
Algorithmic Pricing and Liquidity in Securities Markets∗

Jean-Edouard Colliard, Thierry Foucault, and Stefano Lovo

December 17, 2023

Abstract

We let “Algorithmic Market Makers” (AMs), using Q-learning algorithms, determine prices for

a risky asset in a standard market making game with adverse selection and compare these

prices to the Nash equilibrium of the game. We observe that AMs effectively adapt to adverse

selection, adjusting prices post-trade as anticipated. However, AMs charge a markup over the

competitive price and this markup increases when adverse selection costs decrease, in contrast to

the predictions of the Nash equilibrium. We attribute this unexpected pattern to the diminished

learning capacity of AMs when faced with increased profit variance.
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Introduction

Prices are increasingly set by algorithms in financial markets. For instance, Brogaard et al. (2014)

and Chaboud et al. (2019) find, respectively, that about 42% and 60% of trades in stocks and

currencies in their sample take place at prices set by algorithms. In U.S treasury markets, principal

trading firms (PTFs), which also rely on algorithms, account for 21% of total trading volume (Brain

et al. (2018)). Even in residential real-estate, pricing algorithms are now used (by intermediaries

such as OpenDoor or Offerpad) to make cash offers to homeowners (Buchak et al. (2019)). Given

this evolution, to understand price formation in financial markets, researchers must study how

algorithms behave.1 This requires examining how they respond to adverse selection and discover

asset values, two important features specific to financial markets.2

Our goal in this paper is to study this question. One possibility is that algorithmic pricers simply

behave as portrayed in existing models of market making (pioneered by Glosten and Milgrom (1985)

and Kyle (1985)) but with enhanced efficiency (e.g., by reacting faster to information). However,

a central tenet of these models is that marker makers behave like Bayesian learners whereas this is

not how recent powerful decision-making algorithms (e.g., those used for playing Go or determining

on-line retailers’ prices) behave. Instead, they start with no prior about their environment and learn

iteratively how to make decisions by experimenting, receiving feedback, and adjusting their behavior

accordingly. This approach, “reinforcement learning,” has achieved notable success and is therefore

a plausible alternative for modeling pricing algorithms. Consequently, our paper undertakes a

comparative analysis of market maker behavior using reinforcement learning algorithms against the

predictions of Bayesian learning models of market making.

More specifically, we consider a market making game similar to Glosten and Milgrom (1985) and

we study, via extensive simulations (experiments), how market makers using Q-learning algorithms

(a specific type of reinforcement learning algorithm) set their prices and how these compare to those

1For instance, Goldstein et al. (2021) notes that “Just as insights into human behavior from the psychology literature
spawned the field of behavioral finance, so can insights into algorithmic behavior (or the psychology of machines) spawn
an analogous blossoming of research in algorithmic behavioral finance.”

2See “Why the wisdom of the market crowd beats AI”, Financial Times, May 22, 2023, for a skeptical view on
whether algorithms have the ability to discover the fair value of an asset. The failure of one “iBuyer” (Zillow) also
suggests that learning to price in adverse selection might not be so easy for algorithms. See Buchak et al. (2019)
or “Zillow sent its algorithm to take on the housing market. The housing market won”, November 9, 2021, The
Washington Post.
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predicted by the Nash equilibrium of the market making game, where market makers are Bayesian.3

In the market making game one client wishes to buy one share of a risky asset and requests quotes

from N ≥ 2 market makers. These simultaneously respond with an offer and the client buys if the

best offer is less than her valuation for the asset, which is the sum of the payoff of the asset and

a private valuation (the client’s “liquidity shock”). Thus, holding market makers’ prices constant,

the client is more likely to buy the asset when its payoff is high than when its payoff is low. Market

makers are therefore exposed to adverse selection.

In the Nash equilibrium of this game, market makers post prices equal to their expectation of

the asset payoff conditional on the client accepting their offer, so that their expected profit is zero.

Thus, their quoted spread (their markup relative to the unconditional expected value of the asset)

is just equal to the adverse selection cost. This property has several implications. First, the quoted

spread decreases with the dispersion of the client’s liquidity shocks (σ) because this reduces the

adverse selection cost. Second, an increase in the volatility of the asset payoff (∆v) has the opposite

effect. Last, these two predictions do not depend on the number of market makers (for N ≥ 2).

The core of our analysis consists in testing whether these (very standard) predictions are satisfied

when quotes are set by Algorithmic Market Makers (henceforth “AMs”) who play the market making

game using Q-learning algorithms with no initial knowledge of the environment (the distribution

of the asset payoff and the client’s valuation, the number of market makers etc.). Consequently,

AMs must play the game repeatedly to learn the average profit (“Q-value”) they can obtain at

each price and bid accordingly. Thus, for a given parametrization of the market making game

(a choice of (σ,∆v, N)), we let AMs receive requests sequentially from a large number of different

clients (1 million in our experiments). For each new request, AMs simultaneously and independently

choose a price following an algorithm that either picks a price randomly in a fixed set (“explore”)

or pick the price with the largest Q-value at the moment the client arrives (“exploit”). This

exploration/exploitation choice is random with a decaying probability of exploration.4 After the

client’s decision is made, the Q-value of the price chosen by each AM is updated by taking a

3We use simulations because even though the Q-learning algorithm is very simple, we cannot solve for the long run
prices chosen by the algorithms analytically. This is a standard issue (and approach) in the analysis of Q-learning
algorithms.

4Q-learning algorithms are usually specified so that the likelihood of exploration decays over time because exploring
is costly (it requires taking an action that, according to the AMs’ assessment, seems suboptimal) and, intuitively,
less useful in terms of learning as experience accumulates. The decaying rate for exploration is a parameter of the
algorithm.
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weighted average of its realized profit with the client and the Q-value of this price just before the

client’s decision.5

A key feature of this iterative process (the Q-learning algorithm) is that each AM gradually

learns, via exploration, the average profit it can obtain at each price. For a given environment, the

path of prices chosen by an AM is stochastic because (a) the client’s decision is stochastic, (b) the

asset payoff is stochastic and (c) the prices chosen by AMs are stochastic (since they experiment).

Consequently, the long run Q-value of each price and therefore the prices eventually chosen by the

AMs are also stochastic. Thus, for each parametrization of the market making game, we run 1, 000

different simulations (experiments) and we focus on the average long-run outcomes across these

experiments.

We observe several interesting regularities, most at odds with the predictions of the Nash equi-

librium. For all parametrizations, in the long run, AMs always charge prices such that their true

expected profit is positive. Thus, they learn how to price adverse selection. However, their prices

are frequently well above the Nash equilibrium price. As a result, AMs’ average realized spreads

(across experiments) are large compared to those predicted by the Nash equilibrium. However,

AMs “leave money on the table:” Each AM could obtain a larger expected profit by (unilaterally)

undercutting the price to which the others have eventually settled.6 Hence AMs do not learn to

undercut each other down to the competitive price. Moreover, in contrast to the prediction of

the Nash equilibrium, we observe that AMs’ average quoted spread increases with the dispersion

of clients’ liquidity shocks, despite the fact that their adverse selection cost declines. As a result,

AMs’ average realized spread (rents) increases with the dispersion of clients’ liquidity shocks.

Surprisingly, this finding suggests that adverse selection makes it easier for AMs to “learn to

undercut” (lowering the price to attract demand). To analyze this point in more details, we also

run simulations without adverse selection, holding constant the likelihood of a trade at a given

price. To this end, we assume that the distribution of clients’ valuations is identical to that in our

baseline experiments but that this valuation is uncorrelated with the asset payoff. In this case, other

things equal, AMs’ average quoted spreads are smaller than when there is adverse selection. This

observation confirms that AMs learn not to be adversely selected (they widen their spreads when

5A new realization of the asset payoff is drawn after each client’s arrival. Moreover, these realizations and clients’
liquidity shocks are i.i.d. Thus, each request is exactly a repetition of the static market making game.

6In most cases, in a given experiment, AMs end up posting the same price.

3

Electronic copy available at: https://ssrn.com/abstract=4252858



there is adverse selection). However, other things equal, AMs’ average realized spreads are larger in

the experiments with no adverse selection, confirming our conjecture that adverse selection makes

AMs more competitive.

In experiments with adverse selection, we also observe that, other things equal, the AMs’ average

quoted spread increases with the volatility of the asset payoff, as the Nash equilibrium predicts.

However, we find the same pattern when there is no adverse selection. This is surprising because,

in this case, the Nash equilibrium implies that AMs’ average quoted spread should be nil and

therefore insensitive to the volatility of the asset payoff. This finding suggests that an increase in

the asset volatility makes it more difficult for AMs to learn to undercut. This is confirmed by the

fact that AMs’ average realized spreads increase with the asset volatility when there is no adverse

selection. Interestingly, this effect is much dampened when there is adverse selection and AMs’

average realized spreads in this case are smaller than without adverse selection, for each value of

the asset payoff volatility. These observations again suggest that adverse selection makes it easier

for AMs to learn to undercut.

Last, we observe that an increase in the number of AMs (N) leads to smaller average quoted

and realized spreads.7 This observation seems intuitive (when the number of competitors increases,

prices become more competitive). However, the Nash equilibrium of the market making game

predicts that prices should be identical for all N ≥ 2. Moreover, we observe that even with 10 AMs,

their average quoted and realized spreads remain above those predicted by the Nash equilibrium.

Overall, the behavior of AMs using Q-learning algorithms deviates significantly from that pre-

dicted by the Nash equilibrium of this game, even after a long learning phase. First, they post

quotes well above competitive quotes, despite the fact that the market making (one-shot) game has

no “collusive” equilibria.8 Moreover, they behave more competitively when the adverse selection

cost is higher. This finding is puzzling. It implies that, other things equal, average realized bid-

ask spreads should be inversely related to adverse selection costs (e.g., larger in Treasuries than in

stocks).

7 Interestingly, this pattern is also found empirically by Brogaard and Garriott (2019) who study the effects of
entry of high-frequency market makers on the liquidity of Canadian stocks.

8 There are surprisingly few empirical papers on the effect of pricing algorithms on realized bid-ask spreads in
securities markets. An exception is Hendershott et al. (2011), who find that algorithmic trading (AT) increases
dealers’ realized bid-ask spreads (profits). Commenting on this result, they write (on p.4): “This is surprising because
we initially expected that if AT improved liquidity, the mechanism would be competition between liquidity providers.”
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We propose the following explanation for these findings. To reach competitive prices, AMs

must learn to undercut each other. In early episodes, they all explore by playing random prices.

Gradually, they learn how to best respond to their competitors by lowering their price. Each AM

then learns how to best respond to this best response, etc. In order to “learn to undercut,” an

AM must estimate the expected payoff from undercutting and obtain a higher estimate than that

for the current price. This estimation is difficult because the client’s demand, the asset value, and

other AMs’ behavior are stochastic. Hence, a large number of explorations is required to learn that

undercutting a certain price is profitable. As the AMs explore less as time passes, they learn to

undercut only a limited number of times, which is typically too low to reach the competitive price.

Intuitively, in our setting, the acuteness of this issue is determined by the true variance of AMs’

profits at a given price. Indeed, when this variance is larger, AMs’ realized profit at a given price

(their feedback from the environment) is a noisier estimate of their true expected profit at this

price (holding their competitors’ price fixed). Thus, for a given exploration rate, an increase in the

volatility of AMs’ profits at a given price implies that the long-run Q-value of this price is a less

precise estimate of the true expected profit at this price. AMs can therefore end up underestimating

the benefit of undercutting the long run price on which they settle and fail to learn to undercut

down to the competitive level.

The effects of the dispersion of clients’ liquidity shocks (σ) and the volatility of the asset payoff

(∆v) on AMs’ prices are consistent with this interpretation. In the no adverse selection case, an

increase in σ or ∆v raises the variance of AMs’ profits because they increase respectively (i) the

variance of the trading volume for each AM (“demand risk”) and (ii) the variance of the value of

their position (“inventory risk”). Thus, it is more difficult for AMs to precisely estimate the true

expected profit of lowering their price. Thus, they learn less quickly to undercut each other and settle

on a less competitive price. The same intuitions apply when there is adverse selection. However,

other things equal, adverse selection reduces the variance of AMs’ profits because it increases the

mass of profits close to zero. Thus, surprisingly, it makes it easier for Q-learning algorithms to learn

to undercut, which explains why their prices are closer to those predicted by the Nash equilibrium

when adverse selection costs are larger.

In existing models (Kyle (1985) or Glosten and Milgrom (1985)), market makers discover asset

payoffs dynamically by updating their quotes based on the order flow. To study whether AMs do

5
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so, we modify the market making game to allow AMs to sequentially receive requests from two

clients before the asset pays off. Then, as in our baseline experiments, we let AMs using Q-learning

algorithms learn how to play the “two-period” market making game. In this case AMs can make

their price for the second client contingent on the outcome with the first client. Hence, for each

possible price, AMs must estimate their average profit in the second period contingent on each

possible outcome for them (“state”) after the first client’s decision. We obtain two interesting

results. First, as predicted by the Nash equilibrium of the two-period market making game, AMs

raise their quotes if the first client buys the asset and decrease their quotes otherwise. However,

in contrast to the Nash equilibrium, their update is too large in the former case and far too small

in the latter, which leads therefore to larger average realized spreads in the second period than in

the Nash equilibrium. Intuitively, AMs have fewer opportunities to estimate the average profit in

each possible state in the second period than in the first period. As a result, their estimation of

the expected profit of each price in each possible state in the second period is noisier and, as in the

one period case, this effect makes them less competitive. This finding suggests that, empirically,

algorithmic pricing should be associated with stronger price reversals following trades.

Last, it is worth stressing that our goal is not to study how market making algorithms should be

designed. We just use Q-learning as a behavioral model of pricing algorithms in financial markets

because it captures the essence of more complex decision making algorithms. Thus, it is a good

starting point to predict and explain the effects of pricing algorithms in financial markets. For

instance, as explained previously, our analysis implies that with algorithmic pricing, one should

observe empirically a negative effect of shocks reducing adverse selection costs (e.g., greater firms’

disclosure) on dealers’ realized spreads and more pronounced price reversals after trades. Future

research can test these predictions and assess their robustness when other models of behavior for

algorithms are used.

In the next section, we position our contribution in the literature. Section 2 presents the market

making game and its Nash equilibrium. Section 3 describes the Q-learning algorithms used by AMs

in our experiments and reports our experimental results. In Section 4, we interpret these results

and in Section 5, we study the two-periods market making game. Section 6 concludes. Some formal

derivations are in the appendix and an online appendix provides additional results.
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1 Contribution to the Literature

Our paper is related to the emerging literature on algorithmic pricing and the possibility for algo-

rithms to sustain non competitive outcomes.9 Calvano et al. (2020) show that Q-learning algorithms

can learn dynamic collusive strategies in a repeated differentiated Bertrand game. Asker et al. (2023)

and Abada et al. (2022) show that supra competitive prices can be reached in this type of envi-

ronment even if collusive strategies (via dynamic punishment strategies) are ruled out theoretically,

through what Abada et al. (2022) call “collusion by mistake”.10 Banchio and Skrzypacz (2022) find

that Q-learning algorithms post less competitive bids in first price auctions than in second price

auctions. Banchio and Mantegazza (2022) show how reinforcement learning can be approximated

with a continuous time system of differential equations. In contrast to our setting, in these models,

player’s payoff are deterministic and the only source of noise an algorithm faces in estimating its

action’s payoffs comes from the stochastic play of the other algorithms. For example, in Banchio

and Skrzypacz (2022), bidders and sellers have a fixed valuation for the auctioned good and bidders

are not exposed to adverse selection in their setting (they consider private value auctions).

