the boxes represent the 25th and 75th percentiles,
and the dashed intervals represent the 5th and 95th percentiles across N = 1, 000 sessions. Parameters are
set as in Figure 1.

Figure 2: Confidence intervals for the IRF of an exogenous price change (σu/σv = 10−1).
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the causes of price deviation under information asymmetry.
Complementary to the impulse responses to an exogenous price change caused by the

trading flows of noise traders (see Figure 1), we further study the impulse responses to
a unilateral deviation by one of the AI traders. Specifically, in each simulation session,
based on the economic environment that the session has converged to, we exogenously
force one AI trader to have a one-time deviation from its learned limit strategy in period
t = 3. The other AI trader does not detect this defect in period t = 3, and thus plays its
learned optimal strategy in period t = 3. Starting from t = 4, both AI traders continue to
play their learned optimal strategies in the subsequent periods. The one-time deviation
in period t = 3 is made to the direction that increases the contemporaneous profits of
the deviating trader (i.e., the deviating trader increases its order if vt > v and reduces its
order if vt < v). We consider a marginal deviation by one grid point of quantity in X,
which ensures that the resulting price deviation is similar to that in panel A of Figure 1
for comparison purposes.

Panel A of Figure 3 plots the evolution of the absolute percentage quantity deviations
from the long-run mean for the deviating trader and nondeviating trader, respectively,
i.e., |xi,t − E[xi,t]|/E[xi,t] and |x−i,t − E[x−i,t]|/E[x−i,t]. In period t = 3, on average, the
deviating trader’s order deviates from the long-run mean by 2.5% while the nondeviating
trader’s order remains unchanged. In period t = 4, the deviation gets punished as the
nondeviating trader behaves more aggressively, deviating its quantity from the long-run
mean by 4.2%. Note that the behavior of the nondeviating trader in panel A of Figure 3
is almost identical to that in panel C of Figure 2 because the nondeivating trader only
observes the asset’s price in the previous period rather than its peer’s trading order.

Rather than reducing the deviation amount, the deviating trader further increases
its deviation amount to 4.1% of the long-run mean in period t = 4, slightly below that
of the nondeviating trader. This form of overshooting exists for small deviations. As
shown in panel A of Figure 5, if we consider a large deviation by three grid points
of quantity, the deviating trader would reduce its quantity deviation in period t = 4.
Regardless of whether its a small or a large deviation, both AI traders abruptly return to
the predeviation level of quantities thereafter.

Panel B of Figure 5 plots the per-period profit deviations from the long-run mean
for each AI trader, i.e., (πi,t − E[πi,t])/E[πi,t] and (π−i,t − E[π−i,t])/E[πi,t]. In period
t = 3, the forced deviation increases the deviating trader’s profit by 0.8% of the long-run
mean while reduces the nondeviating trader’s profit by 1.6%. In period t = 4, due to the
punishment strategy implemented by the nondeviating trader, the profit of the deviating
trader drops substantially from 0.8% to −2.4% of the long-run mean. The expected
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Note: In each simulation session, we exogenously force one AI trader to have a one-time deviation from its
learned optimal strategy in period t = 3 while the other AI trader continues to play its learned optimal
strategy in period t = 3. Starting from t = 4, both AI traders continue to play their learned optimal
strategies in the subsequent periods. The one-time deviation in period t = 3 is made towards the direction
that increases the contemporaneous profits of the deviating trader (i.e., the trader increases its quantity if
vt > v and reduces its quantity if vt < v). We consider a marginal deviation by one grid point of quantity in
X. Panel A plots the two AI traders’ absolute percentage quantity deviations from the long-run mean, i.e.,
|xi,t − E[xi,t]|/E[xi,t] and |x−i,t − E[x−i,t]|/E[x−i,t]. Panel B plots the per-period profit deviations from the
long-run mean (πi,t − E[πi,t])/E[πi,t] and (π−i,t − E[π−i,t])/E[πi,t]. Panel C plots the absolute percentage
price deviation from the long-run mean, i.e., |pt − E[pt]|/E[pt]. All curves are average values across
N = 1, 000 sessions, where each session is independently simulated 10,000 times to smooth out the effect of
random shocks to vt and ut. We set σu/σv = 10−1. The other parameters are set according to the baseline
economic environment described in Section 4.4.

Figure 3: IRF of a unilateral marginal deviation (σu/σv = 10−1).
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discounted profit of deviation is about −1.6% of the long-run mean for the deviating
trader, indicating that the forced deviation is not a profitable strategy.

Panel C of Figure 3 plots the evolution of |pt − E[pt]|/E[pt], the percentage deviation
of the asset’s price from its long-run mean. In period t = 3, due to the forced deviation,
the asset’s price deviates from its long-run mean by 1.2%. In fact, this is the force that
triggered both AI traders to change their decisions (i.e., order quantities) in period t = 4
because pt−1 is the only state variable that records the forced deviation in the last period
t = 3. The asset’s price continues to increase to 4.2% in period t = 4 because of the
overshooting in the deviating trader’s quantity, and then abruptly returns to the long-run
mean in period t = 5 as the two AI traders revert to their predeviation behavior.

Figure 4 plots the distribution of the impulse responses and shows that the deviating
trader gets punished through price-trigger strategies in most simulation sessions. To
further show robustness, in panels A to C of Figure 5, we present the IRF of a unilateral
large deviation by three grid points of quantity in X in the experiment with σu/σv = 10−1.
The nondeviating trader still implements a punishment strategy by substantially increase
its order in period t = 4 to punish the deviating trader’s defect in period t = 3. The
expected discounted profit of deviation is negative for the deviating trader. In panels
D to F of Figure 5, we present the IRF of a unilateral marginal deviation by one grid
point of quantity in X in the experiment with σu/σv = 1, in which the two AI traders
achieve a small amount of supra-competitive profits with an average value of ∆C = 0.2.
Even with such a low level of supra-competitive profits, we still see that the nondeviating
trader implements price-trigger strategies to deter deviations. However, the quantitative
magnitude of both deviations and punishments in panels D to F of Figure 5 are smaller
than those in Figure 3. This is consistent with a lower average ∆C and the theoretical
insight that collusive behavior becomes more difficult to achieve when informed traders
are less able to monitor peers’ deviations in the presence of larger information asymmetry.

Further Discussions. Except for the duration of punishment, the impulse responses
presented in Figures 1, 3 and 5 are quite consistent with the price-trigger strategies
described in our model in Section 2. The patterns observed in our experiments coincide
with our theoretical predictions that when information asymmetry is sufficiently small,
informed traders are able to collude with each other by adopting price-trigger strategies to
deter deviations. Moreover, collusion is more difficult to attain as information asymmetry
becomes large.

Q-learning programs can learn price-trigger strategies because of experimentations.
When one AI trader switches to the exploration mode in the process of learning, it would
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Note: The experiment is similar to that described for Figure 3. Panels A and B plot the two traders’ quantity
deviation from the long-run mean, and panels C and D plot their profit deviation from the long-run mean.
In each panel, the dotted line represents the median value, the boxes represent the 25th and 75th percentiles,
and the dashed intervals represent the 5th and 95th percentiles across N = 1, 000 sessions. Parameters are
set as in Figure 3.

Figure 4: Confidence intervals for the IRF of a unilateral marginal deviation (σu/σv =
10−1).
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Note: The experiment is similar to that described for Figure 3. The left three panels consider a unilateral
large deviation by three grid points of quantity in X in the experiment with σu/σv = 10−1. The right three
panels consider a unilateral marginal deviation by one grid point of quantity in X in the experiment with
σu/σv = 1. The other parameters are set according to the baseline economic environment described in
Section 4.4.

Figure 5: Robustness of IRF: large deviation or high information asymmetry (σu/σv = 1).
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choose actions randomly. Such behavior is effectively similar to defect from an implicit
collusive agreement, if any. When this occurs, the two AI traders would be trapped in the
punishment phase until further explorations by one or both AI traders occur. AI traders
are able to learn coordination strategies because exploration modes will eventually stop,
a necessary condition for the simulation session to converge.

