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Abstract

We study a noisy rational expectations equilibrium in a multi-asset economy populated
by informed and uninformed investors and noise traders. The assets can include state
contingent claims such as Arrow-Debreu securities, assets with only positive payoffs, op-
tions or other derivative securities. The probabilities of states depend on an aggregate
shock, which is observed only by the informed investor. We derive a three-factor CAPM
with asymmetric information, establish conditions under which asset prices reveal infor-
mation about the shock, and show that information asymmetry amplifies the effects of
payoff skewness on asset returns. We also find that volatility derivatives make incomplete
markets effectively complete, and their prices quantify market illiquidity and shadow value
of information to uninformed investors.
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1. Introduction

Informed investors in financial markets often use their private information to extract
gains from trading in a multitude of financial assets, such as stocks, corporate bonds,
and derivative securities. This information can be partially learned from asset prices
by uninformed investors for their own advantage. Learning from asset prices in realistic
multi-asset economies is complicated by the joint effects of non-normality of asset payoff
distributions, complex payoff structures of derivative securities, and interdependence of
asset prices arising because each price may contain information about the payoffs of other
assets. Therefore, despite the fact that asymmetry of information across investors is a
prominent feature of financial markets, its impact on equilibrium asset prices in multi-
asset economies remains relatively unexplored.

In this paper, we develop a new tractable approach for studying asset prices in multi-
asset noisy rational expectations equilibrium (REE) economies with realistic asset payoffs
and asymmetric information. Our approach provides a bridge between risk-neutral asset
pricing and models with asymmetric information, and sheds new light on the effects of
information asymmetry on asset prices. In particular, we derive a three-factor extension of
the standard Capital Asset Pricing Model (CAPM), show that aggregate volatility is priced
in the cross-section of asset returns, derive conditions under which prices of assets (such as
debt, equity, and derivatives) reveal information about an aggregate economic shock, and
demonstrate that information asymmetry amplifies the effects of higher order moments
of asset payoffs on asset returns. We also uncover a unique economic role of volatility
derivatives. We show that these derivatives make incomplete markets effectively complete,
and their prices quantify both market illiquidity and the shadow value of information
for uninformed investors. The latter results complement the widely-used interpretation
of market volatility indices such as VIX (i.e., the risk-neutral volatility of S&P500 stock
index) as “fear gauges” of financial markets.

We consider a multi-asset economy with two dates and a finite but arbitrary number of
random states. The probabilities of states are exponential-linear functions of an aggregate
shock normalized to sum up to one, where the shock has a certain conjugate prior distribu-
tion. The shocks are multiplied by realizations of a state-dependent aggregate risk factor,
such as aggregate output or weather conditions, which quantifies shock impacts on state
probabilities. The tradable assets can be state contingent claims such as Arrow-Debreu
securities, assets with only positive payoffs, and derivatives. The economy is populated by
two types of price-taking rational investors, informed and uninformed, with constant abso-
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lute risk aversion (CARA) preferences over terminal wealth. There are also noise traders
with exogenous jointly normally distributed asset demands. The investors trade assets at
the initial date, and asset prices are determined from the market clearing conditions. The
informed investors observe the shock, whereas the uninformed investors use asset prices to
extract information about the shock, which is obfuscated by noise traders.

We begin the analysis by studying markets where the number of states equals the
number of assets, henceforth complete markets. Our unique setup allows us to extend the
methods of risk-neutral valuation and portfolio choice to complete markets with asym-
metric information. We show that the risk-neutral probability measure is unique and
obtain closed-form asset prices and investors’ portfolios of assets. Asset prices are given
by expected discounted payoffs with respect to risk-neutral probabilities.

We then derive an approximate three-factor model that extends the standard CAPM by
linearizing the state price density in the economy. This three-factor model helps us isolate
the effects of asymmetric information on asset returns. The first factor in the model is the
payoff of the market portfolio, as in the standard CAPM. The second and third factors
are the aggregate risk factor and its volatility. In the special case in which the market
portfolio is proportional to the aggregate risk factor, our model (26) is consistent with
the empirical findings showing that market volatility is priced in the cross-section of asset
returns [e.g., Ang, Hodrick, Xing, and Zhang (2006); Cremers, Halling, and Weinbaum
(2015)]. The model may also contribute towards explaining findings in Savor and Wilson
(2014) who show that market betas are strongly related to expected returns only during
periods of macroeconomic announcements. Our model implies that reduced asymmetry of
information during such announcements reduces the effect of information-related factors
on asset returns, and hence, expected returns are mainly determined by market betas.

Next, we extend our analysis to a subset of realistic incomplete-market economies,
where the number of states exceeds the number of assets. These economies include
economies with one risky asset studied in the previous literature [e.g., Grossman and
Stiglitz (1980), Breon-Drish (2015)], the latter economies with added derivatives, and
economies with risky corporate debt and equity, among others. Asset prices in these
economies solve a system of non-linear equations and are less tractable than in the economies
with complete markets. We prove the existence and uniqueness of equilibrium in these
economies using a new method that relies only on well-known results of basic calculus.

We provide several further applications of our model that shed light on the effects of
information asymmetry on asset prices. First, we provide an answer to a fundamental
question: which assets help mitigate the information asymmetry in the economy? We
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show that the information about the aggregate shock is impounded into asset prices only
via the informed investor’s demand for those assets that make up a replicating portfolio
for the aggregate risk factor. Investing in this replicating portfolio allows the informed
investor to hedge exposure to the aggregate risk factor in response to information by
transferring more wealth to more likely states. The amount of wealth invested in this
portfolio depends on the aggregate shock. The information about the shock then becomes
incorporated into asset prices via the market clearing conditions. The assets which are
not included in the replicating portfolio are informationally irrelevant in the sense that
adding them to the economy does not reveal any additional information. For example,
we show that adding derivatives to the economies with one risky asset in Grossman and
Stiglitz (1980) and Breon-Drish (2015) does not reveal any additional information about
the underlying asset, provided that noises across markets are uncorrelated. Similarly, we
demonstrate an informational analogue of the irrelevance of capital structure according to
which, absent additional frictions, the information jointly revealed by the prices of risky
corporate debt and equity does not depend on the face value of debt.

We also identify realistic situations when securities are not informationally irrelevant.
In particular, we consider an economy with costly defaults on corporate debt that destroy a
fraction of the firm’s value, and allow investors to trade Arrow-Debreu securities on default
states, similar to credit default swaps. We find that the informativeness of prices (measured
by the posterior variance of the aggregate shock) is a decreasing function of the face value
of debt and the cost of default. The intuition is that as the face value of debt increases,
default becomes more likely. Therefore, more Arrow-Debreu securities are needed for
hedging and more information is revealed through their prices. Our findings are consistent
with the empirical literature showing that credit default swaps reveal information about
cash flow distributions of underlying firms [e.g., Blanco, Brennan, and Marsh (2005);
Longstaff, Mithal, and Neis (2005)]. Other realistic situations where derivatives are not
informationally redundant include the cases in which noise trader demands are correlated
across markets or derivatives help hedge the exposure to the aggregate risk factor.

The multi-asset nature of our setup also allows us to unravel the important economic
role of volatility derivatives. These derivatives are widely traded in financial markets, and
adding them to our model makes it both more realistic and tractable. The analysis of these
derivatives when the payoff of the underlying asset is not normally distributed is unique
to our model. Specifically, we study a security with a payoff equal to the squared payoff
of the underlying, which we interpret as a volatility derivative. We show that introducing
this security in an incomplete market with one risky underlying asset makes this market
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effectively complete, that is, allows informed and uninformed investors to achieve Pareto
optimal asset allocations. Moreover, the asset prices in the resulting effectively complete
market are available in closed form.