In line with other papers, we find that pricing algorithms relying on Q-learning can lead to non

competitive outcomes even when dynamic strategies are ruled out and when price setters compete

in prices. However, new to the literature, we find that adverse selection mitigates this issue.11 To

our knowledge, we are the first to study how market makers using Q-learning algorithms behave

in presence of adverse selection.12 Dou et al. (2023) study how informed traders using Q-learning

algorithms behave in a Kyle (1985)’s environment. Their analysis and ours are complementary: We

focus on market makers’ pricing behavior while Dou et al. (2023) focus on informed investors’ order

submission strategies. Interestingly, they find that, in noisier environments, informed investors

behave less competitively (submit orders of smaller sizes and get larger average profits). This

9Regulators have expressed concerns about this possibility in online retailers’ markets (see MacKay and Weinstein
(2022), Competition Market Authority (2018), OECD (2017)). We are not aware of similar concerns expressed for
securities markets so far.

10This idea is in line with an earlier literature in machine learning showing that games between Q-learning algorithms
do not necessarily converge to a Nash equilibrium (Wunder et al., 2010). See also Waltman and Kaymak (2008) for
an application to Cournot competition.

11Another uncommon feature of our setting is that the demand faced by pricing algorithms is stochastic. See
also Hansen et al. (2021), Cartea et al. (2022b), or Wilk (2022) for other settings in which selling algorithms face a
stochastic demand elasticity, but without adverse selection.

12Cont and Xiong (2023) and Guéant and Manziuk (2019) study how market makers using reinforcement algorithms
set prices in the face of inventory holding costs. However, there is no adverse selection in their framework.
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observation echoes our finding that an increase in the variance of AMs’ profits (e.g., due to an

increase in the dispersion of their clients’ liquidity demands) leads AMs to settle on less competitive

prices. As in their set-up, this finding is related to the collusion by mistake (or, using the terminology

of Dou et al. (2023), “artificial stupidity”) phenomenon. Cartea et al. (2022a) and Cartea et al.

(2022b) study different families of reinforcement learning algorithms and develop new methods to

study which ones may converge to non Nash behavior in a market making environment.13

Our paper also contributes to the literature on algorithmic trading in securities markets. The

theoretical literature on this issue (e.g., Biais et al. (2015), Budish et al. (2015), Menkveld and

Zoican (2017), Baldauf and Mollner (2020), etc.) has mainly focused on how the increase in the

speed with which algorithms can respond to information increases or reduces liquidity suppliers’

exposure to adverse selection, using traditional workhorses models (Glosten and Milgrom (1985)

or Kyle (1985)). Yet, O’Hara (2015) calls for the development of new methodologies to study the

effects of algorithms in financial markets, writing that as a result of algorithmic trading: “the data

that emerge from the trading process are consequently altered [...] For microstructure researchers,

I believe these changes call for a new research agenda, one that recognizes how the learning models

used in the past are lacking [...].”

Our paper responds to this call. Instead of modeling algorithmic traders as Bayesian learners,

with an omniscient knowledge of the environment in which they operate, we model them as Q-

learning algorithms. These algorithms learn by trial and error with almost no prior knowledge of

the environment, which represents the polar opposite of standard Bayesian learning. Moreover, Q-

learning is relatively simple and transparent, which makes it a good candidate for a workhorse model

of algorithmic interaction. As explained in the introduction, this approach generates strikingly

different predictions for those of canonical Bayesian-learning models, some consistent with empirical

findings about algorithmic trading (see Footnotes 7 and 8).

13In particular, Cartea et al. (2022b) show that using a finer pricing grid (a lower “tick size”) reduces the scope
for collusion. Pouget (2007) compares two trading mechanisms: A call market and a Walrasian tatonnement in an
environment in which both mechanisms have the same Nash equilibrium outcomes. Using computer simulations,
he finds that when traders learn via a reinforcement learning model, convergence to equilibrium is achieved in the
Walrasian tatonnement but not in the call market.
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2 The Economic Environment

In this section, we describe the market making game played by Q-learning algorithms in the exper-

iments and the Nash equilibrium of this game, which serves as a benchmark.

2.1 The Market Making Game

One investor (“client”) wants to buy one share of a risky asset.14 The asset payoff, ṽ, has a binary

distribution, ṽ ∈ {vL, vH}, with ∆v := vH − vL ≥ 0 and µ := Pr(ṽ = vH). This payoff is realized

before trading starts but it is publicly disclosed only after the investor makes her trading decision.

The client privately knows her own valuation for the asset, that is equal to ṽC = w̃C + L̃. We

consider two cases: the adverse-selection case, where Pr(ṽ = w̃C) = 1, and the no-adverse-selection

case, where ṽ and w̃C are i.i.d. In both cases, L̃ is normally distributed with mean zero and variance

σ2, and is independentl from ṽ and w̃C . We refer to L̃ as the client’s liquidity shock and denote its

c.d.f by G(.). The distribution of ṽC is a mixture of two normal distributions with means vL or vH ,

respectively (see Figure 1).

[INSERT FIGURE 1 ABOUT HERE]

After observing her valuation, the client requests quotes from N dealers, who simultaneously

respond by posting a price (an for dealer n) at which they are willing to sell up to one share of

the asset. We denote ā = {an}1≤n≤N the vector of prices, amin := min
n

{an} the best offer (i.e., the

lowest price), and Nmin the number of dealers posting this offer. The client buys if and only if the

best offer is less than her valuation (amin ≤ ṽC).

Let V (amin, ṽC) be the client’s realized demand (volume of trade). It is 1 if the client buys the

asset and 0 otherwise. Dealer n’s realized trading volume is:

I(an, ā, ṽ
C) := V (amin, ṽC)Z(an, ā), (1)

where Z(an, ā) =
1

Nmin
if an = amin (the client’s demand is split equally among the dealers posting

14We only consider the case in which the client is a buyer. This simplifies the analysis without changing the
economics of the problem.
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the best offer) and Z(an, ā) = 0 otherwise. Hence, dealer n’s realized profit is:

Π(an, ā, ṽ
C , ṽ) := I(an, ā, ṽ

C
τ )(a

min − ṽ). (2)

Dealers’ Expected Profit. Consider the adverse-selection case (w̃C = ṽ) first. In this case,

when the asset payoff is v, the client trades with probability:

D(amin, v) := Pr(amin ≤ ṽC | ṽ = v) = Pr(amin ≤ v + L̃) = 1−G(amin − v). (3)

Thus, holding the best price constant, a client is more likely to buy the asset when its payoff is high

than when it is low since D(amin, vH) > D(amin, vL) (see Figure 1). Dealers are therefore exposed

to adverse selection. Let ∆D(a
min) be the difference between the likelihoods of a buy when v = vH

and v = vL (the red area in Figure 1):

∆D(a
min) := D(amin, vH)−D(amin, vL) > 0. (4)

This difference decreases in σ, the dispersion of the client’s liquidity shock L̃ (for vL ≤ amin ≤ vH),

and increases in ∆v, the volatility of the asset.15 Dealers are therefore less exposed to adverse

selection when σ increases or ∆v decreases.

As w̃C = ṽ, we deduce from (2) that dealer n’s expected profit, Π̄(an, ā;µ) := Eµ(Π(an, ā, ṽ
C
τ , ṽ)),

is:

Π̄(an, ā;µ) = Z(an, ā)[µD(amin, vH)(amin − vH) + (1− µ)D(amin, vL)(a
min − vL)], (5)

which can be written as:

Π̄(an, ā;µ) = Z(an, ā)Eµ(V (amin, ṽC))︸ ︷︷ ︸
Dealer’s expected trading volume


Quoted spread︷ ︸︸ ︷

(amin − Eµ(ṽ))−∆v
(1− µ)µ∆D(a

min)

Eµ(V (amin, ṽC)))︸ ︷︷ ︸
Adverse selection cost

 , (6)

where Eµ(ṽ) := µvH + (1− µ)vL and Eµ(V (amin, ṽC)) := µD(amin, vH) + (1− µ)D(amin, vL) is the

15Indeed, remember that D(amin, v) = 1 − G(amin − v), where G(.) is the c.d.f of a Gaussian variable with mean

zero and variance σ2. Thus, ∂D(amin,v)
∂σ

=
exp(− (amin−v)2

2σ2 )
√
2πσ2 (amin − v). It immediately follows that ∂∆D(amin)

∂σ
< 0 for

amin ∈ [vL, vH ]. A similar reasoning implies that ∂∆D(amin)
∂∆v

> 0.
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expected trading volume (the likelihood of a buy). The term in bracket in (6) is dealer n’s expected

profit per share conditional on a trade. It is equal to the dealer’s “quoted spread” (amin − Eµ(ṽ)),

which is what the dealer would earn on average in the absence of adverse selection costs, minus the

adverse selection cost.

Now consider the no-adverse-selection case, w̃C and ṽ are i.i.d. In this case, the likelihood that

a client buys the asset when the best price is amin is Eµ(V (amin, ṽC)) whether the asset payoff is

high or low. Consequently, the adverse selection cost is nil and therefore

Π̄(an, ā;µ) = Z(an, ā)Eµ(V (amin, ṽC))[amin − Eµ(ṽ)]. (7)

Illiquidity Measures. We measure a client’s average “trading cost” using two standard mea-

sures of illiquidity, namely the expected (half) quoted spread, QS := E(amin− ṽ), and the expected

(half) realized spread, RS := E(amin− ṽ | ṽC > amin). The expected realized spread differs from the

quoted spread because it is computed using realizations of (amin− ṽ) (the realized profits of dealers’

posting the best price) only when trades happen (ṽC > amin). The realized spread is often used

by empiricists to measure dealers’ average profits per share traded while the difference between the

realized and the quoted spread is a measure of adverse selection costs.16 Dealer n’s expected profit

(6) can be written as:

Π̄(an, ā;µ) = Z(an, ā)Eµ(V (amin, ṽC))︸ ︷︷ ︸
Dealer’s expected trading volume

Expected realized spread︷ ︸︸ ︷
[amin − Eµ(ṽ | ṽC > amin)], (8)

2.2 Glosten-Milgrom Benchmark

Let a∗ be the lowest price such that if amin = a∗ then dealers obtain zero expected profits. In

our setting, this price is the Bertrand-Nash equilibrium of the market making game. This outcome

is often the focus of the literature on market making (e.g., Glosten and Milgrom (1985) or Kyle

(1985)). We use this “Glosten-Milgrom price” to benchmark our experiments.

16See Foucault et al. (2013), Ch. 2, for a description of various measures of bid-ask spreads in securities markets
and their interpretation.
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With adverse selection, the Glosten-Milgrom price is (use (6) and (8)):

a∗ = Eµ(ṽ | ṽC > a∗) = Eµ(ṽ) + ∆v
(1− µ)µ∆D(a

∗)

Eµ(V (a∗, ṽC))︸ ︷︷ ︸
Adverse selection cost

, (9)

Thus, in the Glosten-Milgrom benchmark, the quoted spread a∗ − Eµ(ṽ) is strictly positive (just

equal to the adverse selection cost) while the expected realized spread is nil.17 In the no-adverse-

selection case, a∗ = Eµ(ṽ) (use (7)). Thus, dealers’ quoted and realized spreads are nil.

In sum, the Glosten-Milgrom benchmark yields four testable hypotheses (see Appendix A.3)

about dealers’ prices:

1. H.1. In the adverse-selection case, the dealers’ quoted spread QS is strictly positive, decreases

with the dispersion of clients’ liquidity shocks σ, and increases with the volatility of the asset

payoff ∆v.

2. H.2. In the no-adverse-selection case, the dealers’ quoted spread QS is nil no matter the

dispersion of clients’ liquidity shocks σ nor the volatility of the asset payoff ∆v.

3. H.3. In both cases, the dealers’ expected realized spreads R̄S are zero (dealers make zero

expected profits).

4. H.4. In both cases, the dealers’ quoted spreads and realized spreads do not depend on the

number of dealers for N ≥ 2.

Our experiments test whether these hypotheses predict well the prices set by Algorithmic Market

Makers (see the next section). We focus on these hypotheses because they are very standard

properties of models of market making in finance. In particular, the fact that quoted spreads

should decline with the dispersion of traders’ private valuations (σ) or increase with the volatility

of the asset payoff when there is adverse selection (see Table 1 for a numerical example) is robust

to modeling details (we are not aware of a model predicting that dealers would charge large spreads

when adverse selection costs decline). Moreover, the last hypothesis just states the well-known

result that it takes only 2 price competitors to reach the Bertrand-Nash equilibrium.

17The Glosten-Milgrom price is the solution of a fixed point problem (equation (9)) for which there is no closed-form
solution given our specification of G(.). This problem always has at least one solution (when there are more than one,
the Glosten-Milgrom price is the smallest root of (9)). See Appendix A.3.
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[INSERT TABLE 1 ABOUT HERE]

Remark. One may wonder why we need to consider the case in which w̃C and ṽ are i.i.d. After

all, when w̃C = ṽ, one can vary dealers’ exposure to adverse selection by varying σ or ∆v and when

∆v = 0, there is no adverse selection. This is true but these parameters also affect the likelihood

of a trade (Eµ(V (amin, ṽC))). Thus, in our experiments with adverse selection, when we vary ∆v or

σ, observed effects can be due to (i) variation in the likelihood of a trade, (ii) variation in adverse

selection costs or (iii) both.18 By considering the cases with and without adverse selection, we can

therefore better isolate the effect of adverse selection, everything else equal (that is, holding σ and

∆v constant).

3 Algorithmic Market Makers

To reach the Glosten-Milgrom equilibrium, dealers are implicitly assumed to know a lot about

the primitives of the market making game. In particular, they know the expected profit they can

obtain by posting a particular price, given their competitors’ price, i.e., Π̄(an, ā;µ). This is key.

For instance, if other dealers set a price strictly above the competitive price, a dealer knows that

she can obtain a strictly larger expected profit by undercutting slightly her competitors rather than

matching their quotes. The standard theory does not explain how dealers learn Π̄(an, ā;µ) and how

they would behave without this knowledge.

In this section (and the rest of the paper), we assume that quotes are set by market makers using

reinforcement algorithms (Q-learning) to learn the expected payoff of posting a given price and to

select the price they post in each period. We refer to such market makers as Algorithmic Market

Makers (AMs). In Section 3.1, we describe Q-learning algorithms and explain, in Section 3.2, how

we parameterize them for our experiments.19 We then present the prices and spreads chosen by

AMs with and without adverse selection (Section 3.3) and compare them to those in the Glosten

and Milgrom benchmark.

18For instance, when σ increases, the adverse selection cost drops but the likelihood of a trade increases. In the
theory, this first effect fully explains the evolution of prices (the quoted spread should drop). However, the algorithms
used in our experiments may behave differently when the likelihood of a trade changes (and in fact they do; see Section
3.3).

19See also Sutton and Barto (2018) for an introductory textbook on Q-learning algorithms.
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3.1 Q-Learning Algorithms

Q-learning is an iterative procedure that defines (in our context) how each AM (i) selects the price

it posts in each trading round and (ii) updates its estimate of the average profit at this price given

the last observed profit. Hence, it defines a particular way to play the market making game for each

AM. We restrict AMs to choose their quotes in a discrete and finite action set A = {a1, a2...aM},

where each am is a possible ask price.20 We choose this price grid so that the expected payoff of

the asset, the Glosten-Milgrom price, and the monopoly price (the one maximizing Π̄(a, a;µ) when

N = 1) are all in the range [a1, aM ] (see below).

The Q-learning algorithm used by each AM works as follows. It consists of T finite episodes.

Each episode t ∈ {1, 2, . . . , T} consists of only one trading round and realizations of the asset payoffs

are independent across episodes (one can think of episodes as “trading days”). To each AM n and

episode t, we associate a so-called Q-Matrix Qn,t ∈ RM×1, which is simply a column vector of size

M .21 The mth entry of the matrix, denoted qm,n,t, represents the estimate by AM n, in episode t, of

the profit from playing price am. For each AM, we initialize Qn,0 with random values. Specifically,

for each AM n and each price index m, qm,n,0 has a uniform distribution over [q, q] and is i.i.d across

prices and AMs.