Our finding that AI traders are able to learn price-trigger strategies is similar to the
finding of Calvano et al. (2020) that AI traders learn grim trigger strategies to sustain
collusion in a perfect-information environment with Bertrand competition. However,
different from Calvano et al. (2020), after punishment in t = 4, rather than gradually
returning to predeviation behavior, the AI traders in our experiments abruptly return to
their predeviation behavior. This difference is mainly due to the information asymmetry
introduced by noise traders (i.e., σu > 0) and the stochastic asset’s value (i.e., σv > 0).
Both model ingredients make informed traders more difficult to achieve the collusion
sustained by punishment threat, not just in the simulation experiments with AI traders,
but also in the model in Section 2.

In particular, our economic environment differs from that of Calvano et al. (2020) in
two main aspects. First, we consider a stochastic environment where the value of assets
vt in each period is drawn from an i.i.d. distribution. In this stochastic setting, it becomes
more difficult for the two AI traders to learn punishment strategies to sustain collusion
than in the deterministic setting with a constant vt.17 Second, noise traders’ random
actions generate information asymmetry to informed traders, which makes grim trigger
strategies infeasible. As a result, informed traders have to adopt price-trigger strategies to
collude. In both the model with rational-expectation informed traders and the simulation
experiments with AI traders, the ratio σu/σv plays a crucial role in determining the level
of collusion in financial markets.

The information asymmetry in our economic environment implies that peer AI traders’
lagged actions are unobservable and thus cannot be included as state variables. Thus,
as described in Section 3.1, we use the lagged asset’s price pt−1 as the state variable
in period t, rather than the lagged actions of the two AI traders. Compared to our
baseline setting with state variables st = {pt−1, vt}, we also examine the settings with
alternative specifications of state variables. First, we consider a counterfactual setting with
state variables st = {xi,t−1, x−i,t−1, vt}. This setting essentially assumes that AI traders’
can perfectly observe peers’ actions, which is close to the perfect-information setting of

17In one of the robustness checks, Calvano et al. (2020) consider stochastic demand and show that
the average ∆C is lower when aggregate demand can take two values randomly. We also find that with
stochastic vt, the average ∆C declines because it is more difficult for Q-learning programs to learn strong
punishment strategies. The decline in ∆C would be smaller if the evolution of vt exhibits a smaller degree
of randomness, either through a higher level of persistence or a less dispersed distribution.
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Calvano et al. (2020) except for including vt as an additional state variable. Second, we
consider the setting where state variables are st = {pt−1, xi,t−1, vt}. We find that under
the perfect information benchmark (i.e., σu/σv = 0) with two AI traders I = 2, these two
alternative settings have almost the same average ∆C. This is not surprising because under
the perfect information benchmark, recording xi,t−1 and pt−1 allows each AI trader to
back out its peer’s action x−i,t−1. However, with information asymmetry (i.e., σu/σv > 0),
the first setting with st = {xi,t−1, x−i,t−1, vt} yields a considerably higher average ∆C

than the other setting with st = {pt−1, xi,t−1, vt}. In addition, we find that the average
∆C in these two alternative settings is higher than that in our baseline setting. Thus,
incorporating AI traders’ lagged actions as additional state variables indeed helps AI
traders to learn collusive strategies, likely through an improved learning of punishment
strategies. However, lagged actions are not a necessary ingredient because in both our
model with rational-expectation informed traders and simulation experiments with AI
traders, including lagged price pt−1 alone can already result in a significant degree of
collusion.

5.2 Artificial Stupidity: Collusion through Biased Learning

In this subsection, we study AI traders’ behavior when information asymmetry is large,
with σu/σv = 102. Similar to Section 5.2, we focus on the baseline economic environment.

According to our model in Section 2, informed traders should find it impossible to
collude with each other in this setting with large information asymmetry. However, in
simulation our experiments, AI traders are able to achieve supra-competitive profits.
Across N = 1, 000 simulation sessions, the average value of ∆C is about 0.6 and the
average profit of AI traders is about 7.5% higher than the profit in the noncollusive
equilibrium. The profits become even higher as information asymmetry increases. Below,
we examine the mechanism that leads to such supra-competitive profits.

To begin with, we study the impulse responses to a unilateral deviation in Figure
6. Clearly, regardless of whether it is a small deviation (panels A to C) or a large
deviation (panels D to F), we do not see any punishment from the nondeviating trader.
Instead, panels A and D of Figure 6 show that the nondeviating trader’s order is virtually
unchanged and the deviating trader returns to its learned optimal trading strategy
immediately in period t = 4, which is just one period after the deviation. Panels B and E
of Figure 6 show that the deviating trader obtains an extra amount of one-period profit in
period t = 3, which causes a one-period profit loss for the nondeviating trader. Because
there is no punishment for t ≥ 4, the average percentage gains from the deviation in
terms of discounted profits is strictly positive for the deviating trader.
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Note: The experiment parameters are similar to those described for Figure 3, except for setting σu/σv = 102.
The left three panels consider a unilateral marginal deviation by one grid point of quantity in X. The right
three panels consider a unilateral large deviation by three grid points of quantity in X.

Figure 6: IRF of a unilateral deviation (σu/σv = 102).
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The collusive behavior of the two AI traders is clearly not sustained by price-trigger
strategies when σu/σv is large, which is consistent with the prediction of our model
(Proposition 2.4). We find that the seemingly collusive behavior under large information
asymmetry is caused by AI traders’ biased learning. Although deviation seems to be
profitable in terms of increasing the discounted profits, both AI traders choose not to do
this according to their learned optimal trading strategies. The reason is that AI traders’
actions are governed by their learned Q-matrix, which suggests that the (no-deviation)
strategies they are playing are already optimal and any deviations cannot be profitable.
Such behavior constitutes a unique character of AI algorithms, which is intrinsically
different from how human traders would behave.

We now explain how biased learning can lead AI traders to exhibit collusive behavior
in three steps. First, in Subsection 5.2.1, we show that biased learning is significant
when information asymmetry is large because in this case, the estimation of the Q-matrix
cannot properly accounts for the distribution of noise trader’s order ut due to the failure
of the law of large numbers. This is a generic issue of reinforcement learning algorithms.
Second, in Subsection 5.2.2, we show that due to biased learning, actions with larger
order amounts would be associated with larger unconditional variances of the estimated
Q-values. Third, in Subsection 5.2.3, we show that these actions are less likely to be
the optimal strategies adopted by AI traders after Q-learning programs converge. In
other words, biased learning would more likely lead AI traders to optimally take actions
with small order amounts, which coincide with those actions played in the collusive
Nash equilibrium. Taken together, we argue that in the presence of large information
asymmetry, collusive outcomes emerge due to AI traders’ biased learning.

The magnitude of biased learning increases with the degree of information asymmetry
(i.e., σu/σv = 0) in financial markets, along with other parameters. In Subsection 5.2.4,
we further discuss the theoretical properties of biased learning, which provide unique
predictions for us to test the relationship between biased learning and collusive outcomes
in simulation experiments.

5.2.1 Biased Learning When Information Asymmetry is Large

First, we explain that when information asymmetry is large, there is biased learning for
the Q-matrix due to the failure of the law of large numbers.

Biased learning is caused by a generic feature of reinforcement learning algorithms.
As discussed in Section 3.1, Q-learning programs cannot take expectations due to the
absence of knowledge about the underlying economic environment (e.g., the distribution
of noise ut). In each period t, the algorithm updates the value of one single cell (s, x)
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(which includes state s and action x) of the Q-matrix according to the currently realized
profit (vt − pt)xi,t (see equation (3.4)) rather than the expected profit E[(v − p)x|s, x] as
in a rational-expectation framework. Biases may exist in Q-value estimation because
updating the Q-matrix sequentially based on past realized profits may not accurately
reflect the expected profit, due to the failure of the law of large numbers.