Furthermore, we show that the prices of volatility derivatives, given by risk-neutral
variances of asset payoffs, determine the shadow value of information and illiquidity in
financial markets. We define the shadow value of information as the amount of wealth
that an uninformed investor is willing to give up to become informed. When the market
is complete, the value of information is proportional to the risk-neutral variance of the
aggregate risk factor, which can be interpreted as the price of a volatility derivative. When
the market is incomplete, the value of information is reduced by the measure of market
incompleteness defined as the Kullback-Leibler divergence of two risk-neutral measures
given by real probabilities weighted by marginal utilities of investors. The intuition is that
the benefits of information are smaller in incomplete markets due to restricted risk sharing
and fewer tradable assets.

We define market illiquidity as the matrix of asset price sensitivities to noise trader
demands, and show that illiquidity is proportional to the risk-neutral variance-covariance
matrix of asset payoffs. Such a relationship between illiquidity and risk-neutral variance is
in line with empirical findings. In particular, Chung and Chuwonganant (2014) show that
liquidity (defined as the inverse of the illiquidity) is negatively related to VIX, and Nagel
(2012) shows that the returns of liquidity provision are high when VIX is high.

We build on the role of volatility derivatives discussed above to develop a new method
for studying the effects of asymmetric information on asset prices. We consider an incom-
plete market with a single risky asset and then make it effectively complete by adding a
volatility derivative. To facilitate the comparison of incomplete and effectively complete
markets, we exclude noise traders from trading the derivative; even then we show that
the equilibrium is not fully revealing because the derivative is informationally irrelevant
(in this particular case). For several broad classes of asset payoff distributions we find
asset prices in the effectively complete market in closed-form. Using our new method, we
also derive a new relationship between asset prices and higher moments of their payoff
distributions. We show that asset risk premia are decreasing functions of payoff skewness,
and the asymmetry of information amplifies the sensitivity of risk premia to skewness.

Finally, we demonstrate the generality of our methodology and robustness of results by
extending our baseline analysis in several directions. First, we show that when the market
is complete the model can be solved for general probabilities of states and distributions of
shocks and noise trader demands. We then extend the analysis to economies where noise
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traders are replaced by noisy endowments of investors, and show that the equilibrium
prices have the same structure and the quadratic derivatives play the same role as in
the baseline analysis. Next, we study economies with multiple heterogeneously informed
investors, and show that quadratic derivatives make the market effectively complete, prove
the existence and uniqueness of a symmetric equilibrium, and derive prices in closed form.
Finally, we extend the analysis to the case of multidimensional economic shocks. As in
other extensions, the prices are available in closed form and have the same structure as in
the baseline analysis. Moreover, the security that completes the market has payoffs given
by quadratic forms of the aggregate risk factor in the economy.

Related Literature. Our paper is related to a large literature on noisy REE mod-
els, which was pioneered by Grossman (1976), Grossman and Stiglitz (1980) and Hellwig
(1980). These early works typically consider economies with CARA investors and one risky
asset with normally distributed payoffs. Admati (1985) extends these models to the case
of multiple securities and Wang (1993) develops a dynamic model. Pálvölgyi and Venter
(2014) prove the uniqueness of equilibrium in Grossman and Stiglitz (1980) in the class
of continuous prices and find multiple equilibria with discontinuous prices. Diamond and
Verrecchia (1981), Vives (2008), Garćıa and Urošević (2013) and Kurlat and Veldkamp
(2013) discuss further extensions and applications of CARA-normal models. Davila and
Parlatore (2019) study the effect of trading costs on the acquisition and aggregation of
information. Cespa and Foucault (2014) study an economy in which investors learn infor-
mation about an asset also from the information about other assets and show that such
learning may lead to liquidity crashes. In contrast to this literature, we allow for multiple
assets with more general payoff distributions.

Breon-Drish (2015) studies an economy with CARA investors and one risky asset with-
out normality. He obtains a general characterization of prices in terms of inverse functions
and proves the existence and uniqueness of equilibrium when the asset payoff conditional
on the informed investor’s signal has a distribution from the exponential family. He also
obtains closed-form exponential-linear asset prices when payoffs have a binomial distri-
bution, and uses conjugate prior for the economic shock similar to ours. Relative to the
latter paper, we study a muti-asset economy with multinomial distributions. We show
that (effective) market completeness offers significant additional tractability and closed-
form prices. We provide new economic results on the informational irrelevance of assets,
the role of quadratic derivatives, effective completeness, value of information, and liquidity.

Malamud (2015) studies an REE with Arrow-Debreu securities in a continuous-space
complete-market economy and shows that the equilibria with non-CARA preferences are
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fully revealing. Albagli, Hellwig, and Tsyvinski (2013) consider a noisy REE model where
the information is dispersed across all investors, preferences are general, and investors face
position limits. Our model differs from their setup in that our investors are either informed
or uninformed and their trades are unconstrained. Han (2018) studies numerically dynamic
information acquisition with ex ante identical investors but without derivative securities,
and shows that the marginal cost of information precision is proportional to risk-neutral
variance. In contrast to Han (2018), we derive the value of information and show that this
value is reduced by market incompleteness. Although our model is one-period, investors
are not ex-ante identical and solutions are in closed form.

Bernardo and Judd (2000) solve models with general distributions and preferences
numerically and demonstrate that the REE in Grossman and Stiglitz (1980) is not robust
to parametric assumptions. Breugem and Buss (2019) study portfolio and information
choice of investors concerned about their performance relative to an index. Other related
models that do not rely on the normality of asset payoffs include Barlevy and Veronesi
(2000), Peress (2004), and Yuan (2005) among others.

Our model is also related to works on the informational role of derivatives. Brennan
and Cao (1996) consider a CARA-normal model with one risky underlying asset and a
quadratic derivative written on it. They show that the derivative effectively completes
the market and does not reveal any information which is not already in the price of
the underlying asset. We show that the latter result extends to economies without payoff
normality. Moreover, the quadratic derivative in our model plays a unique role by allowing
us to obtain closed-form prices whereas in their work introducing this derivative does not
affect the price of the underlying asset. Other related models in this literature include
Back (1993), Biais and Hillion (1994), Vanden (2008), and Huang (2014) among others.

2. Model

2.1. Securities Markets and Information Structure

We consider an economy with two dates t = 0 and t = T , and N states ω1,. . . , ωN at the
terminal date, where N ≥ 2. The probabilities πn(ε) of states ωn are normalized exponen-
tial functions of the aggregate shock ε ∈ R adopted from logit models in econometrics:

πn(ε) = ean+bnε∑
N

j=1 e
aj+bjε

, n = 1, . . . , N, (1)
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where an and bn are state-dependent variables. Variable bn determines the effect of shocks
on probabilities and can be interpreted as an aggregate risk factor of global importance
for the economy, such as aggregate output. With such interpretation, probabilities (1)
intuitively imply that, for example, bad shock ε < 0 makes states with higher output bn
less likely than states with lower output. We also interpret variables bn as the sensitivities
of probabilities πn(ε) to shock ε. Below, we discuss economic settings where probabilities
(1) arise endogenously and factor b emerges as a source of information asymmetry. By
b(ω) we denote a corresponding random variable with realizations bn in states ωn.

There are M ≥ 2 assets traded in the economy: a riskless bond in perfectly elastic
supply paying $1 at date T and M−1 state-contingent risky assets in zero net supply with
terminal payoff Cm(ω) in state ω, where m = 1, . . . ,M − 1. The risky assets may include
Arrow-Debreu securities, assets with only positive payoffs, options or other derivatives. All
assets are non-redundant in the sense that each asset’s terminal payoff cannot be replicated
by trading in other assets. We denote the vector of M − 1 risky asset payoffs in state ω by
C(ω) =

(
C1(ω), . . . , CM−1(ω)

)>
, and use Cm and C as shorthand notation for Cm(ω) and

C(ω). The bond price is set to p0 = e−rT , where r is an exogenous risk-free interest rate.
We denote the vector of observed date-0 prices of the risky assets by p = (p1, . . . , pM−1)>.
These prices are determined in equilibrium, defined below.