The Q-learning algorithm specifies how each AM’s Q-matrix evolves over time given the prices

chosen by each AM and a client’s decision in a given episode. This specification relies on two

parameters (common to all AMs), α ∈ (0, 1) and β > 0 and a probability ϵt := e−βt. Given this

parametrization, we iterate the following three steps for each episode t between 1 and T :

1. Action: We first determine the behavior of each AM in episode t. For each AM n, we define

m∗
n,t := argmax

m
qm,n,t−1 the index associated with the highest value in matrix Qn,t−1, and denote

by a∗n,t := am∗
n,t

the greedy price of this AM, that is, the price which according to the AM’s estimate

is profit-maximizing. With probability 1 − ϵt, AM n takes an “exploitation” action: it plays the

greedy price. With probability ϵt, it takes an “exploration” action: the AM draws a random integer

20This constraint is necessary because the algorithm must evaluate the average profit associated with each possible
price.

21In general, the Q-matrix of an agent has S columns, each corresponding to a state realized at the beginning of
each episode that can affect the average payoff obtained by the agent with a given action. If there is no such state,
S = 1, which is the case considered here. In particular, we do not allow AMs to condition the choice of their price on
their past trading history to be as close as possible to the market making game considered in Section 2.1.
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m̃n,t between 1 and M (all values being equiprobable) and quotes an,t = am̃n,t . Thus, am̃n,t is chosen

randomly in A. Whether to explore and which price to try are drawn independently across dealers.

We denote āt = (a1,t, a2,t...an,t) the vector of prices quoted by all AMs in episode t (i.e., for the tth

client).

2. Feedback: We then determine the feedback each AM receives from the market. Nature

draws the asset payoff ṽt and the client’s liquidity shock L̃t. In the adverse-selection case, we set

w̃C
t = vt. In the no-adverse-selection case, w̃C

t is drawn independently from the same distribution

as ṽt. We compute amin
t = min

n
{an,t} the best offer in episode t, and if vCt ≥ amin

t a trade occurs.

In this case, each AM n receives a profit equal to πn,t = Π(an,t, āt, ṽ
C
t , ṽt), as given by (2). In

particular, the AMs quoting amin
t share the profit (or loss) from selling the asset (while others get

zero).

3. Update: Finally, we determine how each AM takes the feedback into account. Following a

standard version of Q-learning, each AM updates its Q-matrix as follows:

qm,n,t =


απn,t + (1− α)qm,n,t−1 if an,t = am

qm,n,t if an,t ̸= am

(10)

In words, after playing action m the AM updates the associated value in the Q-matrix and

inputs a weighted average of the observed payoff and the previous value. The values associated

with other actions do not change.

To understand the intuition behind this class of algorithms, it is important to remember that

they are designed to use no ex-ante knowledge of the expected profit associated with each action.

The goal of the algorithm is to estimate this expected profit and eventually take the action that seems

to maximize the average profit given the AM’s estimate. The only way to learn is to experiment

different prices, in particular by “exploring” in Step 1, receive feedback from the environment (Step

2), update the estimate (Step 3), and accumulate observations by repeating these three steps. As

observations accumulate and the estimates become more precise, the algorithm can more often

“exploit” and play the action that is associated with the highest estimate of the expected profit,

called the “greedy” action.

This general logic is common to the entire family of reinforcement learning algorithms. Q-
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learning is the simplest class of such algorithms. In particular, it uses only two parameters to

control the trade-off between “exploring” and “exploiting” and how to update AMs’ estimates of

their expected profit at each price:

– The parameter β controls the speed at which ϵt decays over time, so that AMs explore a lot

in early episodes and end up exploiting with a probability close to 1 in later episodes. The logic is

as follows. Experimentation is potentially costly since it means that the AM posts a price which,

according to its current estimate, does not yield the highest expected profit. In early episodes, it

makes sense to pay this cost because early estimates are unreliable anyway, and so experimenting

with a new price may uncover a more profitable action. As the number of past episodes grows,

information accumulates and the learning gain in experimenting becomes smaller. Intuitively, the

algorithm should therefore gradually shift from exploring to exploiting over time. This is governed

by β: a larger β means that the shift to exploiting will occur faster.

– The parameter α controls the sensitivity of the AMs’ estimates to new observations. The

higher is α, the higher is the impact of a new realization of the profit obtained by an AM at a given

price on its estimate of the expected profit at this price. Importantly, the AM’s profit at a given

price is random because both the asset payoff and the client’s decision to trade are random (see

Section 4.1). Thus, even if all AMs keep playing the same prices, a too large α leads to unstable

estimates (consider the extreme case α → 1). If α is small, the entries of the Q-matrix are more

stable but learning is slower (in the extreme case in which α → 0 there is no learning).

Importantly, there is no basis on which one can, a priori, choose α and β since the algorithm’s

designer is supposed to know nothing about the environment (this is the reason why the Q-learning

algorithm is used). Thus, α and β must be seen as fixed parameters. Similarly, there are many vari-

ants of the Q-learning algorithm, with different specifications for the experimentation probability

ϵt and the updating rule (10), and more sophisticated classes of reinforcement learning algorithms.

We choose a simple Q-learning algorithm for comparability with recent literature in finance and

economics, and because it features in a simple and transparent way the main properties of rein-

forcement learning algorithms more generally.
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3.2 Experimental Design

Our experiments aim at testing whether the Glosten-Milgrom benchmark (in particular, Hypotheses

H.1 to H.4) predicts well the prices set by AMs using Q-learning algorithms. As these algorithms are

designed to learn by exploring for many periods, this test should be performed after many iterations

(“training period”), so that the algorithms have had enough time to learn. However, there are two

difficulties here.

First, two different runs of T episodes may lead to different outcomes, depending on the realiza-

tions of the different random elements in the simulation. Even with a deterministic initial Q-matrix

and given prices, the payoff an AM actually receives in a given episode t is stochastic and depends

on the realization of ṽt and L̃t. Hence, it is possible that in a given history an AM was “lucky”

with a certain price and ends up choosing this price very often, whereas in a different history the

same AM was unlucky with this same price and hence plays differently. To address this issue, we

run a large number K of experiments consisting of T episodes each, holding the parameters of the

market making game constant, and we focus on the distribution of outcomes (e.g., the average and

the standard deviation of quoted spreads) across these experiments.

Second, the Q-learning algorithms that we use do not converge to a constant action as the

number of episodes T grows large (see Appendix A.5 for a formal analysis).22 The intuition is as

follows. Suppose that this is not true. That is, after some period, AMs play the same greedy-price

am forever and, to simplify, that AMs do not experiment anymore. At this price, the likelihood that

the client does not trade for the next T ′ episodes is always strictly positive, because Pr(ṽC < am) > 0

in our setting. Consequently, over the next T ′ episodes, the AMs’ estimate of their profit at price

am will decline. As this estimate can become arbitrarily close to zero with a positive probability

for T ′ large enough, there is always another price that can become the greedy-price with a positive

22Watkins and Dayan (1992), Jaakkola et al. (1994), or Tsitsiklis (1994) study conditions under which Q-learning
converges to the optimal action. These conditions are not met in our setup, for three reasons: (i) convergence to the
optimal action requires the algorithms to experiment an infinite number of times, whereas our specification of ϵt leads
to a finite expected number of experimentations; (ii) the updating rule needs to be such that the weight given to each
additional observation goes to zero as T goes to infinity, whereas (10) always gives a constant weight α to the latest
observation; (iii) the environment needs to be stationary, which is not the case in a multi-agent problem in which each
agent changes its strategy over time. It is possible to change the algorithm to avoid problems (i) and (ii), at the cost
of losing comparability with the recent literature using Q-learning algorithms in economics and finance. We do this
in Online Appendix OA.2. We still observe a distance with the predictions of the Glosten-Milgrom benchmark, due
to problem (iii).
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probability - a contradiction.23 In sum, in our setting, there is no price that can be a greedy price

forever, no matter how long is the training period. To address this issue, we choose a large value

of T and focus on the average value of different variables in episode T , across K experiments. We

check that T is large enough that this average value no longer depends on T .24 That is, we focus

on the long run average behavior of the AMs.

After experimenting with different parameterizations to address the two issues above, we settled

on the following baseline parameters. The parameters of the economic environment are the same

as in Table 1: ∆v = 4, σ = 5, vH = 4, vL = 0, µ = 0.5, and N = 2 (two AMs). In addition,

AMs can choose all prices between 1.01 and 14.9 included on a grid with a tick size of 0.1 (139

prices in total). This specification makes sure that the zero expected profit prices are in the range

of possible prices for all specifications considered in our experiments. We initialize the Q-matrices

with random values following a uniform distribution between q = 3 and q = 6, so that all values

of the initial Q-matrix are above the maximal payoff a dealer can get in a given period.25 We run

K = 1, 000 experiments, each experiment consisting of T = 1, 000, 000 episodes. In all experiments

we set β = 8.10−5 and α = 0.01. This means that the algorithm chooses to experiment 12,500 times

in expectation, and hence “explores” each price around 90 times on average.26

For each set of parameters, in episode t of experiment k we compute the minimum ask price

amin,k
t and the realized asset value vkt . We the compute the following variables:

1. The quoted spread QSk
t , which is the best offer minus the expected payoff of the asset:

QSk
t = amin,k

t − E[ṽ]. (11)

23In Appendix A.5, we also show formally that the values of each AM’s Q-matrix cannot converge to a single point.
24Other papers in the literature take a different approach and wait for the algorithms to keep the same action for a

large number of episodes before ending each experiment. That is, each experiment has potentially a different T . We
do not follow this approach as it can in principle be misleading in a stochastic setup, see the Online Appendix OA.4.
However, we observe that in most experiments the algorithms have indeed taken the same action for a large number
of periods, so that this difference in approaches is likely inconsequential in practice.

25This specification is common in the literature on Q-learning to guarantee that all actions are chosen sufficiently
often to overcome the initial values of the Q-matrix. See in particular Asker et al. (2023). Indeed, as long as qm,n,t

is larger than the maximal payoff the agent can obtain, action m will necessarily be picked again because all the cells
associated with actions that are played eventually fall below the maximal payoff.

26Each price will be played many more times due to the initialization of the Q-matrix, and in addition a price will
be played with some probability when it becomes the greedy price.
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2. The realized spread (only when there is a trade) RSk
t , which is:

RSk
t = amin,k

t − vkt . (12)

We then compute the average over theK experiments of these variables in the last episode (t = T ).27

The average quoted spreads and average realized spreads are empirical estimates of the expected

quoted spread, QS, and the expected realized spread, RS (defined in Section 2) and we use these

estimates to test whether hypotheses H.1. to H.4. (see Section 2.2) predict AMs’ long run prices.

As AMs must post their quotes on a grid, we cannot expect hypotheses H.2, H.3, and H.4 to

strictly hold since the Glosten-Milgrom price might not be on the grid (and therefore AMs’ realized

spread cannot be exactly zero). Moreover, if the tick size is large enough and the number of dealers

small enough, the market making game can have two Nash equilibria in pure strategies and one

equilibrium in mixed strategy (see Appendix A.6 for more details). Thus, when we report the

results from our simulations (Section 3.3), we always report the quoted and realized spreads in the

least competitive pure-strategy Nash equilibrium. In any case, as the tick size in our experiments

is small, the difference between the Glosten-Milgrom price and the price in the least competitive

Nash equilibrium is small.

3.3 Experimental Results

We first report, in Figure 2 (Panel A), the distribution of the greedy price in the last episode in the

baseline case, with ∆v = 4 and σ = 5 (in all 1,000 experiments both AMs have the same greedy

price in the last episode). In this case, the Glosten-Milgrom price is a∗ = 2.68 and is therefore not

exactly on the grid of possible prices. In the least competitive Nash equilibrium, dealers post a

price of 2.8 (about 1 tick above the Glosten and Milgrom price). As the figure shows, AMs’ quotes

vary across experiments (standard deviation of 0.73) and, in all experiments, the greedy price is

above the least competitive Nash equilibrium (and therefore far above the Glosten-Milgrom price).

The modal greedy price in the last episode is 4.60 and the mean is 4.97. At any price above 2.8,

each AM is strictly better off undercutting its competitor since 2.8 is the least competitive Nash

equilibrium. For instance, consider the case in which both AMs settle on a price of 5. At this price,

27The average realized spread is:
∑K

k=1 V k
T RSk

T∑K
k=1

V k
T

. That is, it is computed only when a trade occurs.
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in the baseline case, each AM obtains a true expected profit of 0.30. However, each AM could

obtain a greater expected profit, of 0.59, by undercutting its competitor by one tick (posting a price

of 4.90). The AMs do not learn this.28

Panel B of Figure 2 shows the evolution over episodes 1 to T of the average greedy price (averaged

over K experiments). In the first part of the learning process (roughly the 20, 000 first episodes),

the average greedy price decreases and then stabilizes at 4.97. Thus, initially at least, AMs seem

to learn to lower their price to attract more clients. However, as their experimentation rate decays,

they have fewer opportunities to learn and their assessment of their profit at each price changes less

from one client to the next. As a result, in a given experiment, the greedy price tends to stabilize.

Yet, it varies across experiments (the figure shows the evolution of the greedy prices one standard

deviation away from the average) because the trading history is not the same.

[INSERT FIGURE 2 ABOUT HERE]

In Panel A of Figure 3, we study the effect of the dispersion in clients’ liquidity shocks σ on

AMs’ average quoted spread. To this end, we run K = 1, 000 experiments for different values of σ

ranging from 1 to 9 (other parameters are as in the baseline case), both in the adverse-selection case

and the no-adverse-selection case (18, 000 = 2 × 1, 000 × 9 experiments overall). For each value of

σ, we then compute and plot the average quoted spread QS in each case. We also plot the quoted

spread in the Glosten-Milgrom benchmark, with and without adverse selection.

Consider the adverse-selection case first. For all values of σ, the average quoted spread in this

case is largely above the quoted spread in the least competitive Nash equilibrium. Strikingly, this

is also the case when there is no adverse selection. These observations confirm for a broader set

of parameters that AMs settle on non-competitive prices, failing to learn that they could increase

their expected profit by undercutting their competitor at these prices. Moreover, the figure shows

that, both in the adverse-selection case and the no-adverse-selection case, the average quoted spread

increases with σ, the dispersion of clients’ liquidity shocks. This is not consistent with our hypotheses

H.1 and H.2, which imply that the quoted spread should be decreasing with this dispersion in the

former case and insensitive to this dispersion in the latter. Moreover, these findings cannot be

28Of course, by playing a price of 4.90, the AM may well eventually induce its competitor to post another price, say
4.90, at which they will both be worse off. However, nothing in the AM’s design allows for this type of forward-looking
reasoning (in particular, as AMs cannot condition their prices on the past trading history, they cannot learn that
undercutting might generate a loss in future profits by triggering a drop in their competitor’s price).
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explained by the fact that AMs’ quotes are constrained to be on a specific price grid, since H.1 and

H.2 also hold in the least competitive Nash equilibrium (see the dotted-dashed lines on the figure).

In Panel B of Figure 3, we report the average realized spreads RS for different values of σ.

The figure shows in another way that AMs do not post competitive quotes: Their average profits

per trade (average realized spread) are far above zero and those in the least competitive Nash

equilibrium. Interestingly, AMs learn to cope with adverse selection since their average realized

spread is positive for all values of σ. Thus, their average quoted spread exceeds adverse selection

costs on average, which explains why AMs’ average quoted spreads are larger when there is adverse

selection than when there is not. However, AMs’ average realized spreads are smaller with adverse-

selection case than without, all else equal. Thus, adverse selection induces AMs to behave more

competitively (charge smaller markups relative to costs).

This finding is surprising. According to hypothesis H.3., realized spreads should be zero on av-

erage, whether or not there is adverse selection. Moreover, we are not aware of theories predicting

that sellers (here dealers) should become more competitive when they are exposed to adverse selec-

tion. Furthermore, price discreteness cannot (at least in an obvious way) explain why the average

realized spread is always smaller with adverse selection than without.