To illustrate this point, consider a simple setting in which s is the only state of the
economy and x is the only action that trader i can play. Thus, the Q-matrix contains
exactly one cell.18. The learning process updates the Q-matrix according to Equation (3.4).
Thus, starting from the initial Q-matrix Q̂0(s, x), after T updates, the Q-matrix’s value
becomes

Q̂i,T(s, x) =α
T−1

∑
t=0

δT−1−t(vt − pt)x + δTQ̂0(s, x)

=α
T−1

∑
t=0

δT−1−t [vt − v − λ(yt − ut)] x − αλx
T−1

∑
t=0

δtut + δTQ̂0(s, x). (5.1)

where δ = 1 − α + αρ. The term αλx ∑T−1
t=0 δtut represents a stochastic term that depends

on the noise order ut, and it becomes relatively more important in determining Q̂i,T(s, x)
when information asymmetry is large, i.e., σu/σv is large. With E[ut] = 0, the estimation
for the limit value of Q̂i,T(s, x) is unbiased only if αλx ∑T−1

t=0 δtut = 0 as T → ∞19, which
occurs if δ → 1. Given ρ ∈ (0, 1), a necessary condition for δ → 1 is α → 0.20 Thus, for
any α > 0, the term αλx ∑T−1

t=0 δtut would significantly bias the estimate of Q̂i,T(s, x) when
σu/σv is sufficiently large. This is due to the failure of the law of large numbers because
in general, as T → ∞, we have αλx ∑T−1

t=0 δtut ̸= αλxE[ut] unless δ → 0.
The magnitude of biased learning depends on the importance of the term αλx ∑T−1

t=0 δtut

relative to the term α ∑T−1
t=0 δT−1−t [vt − v − λ(yt − ut)] x in equation (5.1). Obviously, bi-

ased learning is absent when three is no information asymmetry (i.e., σu/σv = 0), and
biased learning becomes more significant when σu/σv is larger. In general, the magnitude
of biased learning also depends on the parameters α, λ, and ρ. These theoretical proper-
ties provide unique predictions for us to test the relationship between biased learning

18In the more general case with many values of s and x, the logic of our explanations still applies.
However, equation (5.1) needs to be modified because the Q-learning programs do not necessarily visit and
update the same cell (s, x) in every period.

19To see why unbiasedness requires αλx ∑T−1
t=0 δT−1−tut = 0 as T → ∞, note that the Q-matrix is

essentially a precursor of the value function (i.e., Vi(s) ≡ maxx∈X Qi(s, x), see Section 3.1), which represents
the discounted “expected” profits. In our model, the noise order ut should have no direct effect on informed
traders’ “expected” profits except for affecting their trading order xi,t.

20By setting ρ = 1, we also have δ = 1. However, the choice of ρ = 1 is not feasible because the limit
value of Q̂i,T(s, x) will explode. Moreover, unlike the hyperparameter α, the parameter ρ cannot be freely
adjusted because it has an economic meaning and captures informed traders’ patience.
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and collusive outcomes in simulation experiments. We discuss them in Subsection 5.2.4.

5.2.2 Complementarity Between Informed Traders’ Order and Noise Order

Second, we show that due to biased learning, actions with larger order amounts would
be associated with larger unconditional variances of the estimated Q-values.

To begin with, we decompose the per-period profit (vt − pt)x that an informed trader
i receives when playing action x ∈ X in period t into two parts:

(vt − pt)x = [vt − v − λ(yt − ut)] x − λxut. (5.2)

The term [vt − v − λ(yt − ut)] x captures the profit determined by the asset’s fundamental
value vt and the term λxut captures the profit determined by the noise order ut. Through
the term λxut in equation (5.2), there exists complementarity between the informed
trader’s action x and the noise order ut in determining per-period profits. This comple-
mentarity implies that, actions with larger order amounts (i.e., a larger absolute value |x|)
would amplify the impact of the noise order ut.

Because the estimated Q-value is the discounted value of per-period profits realized in
the past, the complementarity between x and ut in equation (5.2) would propagate to equa-
tion (5.1), captured by the term αλx ∑T−1

t=0 δtut. In the absence of biased learning (i.e., when
δ → 1 as α → 0), for a sufficiently large T, we should have αλx ∑T−1

t=0 δtut ≈ αλxE[ut] = 0,
so that the unbiased estimate of the Q-value is not affected by the complementarity. How-
ever, as long as α > 0, we would have αλx ∑T−1

t=0 δtut ̸= 0 for a sufficiently large T, and
thus, the estimated limit Q-value is biased, due to the failure of the law of large numbers.
The biased learning implies that the estimated Q-value of an AI trader’s particular action
is path dependent, crucially depending on the realized noise order ut when the AI trader
plays this action in the past.

Thus, in the presence of biased learning, there exists complementarity between x and
ut in determining the estimated Q-value. This complementarity implies that the action
that a larger order amount would be associated with a larger unconditional variance of
its estimated Q-value, which consequently affects AI traders’ optimal trading strategies
in a way that makes the choice of large order amounts less likely.

5.2.3 Impacts of Biased Learning on Optimal Strategies

Third, we show that actions with large order amounts are less likely to be the optimal
strategies adopted by AI traders after Q-learning programs converge. In other words, bi-
ased learning would more likely lead AI traders to optimally take actions with small order
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amounts, which coincide with those actions played in the collusive Nash equilibrium.
Before discussing why biased learning makes the choice of large order amounts less

likely, it is useful to clarify although AI traders start their Q-learning programs with a mix
of the exploration mode and the exploitation mode, it must be the case that the exploration
rate drops to zero at some point in time before Q-learning programs to converge. In other
words, in a long period of time right before Q-learning programs converge, AI traders
must be in pure exploitation mode, choosing the action that maximizes the Q-value rather
than choosing the action randomly. Therefore, without loss of generality, we focus on the
exploitation mode in our discussions below.

To fix the idea, consider a simple setting in which the AI trader can take two actions
0 < xS < xL in state s, with xL being the action with a large order amount. As discussed
above, in the presence of biased learning caused by information asymmetry, there is
complementarity between x and ut in determining the estimated Q-value. Thus, relative
to the action xS, the action xL generates a large unconditional variance of the estimated Q-
value (see equation (5.1)). Let [Q(xS), Q(xS)] and [Q(xL), Q(xL)] be the 99.9% confidence
interval of the estimated Q-value for actions xS and xL, respectively. Thus, we have
[Q(xS), Q(xS)] ⊂ [Q(xL), Q(xL)]. Because the AI trader is purely in the exploitation

mode, at any time t, its action follows argmaxxS,xL

{
Q̂i,t(xS), Q̂i,t(xL)

}
.

At any time t, there are two cases, either Q̂i,t(xL) > Q̂i,t(xS) or Q̂i,t(xL) <= Q̂i,t(xS).
In the first case, for τ > [t, t′], the AI trader would keep choosing xL to update Q̂i,τ(xL)

while Q̂i,τ(xS) remains unchanged at Q̂i,t(xS). The time t′ > t is the first passage time for
Q̂i,t′(xL) <= Q̂i,t′(xS). From time t′ on, the AI trader switches from playing xL to playing
xS, and fall into the second case as described below.

In the second case, for τ > [t, t′], the AI trader would keep choosing xS to update
Q̂i,τ(xS) while Q̂i,τ(xL) remains unchanged at Q̂i,t(xL). The time t′ > t is the first passage
time for Q̂i,t′(xL) > Q̂i,t′(xS). From time t′ on, the AI trader switches from playing xS to
playing xL, and fall into the first case as described above.

These two cases alternate over time. In one simulation session, given our convergence
criterion specified in Section 4.5 (i.e., stability of optimal strategy for T = 100, 000
consecutive periods), eventually, the optimal strategy will converge to xS with probability
p and xL with probability 1− p. We have p > 0.5 because Q(xL) < Q(xS). The probability
p is higher if the action xL’s estimated Q-value has a larger probability to be in the interval
[Q(xL), Q(xS)], which happens when information asymmetry is larger (i.e., larger σu/σv

so there is more significant biased learning) or the difference in order amounts is larger
(i.e., larger xL − xS). This explains why biased learning makes the choice of large order
amounts less likely.
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According to our model in Section 2, the sensitivity of informed traders’ order flow to
the asset’s value vt is lower under collusion, i.e., χM ≤ χC ≤ χN . Because informed trader
i’s order xi,t is xi,t = χ(vt − v), its absolute order amount satisfies |xM

i,t | ≤ |xC
i,t| ≤ |xN

i,t| for
any vt, indicating that informed traders would collude if they adopt more conservative
(i.e., trading smaller order |xi,t|), rather than more aggressive, trading strategies. Taken
together, it is clear that in the presence of large information asymmetry, biased learning
leads to collusive outcomes.