The economy is populated by three types of investors, informed and uninformed, labeled
I and U , and noise traders. There is a continuum of identical investors of each type that
act as price-takers. Fraction h/2 of all investors are informed and fraction (1 − h)/2 are
uninformed, where h ∈ (0, 1), and fraction 1/2 are noise traders. Investors I and U have
CARA preferences over terminal wealth with risk aversions γI and γU , respectively. Noise
traders submit exogenous normally distributed demands ν = (ν1, . . . , νM−1)> ∼ N (0,Σν)
for risky assets, where Σν ∈ R(M−1)×(M−1) is a symmetric positive-definite matrix.

Both investors I and U know all asset payoffs in all states, Cm(ωn). Before the markets
open, investor I observes shock ε. Investor U observes only asset prices p at date t = 0
and knows how the equilibrium prices, given by some function P (ε, ν) ∈ RM−1, depend
on shock ε and noises ν. Investor U has the following conjugate prior probability density
function (PDF) over ε:

ϕε(x) =

(∑
N

j=1 e
aj+bjx

)
e−0.5(x−µ0)2/σ2

0∫∞
−∞

(∑
N

j=1 e
aj+bjx

)
e−0.5(x−µ0)2/σ2

0dx
. (2)

Below, we discuss economies where PDF ϕε(x) arises endogenously.
For fixed parameters an and bn, we choose µ0 and σ2

0 such that ε has any desired mean
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µε and variance σ2
ε . We refer to the distribution of ε as generalized normal N̂ (µε, σ2

ε)
with mean E[ε] = µε and variance var[ε] = σ2

ε , and note that it can be rewritten as a
weighted average of PDFs of normally distributed random variables. The relationship
between (µ0, σ

2
0) and (µε, σ2

ε) is given by equations (A.1) and (A.2) in the Appendix.
Our economy also has an equivalent interpretation as an economy where the aggregate

risk factor b has an arbitrary prior distribution π̃n and the informed investor receives a
conditionally normal signal ε = bσ2

0 + u, where u ∼ N (µ0, σ
2
0). Then, Bayes’ law and

the formula for total probability give rise to probabilities (1) and distribution (2), where
an = ln(π̃n) − 0.5σ2

0b
2
n. According to this interpretation, learning via ε about factor b is

the source of the asymmetry of information, which justifies the interpretation of b as an
aggregate risk factor.

Allowing shocks ε to be conditionally normal and noise trader demands ν normal
variables captures in a tractable way the fact that these variables can be either positive or
negative, which makes their normality less restrictive than the normality of asset payoffs
in the related literature. Moreover, ν and ε in reality are likely to be sums of smaller zero-
mean shocks, in which case they are approximately normal by the central limit theorem.
The normality of noise ν is in line with the empirical evidence in Peress and Schmidt (2018)
who show that noise trader demands are normally distributed at monthly and quarterly
frequencies. In Section IA1 of the Internet Appendix, we study an economy with general
continuous probabilities πn(ε), shock distribution ϕε(x) and noise distribution ϕν(x) with
finite moments. The latter economy admits closed-form solutions for the complete market
case when M = N (which is the main focus of this paper), albeit these solutions are less
tractable than the solutions in our baseline economy.

Finally, we provide another interpretation of probabilities (1). The investors believe
that true probabilities πn are in the vicinity of benchmark probabilities π̃n = ean/

∑N
j=1 e

aj .
The informed investors directly observe or estimate the expected value of the aggregate
risk factor ∑N

n=1 πnbn = b̄ but do not observe probabilities πn. The informed investors
find probabilities πn that minimize the Kullback-Leibler divergence ∑N

n=1 πn ln(πn/π̃n),
often interpreted as a distance between two probability measures [see MacKay (2017,
p. 34)], subject to constraints ∑N

n=1 πnbn = b̄ and ∑N
n=1 πn = 1. Using the method of

Lagrange multipliers, it can be verified that the optimal probabilities are given by equation
(1), where ε is a Lagrange multiplier that depends on b̄, and hence, is observed only by
informed investors. Therefore, shock ε describes the deviation of optimal probabilities
from benchmark probabilities in response to the inflow of information about factor b.
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2.2. Investors’ Optimization and Definition of Equilibrium

Each investor i = I, U is endowed with initial wealth Wi,0, and allocates it to buy αi units
of the riskless asset and θi,m units of the risky asset m. By θi = (θi,1, . . . , θi,M−1)> we
denote the vector of units of risky assets purchased by investor i. After observing prices
p, the uninformed investor updates the prior PDF (2) conditioning on the information
that shock ε and noise ν satisfy equation P (ε, ν) = p. Investors I and U maximize their
expected utilities over terminal wealth:

max
θI

E
[
−e−γIWI,T

∣∣∣ε, p], (3)

max
θU

E
[
−e−γUWU,T

∣∣∣P (ε, ν) = p
]
, (4)

respectively, subject to their self-financing budget constraints

Wi,T = Wi,0e
rT + (C − erTp)>θi, i = I, U. (5)

Definition of Equilibrium. A competitive noisy rational expectations equilibrium is a
vector of risky asset prices P (ε, ν) and investor portfolios θ∗I (p; ε) and θ∗U(p) that solve
optimization problems (3) and (4) subject to self-financing budget constraints (5), taking
asset prices as given, and satisfy the market clearing condition:

h θ∗I (P (ε, ν); ε) + (1− h)θ∗U(P (ε, ν)) + ν = 0. (6)

Remark 1 (Particular Cases). Our model incorporates the economies with one risky
asset in Grossman and Stiglitz (1980) and Breon-Drish (2015) for particular choices of
distribution parameters an and bn in equation (1) in the limit N →∞. Lemma A.2 in the
Appendix demonstrates that the latter economy is a limiting case of our N -state economy
with asset payoffs C1(ωn) = CN + (CN −CN)(n− 1)/(N − 1) and distribution parameters

an = −C1(ωn)2

2σ2
0
− µ0C1(ωn)

σ2
0

+ ln [ϕC(C1(ωn))] , bn = C1(ωn)
σ2

0
, (7)

where CN and CN converge to the lower and upper limits of payoff C1 with PDF ϕC(x).

3. Characterization of Equilibrium

In this section, we first consider our baseline economy where the number of assets equals
the number of states, M = N , and find the equilibrium in closed form. Then, we consider
a more general economy with M ≤ N assets and derive the equilibrium in terms of inverse
functions. We use the latter economy to establish conditions for the effective completeness
of financial markets and to study the impact of market incompleteness on asset prices.
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3.1. Economy with M = N Securities

We start with an economy where the number of assets equals the number of states, that is,
M = N , which we label as a complete-market economy.1 Our methodological contribution
is to show that market completeness substantially simplifies the derivation of equilibrium,
so that asset prices and investors’ portfolios are available in closed form.

Due to market completeness, we look for equilibrium prices p in the following form:

p =
[
πRN

1 C(ω1) + πRN
2 C(ω2) + . . .+ πRN

N C(ωN)
]
e−rT , (8)

where πRN
n are the risk-neutral probabilities of states ωn. The risk-neutral probabilities

exist and are unique in equilibrium because investors I and U are unconstrained and can
eliminate any arising arbitrage opportunities [e.g., Duffie (2001, p. 4)].