Last, AMs’ average realized spreads increase with the dispersion of clients’ liquidity shocks.

Thus, AMs get larger rents, whether there is adverse selection or not, when the dispersion of clients’

liquidity shocks increases. This finding is again at odds with the Glosten-Milgrom benchmark (it

rejects hypothesis H.3) and is not predicted even after accounting for price discreteness. It suggests

again that it becomes more difficult for AMs to learn to undercut when the dispersion of clients’

liquidity shocks gets larger (and therefore adverse selection costs smaller).

[INSERT FIGURE 3 ABOUT HERE]

In Figure 4, we consider the effect of the volatility of the asset payoff, ∆v. It show (Panel

A) that the average quoted spread increases with the asset volatility in the adverse-selection case,

as Hypothesis H.1 predicts. However, the average quoted spread also increases with volatility in

the no-adverse-selection case. This is unexpected: H.2 predicts that the quoted spread should not

depend on this volatility when there is no adverse selection.

This observation suggests that an increase in asset volatility makes AMs less competitive. This
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conjecture is confirmed by Panel B of Figure 4, which shows that AMs’ average profit per trade

(their average realized spread) increases with the asset volatility. However, it does so less in the

adverse selection case and, like we observed before, we find that AMs’ average realized spread is

smaller in the adverse selection case for all values of ∆v, even though their average quoted spread

is larger. Overall, Figure 4 conveys a message similar to that of Figure 3: AMs learn to cope with

adverse selection and adverse selection makes them more competitive.

[INSERT FIGURE 4 ABOUT HERE]

Figure 5 shows the evolution of AMs’ average quoted and realized bid-ask spreads when the

number of AMs, N , increases from 2 to 10. As N increases, the average quoted and realized spreads

decline. However, even with 10 AMs, they remain significantly larger than in the least competitive

Nash equilibrium. It may seem intuitive that more numerous AMs makes prices more competitive.

However, in the market making game considered in this paper, it takes only 2 dealers to obtain the

Bertrand-Nash equilibrium. Thus, in this equilibrium, average quoted spread should remain stable

when N increases from 2 to 10 (Hypothesis H.4), in contrast to what we observe experimentally.29

Last, as when we vary σ and ∆v, we observe that AMs’ average quoted spreads are larger when

there is adverse selection than when there is not, for all values of N . However, AMs’ average realized

spreads are smaller in the former case.

[INSERT FIGURE 5 ABOUT HERE]

In sum, AMs learn to not be adversely selected: In all environments considered in our exper-

iments, their average realized spreads are positive and AMs charge larger quoted spreads when

adverse selections costs are strictly positive than when there are nil. However, AMs’ long run prices

deviate in many ways from those predicted by the Nash equilibrium of the market making game:

1. AMs settle on prices well above the least competitive Nash equilibrium of the mark making

game. This means that each AM could obtain a larger expected profit by undercutting its

competitor. However, it fails to learn this (because of estimation errors; more on this below).

29Interestingly, Brogaard and Garriott (2019) find empirically that average bid-ask spreads gradually decline with
entry of new high frequency market makers, for a sample of Canadian stocks. Their finding is more consistent with
the pattern shown in Figure 5 than that predicted by the Glosten-Milgrom benchmark.
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2. AMs’ prices are more competitive (closer to costs) when there is adverse selection than when

there is not.

3. AMs’ prices are less competitive–whether there is adverse selection or not–when the dispersion

of clients’ liquidity shocks or the volatility of the asset payoff increase.

These outcomes cannot be explained by the standard analysis of the market making game. In fact,

as shown in this section, most of the predictions of this analysis are rejected in our experiments. In

the next section, we propose an explanation for this finding.

4 Interpretation

4.1 Noisy Learning, Competition, and Adverse Selection

It is perhaps not surprising that Q-learning algorithms do not converge to the Glosten-Milgrom

benchmark: these algorithms face a stochastic environment and experiment only a finite number

of times. Their estimates of the payoffs associated with different strategies are therefore noisy,

which can lead them to take actions that appear suboptimal (mistakes) for an observer knowing

the true expected profit at each price. While finite experimentation is an important feature of

the algorithms we use, our algorithms still experiment many times, at least sufficiently to find

the true best response when the price of their competitor is fixed (see Section 4.2). Moreover, in

itself, lack of experimentation cannot explain (i) why the period T price is systematically above the

Glosten-Milgrom price, instead of being randomly distributed around it, and (ii) why AMs post

more competitive prices when their adverse selection cost increases.

Our proposed interpretation of these experimental findings is two-pronged. It relies on two

features of the environment. First, in the early phase of their learning, each AM faces a non

stationary environment because its competitor is frequently experimenting. It is therefore difficult

for AMs to assess the average profit that can be achieved at each price. This issue becomes less

acute over time because AMs experiment less and less. However, precisely because of this, they fail

to learn to undercut until the competitive price is reached. Second, even holding constant the price

of their competitor, each AM’s profit is a noisy estimate of its expected profit at a give n price.

Any parameters that makes the variance of the profit at a given price larger makes this noise larger
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and AMs more prone to making mistakes. We explain these two points in more details now.

To understand the first issue, consider again the baseline case considered in Figure 2. In the

first episodes, both AMs are experimenting with a high probability. AM 1 for instance is gradually

learning how to best respond to AM 2. However, most of the time, AM 2 chooses a random price

between 1.1 and 14.9 , since the likelihood of experimentation is high in early episodes. The best

response to this random play by AM 2 is actually for AM 1 to play a = 5.6. As AM 1 plays

prices closer to 5.6 more often (since the likelihood of experimentation declines over time), AM 2

should in principle learn that its best response is then to play prices below 5.6, in an undercutting

process typical of Bertrand competition. However, because both AMs experiment less and less

often over time, this undercutting process will typically not last long enough to reach the Glosten-

Milgrom price. For instance, both AMs may have reached a price of only 5.0 when the probability

of experimenting ever again becomes very small. If for both AMs playing prices below 5.0 did not

prove profitable in the past (when the other AM was playing differently), then the AMs appear

“stuck” with supra-competitive prices. In sum, AMs do not fully learn to undercut.

This reason for why the AMs’ prices do not reach the Nash equilibrium is similar to what

happens in Asker et al. (2023), Dou et al. (2023), or Abada et al. (2022). We can now push this

logic further to explain how it interacts with the parameters of the model and with adverse selection,

and how this explains our experimental results. As we just explained, algorithms learn to undercut

each other by experimenting, but since experimentation is finite they may not have enough time

to reach the Glosten-Milgrom price. An implication is that the final level of prices depends on

how fast the algorithms learn. As explained previously, the Q-learning algorithm can be seen as

a way to estimate the average true payoff of choosing a particular price. Intuitively, arriving at

a good estimation takes more time when the AM’s profit at this price is more uncertain, holding

competitors’ prices fixed (as in a Nash equilibrium, for instance).30 More specifically, in the two-

player example, if AM 2 is currently playing am above the Glosten-Milgrom price, then AM 1 will

learn to undercut and play am−1 if and only if observations in its Q-matrix accumulate such that

qm−1,1,t > qm,1,t. Even though in expectation the profit from playing am−1 is preferable to playing

am, that is, E(Π(am−1, ā, ṽ
C , ṽ)) > E(Π(am, ā, ṽC , ṽ)), AM 1 may end up having qm−1,1,t < qm,1,t

30In the experiments, AMs’ prices vary over episodes (especially in the early episodes). For a given AM, variations
in the price of its competitor is another source of variation in its profits, absent from the theory.
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simply because both profits have a high variance and are hence estimated with noise. Thus, we

conjecture that when the variance of dealers’ profits at a given price is higher, outcomes become less

competitive because it is more difficult for AMs to accurately rank the average true profits obtained

at different prices and to realize that undercutting is profitable.

We now show that the results in the previous section are consistent with this conjecture. To this

end, it is useful to compute the theoretical variance of an AM’s profit Var(Π(a1, ā, ṽ
C , ṽ)), holding

prices constant. To provide the intuition in the simplest way, we do this only in the case with two

AMs. In the no-adverse-selection case (‘n.as′) and a1 < a2, using (2) gives (see Appendix A.4 for

derivations):

Varn.as(Π(a1, ā, ṽ
C , ṽ)) = (a1 − E 1

2
(v))2 E 1

2
(V (a1, ṽ

C))(1− E 1
2
(V (a1, ṽ

C)))︸ ︷︷ ︸
Demand Risk

+
∆2

v

4
E 1

2
(V (a1, ṽ

C))︸ ︷︷ ︸
Inventory Risk

.

(13)

This is the variance of AM 1’s profit if it undercuts its competitor without adverse selection. If

instead AM 1 matches its competitor’s price, the variance of its profit is as given in (13), divided

by 4 because each AM fills only 50% of the client’s order.

Thus, in the absence of adverse selection, holding prices constant, AM 1’s profit is uncertain,

even if it quotes the best price, for two reasons: (i) The client’s demand is uncertain (the variance of

this demand is E 1
2
(V (a1, ṽ

C))(1−E 1
2
(V (a1, ṽ

C))) and (ii) conditional on the client trading, the value

−ṽ of the dealer’s short position is uncertain. We refer to these two sources of risk for dealers as

“demand risk” and “inventory risk”, respectively. When there is no adverse selection, both sources

of risk increase with the dispersion of clients’ liquidity shocks, σ and the volatility of the asset

payoff, ∆v (see Appendix A.4). This explains why prices become less competitive (realized spreads

increase) when σ and ∆v increase: as learning becomes noisier, AMs’ ability to learn to undercut

their competitor is slowed down. One way to attenuate this effect would be for AMs to experiment

more when profits become more volatile. However, experimenting is costly and algorithms are

supposed to be designed without prior knowledge of the environment (more on this in Section 4.3).

Now consider the case with adverse selection (as). In this case, the variance of dealer 1’s profit
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(when a1 < a2) is (see Appendix A.4):

Varas(Π(a1, a2, ṽ
C , ṽ)) = Varas −

[
∆v ×∆D

2

(
a1 − E(v)−

Π̄as(a1, ā;
1
2))

2
)

)]
, (14)

where Varn.as is given by(13) and Π̄as is dealer 1’s expected profit with adverse selection when

she quotes a1 < a2 (equation (6) with Z = 1). The last term (in bracket) is positive because the

dealer’s quoted spread is always larger than her expected profit with adverse selection (see (6)).

Thus, other things equal, adverse selection reduces the variance of dealers’ profits and therefore the

noise in AMs’ learning process. The reason is that adverse selection shifts the mass from trades that

generate relatively profits (those in which v = vL) to trades that generate relatively low profits or

even losses (those in which v = vH). As a result, realized profits have a higher chance to be close or

equal to zero (no trade) with adverse selection and the variance of profits declines (see Figure 7 in

Appendix A.4 for an example). This “shifting effect” is captured by the term in bracket in eq.(14).

As Varas < Varn.as, our conjecture implies that AMs’ quotes should therefore be more competitive

in environments with adverse selection, which is what we observe in our experimental results.

An increase in the dispersion of liquidity shocks, σ, raises the variance of AM 1’s profit (see

because (i) it increases V arn.as for reasons previously explained and (ii) it reduces the shifting effect

previously discussed because it reduces adverse selection (see Appendix A.4 for a proof that the

term in bracket in eq.(14) decreases with σ). According to our conjecture, an increase in σ should

therefore also lead to less competitive prices (even though it reduces adverse selection costs) when

there is adverse selection. This is also what we observe (see Figure 3).

In contrast, an increase in the volatility of the asset payoff has an ambiguous effect on the

variance of AM 1’s profit when there is adverse selection. Indeed, as previously explained, it

increases V arn.as but it also increases adverse selection cost and therefore the shifting effect. Thus,

the effect of the volatility of the asset payoff on the variance of AM 1’s profit is weaker when there

is adverse selection than when there is none. According to our conjecture, we should therefore see

a smaller effect of an increase in the volatility of the asset payoff on AMs’ average realized when

there is adverse selection than when there is not. Again this is exactly what we observe (see 4).

In sum, when dealers are risk neutral and Bayesian (as assumed in standard analyses of the

market making game, see Section 2.2), the variance of their profits plays no role. In contrast, it

26

Electronic copy available at: https://ssrn.com/abstract=4252858



seems to matter greatly when dealers use Q-learning algorithms to set their quotes, even though

dealers are not penalized for taking risks in our experiments. The reason is that an increase in the

variance of AMs’ profits makes their estimates of the average payoffs of the various actions they

can take less accurate because the feedback they receive is noisier. It is therefore more difficult for

them to realize that by lowering their quoted spread, they can increase their profits by increasing

trading volume. Interestingly, this effect leads AMs to require larger “risk premia” (average realized

spreads) when their profits become more volatile, as if they were risk averse.

4.2 Alternative Explanations

Despite the simplicity of the Q-learning algorithm, strategic interactions between several such al-

gorithms can lead to intriguing properties, some of which have been discussed in recent literature.

We briefly discuss here some of these properties and explain why they cannot alone explain our

experimental results or even do not apply in our setting.

Deficient Algorithm Design. The first and simplest explanation could be that our algorithms

are simply not sophisticated enough or not well designed to play the market making game. However,

as explained below, we parameterized the algorithms such that they still do a reasonable job at

learning how to behave in their environment. The problem does not come from the design of each

algorithm but from the interaction between these algorithms. To illustrate this point, it is useful

to consider a different experiment with two AMs. In this experiment, we fix the price posted by

AM 2 at 5.0 in every period, i.e., about the level of the average greedy price after T episodes in our

baseline experiments (see Figure 2). We then test whether AM 1 is able to learn the best response

to this price, which is 4.9. We report the results in Figure OA.1 in the Online Appendix. We find

that it takes 46,043 episodes for the average greedy price over K = 1, 000 experiments to reach 4.9.

After T = 1, 000, 000 episodes the modal greedy price of AM 1 is indeed 4.9. There is only one

experiment with a final greedy price above 4.9 (hence AM 1 has not learnt to undercut AM 2), and

a few where the average greedy price is 4.82.

These findings show that the Q-learning algorithm performs well against an AM with a fixed pric-

ing strategy. In particular, in this case, the other AM can learn to undercut with the parametrization

used for the Q-learning algorithms in our environment. The reason why it does not in our experi-

ments is that the other AM’s price is not fixed over time and that by the time AM 2 reaches a price
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of 5, AM 1 experiments only with a very low probability (as is the case for AM 2). This illustrates

the importance of experimentation (and lack thereof) in our explanation.31

Coupling. A second explanation relies on the idea of “coupling” (Banchio and Skrzypacz

(2022)): Even though the algorithms experiment at random times and independently of each other,

they may end up playing in a correlated manner. For instance if AM 1 and AM 2 play the same price

am and AM 1 learns to undercut to am−1, then AM 2 will eventually learn to play am−1 or am−2,

which will reduce the value associated with am−1 in AM 1’s Q-matrix. AM 1 will then eventually

revert to am, and so will AM 2, giving rise to cycles of alternatively high and low prices (so that the

average greedy price is above the competitive price). Banchio and Mantegazza (2022) illustrate this

logic in a prisoner’s dilemma and a Bertrand game with two prices and no uncertainty. It is unclear

whether such outcomes can occur in an environment like ours, with many prices and stochastic

payoffs. Intuitively, in this case, spontaneous synchronization of different algorithms seems more

difficult. In any case, coupling requires the algorithms to experiment for an infinite number of

episodes, which is not the case in our specification.

To explore this point in more details, we conduct the same experiment as the baseline case

(Figure 2), but we let AMs explore with a positive probability forever, as in Banchio and Man-

tegazza (2022). Moreover, we change the updating rule (10) so that the Q-matrix simply records

the empirical average of payoffs obtained with each strategy. This parameterization of the algo-

rithm satisfies the assumptions of Watkins and Dayan (1992) ensuring convergence in a stationary

environment with only one algorithm (see Footnote 22). Despite having two algorithms and hence a

non-stationary environment, we observe in Figure OA.2 (Online Appendix) that the average greedy

prices converge to 3.36, with the mode of the distribution at 3.0, only slightly above the least

competitive Nash equilibrium of 2.8. We interpret this finding as confirmation that the distance

between our experimental results and the Glosten-Milgrom benchmark is more likely to come from

insufficient experimentation than from coupling.