5.2.4 Testable Predictions of the Biased Learning Mechanism

Per our discussions above, more collusive outcomes are generated as a result of biased
learning. As discussed in the end of Subsection 5.2.1, the magnitude of biased learning
depends on the relative importance of the term αλx ∑T−1

t=0 (1 − α + αρ)tut in equation (5.1).
Obviously, this term becomes more important in determining the estimated Q-value
when σu/σv is larger, λ is larger, ρ is smaller, or α is larger. These theoretical properties
predict that AI traders can attain higher supra-competitive profits due to a larger degree
of biased learning when σu/σv is larger, λ is larger, ρ is smaller, or α is larger.

The above unique predictions allow us to further test and understand the impacts
of biased learning on AI traders’ collusive outcomes in simulation experiments. We
briefly summarize the findings below. Consistent these predictions, first, we show that
the average ∆C across N = 1, 000 simulation sessions increases with log(σu/σv) in the
region with large information asymmetry in panel A of Figure 7. Second, we show that
conditional on large information asymmetry (e.g., log(σu/σv) = 2), reducing ξ from 500
to 1 (which results in a larger λ) leads to a larger average ∆C in panel A of Figure 7. Third,
we show that with large information asymmetry, reducing the value of ρ will lead to a
larger average ∆C in panel C of Figure 12. Finally, we show that with large information
asymmetry, a higher α would result in a lower average ∆C in panel B of Figure 14.

5.3 Role of Information Asymmetry and Market Efficiency

In this subsection, we study the role of information asymmetry and market efficiency.

Role of Information Asymmetry. Consider the baseline economic environment de-
scribed in Section 4.4. The blue solid line in Panel A of Figure 7 plots the average ∆C

across N = 1, 000 simulation sessions as log(σu/σv) varies from −5 to 5 along the x-axis,
holding all other parameters unchanged. It shows that as log(σu/σv) increases along
the x-axis, the average ∆C first decreases and then increases. This U-shape pattern is an
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Note: This figure plots the average ∆C and profit gain relative to noncollusion (πC/πN) across N = 1, 000
simulation sessions as log(σu/σv) varies along the x-axis, for different values of ξ = 500, 100, 30, 1. The
other parameters are set according to the baseline economic environment described in Section 4.4.

Figure 7: ∆C and πC/πN for log(σu/σv) ∈ [−5, 5] and ξ = 500, 100, 30, 1.

outcome of the interaction of the two mechanisms discussed in Subsections 5.1 and 5.2.
Panel B of Figure 7 plots the profit gain relative to noncollusion (πC/πN), the pattern is
similar to that in panel A.

Specifically, in the region of small information asymmetry, i.e., log(σu/σv) < 2,
the average ∆C is decreasing in log(σu/σv). In this region, AI traders adopt price-
trigger strategies to attain supra-competitive profits, as discussed in Section 5.1. The
negative relationship between the average ∆C and log(σu/σv) observed in our simulation
experiments is consistent with the prediction of our model (see Proposition 2.6.(ii)).

In the region of large information asymmetry, i.e., log(σu/σv) ≥ 2, the average ∆C

is increasing in log(σu/σv). In this region, AI traders attain supra-competitive profits
because of biased learning, as discussed in Section 5.2. The positive relationship between
the average ∆C and log(σu/σv) observed in our simulation experiments is consistent with
the theoretical property that biased learning becomes more significant when log(σu/σv)

increases (see Subsection 5.2.4).

Role of Market Efficiency. According to our model in Section 2, the market maker
focuses more on minimizing pricing errors when ξ is small or θ is large. In this case,
market is efficient and there is no collusive Nash equilibrium that can be sustained by
price-trigger strategies for any σu/σv > 0 (Proposition 2.3). By contrast, when ξ is large
or θ is small, the market maker focuses more on minimizing inventory costs. In this case,
market is inefficient and there exists a collusive Nash equilibrium that can be sustained
by price-trigger strategies for small σu/σv and I (Proposition 2.4).
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By varying the value of ξ in our simulation experiments, we study how market
efficiency affects AI traders’ trading profits. We do not conduct experiments with
different θ because a smaller θ has similar impacts as a larger ξ on market efficiency.

Specifically, the four curves in panel A of Figure 7 represent the experiments with
ξ = 500, 100, 30 and 1, representing different weights in the market maker’s pricing
objective in terms of minimizing pricing errors or inventory costs. The overall U-shaped
relationship between the average ∆C and log(σu/σv) is not peculiar to the choice of ξ. All
four curves display U-shape patterns.

As we compare the four curves in panel A of Figure 7, one salient feature is that the
trough of the U-shape shifts to the left as ξ decreases. This suggests that with a smaller ξ,
a lower level of information asymmetry is needed for AI traders to adopt price-trigger
strategies. A similar point can be made if we focus on the region with small information
asymmetry, in which price-trigger strategies are adopted for AI traders. For example,
holding ln(σu/σv) = −4 unchanged, it is clear that the average ∆C declines monotonically
as ξ decreases from 500 to 1. Thus, collusion becomes more difficult to achieve through
price-trigger strategies as ξ decreases, as predicted by our model (see Proposition 2.6.(iv)).

By contrast, let us switch the focus to the region with large information asymmetry,
in which AI traders’ trading strategies are dominantly affected by biased learning. For
example, holding ln(σu/σv) = 2 unchanged, it is clear that the average ∆C increases
monotonically as ξ decreases from 500 to 1. This is consistent with the theoretical
property of biased learning discussed in Subsection 5.2.4, that is, the magnitude of biased
learning increases with λ (i.e., decreases with ξ). Thus, a lower ξ leads to more biased
learning, allowing AI traders to achieve higher supra-competitive profits.

5.4 Price Informativeness

In this subsection, we study the implication of information asymmetry for price informa-
tiveness in a financial market with AI traders.

Consider the baseline economic environment described in Section 4.4. The blue solid
line in panel A of Figure 8 is similar to that in panel A of Figure 7, which plots the
average ∆C across N = 1, 000 simulation sessions as log(σu/σv) varies. The black dotted
and red dash-dotted lines represent the theoretical benchmarks (∆M = 1 and ∆N = 0)
in the perfect cartel and noncollusive Nash equilibrium, respectively. Panel B of Figure
8 plots the average πC/πN, the profit gain relative to noncollusion, across N = 1, 000
simulation sessions. The blue solid line in panel B exhibits a similar U-shape pattern as
panel A. When log(σu/σv) is very small or very large, AI traders can increase their profits
by about 9.5% relative to what they would obtain in the noncollusive Nash equilibrium
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as
log(σu/σv) varies. Panels A, B, and C plot the average ∆C, profit gain relative to noncollusion (πC/πN),
and informed traders’ order sensitivity to asset value (χ̂C). These metrics are defined in Section 4.6.
Panel D plots the price informativeness relative to the theoretical benchmark of the noncollusive Nash
equilibrium, i.e., IC/IN , where the price informativeness in the simulation experiment is calculated by
IC = log

[
(Iχ̂C)2(σ̂v/σu)2]. The blue solid line represents the simulation experiments with AI traders; the

red dash-dotted and black dotted lines represent the theoretical benchmarks in the noncollusive Nash
equilibrium and perfect cartel equilibrium, respectively. The other parameters are set according to the
baseline economic environment described in Section 4.4.

Figure 8: Price informativeness for log(σu/σv) ∈ [−5, 5].

theoretically.