Informed and uninformed investors agree on the risk-neutral probabilities because these
probabilities are uniquely determined from equation (8) as functions of prices p. However,
investors assign different real probabilities to states ωn. In particular, investor U ’s real
posterior probabilities are given by πUn (p) = E

[
πn(ε)|P (ε, ν) = p

]
. The expression for πUn (p)

can be obtained by rewriting investor U ’s expected utility (4) as follows:

E
[
−e−γUWU,T |P (ε, ν) = p

]
= −∑N

n=1

(
E
[
πn(ε)|P (ε, ν) = p

]
e−γUWU,T ,n

)
= −∑N

n=1 π
U
n (p)e−γUWU,T ,n .

(9)

Taking probabilities πn(ε) and πUn (p) as given, investors’ optimizations can be solved
using the methods of complete-market portfolio choice. The informed and uninformed
investors have different state price densities (SPDs), which are given by discounted ratios
of risk-neutral and their real probabilities [e.g., Duffie (2001, p. 11)]: πRN

n e−rT/πn(ε) and
πRN
n e−rT/πUn (p), respectively. The first order conditions (FOCs) of investors equate their

marginal utilities and SPDs [e.g., Duffie (2001, p. 5)] and are given by:

γIe
−γIWI,T ,n = `I

πRN
n e−rT

πn(ε) , γUe
−γUWU,T ,n = `U

πRN
n e−rT

πUn (p) , (10)

where `i are Lagrange multipliers for investors’ budget constraints. From equations (10),
we find optimal wealths Wi,T . Then, we use these wealths to recover optimal portfolios
from budget constraints (5). Lemma 1 below reports investor I’s portfolio in closed form.

1The realizations of shock ε can be interpreted as a continuum of states of the economy in addition to
states ωn. However, N non-redundant assets still suffice to replicate any contingent claim in our economy
because the payoffs of such claims do not vary across ε for a fixed state ωn. In other words, ε-states can
be clumped together so that only ωn states matter for replication. Furthermore, noise trader demands do
not contribute to market incompleteness because they affect date-0 prices but do not affect future payoffs.
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Lemma 1 (Investor I’s optimal portfolio). Investor I’s optimal portfolio is given by:

θ∗I (p; ε) = λε

γI
− Ω−1(ṽ(p)− ã)

γI
, (11)

where Ω ∈ R(N−1)×(N−1) is a matrix of excess payoffs with elements Ωn,k = Ck(ωn)−Ck(ωN),
λ = Ω−1(b1 − bN , . . . , bN−1 − bN)> ∈ RN−1, ã = (a1 − aN , . . . , aN−1 − aN)> ∈ RN−1, and
ṽ(p) ∈ RN−1 is the vector of log ratios of risk-neutral probabilities, given by:

ṽ(p) =
(

ln
(
πRN

1
πRN
N

)
, . . . , ln

(
πRN
N−1
πRN
N

))>
. (12)

Equation (11) decomposes portfolio θ∗I (p; ε) into two terms, which we label as information-
sensitive and information-insensitive demands, respectively. The information-sensitive
demand is linear in shock ε, and the portfolio is separable in ε and prices p, as in the related
literature [e.g., Grossman and Stiglitz (1980), Breon-Drish (2015)]. The information-
insensitive demand depends on risk-neutral probabilities, which can be found analytically
as functions of prices p by solving risk-neutral pricing equations (8). Hence, portfolio (11)
is in closed form in terms of shock ε and price p, which are observable by investor I.

Vector λ in portfolio (11) has the following interpretation. The definition of λ in Lemma
1 implies that λ satisfies equations bn = λ0 +C(ωn)>λ, where λ0 is a constant. Therefore,
λ is a replicating portfolio for the aggregate risk factor b, up to a constant λ0. In Section
3.3 below, we provide detailed discussion of portfolio λ and separability of portfolio (11)
in shock ε and price p in a more general incomplete-market economy.

Substituting θ∗I (p; ε) and θ∗U(p) into the market clearing condition (6), we find that

hλε

γI
+ ν +H(p) = 0, (13)

where H(p) is a function of asset prices p, discussed below, which is given by:

H(p) = (1− h)θ∗U(p)− h

γI
Ω−1

(
ṽ(p)− ã

)
, (14)

and ṽ(p), ã are as in Lemma 1.
Investor U uses equation (13) to infer information about shock ε. Substituting prices

p into this equation, investor U learns sufficient statistic s = hλε/γI + ν, which is equal
to −H(p). Therefore, function H(p) reveals information in prices, and hence, we label
it the informational content of prices. Next, investor U finds posterior probabilities of
states given by the conditional expectation πUn (p) = E

[
πn(ε)|hλε/γI + ν = −H(p)

]
. The
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derivation of probabilities πUn (p) is simplified by the structures of probabilities πn(ε) in (1)
and the prior distribution ϕε(x) of shock ε in (2). Lemma 2 reports these probabilities.
Lemma 2 (Posterior probabilities of states). The posterior probabilities of states ωn
conditional on observing the sufficient statistic s = hλε/γI + ν are given by:

πUn (p) = 1
G(p) exp

an + 1
2
b2
n + 2bn

(
µ0/σ

2
0 − hλ>Σ−1

ν H(p)/γI
)

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

 , (15)

where function H(p) is given by equation (14), and G(p) is a normalizing function.
We observe that probabilities (15) are proportional to an exponent of a quadratic function
of sensitivities bn, which is similar to a moment generating function E[ebnz] of a normally
distributed variable z. This similarity emerges because, as discussed in Section 2.1, noise
ν and shock ε are (conditionally) normally distributed, and state probability πn(ε) has an
exponential-linear form. Consequently, Bayesian updating of the latter probability gives
exponential-quadratic posterior probability (15).

We then find the equilibrium as follows. From the FOC (10) for investor U we find
investor U ’s optimal portfolio θ∗U(p) in terms of probabilities (15), similar to finding investor
I’s portfolio (11). We observe, that probabilities (15) themselves depend on portfolio θ∗U(p)
via the informational content of prices H(p). Hence, portfolio θ∗U(p) solves a fixed-point
problem [equation (A.15) in the Appendix], which we do not show here for brevity. The
fixed-point problem turns out to be linear, and hence, we find portfolio θ∗U(p) in closed
form. Then, we find the equilibrium risk-neutral probabilities and asset prices from the
market clearing condition (13). In this paper, we focus on equilibria in which asset prices
are continuous functions of the sufficient statistic s, and the sufficient statistic is the only
information revealed by prices.2 Proposition 1 reports the equilibrium.
Proposition 1 (Equilibrium with M = N assets).

i) There exists unique equilibrium in which prices only reveal the sufficient statistic s =
hλε/γI + ν. In this equilibrium, the vector of risky asset prices P (ε, ν) and risk-neutral
probabilities πRN

n are given by:

P (ε, ν) =
[
πRN

1 C(ω1) + πRN
2 C(ω2) + . . .+ πRN

N C(ωN)
]
e−rT , (16)

πRN
n = evn∑

N

j=1 e
vj
, (17)

2Pálvölgyi and Venter (2015) show that our complete market equilibrium is unique among all equilibria
with continuous prices. However, Pálvölgyi and Venter (2014) demonstrate the existence of multiple
discontinuous equilibria in a Grossman and Stiglitz (1980) economy, which may also exist in our model.
Finding such equilibria in multi-asset economies is a challenging task and is beyond the scope of our work.
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where probability parameters vn are given in closed form by:

vn = an + 1
2

(1− h)/γU
h/γI + (1− h)/γU

b2
n + 2(µ0/σ

2
0)bn

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+
C(ωn)>

(
E +Q

)
s

h/γI + (1− h)/γU
, (18)

Q = h(1− h)
γIγU

λλ>Σ−1
ν

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0
, (19)

where E is an identity matrix, Q,E ∈ R(N−1)×(N−1), and λ = Ω−1(b1−bN , . . . , bN−1−bN)>.
ii) Portfolio θ∗I (p; ε) is given by equation (11) and portfolio θ∗U(p) is given by

θ∗U(p) =
(
E +Q

)−1
(
hQΩ−1(ṽ(p)− ã)

(1− h)γI
− Ω−1(ṽ(p)− â)

γU
+ µ0/(γUσ2

0)λ
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
, (20)

where ṽ(p) ∈ RN−1 is given by (12) and has elements vn−vN in equilibrium, and ã, â ∈ RN−1

have elements an − aN and an − aN + 0.5(b2
n − b2

N)/(h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0), respectively.