Tacit Collusion. A third possibility is that AMs learn how to play a collusive equilibrium

sustained by dynamic punishment strategies, as found in Calvano et al. (2020) and subsequent

31We repeated the same experiment with lower fixed prices. When the price becomes very close to the Glosten-
Milgrom price, for instance 3.0 in the baseline setting, AM 1 fails to learn to play the best response of 2.9. The reason
is that the profit from playing 2.9 or 3.0 has a very low expectation and a high variance, and the algorithm fails to
detect that these strategies are more profitable than playing above 3.0 and getting 0.
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papers (e.g., Dou et al. (2023)). However, this explanation cannot hold in our case for two reasons.

First, in the market making game considered in our experiments, there are no non-competitive Nash

equilibria (the game is static). Thus, AMs cannot settle on a non competitive Nash equilibrium.

Second, while algorithms play the market making game many times with different clients in our

experiments, they cannot condition their action on the trading history (in particular past prices

and trade outcomes in the previous episode), unlike in Calvano et al. (2020). They cannot therefore

learn and execute strategies similar to punishment strategies in repeated games. The crucial point

here is the absence of any observable state on which the algorithm can condition, not the fact that

the algorithm maximizes the one-shot profit of the game instead of the discounted value of future

profits.32

4.3 Are Q-learning Algorithms Suboptimal?

As AMs’ long run prices do not form a Nash equilibrium, they are - by definition - reacting subop-

timally to their competitors’ prices. As with any non-Nash outcome, a natural question is why are

players “leaving money on the table”? That is, why wouldn’t agents designing pricing algorithms

adapt them so that they eventually learn to lower their prices when it is profitable to do so?

We believe that the answer most consistent with Q-learning is the uncertainty faced by the

agents: They are assumed to use Q-learning algorithms precisely because they neither know the

specifics of the game they are playing, nor the behavior of their competitors. As a result, they do

not have the information necessary to realize that their behavior is suboptimal. If they did, they

would probably not use such algorithms in the first place. Moreover, in the stochastic environment

of our experiments, it is very difficult to empirically estimate expected profits and realize that

better strategies are available.33 As explained in Section 4.1, this is actually the reason why AMs

reach an outcome far from the Glosten-Milgrom benchmark. In sum, the suboptimal nature of the

32The updating rule (10) is adequate for what Sutton and Barto (2018) call an “episodic task”: an optimization
problem with a clear beginning and end, here a one-period game. Other papers in the literature typically use the rule
qm,n,t = α[πn,t +γmaxm′ qm′,n,t]+ (1−α)qm,n,t−1, which is meant for computing the value of an action in an infinite
horizon problem like an infinitely repeated game. We can of course implement such a rule in our experiments and
ask each dealer to maximize the discounted value of all future episodes. As long as the algorithm cannot condition
on past history this makes no difference. However, because of the new term γmaxm′ qm′,n,t there is less update after
each episode, this makes learning slower and the final greedy price higher, keeping all other parameters constant.

33In deterministic contexts (e.g., a Bertrand game with deterministic demand) if the agents converge to a non-Nash
outcome, experimenting a deviation once is enough to realize the outcome is individually suboptimal. This is not the
case in our market making game (e.g., in our baseline case, undercutting a price of 5 by one tick can yield a profit of
zero (no trade) even though its average payopff is strictly larger than the average profit at 5.
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behavior of the algorithms is apparent only to the modeler, who has information that algorithms’

designers not have. Accordingly and for the same reasons, the applied literature on Q-learning

rarely discusses optimality, and usually focuses on reaching satisficing outcomes or “improving”

over current methods in some baseline example.

Another approach, followed for instance by Compte (2023), is to assume that agents are con-

strained to use Q-learning algorithms, but that they can optimize the parameters of these algorithms

(α and β in our setting). However, if the agents have no information about the environment, the

only possibility for them to optimize the parameters of their algorithm is to try different ones and

observe the outcome. This is basically a new Q-learning problem, and now the question is how to

parameterize the algorithm to solve this new problem. Alternatively, the agents could be assumed

to be able to compute the expected payoff associated with each parameterization of the algorithm

and play a Nash equilibrium over the parameters. However, in our context, it is unclear why agents

endowed with such detailed information about the environment would stick to using Q-learning

algorithms.

Still, for robustness, we followed this line of reasoning and checked whether agents would change

their experimentation rate (β) in order to increase their total profit. More specifically, we rerun

the experiments in our baseline experiment (σ = 5, ∆v = 4), for different values of AM 1’s β,

holding AM 2’s beta fixed at β = 8.10−5 (its level in our experiments). We then compute AM

1’s average total profits over various time windows and report the results in Figure OA.3 in the

Online Appendix. We find that AM 1’s average profit is lower if it unilaterally uses a lower β than

AM 2 (and therefore experiments more). A contrario, increasing β (experimenting less) leads to

slightly higher average profits than those obtained when β = 8.10−5, though not significantly so.

This suggests that no AM has an incentive to unilaterally deviate from β = 8.10−5.

More generally, there are two reasons why agents have no incentive to experiment more: (i)

experimentation involves playing random actions instead of actions that have proven more profitable

in the past, which is costly on average ; (ii) experimenting more affects the update process of the

competitors, in a direction which seems to lead to lower prices on average, and hence to lower profits

for both agents.
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5 Learning from Order Flow and Price Discovery

When there is asymmetric information, the “order flow” (the sequence of clients’ trading decisions)

is a signal about the asset payoff. In models of market making with bayesian learning (for instance,

Glosten and Milgrom (1985), Kyle (1985), or Easley and O’Hara (1992)), market makers use this

signal to update their forecast of the asset payoff and gradually learn it (“price discovery”). This

implies that the order flow impacts prices. For instance, after a buy order, dealers revise upward

their estimate of the asset payoff and therefore their quotes for the next trade. This implication

is important. It is the cornerstone of the specification and interpretation of the so called “price

impact regressions” (Glosten and Harris (1988)) that empiricists use to analyze the effect of trades

on prices in securities markets.

In this section, we study how AMs’ quotes react to the order flow and compare this reaction to

that predicted by the Nash equilibrium of the market making game. For this analysis, we extend

the market making game considered in Section 2.1 to two periods, focusing on the adverse-selection

case. That is, we assume that before the asset payoff is revealed, dealers receive orders from two

different buyers who arrive sequentially in periods τ = 1 and τ = 2. The valuation of the buyer in

period τ is ṽCτ = ṽ + L̃τ , where L̃1 and L̃2 are independent and normally distributed with mean

zero and variance σ2. In this way, we can study how AMs’ quotes for the second client depends on

the order flow in the first period.

We proceed as in the case with one client. That is, in Section 5.1, we first derive the Nash

equilibrium (Glosten and Milgrom prices) of the market making game with two periods and derive

its implication for the dynamics of quotes. Then, in Section 5.2, we run experiments in which the

two periods market making game is repeated with a large number of clients and played by AMs

using Q-learning algorithms and test whether AMs revise their quotes as predicted by the Nash

equilibrium.

5.1 Two-Period Glosten-Milgrom Benchmark

Let denote market makers’ belief about the likelihood that v = vH prior to the arrival of the

τ th client by µτ . Thus, µ1 = µ. At the end of the first trading round, there are two possible

trading histories (H1): (i) a trade at price amin
1 (H1 = {1, amin

1 }) or (ii) no trade at price amin
1
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(H1 = {0, amin
1 }). The market makers’ Bayesian beliefs about the likelihood that v = vH after both

histories are:

µ2(1, a
min
1 ) := Pr(v = vH | H1 = {1, amin

1 }) = D(amin
1 , vH)µ1

Eµ1(V (amin
1 , ṽC1 ))

(15)

µ2(0, a
min
1 ) := Pr(v = vH | H1 = {0, amin

1 }) = (1−D(amin
1 , vH))µ1

1− Eµ1(V (amin
1 , ṽC1 ))

. (16)

It is easily checked that µ2(1, a
min
1 ) > µ1 > µ2(0, a

min
1 ) if (and only if) ∆v > 0. That is, Bayesian

market makers revise their estimate of the expected payoff of the asset upwards after a buy in period

1 and downwards after no trade.

Conditionally on µτ , one can derive dealers’ expected profits in periods τ = 1 and τ = 2 exactly

as in the one-period case. Hence, dealer n’s expected profit in period τ is Π̄(an, ā;µτ ). As a result,

the Glosten and Milgrom price in periods τ , a∗τ is given by (9) with µ = µτ in period τ . The unique

Nash equilibrium of the two period market making game is such that, in each period, at least two

AMs post a∗τ .
34 Thus, hypotheses H.1 to H.4 still hold within each period τ .

However, in this case, the Nash equilibrium of the market making game has another implication.

Indeed, the Glosten and Milgrom price in the second period depends on the trading outcome (order

flow) in the first period. As µ2(1, a
min
1 ) > µ1 > µ2(0, a

min
1 ), market makers charge a higher price to

the second client than to the first client if a trade takes place in the first period, and a lower price

otherwise (see Table 2 for a numerical example). This yield the following hypothesis:

H.5: Market makers’ offer to the second client is higher (resp., smaller) than for the first client

after a buy (resp., no trade).

In the next section, we study whether AMs’ quotes satisfy this standard property even though

they are not Bayesian.

[INSERT TABLE 2 ABOUT HERE]

5.2 Experimental Results

As in Section 3, we now conduct experiments in which Q-learning algorithms play the two-periods

market making game over T episodes. The key difference is that each episode feature two clients

34There is no equilibria in which market makers post non competitive prices sustained via dynamic punishment
strategies because the market making game has a finite horizon (two periods).
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arriving sequentially with the same common value, ṽ. To allow the algorithms to react to the

occurrence of a trade in period 1, we let them keep track in each episode of the “state” they are

in, and let them play an action that depends on the state. Q-learning algorithms were initially

designed to solve dynamic stochastic optimization problems (both finite and infinite horizon), and

are thus in principle well suited to optimizing prices in this environment.35 In this section we sketch

how we program the algorithms in the 2-player case. A more precise and general treatment is given

in Appendix A.7.

For each AM n ∈ {1, 2} and episode t, we denote sn,t ∈ {∅, NT, 0, 12 , 1} the state the algorithm

finds itself in. The states are defined as follows: (i) sn = ∅ in the first period; (ii) sn = NT in the

second period if “No Trade” took place in the first; (iii) sn = 0 in the second period if there was a

trade in the first period, but AM n did not trade; (iv) sn = 1
2 in the second period if there was a

trade in the first period, and both AMs shared the market; (v) sn = 1 in the second period if there

was a trade in the first period, and AM n sold one share.

This partition of the state space implies that each algorithm keeps track both of (i) whether a

trade took place (which is important to analyze the effect of order flow) and (ii) of its inventory

after period 1 (e.g., sn = 1
2 indicates a short position of −1

2 for AM n). The latter is important:

As ṽ is realized only at the end of the second period, the algorithm cannot know how profitable the

first-period trade was before the end of the second period. Hence, the algorithm needs to keep track

of its inventory, and learn what is the value of being in a state with a short position vs. a state

with a zero inventory.36 To do this, each AM relies on a Q-matrix Qn,t ∈ RM×5, in which each line

corresponds to a different price and each column to a state, ordered as in the previous paragraph.

We denote qm,s,n,t the (m, s) entry of matrix Qn,t.

We then extend the process described in Section 3.1 to this case with two periods and 5 states.

The logic is exactly the same as in the first-period case (details can be found in Appendix A.7).

There are two important differences worth mentioning. First, the updating of the Q-matrix is

different from (10) and is now:

35See Leach and Madhavan (1993) for the analysis of a monopolist’s optimal behavior in the two-period market
making game.

36Using inventory levels as the state variable is common in other applications of Q-learning, in particular in dynamic
pricing and revenue management. See, e.g., Rana and Oliveira (2014) for an example. The list of states used by the
algorithms is an important parameter of the model. The list could be even richer (e.g., conditioning on prices in
period 1 as well), or coarser (not distinguishing states NT and 0).
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qm,∅,n,t =


α[a1n,tI

1
n,t +max

m′
qm′,sn,t,n,t−1] + (1− α)qm,∅,n,t−1 if a1n,t = am

qm,∅,n,t−1 if an,t ̸= am,

(17)

for sn,t ̸= ∅, qm,sn,t,n,t =


α[a2n,tI

2
n,t − ṽt(I

1
n,t + I2n,t)] + (1− α)qm,sn,t,n,t−1 if a2n,t = am

qm,sn,t,n,t−1 if a2n,t ̸= am

(18)

This updating rule is best understood backwards. (18) is the updating done in period 2 when the

state is sn,t. At the end of period 2, we know the quantities I1n,t and I2n,t sold by AM n in periods

1 and 2, respectively. We count the revenues a2n,tI
2
n,t generated by the period-2 sale, and subtract

the cost ṽt(I
1
n,t + I2n,t) of having sold I1n,t + I2n,t units worth ṽt each. (17) is the updating done in

period 1. The reward recorded by the algorithm has two components. First, the revenues a1n,tI
1
n,t

from selling I1n,t units. As already mentioned, in period 1 the value of ṽt is still unknown and cannot

be deducted from the revenues, this will be done at the end of period 2 only. To keep track of this

cost, and following the standard specification of Q-learning, we add the term max
m′

qm′,sn,t,n,t−1: this

term is the value associated with moving to state sn,t in period 2, which as we just saw incorporates

the cost of selling the asset. For instance, if AM n sells one unit in period 1 we have I1n,t = 1

and revenues of a1n,t × 1 are recorded in the first column of the Q-matrix. In addition, AM n will

start period 2 in state sn,t = 1, and the expected value of this state is max
m′

qm′,1,n,t−1, that is, the

maximum of the 5th column of the Q-matrix. This value takes into account that in this state AM

n starts with an inventory of 1, which will have a cost of ṽt.

The second important difference with Section 3.1 is that the AMs can now play a different price

in each state and there are potentially 5 different greedy prices for each AM. Our experiments focus

again on the last episode T . As we are interested in testing whether AMs learn to react to the

order flow, we will aggregate states s1,T ∈ {0, 12 , 1} as a state with a trade in period 1, compared

to s1,T = NT which is a state with no trade. Formally, based on the realization of K experiments

of T episodes each, we denote amin,k
τ the best ask submitted and V k

τ the realized volume in period
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τ ∈ {1, 2} of episode T and experiment k. We then define:

V̄2 =

K∑
k=1

V k
2 (19)

ā1 =

∑K
k=1 a

min,k
1

K
(20)

āT2 =

∑K
k=1 a

min,k
2 V k

2

V2
(21)

āNT
2 =

∑K
k=1 a

min,k
2 (1− V k

2 )

K − V2
. (22)

Thus, ā1 is the average best quote in period 1 across the K experiments, āT2 is the average best

quote in period 2 conditionally on a trade occurring in period 1 (irrespective of who traded), and

āNT
2 in the average best quote in period 2 conditionally on no trade occurring in period 1. Our

hypothesis H.5 predicts that āNT
2 < ā1 < āT2 . To test this prediction, we run K = 1, 000 simulations

of the two-period game (always with adverse selection), for nine different values of σ. Figure 6 plots

ā1, ā
T
2 , and āNT

2 for each σ, as well as the Glosten-Milgrom prices in each period (dashed lines).

[INSERT FIGURE 6 ABOUT HERE]

Figure 6 shows that, as predicted by H.5, AMs charge a larger quote to the second client after

a buy from the first and a smaller quote to the second client after no trade from the first one.