Trading Strategy of AI Traders. In panel C of Figure 8, we plot the sensitivity of AI
traders’ order to the asset’s value, χ̂C estimated based on equation (4.6). Consistent with
panel A of Figure 8, χ̂C displays an inverted U-shape as log(σu/σv) increases along the
x-axis. By contrast, the theoretical benchmarks χN and χM stay roughly unchanged as
log(σu/σv) increases.
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Note: The blue solid line plots the average trading strategy of AI traders across N = 1, 000 simulation
sessions. Panels A and B represent the experiments with small (σu/σv = 10−1) and large (σu/σv =
102) information asymmetry. The trading strategy in each simulation session is calculated as x(vk) =

1
Inp

∑I
i=1 ∑

np
m=1 xi(pm, vk), which is the average trading strategy of I AI traders across all grid points of P,

after Q-learning programs converge. The dots on the blue solid lines represent the discrete grid points of
V. The other parameters are set according to the baseline economic environment described in Section 4.4.

Figure 9: The trading strategy of AI traders.

In fact, the estimated χ̂C almost sufficiently describes AI traders’ trading strategy
because their orders are almost linear in the assets’s value, a property that holds both
in the model and the simulation experiments. To show this, in Figure 9, we present the
average trading strategy of AI traders across N = 1, 000 simulation sessions. Panel A is
for the experiment with small information asymmetry (σu/σv = 10−1) and panel B is for
the experiment with large information asymmetry (σu/σv = 102). The trading strategy
in each simulation session is calculated as x(vk) =

1
Inp

∑I
i=1 ∑

np
m=1 xi(pm, vk), which is the

average trading strategy of I informed traders across all grid points of P, after Q-learning
programs converge. The dots on the blue solid lines represent the discrete grid points
of V. The black dotted and red dash-dotted lines represent the theoretical benchmarks
(χM(vk − v) and χN(vk − v)) in the perfect cartel equilibrium and noncollusive Nash
equilibrium, respectively.

It is clear that AI traders learn a trading strategy that is roughly linear in the asset’s
value, even though the linearity restriction is never imposed on the Q-learning programs.
Moreover, the slope of a linear fit for the trading strategy of AI traders lies between χM

and χC in both panels A and B of Figure 9. Thus, the trading strategy learned by AI
traders is more conservatively than that in the noncollusive Nash equilibrium, which
explains why AI traders are able to attain supra-competitive profits.
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Price Informativeness in Markets with AI Trading. In panel D of Figure 8, we present
the relative price informativeness. Specifically, price informativeness is measured by
the natural log of the signal-noise ratio of price, which are IN = log

[
(IχN)2(σ̂v/σu)2]

and IM = log
[
(IχM)2(σ̂v/σu)2] in the theoretical benchmarks of the noncollusive Nash

equilibrium and perfect cartel equilibrium, respectively. The price informativeness in our
numerical experiment with AI-powered trading is IC = log

[
(Iχ̂C)2(σ̂v/σu)2], where χ̂C

is estimated based on equation (4.6) and σ̂v is the standard deviation of vt under our
discrete grid points in V. The relative price informativeness is measured by IC/IN (the
blue solid line), IN/IN ≡ 1 (the red dash-dotted line), and IM/IN (the black dotted
line).

Consistent with panel C of Figure 8, the blue solid line displays an inverted U-shape.
The relative price informativeness is close to one when log(σu/σv) is around 2, which is
also the region when χ̂C ≈ χN. When log(σu/σv) is very small or very large, the price
informativeness in our numerical experiments with AI traders is significantly lower than
that in the theoretical benchmark of the noncollusive Nash equilibrium. The reason is
that AI traders place orders in a more conservative manner, with χ̂C < χN, as shown in
panel C of Figure 8.

Our findings suggest that perfect price informativeness is not achievable in the
presence of AI traders. In our simulation environments, when information asymmetry
declines (i.e., σu/σv decreases), AI traders would withhold their information and collude
more through price-trigger strategies, placing orders more conservatively than what they
would do in the noncollusive Nash equilibrium (see panel C of Figure 8). This reduces
price informativeness. Crucially, AI traders never need to communicate with each other,
whether explicitly or implicitly, the adoption of Q-learning programs automatically leads
to such collusive behavior.

6 Further Inspection of Model Ingredients

In this section, we further inspect several key parameters in our simulation experiments.
In Subsection 6.1, we study how the number of AI traders affects their trading strategies.
In Subsection 6.2, we study the implication of AI traders’ discount rates. Finally, in
Subsection 6.3, we study the impacts of hyperparameters α and β on AI traders’ learning
outcomes.
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as the
number of AI traders I varies. Panels A and B plot the average ∆C and profit gain relative to noncollusion
(πC/πN) under small information asymmetry (σu/σv = 10−1). Panels C and D plot these metrics under
large information asymmetry (σu/σv = 102). The blue solid line represents the simulation experiments
with AI traders; the red dash-dotted and black dotted lines represent the theoretical benchmarks in the
noncollusive Nash equilibrium and perfect cartel equilibrium, respectively. The other parameters are set
according to the baseline economic environment described in Section 4.4.

Figure 10: Implications of the number of AI traders on ∆C and πC/πN.

6.1 Number of AI Traders

Our model in Section 2 predicts that when ξ is sufficiently large (or θ is sufficiently small)
and information asymmetry is small (i.e., small σu/σv), informed traders are less able
to collude through price-trigger strategies when there are more informed traders. That
is, the average ∆C decreases with I and price informativeness IC increases with I (see
Proposition 2.6.(i)).

In the simulation experiments with AI traders, we find similar patterns. Specifically,
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as
the number of AI traders I varies. Panels A and B plot informed traders’ order sensitivity to asset value
(χ̂C) and the relative price informativeness (IC/IN) under small information asymmetry (σu/σv = 10−1).
Panels C and D plot these metrics under large information asymmetry (σu/σv = 102). The blue solid
line represents the simulation experiments with AI traders; the red dash-dotted and black dotted lines
represent the theoretical benchmarks in the noncollusive Nash equilibrium and perfect cartel equilibrium,
respectively. The other parameters are set according to the baseline economic environment described in
Section 4.4.

Figure 11: Implications of the number of AI traders on χ̂C and IC/IN.

consider the baseline economic environment described in Section 4.4. In panels A and
B of Figures 10 and 11, we conduct simulation experiments under small information
asymmetry (σu/σv = 10−1). Consistent with the model prediction, panels A and B of
Figure 10 show that as the number of AI traders I increases from 2 to 4, the average
∆C decreases from 0.74 to 0.56 and the average πC/πN increases from 1.09% to 1.32%,
respectively. Moreover, panels A and B of Figure 11 show that as I increases, χ̂C declines
due to a congestion effect and the relative price informativeness IC/IN increases. Because
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in our model, IN increases with I, the positive relationship between IC/IN and I implies
that IC is increasing in I, which is consistent with the model’s prediction.

For comparisons, in panels C and D of Figures 10 and 11, we conduct simulation
experiments under large information asymmetry (σu/σv = 102). In this case, AI traders
achieve supra-competitive profits due to biased learning, as discussed in Subsection 5.2.
We find that the implications of I for AI traders’ strategies are similar to the experiments
with small information asymmetry. Specifically, in panels C and D of Figure 10, the blue
solid lines show that as I increases from 2 to 4, the average ∆C decreases from 0.62 to 0.39
and the average πC/πN increases from 1.08% to 1.22%, respectively. Moreover, the blue
solid lines in panels C and D of Figure 11 show that as I increases, χ̂C decreases and the
relative price informativeness IC/IN increases. These results seem to suggest that the
coordination through biased learning becomes more difficult to achieve when there are
more AI traders in the market.

6.2 Discount Rates

Our model in Section 2 predicts that when ξ is sufficiently large (or θ is sufficiently
small) and information asymmetry is small (i.e., small σu/σv), informed traders are more
able to collude through price-trigger strategies as the discount rate ρ increases. That
is, the average ∆C increases with ρ and price informativeness IC decreases with ρ (see
Proposition 2.6.(iii)).