Proposition 1 extends the no-arbitrage valuation approach to economies with asymmetric
information and provides asset prices in closed form in terms of expected discounted payoffs
under risk-neutral probabilities, familiar from the asset-pricing literature. The equilibrium
prices are non-linear functions of shock ε and noise ν, in contrast to CARA-normal noisy
REE models [e.g., Grossman and Stiglitz (1980); Admati (1985), among others]. The
tractability of equilibrium prices and portfolios allows us to study the slopes of asset
demands with respect to prices p, which we report in Proposition 2 below.
Proposition 2 (Slopes of asset demands). The comparative statics for investors’
portfolios with respect to prices p are as follows:

∂θ∗I (p; ε)
∂p

=− 1
γI

(
varRN[C]

)−1
erT , (21)

∂θ∗U(p)
∂p

=−
 1
γU
E − (h/γI + (1− h)/γU)hλλ>Σ−1

ν

γUγI
(
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
+ h(1− h)λ>Σ−1

ν λ

(varRN[C]
)−1

erT ,(22)

where varRN[·] is the variance-covariance matrix under the risk-neutral probability measure.
Furthermore, informed investor’s demand for risky asset m is a downward-sloping function
of that asset’s price pm, holding other prices fixed.

Equations (21) and (22) show the sensitivities of investors’ asset demands to prices.
The informed investor’s demand (21) is determined by the inverse risk-neutral variance-
covariance matrix. Hence, the informed investor’s demand for risky asset m is a downward
sloping function of that asset’s own price pm because the elements on the main diagonal
of a positive-definite matrix (varRN[C])−1 are all positive [see proof of Proposition 2].
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The sensitivity of portfolio θ∗U(p) to prices p in equation (22) has two terms that capture
the substitution and information effects, respectively. Investor U ’s demand for asset m
can be an upward sloping function of pm because the product of the matrices in (22), in
general, is not positive-definite. Intuitively, high asset prices can be interpreted as positive
information about shock ε, in which case the uninformed demand for asset m may increase
despite high price pm through this information effect. Admati (1985) finds a similar result
in a multi-asset CARA-normal model. Our analysis extends the finding of Admati (1985)
to economies without normality and reveals the important roles of portfolio λ and the
risk-neutral variance of asset payoffs in generating these effects.

Similar to Admati (1985), the equilibrium is unique despite possibly upward sloping
uninformed demand. The intuition is that for the uninformed demand to be upward
sloping there should be a sufficiently large fraction of informed investors in the economy
so that the information effect is sufficiently strong. However, as shown in Proposition 2, the
informed investors have downward sloping demands. As a result, the aggregate demand
is downward sloping because the information effect is subdued by the substitution effect
after aggregation. At a more technical level, the equilibrium is unique because uninformed
portfolios and log-ratios of risk-neutral probabilities solve a linear system of equations that
has a unique solution [see the proof of Proposition 1].

3.2. Capital Asset Pricing Model with Asymmetric Information

In this Section, we derive a capital asset pricing model (CAPM) with asymmetric informa-
tion and study its economic implications. Our CAPM provides a bridge between risk-based
models of asset pricing in the no-arbitrage tradition and models with asymmetric informa-
tion, and also highlights how information aggregation alters asset returns. The existence
of the state price density allows us to derive this CAPM as a simple corollary of the results
in Section 6.1 of Cochrane (2005), which we report below.
Corollary 1 (Asymmetric information CAPM). Let Ri = Ci/Pi be the gross return
of asset i. In the effectively complete market the asset risk premia are given by

EU [Ri]− erT = − covU
(
Ri,

πRN

πU

)
, (23)

where πRN/πU is the ratio of risk-neutral and investor U ’s probabilities of states, and the
covariance is computed under investor U ’s probability measure πU . Furthermore, let R∗

be the projection of the rescaled state price density (πRN/πU)/ERN[πRN/πU ] on the space of

15

Electronic copy available at: https://ssrn.com/abstract=2446873



tradable assets in the Euclidean space with scalar product EU [XY ]. Then

EU [Ri]− erT =
covU

(
Ri, R

∗
)

varU [R∗] (EU [R∗]− erT ). (24)

Corollary 1 presents the CAPM from the point of view of an uninformed investor or an
econometrician, and demonstrates that the asset risk premia are determined by the co-
variance of returns with the state price density and admit a beta representation (24),
similar to standard risk-based models discussed in Cochrane (2005, pp. 101-102). Follow-
ing Cochrane (2005, p. 109), we note that return R∗ in (24) can be interpreted as a return
of a factor-mimicking portfolio for the state price density.

The risk-premia in (24) non-linearly depend on the aggregate risk factor b, which
complicates the analysis of asset returns. To isolate the effects of asymmetric information
on the risk premia, following Cochrane (2005, p. 161), we derive an approximate linear
three-factor model by linearizing the SPD. Corollary 2 reports our results.
Corollary 2 (Three-factor CAPM). Suppose, either γI or γU are small. Then,

πRN
n

πUn
e−rT ≈ g0(s)

(
1 + C(ωn)>E[−ν|s]

(1− h)/γU + h/γI
− 1

2
h/γI

(1− h)/γU + h/γI

b2
n − 2bnEU [b]

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

)
,

(25)
where g0(s) does not depend on state ωn, and asset risk premia are given by:

EU [Ri]− erT ≈ β1iΛ1 + β2iΛ2 + β3iΛ3, (26)

where β1i, β2i, and β3i are the multiple regression coefficients of Ri on factors C(ω)>E[−ν|s],
b, b2 and a constant, and the factor risk premia are given by Λ1 = (EU [C(ωn)]−perT )>E[−ν|s],
Λ2 = EU [b]− ERN[b], Λ3 = EU [b2]− ERN[b2].
The three-factor model (26) is the main result of this section. The betas in (26) can be
interpreted as time-series regression coefficients of asset returns on factors in a setting
where returns each period are determined from our one-period model, as in the mean-
variance CAPM. We also note that model (26) is conditional on the investors’ ability to
observe the sufficient statistic s. Hence, betas should be estimated as functions (e.g.,
polynomials) of s, similar to Cochrane (2005, p. 144).