However, even though H.5 is qualitatively satisfied, there are important differences between the

second period prices and those predicted by the Nash equilibrium. First, after a buy, AMs in the

second period raise their quotes much more than what Bayesian behavior would imply. For instance,

when σ = 5, the Glosten and Milgrom price should increase from 2.8 to 3.4 after a buy. Instead,

in the experiments, the average price increases from 4.80 to 5.80. Moreover, the Nash equilibrium

predicts that this revision should become smaller when the dispersion of clients’ liquidity shocks

increases while it becomes larger in the experiments. Conversely, when no trade occurs in the

first period, the second-period price is almost equal to the first-period price while it is significantly

smaller in the Nash equilibrium (compare the green and the blue dashed lines in Figure 6). Overall,

these patters imply that AMs’ extract even larger rents from the second period client than the first

and these rents increase with the dispersion of liquidity shocks, as in the one period case.

Noisy learning is again important to understand the distance between the experimental results
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and the Glosten-Milgrom benchmark. There are two effects. The first effect is that the variance of

ṽ in period 2 conditional on the outcome of period 1 is lower than the unconditional variance in our

setting.37 This effect should reduce AMs’ rents in the second period and therefore make their prices

closer to the Glosten-Milgrom prices than in the first period. However, there is a countervailing

effect, which seems to dominate in our experiments: the algorithms have fewer opportunities to

learn about the average profits of their actions for the second client than for the first client. Indeed,

they learn state by state. Now they face the first state in every episode while they face only one of

the other states per episode. This means that they have far fewer observations to learn about their

payoffs in these states than for the first state. At any price in the first period, the probability of a

buy is strictly less than 50% and decreases quickly with the price (e.g., at a1 = 4.80, the probability

of a trade in the first period is only 30%). This means that there are relatively few episodes in which

AMs get the opportunity to get feedback about the average profit they can obtain at a given price in

the second period after a buy in the first period. Intuitively, this makes it more difficult for AMs to

learn the average profit they can obtain at a given price in given state in the second period, which,

as explained in the baseline case, makes it more difficult for them to learn to undercut (especially

after a buy order). We believe that this explains why AMs’ rents seem so large in the second period

after a buy in the first period.

Interestingly, these experimental results give insights into how competition between AMs can be

spotted in the data. They imply that quotes will tend to over-react to order flow (here a buy). This

means that the change in prices following a buy or a sell should partially revert. Such patterns have

been found for long in existing empirical studies and are usually attributed to order processing costs

or inventory holding costs for market makers. Our experiments suggest that they could become

more prevalent as quotes are posted by algorithms, reflecting algorithms’ imperfect learning of the

benefits of undercutting. More generally, spreads should tend to widen after histories that are more

rarely observed, or even simply over time, irrespective of whether adverse selection is actually higher

after these histories.38

37Indeed, the conditional variance of the asset payoff in period τ is V arτ (ṽ) = µτ (1 − µτ )∆
2
v. As µ1 = 0.5 in our

experiments, we have V ar2(ṽ) < V ar1(ṽ).
38This type of behavior might lead to sudden evaporation of liquidity after events that have been rarely encountered

by algorithms and potentially explain flash crashes.
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6 Conclusion

We study the prices posted by market makers using Q-learning algorithms in a standard market

making game with adverse selection (similar to Glosten and Milgrom (1985)) and compare them

to those predicted by the Nash equilibrium of the market making game. We find that, despite

their simplicity and the challenge of an environment with adverse selection, our algorithmic market

makers (AMs) behave in a realistic way: their quoted spreads reflect adverse selection costs and they

update their quotes in response to the observed order flow. However, they also deviate from the

Nash equilibrium prices in many important ways. In particular, their quoted spread are larger than

the competitive spreads and their rents increase when adverse selection costs decrease. Moreover,

they over-react to the order flow.

We argue that these findings stem from the fact that AMs receive a noisy feedback about the

average profit of their actions (because of uncertainty in their client’s demand and the asset payoff)

and this noise is larger when adverse selection is less intense. In response, AMs should experiment

more in noisier environments. However, our experiments suggest that this would require very long

training periods and that it may not even be optimal for agents designing AMs to do so (because

experimentation is costly).

Overall, our results suggest that securities markets are a quite specific and particularly interest-

ing application of recent research on competition between pricing algorithms. In particular, they

raise the possibility that these algorithms may not lead to more competitive outcomes in assets

that are risky but less exposed to adverse selection. They also suggest that these algorithms could

be significantly less competitive when facing states that they rarely encounter (which may explain

why variations in liquidity have become more extreme with the rise of algorithmic pricing). Future

research could consider the robustness of our conclusions when more complex algorithms are used

or when they are used in conjunction with some prior “model of the world”.
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A Appendix

A.1 Tables

σ 0.5 1 3 5 7

Quoted Spread 2.00 2.00 1.24 0.68 0.47
Likelihood Trade 25% 25% 37% 45% 47%

Adverse Selection Cost 0.5 0.49 0.45 0.3 0.22
Realized Spread 0 0 0 0 0

∆v 0 2 4 6 8

Quoted Spread 0 0.16 0.68 1.65 3.02
Likelihood Trade 50% 48% 45% 39% 32%

Adverse Selection Cost 0 0.07 0.3 0.64 0.99
Realized Spread 0 0 0 0 0

Table 1: Benchmark. Clients’ liquidity shocks (L̃) are normally distributed with mean zero and
variance σ2. Moreover, Eµ(v) = 2 and µ = 1

2 (vH = 4 and vL = 0). The likelihood of a trade is
E 1

2
(D(amin, ṽ)) (see text) and the adverse selection cost is equal to 0.5∆v ×∆D. Panel A: ∆v = 4.

Quotes have been rounded up to two decimals (which explains why they are equal when σ = 0.5
and σ = 1). Panel B: σ = 5.

Panel A

σ 0.5 1 3 5 7

ac1 4.00 4.00 3.24 2.68 2.47
a∗T2 4 4 3.82 3.26 2.93
aNT
2 4 4 2.44 2.08 2.02

Panel B

∆v 0 2 4 6 8

ac1 2 2.16 2.68 3.65 5.03
a∗T2 2 2.5 3.26 4.6 5.86
a∗NT
2 2 1.8 2.08 205 3.66

Table 2: Learning from Order Flow. Clients’ liquidity shocks (L̃) are normally distributed with
mean zero and variance σ2. Moreover, E(v) = 2 and µ = 1

2 (vH = 4 and vL = 0). The table shows
the Glosten-Mligrom prices at date 1 (a∗1) and at date 2 after (i) a trade at date 1 (a∗T2 ) or (ii) no
trade at date 1 (a∗NT

2 ). Panel A: ∆v = 4. Quotes have been rounded up to two decimals (which
explains why they are equal when σ = 0.5 and σ = 1). Panel B: σ = 5.
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A.2 Figures

0 22.5 4
vC

Figure 1: Distribution of Clients’ Valuation conditional on wC = 0 (blue) (σ = 2). If the best offer
price is 2.5, the likelihood of a trade is the blue plus the red area when wC = 4 and the blue area
only when wC = 0. When w̃C = ṽ (adverse selection case), a client is therefore more likely to buy
the asset when its payoff is high than when its payoff is low. The difference between the likelihood
of a buy when v = vH and v = vL (denoted ∆D in the text) is then equal to the red area. When
w̃C and ṽ are i.i.d, the likelihood of a trade is equal to the blue plus the red area weighted by the
likelihood that wC = 4, independently of the asset payoff. See the text for more explanations.
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Panel A: Distribution of the greedy price of AM 1 in the last episode.

This panel shows a histogram of the greedy price of AM 1 in episode T : For each possible price a between 1.10 and

14.90 the bar indicates the percentage of the 1,000 experiments conducted in which a∗
1,T = a.

Panel B: Dynamics of the average greedy price of AM 1 for episodes 1 to T .

This graph shows for each episode t the average of AM 1’s greedy price a∗
1,t across the 1,000 experiments conducted.

As a measure of dispersion, we also compute the standard deviation of a∗
1,t across experiments and plot the average

of a∗
1,t plus/minus one standard deviation (with a 500-episode moving average for better readability).

Figure 2: Greedy price of AM 1 in the adverse-selection case, baseline parameters:
σ = 5, ∆v = 4, N = 2, µ = 1

2 , E(v) = 2, T = 1, 000, 000, and K = 1, 000.
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Panel A: Average Quoted Spread.

This graph plots the average over 1,000 experiments of the quoted spread, with 95% confidence intervals, both in the

adverse-selection case and the no-adverse-selection case. The graph additionally plots the values of the quoted spread

in both cases, in the Glosten-Milgrom benchmark of Section 2.2 (accounting for price discreteness).

Panel B: Average Realized Spread.

This graph plots the average over 1,000 experiments of the realized spread, with 95% confidence intervals, both in

the adverse-selection case and the no-adverse-selection case. The graph additionally plots the values of the realized

spread in both cases, in the Glosten-Milgrom benchmark of Section 2.2 (accounting for price discreteness).

Figure 3: Average Quoted Spread Q̄S and Average Realized Spread R̄S in the adverse-
selection case and the no-adverse-selection case, for different values of the dispersion
of clients’ liquidity shocks σ. The other parameters are ∆v = 4, N = 2, µ = 1

2 , E(v) = 2,
T = 1, 000, 000, and K = 1, 000.
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Panel A: Average Quoted Spread.

This graph plots the average over 1,000 experiments of the quoted spread, with 95% confidence intervals, both in the

adverse-selection case and the no-adverse-selection case. The graph additionally plots the values of the quoted spread

in both cases, in the Glosten-Milgrom benchmark of Section 2.2 (accounting for price discreteness).

Panel B: Average Realized Spread.

This graph plots the average over 1,000 experiments of the realized spread, with 95% confidence intervals, both in

the adverse-selection case and the no-adverse-selection case. The graph additionally plots the values of the realized

spread in both cases, in the Glosten-Milgrom benchmark of Section 2.2 (accounting for price discreteness).

Figure 4: Average Quoted Spread Q̄S and Average Realized Spread R̄S in the adverse-
selection case and the no-adverse-selection case, for different values of the asset volatil-
ity ∆v. The other parameters are σ = 5, N = 2, µ = 1

2 , E(v) = 2, T = 1, 000, 000, and K = 1, 000.
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Panel A: Average Quoted Spread.

This graph plots the average over 1,000 experiments of the quoted spread, with 95% confidence intervals, both in the

adverse-selection case and the no-adverse-selection case. The graph additionally plots the values of the quoted spread

in both cases, in the Glosten-Milgrom benchmark of Section 2.2 (accounting for price discreteness).

Panel B: Average Realized Spread.

This graph plots the average over 1,000 experiments of the realized spread, with 95% confidence intervals, both in

the adverse-selection case and the no-adverse-selection case. The graph additionally plots the values of the realized

spread in both cases, in the Glosten-Milgrom benchmark of Section 2.2 (accounting for price discreteness).

Figure 5: Average Quoted Spread Q̄S and Average Realized Spread R̄S in the adverse-
selection case and the no-adverse-selection case, for different values of the number N of
AMs. The other parameters are σ = 5, ∆v = 4, µ = 1

2 , E(v) = 2, T = 1, 000, 000, and K = 1, 000.
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This graph plots the average over 1,000 experiments of the first-period and second-period prices, with 95% confidence

intervals. The graph additionally plots the values of these prices in the Glosten-Milgrom benchmark of Section 5.1

(accounting for price discreteness).

Figure 6: Average first-period price ā1 and second-period price after a trade āT2 and
after no trade āNT

2 , for different values of the dispersion of clients’ liquidity shocks σ.
The other parameters are ∆v = 4, N = 2, µ = 1

2 , E(v) = 2, T = 1, 000, 000, and K = 1, 000.
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A.3 Testable Hypotheses

We just consider H.1., as the other hypotheses are straightforward. As explained in the text, the

Glosten and Milgrom price solves:

a∗ = Eµ(ṽ | ṽC > a∗), (A.1)

We define F (a;σ,∆v) := a − Eµ(ṽ | ṽC > a). The Glosten and Milgrom price is the smallest root

of:

F (a∗;σ,∆v) = 0. (A.2)

We first show that there is always a solution to (A.2). Thus, a competitive price always exists in

our setting.

Existence of the Glosten and Milgrom price. Let Prµ(ṽ = vH | ṽC > a) be the probability

that the asset payoff is high (v = vH) conditional on a trade, given dealers’ beliefs (µ) about the

payoff of the asset. Thus:

Eµ(ṽ | ṽC > a) = Prµ(ṽ = vH | ṽC > a)vH + (1− Prµ(ṽ = vH | ṽC > a)vL. (A.3)

Therefore, as Eµ(ṽ) = µvH + (1− µ)vL, we have

Eµ(ṽ | ṽC > a))− Eµ(ṽ) = [Prµ(ṽ = vH | ṽC > a)− µ](vH − vL). (A.4)

It follows that:

F (a;σ,∆v) = a− Eµ(ṽ) + (Prµ(ṽ = vH | ṽC > a)− µ)(vH − vL), (A.5)

where Prµ(ṽ = vH | ṽC > a) is the probability that the asset payoff is high (v = vH) conditional on

a trade, given dealers’ beliefs (µ) about the payoff of the asset. Standard calculations yield:

Prµ(ṽ = vH | ṽC > a) =
D(a, vH)

µD(a, vH) + (1− µ)D(a, vL)
µ, (A.6)
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where D(a, v)) is defined in (3). As D(a, vL) > 0, Prµ(ṽ = vH | ṽC > a) < 1 when µ < 1 and a

finite.

Observe that: (i) F (.) is continuous, (ii) F (a;σ,∆v) < 0 for any a ≤ Eµ(ṽ) and (iii) F (vH ;σ,∆v) >

0 since Prµ(ṽ = vH | ṽC > a) < 1 for all finite a (in particular a = vH). Thus, there is at least one

solution in (Eµ(v), vH) to (A.2). If there are multiple solutions, the competitive one is the smallest.

Observe that as F (Eµ(ṽ);σ,∆v) < 0, the Glosten and Milgrom price must be such that:

∂F (a∗;σ,∆v)

∂a
|a=a∗> 0. (A.7)

If it were not the case, there would be another solution to (A.2) in (Eµ(v), a
∗). A contradiction

since a∗ is the smallest solution to (A.2).

Effect of σ on a∗. We deduce from (A.2) that:

∂a∗

∂σ
= −

∂F
∂a |a=a∗

∂F
∂σ |a=a∗

. (A.8)

As ∂F
∂a |a=a∗> 0, we have that ∂a∗

∂σ < 0 if and only if ∂F
∂σ > 0. We now show that this is the case.

Observe, using (A.5), that ∂F
∂σ > 0 iff Prµ(ṽ = vH | ṽC > a∗) decreases with σ. Using (A.6), we

obtain

∂Prµ(ṽ = vH | ṽC > a∗)

∂σ
= µ

[
∂D(a∗,vH)

∂σ Eµ(D(a∗, ṽ)) +
∂Eµ(V (a∗,ṽC))

∂σ D(a∗, vH)

(Eµ(V (a∗, ṽC)))2

]
. (A.9)

It follows, after simplifying the numerator of the previous expression, that
∂Prµ(ṽ=vH |ṽC>a∗)

∂σ has the

same sign as:

D(a∗, vL)
∂D(a∗, vH)

∂σ
−D(a∗, vH)

∂D(a∗, vL)

∂σ
.

Now remember that D(a∗, v) = 1 − G(a∗ − v) where G(.) is the c.d.f of a Gaussian variable with

mean zero and variance σ2. It follows that ∂D(a∗,v)
∂σ = (

√
2πσ2)−1exp(− (a∗−v)2

2σ2 )(a∗ − v). Hence, the

previous expression is negative since a∗ ∈ (vL, vH). Hence, a∗ decreases with σ.