In the simulation experiments with AI traders, we find similar patterns. Specifically,
consider the baseline economic environment described in Section 4.4. In panels A and
B of Figures 12 and 13, we conduct simulation experiments under small information
asymmetry (σu/σv = 10−1). Consistent with the model prediction, panels A and B of
Figure 12 show that as ρ increases from 0.5 to 0.95, the average ∆C decreases from 0.29 to
0.74 and the average πC/πN increases from 1.04% to 1.09%, respectively. Moreover, panels
A and B of Figure 13 show that as ρ increases, both χ̂C and relative price informativeness
IC/IN decrease, which is consistent with the model’s prediction.

Turning to the economic environment with large information asymmetry, the theoreti-
cal properties discussed in Subsection 5.2.4 imply that as the discount rate ρ increases, the
magnitude of biased learning declines, and as a result, the supra-competitive profits that
AI traders are able to achieve would decrease. The patterns observed in our simulation
experiments are consistent with these predictions.

In particular, in panels C and D of Figures 12 and 13, we conduct simulation exper-
iments under large information asymmetry (σu/σv = 102). Panels C and D of Figure
12 show that as ρ increases from 0.5 to 0.95, the average ∆C decreases from 0.76 to 0.62
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as
the discount rate ρ varies. Panels A and B plot the average ∆C and profit gain relative to noncollusion
(πC/πN) under small information asymmetry (σu/σv = 10−1). Panels C and D plot these metrics under
large information asymmetry (σu/σv = 102). The blue solid line represents the simulation experiments
with AI traders; the red dash-dotted and black dotted lines represent the theoretical benchmarks in the
noncollusive Nash equilibrium and perfect cartel equilibrium, respectively. The other parameters are set
according to the baseline economic environment described in Section 4.4.

Figure 12: Implications of the discount rate on ∆C and πC/πN.

and the average πC/πN decreases from 1.10% to 1.08%, respectively. Moreover, panels C
and D of Figure 13 show that as ρ increases, both χ̂C and relative price informativeness
IC/IN increase.

6.3 Hyperparameters

In this subsection, we study how the hyperparameters α and β affect AI traders’ profits
in equilibrium. Similar to the baseline economic environment, we consider AI traders
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as the
discount rate ρ varies. Panels A and B plot informed traders’ order sensitivity to asset value (χ̂C) and the
relative price informativeness (IC/IN) under small information asymmetry (σu/σv = 10−1). Panels C and
D plot these metrics under large information asymmetry (σu/σv = 102). The blue solid line represents the
simulation experiments with AI traders; the red dash-dotted and black dotted lines represent the theoretical
benchmarks in the noncollusive Nash equilibrium and perfect cartel equilibrium, respectively. The other
parameters are set according to the baseline economic environment described in Section 4.4.

Figure 13: Implications of the discount rate on χ̂C and IC/IN.

adopting the same value of α and β. In panel A of Figure 14, we plot the average ∆C

under small information asymmetry (σu/σv = 10−1) for different values of α and β. As
discussed in Subsection 5.1, AI traders need to conduct sufficient experimentations to
learn punishment strategies, which is achieve through a long exploration process by
setting a sufficiently low β. Indeed, when β = 10−6, the red bars in panel A of Figure 14
show that AI traders can easily achieve a very high level of ∆C = 0.90 (corresponding
to α = 0.001) whereas when β = 10−3, the yellow bars show that AI traders can only
achieve a low level of ∆C = 0.40 (corresponding to α = 0.1).
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Note: Panel A plots ∆C under small information asymmetry (σu/σv = 10−1); panel B plots ∆C under large
information asymmetry (σu/σv = 102). The other parameters are set according to the baseline economic
environment described in Section 4.4.

Figure 14: Implications of hyperparameters α and β on ∆C.

Panel A of Figure 14 further shows that, to achieve the best collusive outcomes, the
values of α and β have to be jointly determined. That is, the choice of a smaller β needs to
be matched with a smaller α, and conversely, the choice of a larger β needs to be matched
with a larger α. Intuitively, setting a small β ensures that AI traders will spend a long
time in the exploration mode in which they randomly choose different actions, resulting
in extensive experimentation. Then, setting a small α is necessary to record the value
learned in the past whereas setting a large α will disrupt learning as the algorithm would
forget what it has learned in the past too rapidly. By contrast, setting a large β means that
AI traders only spend a short period of time in the exploration mode. Then, if we still
set a small α, the Q-matrices of AI traders would not be updated significantly until the
algorithms complete exploration. Thus, when β is large, setting a small α would backfire,
making the initial exploration futile. Instead, setting a large α in this case would help AI
traders to learn punishment strategies to achieve more collusive outcomes.

In panel B of Figure 14, we plot the average ∆C under large information asymmetry
(σu/σv = 102) for different values of α and β. Holding β unchanged at each value of
{10−6, 10−5, 10−4, 10−3}, panel B shows that the value of ∆C declines monotonically as
α decreases. This is because under large information asymmetry, the supra-competitive
profits are attained because AI traders have biased learning. As discussed in Section 5.2,
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Note: We allow the two AI traders to adopt different values of α, denoted by α1 and α2 for AI traders 1 and
2, respectively. We calculate the Delta metric for each trader separately, defined by ∆C

i ≡ (πi − πN)/(πM −
πN), where πi ≡ ∑Tc+T

t=Tc
πi,t(vt, ut), for i = 1, 2. Panels A and B plot ∆C

1 and ∆C
2 under large information

asymmetry (σu/σv = 102). The other parameters are set according to the baseline economic environment
described in Section 4.4.

Figure 15: Profit gain when AI traders adopt different values of α.

the biased learning due to the failure of the law of large numbers is mitigated when α

becomes small (see equation (5.1)).
Taken together, a key feature that distinguishes collusion due to artificial intelligence

(panel A of Figure 14) and collusion due to artificial stupidity (panel B of Figure 14) is
whether improved learning through setting a sufficiently small α would significantly
reduce the supra-competitive profits of AI traders.

Focusing on the economic environment with large information asymmetry, we now
allow the two AI traders to adopt different values of α, but the same value of β. Intuitively,
the AI trader adopting a smaller α would have less biased learning than the one adopting
a larger α. As discussed in Subsection 5.2.4, biased learning induces AI traders to adopt
more conservative trading strategies, i.e., placing orders with smaller amounts. Therefore,
the AI trader with a larger α would adopt a more conservative trading strategy than
the one with a smaller α. This essentially enables the AI trader with a smaller α would
take advantage of the other AI trader and obtain more profits that what it would obtain
when the other trader adopts the same α. Conversely, the AI trader with a larger α would
obtain less profits than what it would obtain when the other trader adopts the same α.

The results of our simulation experiments are consistent with the above intuition. In
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Figure 15, we allow each AI trader i to adopt different values of αi = 0.001, 0.01, 0.05
and 0.1 for i = 1, 2. Panels A and B plot the average ∆C

1 and ∆C
2 for AI traders 1 and 2,

respectively. It is shown that for any combination of (α1, α2), the AI trader with a higher
αi attains a higher average ∆C

i than the other AI trader. Moreover, holding α1 unchanged
at each value of {0.001, 0.01, 0.05, 0.1}, panel A shows that the average ∆C

1 for AI trader 1
increases as AI trader 2’s α2 increases. By contrast, holding α2 unchanged at each value
of {0.001, 0.01, 0.05, 0.1}, panel B shows that the average ∆C

2 for AI trader 2 increases as
AI trader 1’s α1 increases.
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Appendix

A Proof of Lemma 1
The preferred-habitat investor solves the following portfolio optimization problem for a given pt:

max
z

E
[
−e−η(vt−pt)z/η

]
. (A.1)

Because vt − pt is distributed as N(v − pt, σ2
v ), the first-order condition with respect to z is

0 =
[
ηz (v − pt)− (ηz)2σ2

v

]
e−ηz(v−pt)+(ηz)2σ2

v /2. (A.2)

Thus, the optimal holding, z, is characterized as

z = − 1
ησ2

v
(pt − v). (A.3)

B Proof of Proposition 2.3
Given that st = 0, let JC(χi) denote each informed trader i’s expected present value of future profits, when
investor i chooses xi,t = χi(vt − v) and all other I − 1 informed investors choose xC(vt). That is,

JC(χi) = E
[(

vt − pC(yt)
)

χi(vt − v)
]

+ ρJC(χi)P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

+ E

[
T−1

∑
τ=1

ρτπN(vt+τ) + ρT JC(χi)

]
P

{
Price trigger is violated in period t

∣∣∣∣χi, χC
}

, (B.1)

where pC(·) is the pricing function of market makers in the collusive Nash equilibrium and

pC(yt) = v + λCyt, with λC =
θγC + ξ

θ + ξ2 and γC =
IχC

(IχC)2 + (σu/σv)2 (B.2)

yt = χi(vt − v) + (I − 1)xC(vt) + ut.