Next, we discuss the factors. The first factor C(ω)>E[−ν|s] is analogous to the payoff
of the market portfolio in our model. In particular, from the market clearing condition
(6), the exogenous supply of risky assets in the economy is given by −ν. The uninformed
investor does not observe −ν, and hence, evaluates the payoff of the market portfolio by
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using the best estimate E[−ν|s]. The other two factors, the aggregate risk factor b and
the volatility factor b2, capture the effects of asymmetric information on the SPD.3

The three-factor model (26) reduces to the standard mean-variance CAPM in three
special cases of our model in which 1) there are no informed traders (h = 0), 2) exogenous
asset supply is deterministic (Σν = 0), and 3) shock ε is known to everyone (σ0 = 0). This
is because factors b and b2 cancel out in the SPD (25) in these three special cases when
h = 0, λ>Σ−1

ν λ→∞, or σ0 → 0, respectively. Hence, these factors would have zero betas.
Three-factor CAPM (26) is consistent with the empirical findings in Ang, Hodrick,

Xing, and Zhang (2006) and Cremers, Halling, and Weinbaum (2015) showing that market
volatility measured by VIX is priced in the cross-section of asset returns. In particular,
in a special case of our model studied in Section 4.1 in which b is proportional to C1

and νi = 0 for i ≥ 2, risk factor b and its volatility are proportional to the market
portfolio payoff and its volatility. Our model may also contribute towards explaining
findings in Savor and Wilson (2014) who show that market betas are strongly related to
average returns only during periods of macroeconomic announcements such as news about
inflation, unemployment, and FOMC interest rate decisions. Their explanation is that
announcements provide a clearer signal about aggregate risk and expected future market
returns due to reduced noise or disagreement. CAPM (26) shows that, in line with this
explanation, reduced asymmetry of information during macroeconomic announcements
decreases the effect of information-related factors on asset returns, and hence, expected
returns are mainly determined by market betas.

Finally, we evaluate the contribution of the information-specific factors to asset returns.
For tractability, we focus on the returns of Arrow-Debreu (AD) securities. We also assume
that the informed and uninformed investors have the same risk aversion so that the effects
of information asymmetry are not confounded by other sources of investor heterogeneity.
Lemma 3 presents the expected returns and comparative statics.
Lemma 3 (Expected returns of Arrow-Debreu securities). Suppose, both investors
have identical risk aversions, γI = γU = γ. Then, the expected return of the Arrow-Debreu
security with payoff 1{ω=ωn} is given by:

EU [Rn] = πUn
πRN
n

erT = exp{−γC(ωn)>E[−ν|s] + 0.5t(bn − EU [b])2 + rT}
ERN

[
exp{−γC(ω)>E[−ν|s] + 0.5t(b− EU [b])2}

] , (27)

where t = h/(h2λ>Σ−1
ν λ/γ2 + 1/σ2

0) quantifies the asymmetry of information. Moreover,
∂EU [Rn]/∂t > 0 if and only if (bn − EU [b])2 > varU [b].

3As noted in Cochrane (2005), the factor representation is not unique. Three is the maximum number
of independent factors in our model, but they can be combined in two or one factor, as in equation (24).
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Equation (27) disentangles the effects of risk attitudes and information asymmetry on
expected returns, which are captured by terms γC(ωn)>E[−ν|s] and t(bn − EU [b])2, re-
spectively. Parameter t quantifies information asymmetry. Larger t corresponds to more
information asymmetry and t = 0 to no asymmetry, in which case either there are no
informed investors (h = 0), or asset supply is deterministic (Σν = 0), or shock ε is known
to everyone (σ0 = 0). When t = 0, expected returns are only determined by risk aversion
γ and market portfolio payoffs C(ωn)>(−ν). Equation (27) allows for simple comparative
statics showing that if two states have the same market portfolio payoffs then, in the pres-
ence of information asymmetry, the AD security of the state with higher squared deviation
(b− EU [b])2 has higher return, and the effect is stronger with larger parameter t.

The risk premia of AD securities are given by EU [Rn]− erT = (πUn/πRN
n − 1)erT . There

are always AD securities with positive and negative risk premia because assuming that,
e.g., all risk premia are positive, πUn/πRN

n − 1 > 0, leads to a contradiction 1 = ∑
N

i=1 π
U
n >∑

N

i=1 π
RN
n = 1. Next, we find out which AD securities have positive risk premia. From

equation (27) we observe that πUn > πRN
n for sufficiently large |bn| because the ratio πUn/πRN

n

is mainly determined by the quadratic term (bn−EU [b])2. Therefore, posterior probabilities
πUn are higher than risk-neutral ones for tail risks (i.e, when |bn| is large), and hence,
corresponding AD securities have positive risk premia. The latter effects are stronger with
larger asymmetry parameter t.

3.3. General Economy with M ≤ N Securities

In this section, we study an economy with M securities, where M ≤ N , which subsumes
complete and incomplete market economies as special cases. For tractability, we focus on
a subset of economies which satisfy the following condition.
Informational spanning condition: There exists a replicating portfolio for the risk
factor b. That is, there exist constant λ0 and vector λ = (λ1, . . . , λM−1)> such that

bn = λ0 + C(ωn)>λ. (28)

We provide several plausible economies that satisfy condition (28). First example is a
complete-market economy, where M = N , and hence, there always exist constant λ0 and
vector λ satisfying equation (28). Second example is an incomplete-market economy with
only one risky asset with payoff C1 = b/λ1, where λ1 is a constant. Lemma A.2 in the
Appendix shows that single risky asset economies in Grossman and Stiglitz (1980) and
Breon-Drish (2015) satisfy condition C1 = b/λ1. Third example is an economy with an
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asset paying C1 = b/λ1, and call options on C1 with payoffs C2 = max(C1 − K2, 0),. . . ,
CM−1 = max(C1 −KM−1, 0), in which case λ0 = 0, λ = (λ1, 0, . . . , 0)>. Fourth example is
an economy with a firm that has cash flow b and issues risky debt and equity with payoffs
min(b,K) and max(b −K, 0), where K is the face value of debt. It is easy to verify that
in this last example λ0 = 0 and λ = (1, 1)> because b = min(b,K) + max(b−K, 0).

We begin with the derivation of informed investor’s portfolio in Lemma 4 below.
Lemma 4 (Investor I’s optimal portfolio). i) The portfolio choice of the informed
investor is equivalent to the following mean-entropy optimization:

max
θI

θ>I (Ẽ[C]− perT )− κ̃(bε− γIθ>I C)
γI

, (29)

where expectation Ẽ[·] is under investor I’s benchmark probability measure π̃n = πn(0), and
κ̃(X) ≡ ln

(
Ẽ[eX ]

)
− Ẽ[X] is the entropy of random variable exp(X) under this measure.

ii) If Condition (28) is satisfied, then investor I’s demand is linear in ε, and given by

θ∗I (p; ε) = λε

γI
− θ̂∗I (p)

γI
, (30)

where vector λ is such that Condition (28) is satisfied, and θ̂∗I (p) is a function of p.
Lemma 4 shows that portfolio (30) is separable in shock ε and price p and linear in ε

when condition (28) is satisfied. We label the first and second terms of (30) as information-
sensitive and information-insensitive demands, respectively. Next, we provide intuition for
portfolio (30) and condition (28).

First, we discuss the portfolio choice. Lemma 4 shows that the portfolio choice is
equivalent to a risk-return tradeoff (29), which is similar to mean-variance optimization
except that risk is measured by entropy rather than variance. This similarity can be seen
from the expansion of entropy in terms of cumulants [see Campbell (2018, p. 100)]:

κ̃(X) = var[X]
2! + skewness[X]

3! + · · · .

If variable X is normally distributed, then κ̃(X) = 0.5 var[X], and hence the entropy term
in (29) becomes 0.5γI var[bε/γI − θ>I C], and we obtain the mean-variance objective. If
higher order cumulants are small, we obtain an approximate mean-variance objective.

The entropy term of the objective function (29) explicitly demonstrates that investor
I hedges uncertainty arising due to the variation of risk factor bε across states, because
this variation affects the probabilities of states πn(ε). We now show that the economic
role of condition (28) is to ensure perfect hedging of bε. To focus on pure hedging, we first
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consider a partial equilibrium portfolio choice with zero excess payoffs Ẽ[C] − perT = 0.
Then, optimization (29) reduces to the minimization of entropy κ̃(bε−γIθ>I C), and hence,
investor I replicates risk factor bε in the best possible way. Perfect hedging with zero
entropy is feasible if and only if condition (28) is satisfied, in which case the optimal
information-sensitive hedge is given by λε/γI. The latter portfolio perfectly tracks bε and
allows the investor to have more wealth in more likely states.