Effect of ∆v on a∗. We can proceed in the same way for analyzing the effect of ∆v on a∗. The
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same reasoning as before shows that a∗ increases with ∆v if and only if Prµ(ṽ = vH | ṽC > a∗)

increases with ∆v. After some algebra, one obtains that
∂Prµ(ṽ=vH |ṽC>a∗)

∂∆v
has the same sign as:

D(a∗, vL)
∂D(a∗, vH)

∂∆v
−D(a∗ − vH)

∂D(a∗, vL)

∂∆v
.

Now remember that (i) D(a∗, v) = 1−G(a∗− v) where G(.) is the c.d.f of a Gaussian variable with

mean zero and variance σ2 and (ii) vH = µ + ∆v
2 and vL = µ − ∆v

2 . It follows that ∂D(a∗,vH)
∂∆v

> 0

while ∂D(a∗,vL)
∂∆v

< 0. We deduce that
∂Prµ(ṽ=vH |ṽC>a∗)

∂∆v
> 0. Hence, we have shown that a∗ increases

with ∆v.

A.4 The Variance of AMs’ Profits

To simplify notations, in this section, we define: p(a) := E 1
2
(V (a, ṽC)) = D(a1,vH)

2 + D(a1,vL)
2 .

Consider the case without adverse selection first. The distribution of AM 1’s profit Π(a1, a2, ṽ
C , ṽ)

when a1 < a2 (the case assumed in the text) is as follows:

1. (a1 − vH) with probability D(a1,vH)
4 + D(a1,vL)

4 = p(a)
2 .

2. (a1 − vL) with probability D(a1,vH)
4 + D(a1,vL)

4 = p(a)
2 .

3. 0 with probability 1− p(a).

Denote by Π̄n.as = p(a1)(a1 − E 1
2
(v)), AM 1’s expected profit in this case (remember again that

a1 < a2). By definition (index n.as refers to “no adverse selection”):

Varn.as(Π(a1, a2, ṽ
C , ṽ)) = E((Π(a1, a2, ṽ

C , ṽ)− Π̄n.as)
2). (A.10)

That is:

Varn.as = p(a1)(a1 − E 1
2
(v)− Π̄n.as)

2 + p(a1)
∆2

v

4
+ Π̄2

n.as − 2p(a1)Π̄n.as(a1 − E 1
2
(v)) (A.11)

Hence, as Π̄n.as = p(a1)(a1 − E 1
2
(v)), we deduce that:

Varn.as = p(a1)(1− p(a1))(a1 − E 1
2
(v))2 + p(a1)

∆2
v

4
, (A.12)
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which is (13) in the text since p(a1) := E 1
2
(V (a, ṽC)).

Now consider the case with adverse selection. The distribution of AM 1’s profit is then as

follows:

1. (a1 − vH) with probability D(a1,vH)
2 .

2. (a1 − vL) with probability D(a1,vL)
2

3. 0 with probability 1− p(a1).

Observe that, holding a1 constant, adverse selection does not reduce the likelihood of a trade (p(a1)

in either case). However, it shifts the distribution of profits when there is a trade to the left because

(a1 − vH) < (a1 − vL) and D(a1, vH) > p(a1) > D(a1, vL). Intuitively, as (vH − a1) is closer to zero

than (a1− vL) (when a1 > E 1
2
(v)), this shift reduces the dispersion of trading profits (there is more

mass overall close to zero).

As an example, Figure 7 compares the distribution of realized profits for AM 1 when it posts

a price of 4.9 while AM 2 posts a price of 5 in the baseline case (σ = 5 and ∆v = 4) in the case

without adverse selection (red) and the case with adverse selection (blue). In this case, AM 1’s

realized profit can be 0 (the client does not trade), 0.9 (the client buys and the asset payoff is

vH = 4) or 4.9 (the client buys and the asset payoff is is vL = 0). As the figure shows, in the

presence of adverse selection, the distribution of profits is more skwewed to the left, toward zero,

due to adverse selection (the likelihood of a buy when the asset payoff is large is higher than when

the payoff is small). As a result, the variance of profits is smaller when there is adverse selection

(1.78 vs 2.93).

More formally, denote Π̄as AM1’s expected profit with adverse selection (‘as’)‘when it quotes

a1 < a2 (this is given by (6) with Z = 1). By definition:

Varas(Π(a1, a2, ṽ
C , ṽ)) = E((Π(a1, a2, ṽ

C , ṽ)− Π̄as)
2). (A.13)
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That is, using the fact that ∆D := D(a1, vH)−D(a1, vL):

Varas =
p(a1)

2
(a1 − vH − Π̄as)

2 +
p(a1)

2
(a1 − vL − Π̄as)

2+

(1− p(a1))Π̄
2
as −

∆D

4
[(a1 − vL − Π̄as)

2 − (a1 − vH − Π̄as)
2)],

(A.14)

and therefore, after some straightforward algebra:

Varas = Varn.as −
∆D

4
[(a1 − vL − Π̄as)

2 − (a1 − vH − Π̄as)
2)], (A.15)

The last term in bracket is negative because vH−a1 > a1−vL for a1 > E 1
2
(v). Thus, Varn.as < Varas.

Moreover, we can rewrite the term in bracket to obtain:

Varas = Varn.as −
∆D∆v

2
[(a1 − E 1

2
(v))− Π̄as/2], (A.16)

as claimed in the text.

To analyze the effect of σ on Varas, observe first that p(a1) = Eµ(V (a, ṽC)) increases with σ for

a > E(v). Indeed:

∂Eµ(V (a, ṽC))

∂σ
= µ

∂D(a, vH)

∂σ
+ (1− µ)

∂D(a, vL)

∂σ
. (A.17)

As D(a, v) = 1−G(a− v) and G(.) is the c.d.f of a Gaussian variable with mean zero and variance
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σ2, we have ∂D(a,v)
∂σ = (

√
2πσ2)−1exp(− (a−v)2

2σ2 )(a− v). As a− vH < a− vL, we deduce that:

∂Eµ(V (a, ṽC))

∂σ
= µ

∂D(a, vH)

∂σ
+ (1− µ)

∂D(a, vL)

∂σ
> (

√
2πσ2)−1exp(−(a− vL)

2

2σ2
)(a− E(v)) > 0,

(A.18)

for a > E(v). Thus, for a > E(v), Eµ(V (a, ṽC)) is maximal when σ goes to infinity and therefore

Eµ(V (a, ṽC)) < 1
2 (since D(a, v) goes to 1

2 when σ goes to infinity). It follows from (13) that V aras

increases with σ. A similar reasoning shows that V aras increases with ∆v.

Now consider the effect of σ on V aras. Substituting Π̄as by its expression (equation (6) with

Z = 1) in(A.16) and rearranging, we obtain:

Varas = Varn.as −
[
(
∆D∆v

2
)((a1 − E 1

2
(v))(1− p(a1)) +

∆D∆v

2
)

]
. (A.19)

The first term (Varas) increases with σ (as shown before) while the second term in brackets decreases

with σ for a1 ≥ E 1
2
(v) (the relevant case in our experiments) since ∆D decreases with σ and p(a1)

increases with σ. As this term is multiplied by −1, we deduce that Varas also increases with σ.

A.5 Convergence

As explained in the text, the environment in which AMs operate implies that the Q-matrices do

not converge to a single value. More precisely, suppose AMs keep playing the same price profile

a ∈ AN at every episode t. Let am be the best price in a, and suppose it is played by AM n. Let

qm,n,t denote the m-th entry in AM n’s Q-matrix at time t, i.e., the value that at time t, AM n

attaches to playing price am. We show that for any t,

∃∆q > 0, and ϵ > 0 s.t. Pr(|qm,n,t − qm,n,t+1| ≥ ∆q) ≥ ϵ.

That is, each entry of the Q-matrix cannot converge in probability to a single value.39 Thus, no

matter how large is the number of episodes T , there is a strictly positive probability bounded away

from 0 that the Q-matrix of the dealers posting the best price in episode t changes by more than a

39qm,n,t converges in probability to a real number q ∈ R if for any ε > 0, one has limt→∞ Pr(|qm,n,t − q| ≥ ε) = 0.
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fixed amount ∆q > 0.

Formally, let define

∆∗
m :=

α

2
max

{
vH − vL,

vH − vL
2

+

∣∣∣∣am − vH + vL
2

∣∣∣∣} ,

that is strictly positive, as long as vH ̸= vL or am ̸= vH+vL
2 . Let

P ∗
m := min

{
1

2N
D(am, vL), 1−

1

2
(D(am, vL) +D(am, vH))

}
,

that is strictly positive because for any finite am and v ∈ {vl, vH}, one has 0 < D(a, v) < 1 .

Lemma 1. For any given t and am ∈ A, if an,t = am = amin
t , then ,

Pr (|qm,n,t − qm,n,t+1| ≥ ∆∗
m) ≥ P ∗

m,

Proof. Fix a price am and a dealer n. Suppose that at episode t the dealer’s price is an,t = am

and it is the lowest price among dealers, i.e. ant = am = amin
t . Then three outcomes are possible:

either the dealer does not trade, the dealer sells the asset worth vH , or the dealer sells the asset

worth vL. In all cases the Q-matrix is updated. If the dealer does not trade then πn,t = 0 and

qm,n,t+1 = (1− α)qm,n,t, implying

|qm,n,t − qm,n,t+1| = α|qm,n,t|

If the dealer trades then qm,n,t+1 = α(am − ṽ) + (1− α)qm,n,t+1, and thus if ṽ = vH ,

|qm,n,t − qm,n,t+1| = α|am − vH − qm,n,t|

whereas if if ṽ = vL,

|qm,n,t − qm,n,t+1| = α|am − vL − qm,n,t|.

Denote ∆m(q) := αmax{|q|, |am− vH − q|, |am− vL− q|}. This is the maximum possible value that

|qm,n,t − qm,n,t+1| can take, given that qm,n,t = q. Note that three situations are possible.
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If am < vL, then

∆m(q) =


α(−q + vH + am) for q ≤ vH−am

2

αq for q > vH−am
2

that implies

∆m(q) ≥ α(vH − am)

2
≥ α(vH − vL)

2
,
α(vL − am)

2

If vL ≤ am ≤ vH , then

∆m(q) =


α(−q + vH − am) for q ≤ vH+vL

2 − am

α(q − vL + am) for q > vL+vH
2 − am

that implies

∆m(q) ≥ α(vH − vL)

2
≥ α(vH − am)

2
,
α(vL − am)

2

If am > vH , then

∆m(q) =


−αq for q ≤ vL−am

2

α(q − vL + am) for q > vL−am
2

that implies

∆m(q) ≥ α(am − vL)

2
≥ α(vH − vL)

2
,
α(vH − am)

2

Hence we can write

min
q

∆m(q) =
α

2
max {am − vL, vH − am, vH − vL} =

α

2
max

{
vH − vL,

vH − vL
2

+

∣∣∣∣am − vH + vL
2

∣∣∣∣} = ∆∗
m

In words, no matter the value of qm,n,t, at least one of the three possible outcomes mentioned above

leads to |qm,n,t − qm,n,t+1| ≥ ∆∗
m. Thus the probability that |qm,n,t − qm,n,t+1| ≥ ∆∗

m cannot be

smaller than the smallest of the probabilities of these three events.

Now, given an,t = am = amin
t , the probability that the dealer sells the asset worth vH , is at least

1
2ND(am, vH). The probability that the dealer sells the asset worth vL, is at least

1
2ND(am, vL) <

1
2ND(am, vH). The probability that the dealer does not trade is 1 − 1

2(D(am, vL) + D(am, vH)),
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hence the expression for P ∗
m. Q.E.D.

A.6 Nash Equilibria

In this section we analyze the Nash equilibria of the one-shot game when market makers are con-

strained to choose prices from a finite grid (a positive tick size). We first show that when the tick

size is small enough or the number N of market makers is large enough the game has a unique

Nash equilibrium. However it is possible that for N relatively small and tick size relatively large

the game has more than one pure Nash equilibrium. Namely for the value of the parameters in the

range of our experiment we find that the game has either 1 or 2 pure Nash equilibria. We show that

for N = 2, if the game has 2 pure Nash equilibria then it also has one mixed strategy equilibrium

where market makers independently randomize their quotes over the two prices that form the two

pure equilibria.

Denote Π(a) the expected payoff of a monopolistic market maker who sets a price a. Namely

Π(a) = µD(a, vH)(a− vH) + (1− µ)D(a, v∗L)(a− vL)

Let a∗ be the smallest solution of the equation Π(a) = 0. This is the equilibrium price in the game

where market makers can chose their prices on the real line. We know that a∗ exists because Π(a)

is continuous in a, strictly negative for a < vL and strictly positive for a > vH .

Let us now consider the game with N > 1 market makers that have to chose their prices on a

grid A, and denote δ the tick size. Without loss of generality we can assume that a∗ is not on the

price grid, i.e., a∗ /∈ A.

Lemma 2. In the game with N market makers, an action profile {a1, a2, . . . aN} ∈ AN is a pure

Nash equilibrium if and only if the following two conditions are satisfied,

1. All market makers set the same price a ∈ A

2. The price a is such that Π(a) ≥ 0 and

1

N
Π(a) ≥ max

a′∈A,a′<a
{Π(a′)} (A.20)
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Proof. Sufficient condition: suppose that all market makers except market maker i set a price equal

to a, and that a satisfies condition (A.20). Let us consider the best response of market maker i. The

expected payoff from playing a′ = a is 1
NΠ(a) ≥ 0, as the market maker i has to share the payoff

Π(a) with the other n− 1 market makers. The expected payoff from undercutting the other market

makers by playing some a′ < a is Π(a′) ≤ 1
NΠ(a), by condition (A.20). Whereas the expected payoff

from from playing some a′′ > a is 0 ≤ 1
NΠ(a), as no client trades with market maker i. Hence ai = a

for all i is a pure Nash equilibrium.

Necessary condition: Suppose the action profile {a1, a2, . . . aN} ∈ AN forms a Nash equilibrium,

and let amin be the lowest offered price. If Π(amin) < 0, then the MM playing amin gets a negative

profit, and he has a profitable deviation by setting any a′ > vH . Hence, because prices belong to a

discrete grid without loss of generality it must be that Π(amin) > 0. If there is a market maker i

such that ai ̸= amin, then ai > amin and the market maker’s payoff is nil. But then market maker i

has a profitable deviation by playing amin that provides him with a fraction of the strictly positive

payoff Π(amin). Hence all market makers must play amin and get a payoff of 1
NΠ(amin). If there is

a′ < amin such that Π(a′) > 1
NΠ(amin) then playing such a′ would be a profitable deviation. Hence

conditions 1. and 2. in the Lemma are necessary conditions for an equilibrium.

Denote â ∈ A the smallest price in the grid larger than a∗. Formally

â = min{a ∈ A, s.t.Π(a) ≥ 0}.

Note that if the price grid δ is small enough, then â is the price on the grid closest to a∗ weakly

greater than a∗. Then we have

Corollary 1. If N is large enough or δ is small enough then all MMs playing â is the unique Nash

equilibrium of the game.

Proof. Let first show that playing â, is an equilibrium. Because of the definition of â, all a′ < â

on the grid A provide strictly negative payoff, and generically we have Π(â) > 0. Thus â satisfies

condition 2 in the Lemma 2 and thus playing a is a Nash equilibrium.

Let now show that if N is large or δ small, then there are no other equilibria. Suppose that
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there is another equilibrium, where all MMs play a ̸= â. Then Π(a) > 0 and hence a > â. If

a player deviates from this equilibrium and plays â instead, then his payoff is Π(â) > 1
NΠ(a) for

N > π(a)/π(â). Thus for N large enough playing a ̸= â cannot be an equilibrium as it violates

condition (A.20).

Now fix N and suppose that there is an equilibrium where a > â, and consider the deviation to

the largest price on the grid that is smaller than a. This is a′ = a− δ. If a MM deviates and plays

a′, then his payoff is Π(a− δ) that tends to Π(a) as δ goes to 0. Thus for δ small enough and n > 1,

Π(a′) > 1
NΠ(a), and thus a cannot be a Nash equilibrium as it violates condition (A.20).