The probability of price trigger violation is

P {Price trigger is not violated in period t}
= E [P (pt ≤ q(vt)|vt) 1{vt > v}] + E [P (pt ≥ q(vt)|vt) 1{vt < v}]

= E
[
Φ(σ−1

u (χC − χi)(vt − v) + ω)1{vt > v}
]
+ E

[
Φ(σ−1

u (χi − χC)(vt − v) + ω)1{vt < v}
]

,

where Φ(·) is the CDF of the standard normal distribution.
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Evaluating equality (B.1) at χi = χC leads to

JC(χC) =
(

1 − λC IχC
)

χCσ2
v

+ ρJC(χC)Φ(ω)

+
ρ − ρT

1 − ρ
[1 − Φ(ω)]E

[
πN(v)

]
+ ρT JC(χC) [1 − Φ(ω)] . (B.3)

Thus, we can obtain that

JC(χC) =

(
1 − λC IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]E

[
πN(v)

]
1 − ρΦ(ω)− ρT [1 − Φ(ω)]

. (B.4)

The first-order derivative of the both sides of (B.1) with respect to χi, evaluated at χi = χC, is

∇JC(χC) =
[
1 − λC(I + 1)χC

]
σ2

v

+ ρ
[
∇JC(χC)

]
Φ(ω)− ρJC(χC)

1
σu

ϕ(ω)E [|v − v|]

+
ρ − ρT

1 − ρ

1
σu

ϕ(ω)E [|v − v|]E
[
πN(v)

]
+ ρT

[
∇JC(χC)

]
[1 − Φ(ω)] + ρT JC(χC)

1
σu

ϕ(ω)E [|v − v|] . (B.5)

Because v − v is distributed as N(0, σ2
v ), it follows that E [|v − v|] = σv

√
2
π . Plugging it into (B.5), we

obtain that

∇JC(χC) =
[
1 − λC(I + 1)χC

]
σ2

v

+ ρ
[
∇JC(χC)

]
Φ(ω)− ρJC(χC)

σv

σu
ϕ(ω)

√
2
π

+
ρ − ρT

1 − ρ
E
[
πN(v)

] σv

σu
ϕ(ω)

√
2
π

+ ρT
[
∇JC(χC)

]
[1 − Φ(ω)] + ρT JC(χC)

σv

σu
ϕ(ω)

√
2
π

. (B.6)

The first-order condition with respect to χi, characterized by ∇JC(χC) = 0, leads to

0 =
[
1 − λC(I + 1)χC

]
σ2

v

− ρJC(χC)
σv

σu
ϕ(ω)

√
2
π

+
ρ − ρT

1 − ρ
E
[
πN(v)

] σv

σu
ϕ(ω)

√
2
π

+ ρT JC(χC)
σv

σu
ϕ(ω)

√
2
π

, (B.7)

where ϕ(·) is the probability density function of the standard normal distribution.
As θ → ∞ or as ξ → 0, λC → γC, that is, the market approaches to the environment of Kyle (1985).
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In this case, the demand of the preferred-habitat investor is irrelevant. Because the system is continuous,
we only need to show that there is no solution χC ∈ [χM, χN) in the environment of Kyle (1985), where
χN = 1√

I
σu
σv

and χM =
√

I
I+1

σu
σv

. Denote χC = χ̂C σu
σv

. Then, we show that there is no solution χ̂C ∈ [
√

I
I+1 , 1√

I
).

In the Kyle case, E
[
πN(v)

]
= σuσv

(I+1)
√

I
. Therefore, equations (B.4) and (B.7) can be rewritten, respectively,

as follows:

JC(χC) =

(
1 − γC IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]

σvσu

(I + 1)
√

I
1 − ρΦ(ω)− ρT [1 − Φ(ω)]

. (B.8)

and

0 =
[
1 − λC(I + 1)χC

]
σ2

v −
[

ρJC(χC)− ρ − ρT

1 − ρ

σvσu

(I + 1)
√

I
− ρT JC(χC)

]
σv

σu
ϕ(ω)

√
2
π

(B.9)

Therefore, χ̂C is the root of the following quadratic equation that is different from 1/
√

I:

0 =
[
1 − I(χ̂C)2

] 1
ρ − ρT −

{
1 − ρ + (ρ − ρT)[1 − Φ(ω)]

}−1
{

χ̂C +
1

(I + 1)
√

I

[
1 + (Iχ̂C)2

]}
ϕ(ω)

√
2
π

(B.10)
Thus, we can obtain that

χ̂C = −
{

1 − ρ + (ρ − ρT)[1 − Φ(ω)]
}−1

ϕ(ω)
√

2
π

I2

(I+1)
√

I
{1 − ρ + (ρ − ρT)[1 − Φ(ω)]}−1

ϕ(ω)
√

2
π + I

ρ−ρT

− 1√
I
< 0. (B.11)

As a result, there is no root that lies in [
√

I
I+1 , 1√

I
).

C Proof of Proposition 2.4
As θ → 0 or as ξ → ∞, λC → 1/ξ, that is, the market approaches to the environment where price is
primarily determined by market clearing conditions. In this case, the demand of the preferred-habitat
investor plays an important role. Because the system is continuous, we only need to show that there
is a solution χC ∈ [χM, χN) in the environment of no price recovery, where χN = ξ

I+1 , χM = ξ
2I , and

E
[
πN(v)

]
= σ2

v
(I+1)2 . We show that existence a solution χC ∈ [ ξ

I+1 , ξ
2I ). In this case, equations (B.4) and (B.7)

can be rewritten, respectively, as follows:

JC(χC) =

(
1 − ξ−1 IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]

σ2
v

(I + 1)2

1 − ρΦ(ω)− ρT [1 − Φ(ω)]
. (C.1)

and

0 =
[
1 − ξ−1(I + 1)χC

]
σ2

v −
[

ρJC(χC)− ρ − ρT

1 − ρ

σ2
v

(I + 1)2 − ρT JC(χC)

]
σv

σu
ϕ(ω)

√
2
π

(C.2)
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Therefore, χC is the root of the following quadratic equation that is different from ξ/(I + 1):

0 =
σu

σv
ϕ(ω)−1

[
1 − ξ−1(I + 1)χC

]
+

ρ − ρT

1 − ρ

1
(I + 1)2

− ρ − ρT

K

[(
1 − ξ−1 IχC

)
χC +

ρ − ρT

1 − ρ
[1 − Φ(ω)]

1
(I + 1)2

]
where

K = 1 − ρΦ(ω)− ρT [1 − Φ(ω)] (C.3)

Thus, we can obtain that

χC =
σu

σv

(
1 +

1
I

) [
1 − ρT

ρ − ρT − Φ(ω)

]
ϕ(ω)−1

√
2
π

+
ξ

I(I + 1)
(C.4)

To ensure that χC characterizes a collusion equilibrium, it requires that χC − χN < 0, that is,

σu

σv

(
1 +

1
I

) [
1 − ρT

ρ − ρT − Φ(ω)

]
ϕ(ω)−1

√
2
π

− ξ(I − 1)
I(I + 1)

< 0. (C.5)

The above inequality is satisfied if information asymmetry σu/σv or I is not too large.

D Proof of Proposition 2.6
We only prove the proposition for the case of θ = 0 here. More general cases with small θ or large ξ can be
proved similarly with more involving derivations.