Next, we show how perfect hedging (equivalently, condition (28)) leads to the separa-
bility of shock ε and prices p in portfolio (30). If perfect hedging is feasible, the investor
hedges exposures bε by including a perfect hedge λε/γI in the total portfolio θ∗I . Residual
uncertainty then no longer depends on bε and the information-insensitive demand solves
the optimization problem for the case ε = 0. Consequently, the information-based trading
is localized in the hedging portfolio λε/γI.

The separability of portfolio θ∗I in shock ε and price p is not feasible without perfect
hedging because speculation and hedging decisions become intertwined. Consider, for
example, a single-asset economy where condition (28) is violated because b = C −C2, and
assume without loss of generality that Ẽ[C]− perT > 0 and ε > 0. Then, investing θI > 0
in the risky asset allows the investor to take advantage of the excess payoff Ẽ[C]− perT >
0. However, the optimal portfolio cannot balance two irreconcilable hedging objectives
of having 1) more wealth in more likely states and 2) less wealth in less likely states.
Specifically, portfolio θI > 0 allocates more wealth to more likely states with bε > 0 when
C is low, in line with the hedging incentive, but more wealth to less likely states with
bε < 0 when C is high and b takes negative values, contrary to the hedging incentive.

Finally, we comment on the role of distributions and preferences in the portfolio choice.
We observe that probabilities πn(ε) in (1) and preferences of investor I are conjugates
because both have an exponential form. Consequently, risk factor bε and portfolio payoffs
θ>I C are perfect substitutes such that one unit decrease of bnε can be offset by the increase
of portfolio payoff θ>I C(ωn) in the investor’s optimization. This substitutability gives rise
to the additivity of bε and portfolio payoff θ>I C in the optimization (29).

Equation (1) for real probabilities and condition (28) imply that the PDF of the payoff
vector C(ω) conditional on shock ε belongs to a multivariate exponential family distribu-
tion ϕC|ε(x) = H(ε) exp (A(x) +B(x)ε) [Casella and Berger (2002, p. 114)] with a linear
function B(x) = λ>x. Breon-Drish (2015) demonstrates that the latter exponential family
distribution with a linear function B(x) is necessary and sufficient for the separability
of portfolio θ∗I in the signal and prices in a single risky asset economy. The separability
of portfolio θ∗I in the multi-asset case can be demonstrated along the same lines as in
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Breon-Drish (2015), and without mean-entropy optimization (29). In Section IA2 of the
Internet Appendix, we show that the informational spanning condition (28), and hence
the linearity of function B(x), can be relaxed in a setting where noise trader demands are
replaced with random endowments, and show the robustness of our results in that setting.

Substituting portfolio (30) into the market clearing condition, similar to the complete-
market economy, we obtain hλε/γI +ν+ Ĥ(p) = 0, where Ĥ(p) ≡ (1−h)θ∗U(p)−hθ̂∗I (p)/γI
is the informational content of prices. Investor U finds the posterior probabilities follow-
ing the same steps as in the complete-market case. Given these probabilities, we derive
the portfolios of investors, and then the asset prices from the market clearing condition.
Proposition 3 reports the equilibrium.
Proposition 3 (Equilibrium with M ≤ N assets).

i) Let the informational spanning condition (28) be satisfied. Then, there exists unique price
vector P (ε, ν) that is a continuous, differentiable, and invertible on its range function of
sufficient statistic s = hλε/γI + ν. Price vector P (ε, ν) is the unique solution of equation

hf−1
I

(
erTP (ε, ν)

)
γI

+
(1− h)f−1

U

(
erTP (ε, ν)

)
γU

=
(
E +Q

)
s+ (1− h)µ0/(γUσ2

0)λ
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0
, (31)

where E is the identity matrix, Q is a matrix given by equation (19), E,Q ∈ R(M−1)×(M−1),
and functions fI, fU : RM−1 → RM−1 are invertible on their ranges and given by

fI(x) =
∑N
j=1C(ωj) exp {aj + C(ωj)>x}∑N

j=1 exp {aj + C(ωj)>x}
, (32)

fU(x) =
∑N
j=1C(ωj) exp {aj + 1

2
b2
j

h2λ>Σ−1
ν λ/γ2

I+1/σ2
0

+ C(ωj)>x}∑N
j=1 exp {aj + 1

2
b2
j

h2λ>Σ−1
ν λ/γ2

I+1/σ2
0

+ C(ωj)>x}
. (33)

ii) The informed and uninformed investors’ optimal portfolios are given by

θ∗I (p; ε) = λε

γI
−
f−1
I

(
erTp

)
γI

, (34)

θ∗U(p) =
(
E +Q

)−1
hQf−1

I

(
erTp

)
(1− h)γI

−
f−1
U

(
erTp

)
γU

+ µ0/(γUσ2
0)λ

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

 . (35)

Portfolios (34) and (35) have similar structure as the complete-market portfolios. Fur-
thermore, both in incomplete and complete markets prices are non-linear functions of the
sufficient statistic hλε/γI + ν. However, in incomplete markets, in general, the prices are
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not available in closed form and satisfy non-linear equations (31). Solving and analyz-
ing these equations, in general, is a challenging task when the number of unknowns is
large. The intractability of the incomplete-market equilibrium is in stark contrast with
our complete-market equilibrium where prices are available in closed form.

Another contribution of Proposition 3 is the proof of the existence of equilibrium. This
proof is complicated by market incompleteness and the multiplicity of risky assets. As a
result, proofs in the related models with a single risky asset [e.g., Pálvölgyi and Venter
(2014), Breon-Drish (2015)], which are based on the intermediate value theorem, do not
apply in our model. Our proof in the Appendix relies on well-known results of basic
calculus such as Weierstrass’s compactness theorem [e.g., Rudin (1976, Theorem 2.42)]
and an implicit function theorem [e.g., Rudin (1976, Theorem 9.28)]. Although the latter
theorem guarantees only local existence and uniqueness, using Weierstrass’s theorem and
the fact that functions fI(x) and fU(x) in (32) and (33) have globally invertible Jacobians,
we show that the solution can be extended globally.

Next, we introduce two measures of market incompleteness which we use in our analysis
below. Risk-neutral probabilities in incomplete markets (i.e., M < N), in general, are not
unique. In particular, consider the following two probability measures:

πRN,I
n = πn(ε) exp{−γIWI,T ,n}∑

N

j=1 πj(ε) exp{−γIWI,T ,j}
, πRN,U

n = πUn (p) exp{−γUWU,T ,n}∑
N

j=1 π
U
j (p) exp{−γUWU,T ,j}

. (36)

The first order conditions for investor optimizations (3) and (4) imply that p = e−rTERN,I[C]
and p = e−rTERN,U [C], respectively, where the expectations are under the measures (36).
Hence, probabilities (36) can be interpreted as risk-neutral probabilities.