Because the δ we use in our experiments is relatively large, for N relatively small we find that

depending on the value of the parameters, the game has either 1 or 2 pure Nash equilibria. In the

next Lemma we show that if the 2-payer game has two Nash equilibria, then it also has a third

equilibrium in mixed strategies.

Lemma 3. Suppose that for N = 2, thare are two pure Nash equilibria: â and a > â. Then the game

also has a mixed strategy equilibrium where market makers independently randomize between setting

a price of ai = a with probability η = Π(â)
Π(a)−Π(â) and ai = â with the complementary probability.

Proof. Note first that both a and â must satisfy condition (A.20). Namely condition (A.20) applied

to â implies Π(â) > 0, and if applied to a, implies Π(â) < 1
2Π(a). These two inequalities imply that

0 < η < 1.

Not that if the other MM j plays a and â with probability η and 1− η, respectively, then MM

i is indifferent between playing a or â. This because η is the solution of the following indifference

condition

ηΠ(â) +
1

2
(1− η)Π(â)︸ ︷︷ ︸

expected payoff from playing â

=
1

2
ηΠ(a)︸ ︷︷ ︸

expected payoff from playing a

Both actions lead to an expected payoff of

Πmix =
Π(a)Π(â)

2(Π(a)−Π(â))
> 0

Let show that by unilaterally deviating to any a′ /∈ {â, a} MM i cannot gain more than Πmix. For
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a′ < â the deviation payoff is strictly negative, by definition of â. For â < a′ < a the deviation

payoff is

ηΠ(a′) =
Π(a′)Π(â)

Π(a)−Π(â)
≤ Π(a)Π(â)

2(Π(a)−Π(â))
= Πmix,

where the inequality follows from condition (A.20) applied to equilibrium a, that implies 1
2Π(a) ≥

Π(a′). For a′ > a, MM does not trade and gets 0 < Πmix.

A.7 Algorithm used in the two-period case

We formally define the algorithms and the process we simulate in the two-period case.

For each AM n, we define (N + 3) states, denoted sn, as follows: (i) sn = ∅ in the first

trading round; (ii) sn = NT in the second trading round if no trade takes place in the first; (iii)

sn ∈ S =
{
0, 1

N , 1
N−1 , ...,

1
2 , 1
}

is the number of shares sold by AM n if a trade took place in

period 1 (depending on how many AMs shared the market). Each AM then relies on a Q-matrix

Qn,t ∈ RM×(N+3), in which each line corresponds to a different price and each column to a state,

ordered as in point (iii). We denote qm,s,n,t the (m, s) entry of matrix Qn,t.

We then modify the process described in Section 3.1 as follows. For any experiment k, we

initialize the matrices Qn,0 with random values: Each qm,s,n,0 (for 1 ≤ m ≤ M , 1 ≤ n ≤ N , and

s ∈ S) is i.i.d. and follows a uniform distribution over [q, q]. Then, in each episode t, we do the

following:

Period 1:

1. For each AM n, we define m1,∗
n,t = argmax

m
qm,∅,n,t−1 the index associated with the highest

value in matrix Qn,t−1 in state s = ∅, and we denote a1,∗n,t = a
m1,∗

n,t
the corresponding greedy

price.

2. For each AM n, with probability ϵt = e−βt the AM “explores”: it draws a random integer m̃1
n,t

between 1 and M , all values being equiprobable, and plays a1n,t = am̃1
n,t
. With probability

1 − ϵt, the AM “exploits” and plays the greedy price a1n,t = a1,∗n,t. The random draws leading

to exploring or exploiting are i.i.d. across all AMs in a given trading round of a given episode.
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3. We compute a1,min
t = min

n
{a1n,t}, and draw ṽt and L̃1,t. This determines the position I1n,t taken

by each AM in period 1 and the state sn,t it will be in when period 2 starts. Formally, denote

D1
t the set of AMs who quote a1,min

t and z1t the size of this set. Then, if ṽt + L̃1,t ≥ a1,min
t we

have I1n,t = sn,t =
1
z1t

for every n ∈ D1
t , and I1n,t = sn,t = 0 for n /∈ D1

t . If ṽt + L̃1,t < a1,min
t

then I1n,t = 0 and sn,t = NT for every n.

4. We update the first column of the Q-matrix of each AM n as follows:

qm,∅,n,t =


α[a1n,tI

1
n,t +max

m′
qm′,sn,t,n,t−1] + (1− α)qm,∅,n,t−1 if a1n,t = am

qm,∅,n,t−1 if an,t ̸= am

(A.21)

Period 2:

1. At the beginning of period 2 we know the state sn,t in which AM n finds itself. We define

m2,∗
n,t = argmax

m
qm,sn,t,n,t−1 the index associated with the highest value in matrix Qn,t−1 in

state s = sn,t, and we denote a2,∗n,t = a
m2,∗

n,t
the corresponding greedy price.

2. With probability ϵt the AM plays a random price a2n,t, following the same process as in period

1. With probability 1− ϵt, the AM plays a2n,t = a2,∗n,t.

3. We compute a2,min
t = min

n
a2n,t and draw L̃2,t. This determines the position I2n,t taken by each

AM in period 2, following the same rules as in period 1.

4. For each AM n, we only update the column corresponding to state sn,t, as follows:

∀1 ≤ n ≤ N, qm,sn,t,n,t =


α[a2n,tI

2
n,t − ṽt(I

1
n,t + I2n,t)] + (1− α)qm,sn,t,n,t−1 if a2n,t = am

qm,sn,t,n,t−1 if a2n,t ̸= am

(A.22)

We repeat this process for T episodes, after which the experiment ends.
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Online Appendix to “Algorithmic Pricing and Liquidity in

Securities Markets”

Jean-Edouard Colliard, Thierry Foucault, and Stefano Lovo

This Online Appendix provides additional robustness tests and experiments.

OA.1 Learning against a fixed-strategy opponent

We run the same experiments as in Figure 2, with the same parameters. The only difference is that

only AM 1 is doing Q-learning. AM 2 plays a constant strategy a2 = 5.0 in every episode. Figure

OA.1 replicates Figure 2 in that case, with a histogram of the greedy price of AM 1 in episode T ,

and a plot of how the average greedy price of AM 1 evolves over episodes.

61

Electronic copy available at: https://ssrn.com/abstract=4252858



Panel A: Distribution of the greedy price of AM 1 in the last episode.

This panel shows a histogram of the greedy price of AM 1 in episode T : For each possible price a between 1.10 and

14.90 the bar indicates the percentage of the 1,000 experiments conducted in which a∗
1,T = a.

Panel B: Dynamics of the average greedy price of AM 1 for episodes 1 to T .

This graph shows for each episode t the average of AM 1’s greedy price a∗
1,t across the 1,000 experiments conducted.

As a measure of dispersion, we also compute the standard deviation of a∗
1,t across experiments and plot the average

of a∗
1,t plus/minus one standard deviation (with a 500-episode moving average for better readability).

Figure OA.1: Greedy price of AM 1 when AM 2 plays a constant price: adverse-selection
case, baseline parameters σ = 5, ∆v = 4, N = 2, µ = 1

2 , E(v) = 2, T = 1, 000, 000, and K = 1, 000.
AM 2 plays a constant price of 5.0 in every episode, while AM 1 uses a Q-learning algorithm with
α = 0.01 and β = 0.00008. 62
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OA.2 Infinite experimentation and empirical average

We run the same experiments as in Figure 2, with the same parameters, but we change the pa-

rameterization of both algorithms. We now have ϵt = 0.05 + 0.95 exp−βt: for early episodes the

experimentation probability ϵt will be high and then decrease exponentially like in the baseline

case, but it will converge towards 0.05 instead of 0. Thus, in the long-run the algorithms will still

experiment once every 20 episodes on average. Moreover, we change the updating rule (10) so that

now the entries in the Q-matrix correspond to the empirical average of the profit obtained with

each price. Formally, denoting νm,n,t the number of times price m has been tried by AM n before

episode t, we update qm,n,t as:

qm,n,t =


πn,t+νm,n,tqm,n,t−1

1+νm,n,t
if an,t = am

qm,n,t if an,t ̸= am

(OA.1)

We initialize each Q-matrix as in the baseline case, and start with νm,n,1 = 1 for every m and

n. Figure OA.2 replicates Figure 2 in that case, with a histogram of the greedy price of AM 1 in

episode T , and a plot of how the average greedy price of AM 1 evolves over episodes.
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Panel A: Distribution of the greedy price of AM 1 in the last episode.

This panel shows a histogram of the greedy price of AM 1 in episode T : For each possible price a between 1.10 and

14.90 the bar indicates the percentage of the 1,000 experiments conducted in which a∗
1,T = a.

Panel B: Dynamics of the average greedy price of AM 1 for episodes 1 to T .

This graph shows for each episode t the average of AM 1’s greedy price a∗
1,t across the 1,000 experiments conducted.

As a measure of dispersion, we also compute the standard deviation of a∗
1,t across experiments and plot the average

of a∗
1,t plus/minus one standard deviation (with a 500-episode moving average for better readability).

Figure OA.2: Greedy price of AM 1 when AM 1 and AM 2 keep experimenting in the
long-run: adverse-selection case, baseline parameters σ = 5, ∆v = 4, N = 2, µ = 1

2 , E(v) = 2,
T = 1, 000, 000, and K = 1, 000. Both AMs use ϵt = 0.05 + 0.95 exp−βt and the Q-matrix records
the empirical average of the profit obtained with each price in past episodes.64
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OA.3 Experimenting more is not profitable

We run the same experiments as in Figure 2, with the same parameters, except that we allow AM 1

to use a different parameter β. We denote β1 the experimentation parameter for AM 1 and β2 the

parameter for AM 2. We fix β2 at its baseline value of 0.00008 and we make β1 vary between 1/16

of β2 and 16 times β2. For each β1 we compute the average profit realized by AM 1 across 1,000

experiments and over 100,000 episodes, 500,000 episodes, and 1,000,000 episodes. We observe that

the average profit is non-monotonic in β1: while experimenting allows AM 1 to get more information

and adjust its price to the behavior of AM 2 for more episodes, it also leads AM 2 to choose lower

prices in the long-run, and it is also costly as AM 1 will more often play a random, often suboptimal,

price. We observe that the point β1 = 0.00008 in the middle of the x-axis, which corresponds to

our baseline parameterization, is close to being a best response to β2.

This graph shows the average profit for AM 1 over the first 100,000 episodes, the first 500,000 episodes, and the entire

1,000,000 episodes, for different parameters β1 used by AM 1, keeping β2 constant. Note that the scale on the x-axis

is not linear.

Figure OA.3: Average profit of AM 1 for different values of β1. Adverse-selection case,
baseline parameters σ = 5, ∆v = 4, N = 2, µ = 1

2 , E(v) = 2, T = 1, 000, 000, and K = 1, 000. AM
1 uses β1 and AM 2 uses β2 = 8.10−5.
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OA.4 Waiting for the experiment to “converge” can be misleading

In this section we explain why we choose to run experiments in which algorithms interact for a large

but fixed number T of episodes, instead of waiting for the algorithms to play the same actions for

a certain number of times, as is done in other papers in the literature.

Consider the following two procedures for the numerical experiments:

- Fixed stopping time procedure: the algorithms play for a fixed number T of episodes.

- Random stopping time procedure: the algorithms play until they have both taken the same

action for κ episodes in a row, then the procedure stops. The final episode is denoted T̃ .

The random stopping procedure is in principle the appropriate thing to do if we know theoret-

ically that the algorithms will eventually converge, in the sense that with probability 1 they will

both play the same actions for every period after some random period. Then one can wait for the

same actions to be repeated a large number of times κ, and if κ is large enough it is likely that the

algorithms have indeed converged.

However, as we showed in Section A.5, the probability that our Q-learning algorithms converge

in this sense is zero: there is a probability of 1 that an AM will change its optimal action if one

waits for long enough. Then, the random stopping procedure implies that we are conditioning

experimental observations on a specific path having been taken in the experiment. This may in

principle bias the results.

To better understand this point, we consider a very simple example in which the correct quantity

to estimate can be computed theoretically. Assume there is only one Q-learning algorithm that can

take two actions a1 and a2. Action ai gives a payoff πh
i with probability pi, and πl

i = 0 with

probability 1 − pi. Assume πh
1 > πh

2 . The algorithm does not experiment (or the probability of

experimentation decays exponentially, so that in the long-run it becomes null), and updates with a

rule similar to (10), with α = 1.

Because α = 1, the Q-matrix can only take four values:

Q1 =

πh
1

πh
2

 , Q2 =

 0

πh
2

 , Q3 =

πh
1

0

 , Q4 =

0

0

 . (OA.2)
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Given that πh
1 > πh

2 , when the Q-matrix is Q2 the algorithm will play a2. With probability p2

the next value of the Q-matrix will be Q2 again, and with probability 1−p2 it will be Q4. Similarly,

when the Q-matrix is Q3 the algorithm will play a1, then the next value will be Q3 with probability

p1 and otherwise Q4. When the Q-matrix is Q4 the algorithm will play a1 with probability 1/2,

leading to either Q3 or Q4, and a2 with probability 1/2, leading to either Q2 or Q4. Note that the

only state of the Q-matrix that can lead to Q1 is Q1 itself, and only with a probability lower than

1. Hence, in the long-run the probability that the Q-matrix is Q1 is zero.

The Q-matrix then follows a Markov process with 3 states Q2, Q3, and Q4, and the transition

probabilities just described. It is easy to compute the stationary probability of each state, and then

the stationary probability that the algorithm plays a1 is:

Pr(a = a1) =
1− p2

2− p1 − p2
. (OA.3)

Now we can test how each procedure will estimate Pr(a = a1). We take p1 = 0.1 and p2 = 0.9,

which gives Pr(a = a1) = 0.1. In words, the algorithm will constantly alternate between a1 and a2,

but in the long-run it will play a1 10% of the time and a2 90% of the time.

To implement the fixed stopping time procedure, we take T = 50, 000. We simulate T periods

for K = 1, 000 experiments, and we record the percentage of experiments in which the algorithm

plays a1 or a2 in the last episode.

To implement the random stopping time procedure, we let the algorithm run for 50,000 episodes,

and then wait until the algorithm has played the same action for 100 episodes. We then stop the

algorithm and record the action played in the last episode. We run K = 1, 000 experiments and

record the percentage of experiments in which the algorithm plays a1 or a2 in the last episode.

Figure OA.4 shows the outcome of our experiments. On Panel A we see that, using the fixed

stopping time procedure, the percentage of experiments that end with action a1 is very close to

the theoretical value of 10%. On Panel B instead, with the random stopping time procedure the

percentage of experiments that end with action a1 is 0%, so that the estimate of Pr(a = a1) is

significantly biased downwards.

The reason for this bias is that the second procedure conditions the observation on having the
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same action taken 100 times in a row. Conditionally on being in state Q2 and playing a2, the

probability of remaining in Q2 is 0.9. The probability to remain in Q2 for 100 episodes in a row

is 0.9100 ≃ 2.65 × 10−5, so that on average it will take 1/(2.65 × 10−5) ≃ 37, 648 repetitions of a

sequence of 100 episodes to observe a constant action. For action a1, the probability of remaining in

Q3 is only 0.1, and the probability to remain in Q3 for 100 episodes in a row is 0.1100 = 10−100, which

is virtually zero. Hence, the random stopping time procedure picks up very particular histories,

heavily biased towards action a2.

This example is clearly extreme and meant only for illustration. With lower values of α and

actions that are less different we do not expect the two procedures to lead to radically different

results. However, given that the random stopping procedure is in principle biased and is also typi-

cally much more computationally intensive, we recommend using the fixed stopping time procedure

instead.
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Panel A: Fixed stopping time procedure.

Panel B: Random stopping time procedure.

Figure OA.4: Percentage of experiments ending with actions a1 and a2, using either the
fixed stopping time procedure or the random stopping time procedure.
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