First, we compute IπC − IπN as follows:

IπC − IπN = ξ

[
1 − ξ−1 σu

σv
(I + 1)A(ρ)− 1

I + 1

] [
ξ−1 σu

σv
(I + 1)A(ρ) +

1
I + 1

]
− ξ I

(I + 1)2

= ξ

[
ξ−1 σu

σv
(I + 1)A(ρ) +

1
I + 1

]
− ξ

[(
ξ−1 σu

σv
(I + 1)A(ρ)

)2
+ 2ξ−1 σu

σv
A(ρ) +

1
(I + 1)2

]
− ξ I

(I + 1)2

= ξ

[
1 − ξ−1 σu

σv
(I + 1)A(ρ)

]
ξ−1 σu

σv
(I + 1)A(ρ)− 2

σu

σv
A(ρ),

where A(ρ) ≡
[

1−ρT

ρ−ρT − Φ(ω)
]

ϕ(ω)−1
√

2
π . We then compute IπM − IπN as follows:

IπM − IπN = ξ

[
1
4
− I

(I + 1)2

]
= ξ

(I − 1)2

4(I + 1)2 (D.1)

Thus,

∆C =
4
[
1 − ξ−1 σu

σv
(I + 1)A(ρ)

]
ξ−1 σu

σv
(I + 1)A(ρ)− 8ξ−1 σu

σv
A(ρ)

(I − 1)2/(I + 1)2 (D.2)

The function (1 − x)x is strictly decreasing in x when x > 1/2. To ensure that χC ≥ χM for any
I, we assume that ξ−1 σu

σv
(I + 1)A(ρ) ≥ 1/2. Therefore, as I increases, ξ−1 σu

σv
(I + 1)A(ρ) ≥ 1/2 in-

creases, thereby making
[
1 − ξ−1 σu

σv
(I + 1)A(ρ)

]
ξ−1 σu

σv
(I + 1)A(ρ) decrease. In the meantime, as I in-
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creases, (I − 1)2/(I + 1)2 increases. Taken together, ∆C decreases with I. Additionally, as σu/σv increases,
ξ−1 σu

σv
(I + 1)A(ρ) ≥ 1/2 increases, which decreases

[
1 − ξ−1 σu

σv
(I + 1)A(ρ)

]
ξ−1 σu

σv
(I + 1)A(ρ). In the

meantime, as σu/σv increases, ξ−1 σu
σv

A(ρ) increases. Taken together, ∆C decreases with σu/σv. Similarly,
we can easily prove that ∆C increases with ξ and ρ.

Price informativeness is

IC = log
[(

IχC
)2

(σv/σu)
2
]

= 2 log
[
(I + 1)A(ρ) +

σv

σu

ξ

I + 1

]

Because ξ−1 σu
σv
(I + 1)A(ρ) ≥ 1/2, it follows that (I + 1)A(ρ) + σv

σu

ξ
I+1 increases with I. Consequently, price

informativeness IC is increasing in I. Obviously, price informativeness IC is decreasing in ρ and σu/σv,

and it is increasing in ξ.

E Standard Kyle Setting with ξ = 0

In this appendix section, we study AI traders’ behavior in the baseline economic environ-
ment except for setting ξ = 0, which essentially means that preferred-habitat investors do
not exist. Thus, market makers set prices purely for price discovery, i.e., pt = E[vt|yt].
This economic environment is similar to Kyle (1985) except for having I = 2 informed
traders. Our model in Section 2 shows that implicit collusion cannot be sustained by any
price-trigger strategies when ξ = 0.

Figure A presents the simulation experiments with AI traders when ξ = 0. Although
our model suggests that informed traders should not be able to achieve supra-competitive
profits, our AI traders can attain an average ∆C of 0.85 (panel A) and an average profit
gain relative to noncollusion, πC/πN = 1.05 (panel B), due to biased learning. Moreover,
AI traders’ relative price informativeness (panel D) remain unchanged as log(σu/σv)

varies along the x-axis, which is similar to the theoretical implication of the Kyle (1985)
model. The AI traders’ order sensitivity to asset value χ̂C increases linearly with σu/σv

(panel C).

F Market Makers with Q-Learning

In the baseline economic environment, market makers analyze historical data to estimate
the pricing rule (ese Subsection 3.2). In this appendix section, we consider market makers
adopting Q-learning algorithms to learn the pricing rule. All the results presented in
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as
log(σu/σv) varies. Panels A, B, and C plot the average ∆C, profit gain relative to noncollusion (πC/πN),
and informed traders’ order sensitivity to asset value (χ̂C). These metrics are defined in Section 4.6.
Panel D plots the price informativeness relative to the theoretical benchmark of the noncollusive Nash
equilibrium, i.e., IC/IN , where the price informativeness in the simulation experiment is calculated by
IC = log

[
(Iχ̂C)2(σ̂v/σu)2]. The blue solid line represents the simulation experiments with AI traders; the

red dash-dotted and black dotted lines represent the theoretical benchmarks in the noncollusive Nash
equilibrium and perfect cartel equilibrium, respectively. The parameters are set according to the baseline
economic environment described in Section 4.4, except for ξ = 0.

Figure A: Implications of information asymmetry in the standard Kyle Setting with ξ = 0.

the main text are similar; they do not depend on whether market makers determine the
pricing rule using statistical learning or Q-learning.

Below, we describe the Q-learning algorithms of market makers. We consider market
makers adopting linear policies to price assets given total output yt:

pt = vMM
t + λMM

t yt, (F.1)
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where vMM
t and λMM

t are the decisions of market makers learned from their Q-learning
programs. Specifically, market makers states are st = ∅ and actions are at = {vMM

t , λMM
t } ∈

V× Λ. They update their Q-matrix according to the following learning equation:

Q̂MM
t+1 (v

MM
t , λMM

t ) =(1 − αMM)Q̂MM
t (st, at) + α

[
(yt − ξ(vMM

t − v + λMM
t yt))

2

+θ(vMM
t + λMM

t yt − vt)
2 + ρMM min

v∈V,λ∈Λ
Q̂MM

t (v, λ)

]
, (F.2)

where the reward in period t is

(yt + zt)
2 + θ(pt − vt)

2 =(yt − ξ(pt − v))2 + θ(pt − vt)
2

=(yt − ξ(vMM
t − v + λMM

t yt))
2 + θ(vMM

t + λMM
t yt − vt)

2. (F.3)

The optimal decision vMM
t and λMM

t are learned to minimize the Q-matrix. Similar
to informed traders’ Q-learning programs, market makers also do exploration with
probability εMM

t and exploitation with 1 − εMM
t . In the exploration mode, market makers

randomly choose actions v and λ over the set V× Λ.
To implement the Q-learning programs for market makers, we construct discrete grid

for vMM
t and λMM

t . Specifically, we discretize the intervals [(1 − κ)vMM, (1 + κ)vMM]

and [(1 − κ)λMM, (1 + κ)λMM] into nv and nλ equally spaced grid points, i.e., V =

{vMM
1 , · · · , vMM

nv } and Λ = {λMM
1 , · · · , λMM

nλ
}. The parameters vMM and λMM correspond

to the theoretical values in the noncollusive equilibrium. The parameter κ > 0 ensures
that market makers can choose decisions different from these theoretical values.

For grid (vMM
k , λMM

j ) ∈ V× Λ, we initialize market makers’ Q matrix as follows:

Q̂MM
0 (vMM

k , λMM
j ) =

1
1 − ρMM E

[
(yt − ξ(vMM

k − v + λMM
j yt))

2 + θ(vMM
k + λMM

j yt − vt)
2
]

Substituting out yt = IχN(vt − v) + ut, we obtain

Q̂MM
0 (vMM

k , λMM
j ) =

1
1 − ρMM

[
(1 − ξλMM

j )2((IχNσv)
2 + σ2

u) + ξ2(vMM
k − v)2

]
+

θ

1 − ρMM

[
(vMM

k − v)2 + (λMM
j IχN − 1)2σ2

v + (λMM
j σu)

2
]

The exploration rate is εMM
t = e−βMMt, similar to equation (4.2). We set the parameters at

βMM = 10−4, αMM = 0.1, ρMM = 0.95, κ = 0.5, and nv = nλ = 31. The results are similar
if we choose different parameters.
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