The first measure of market incompleteness is the Kullback-Leibler (KL) divergence
(also called relative entropy) of the two risk-neutral measures (36), defined as

κU = ERN,U
[
ln
(πRN,U

πRN,I

)]
, (37)

and the second measure is the symmetric KL divergence, given by

κ̂ = ERN,U
[
ln
(πRN,U

πRN,I

)]
+ ERN,I

[
ln
( πRN,I

πRN,U

)]
. (38)

The KL divergences (37) and (38) are always non-negative, and take zero value if and
only if the probability measures (36) coincide [e.g., MacKay (2017)]. Lemma A.9 in the
Appendix shows that the probability measures (36) and divergences κU and κ̂ are functions
of the sufficient statistic s, and hence, are observed by both investors I and U . Lemma
A.9 also presents κU for the CARA-normal economy.
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We now relate the measures of market incompleteness to the probability-weighted ratio
of marginal utilities. In incomplete markets, this ratio varies across states, and hence,

πn(ε) exp{−γIWI,T ,n}
πUn (p) exp{−γUWU,T ,n}

= e`+`n , (39)

where ` and `n = `(ωn) are a state-independent and a state-dependent variables, respec-
tively. Using simple algebra, it can be shown that our measure of incompleteness (37)
equals the entropy of the random variable exp{`(ω)} under the measure πRN,U , given by
κU = ln

(
ERN,U

[
e`(ω)

])
− ERN,U [`(ω)]. Hence, ratio (39) does not depend on state ωn if and

only if κU = 0 (equivalently, κ̂ = 0). In the latter case, the market is effectively complete,
that is, the investors achieve Pareto-optimal allocations [e.g., Amershi (1985); Brennan
and Cao (1996)]. Lemma 5 below, derives κ̂ in terms of risk-neutral variances.
Lemma 5 (Measure of market incompleteness). The measure of market incom-
pleteness defined as the symmetric KL divergence (38) of the informed and uninformed
investors’ risk-neutral probabilities is equal to

κ̂ = varRN,U [b]− varRN,I[b]
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0
, (40)

where the variances are under the risk-neutral probabilities (36), respectively.
Lemma 5 has several implications. The first implication is that the asymmetry of

information is in itself an important source of market incompleteness. It is known that
without the asymmetry of information the market is effectively complete even when in-
vestors have different risk aversions and M < N [see Rubinstein (1974)]. Second, equation
(40) shows that the extent of the risk-sharing imperfection is characterized by the wedge
between the risk-neutral variances of the risk factor b under the risk-neutral measures of
investors U and I. Third, Lemma 5 implies that varRN,U [b] ≥ varRN,I[b] because κ̂ ≥ 0, and
hence, investor U faces higher uncertainty. Finally, Lemma 5 implies that the risk-neutral
measures (36) coincide if and only if varRN,U [b] = varRN,I[b] because then κ̂ = 0.

Lemma 5 sheds light on risk-sharing in the economy. First, we note that the informa-
tional spanning condition (28) and the risk-neutral measures (36) imply that ERN,U [b] =
ERN,I[b] ≡ p̃, and hence, investors U and I agree on the valuation of the replicating port-
folio for the risk factor b. Next, we observe that the risk-neutral variances varRN,U [b] and
varRN,I[b] in (40) can be interpreted as the informed and uninformed investors’ subjective
valuations of a non-tradable quadratic derivative with payoff (b− p̃)2, respectively. There-
fore, because varRN,U [b] ≥ varRN,I[b], as discussed above, there are potential gains from
trade if investor I could sell this derivative to investor U . Equation (40) then implies that
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market incompleteness arises due to the different subjective valuations of this derivative
and inability to trade it. The intuition is that buying the quadratic derivative at a price
lower than varRN,U [b] compensates investor U for the disutility of facing higher uncertainty
due to being uninformed. Consistent with this intuition, in Section 4.2 below, we show that
allowing investors to trade quadratic derivatives makes the market effectively complete and
it is the informed investor who sells the quadratic derivative to the uninformed.

4. Economic Applications

In this section, we provide several applications of our model to market microstructure, cor-
porate finance, and asset pricing. In Section 4.1 we study the informativeness of derivative
prices and introduce a new concept of informationally irrelevant securities. There we also
explore the informational content of corporate debt and equity. Then, in Section 4.2, we
study volatility derivatives and show that they make financial markets effectively com-
plete, quantify the value of information, and indicate by how much the informed investors
are better off than the uninformed ones. In Section 4.3 we derive new closed-form asset
prices in effectively complete markets. We also derive expansion for asset prices in terms
of higher order moments of asset payoffs and use it to study the effect of payoff skewness
on prices. In Section 4.4, we study the effect of financial innovation on market liquidity.

4.1. Information Revelation in Asset Markets

In this section, we study how the information about the aggregate shock revealed by the
prices depends on the type of traded assets. We start with the analysis of the informed
investor’s portfolio in equation (30). This equation implies that the informed investor’s
demand for asset m depends on shock ε if and only if λm 6= 0, where λm is the mth

component of vector λ. Otherwise, if λm = 0, the informed investor’s demand for asset m
does not contain any information about ε, and hence, asset m is informationally irrelevant.

The informational irrelevance of derivatives is a generic property of economies with one
underlying asset with payoff C1 = b/λ1 and derivative securities written on this asset. In
such economies, the informational spanning condition (28) is satisfied with the replicating
portfolio λ = (λ1, 0, . . . , 0)>. As demonstrated in Lemma A.2 in the Appendix, condi-
tion C1 = b/λ1 is satisfied in the single risky asset economies of Grossman and Stiglitz
(1980) and Breon-Drish (2015). Consequently, adding any non-redundant securities to
these economies does not reveal more information about ε (provided that noises ν are
uncorrelated across assets, as elaborated below).
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To illustrate informational irrelevance, we consider an economy with a risky asset with
payoff C1 = b/λ1. Then, we add M − 2 derivative securities written on that asset and
assume that all noises νm are i.i.d. In this economy, λ = (λ1, 0, . . . , 0)>. Prices then reveal
sufficient statistic λε/γI + ν = (λ1ε/γI + ν1, ν2, . . . , νM−1)>. However, because noises νm
are i.i.d., only the first element λ1ε/γI + ν1 of the sufficient statistic provides information
about ε. Hence, the number of assets does not affect the posterior distribution of ε and
posterior probabilities πUn (p). The derivative securities are thus informationally irrelevant.4

Informational irrelevance also implies that derivatives prices are not fully revealing when
noise traders do not trade in derivatives markets, that is, when νi = 0 for i ≥ 2.

As shown in Section 3, assets with λm 6= 0 are used by investor I for hedging the
aggregate risk factor bε. From equations (34) and (35) we observe that assets with λm = 0
are still held by investors for reasons unrelated to information, such as trading against noise
traders. Moreover, we note that portfolio λ does not depend on payoff distributions.5

The informativeness of prices also depends on the correlations of noises. Consider an
example with two risky assets and perfectly correlated noises ν1 = ν2. Taking the difference
of the market clearing conditions (13) for the two markets we find that (λ1−λ2)ε/γI+(ν1−
ν2) + (1,−1)>H(p) = 0. Shock ε can then be perfectly learned from prices if λ1 6= λ2 and
is given by ε = γI(−1, 1)>H(p)/(λ1 − λ2). The effects of the informed investor’s demand
and noise correlations on the learning from prices by investor U are captured by vector λ
and matrix Σν in equation (15) for investor U ’s posterior probabilities, respectively.

We now apply the results of this section to study the informational content of risky debt
and equity. Consider a firm with cash flow bn in state ωn. The real probabilities of states
πn(ε) and PDF ϕε(x) of shock ε are given by equations (1) and (2), respectively. Suppose,
investors trade the firm’s debt and equity with payoffs min(b,K) and max(b − K, 0),
respectively, where K > 0 is the face value of debt. The informational spanning condition

4The empirical literature on price discovery in financial markets finds that the prices and trading
volumes of derivative securities reveal information about the payoffs of the underlying asset [e.g., Easley,
O’Hara, and Srinivas (1998); Chakravarty, Gulen, and Mayhew (2004); Pan and Poteshman (2006)]. This
evidence is consistent with our model when the derivatives help replicate the economic factor b or noise
trader demands are correlated. The latter situation may arise when factor b represents the aggregate
output in the economy and ε is a market shock that makes states with high output less (more) likely
when ε < 0 (ε > 0). If, for example, informed investors know that ε < 0 they would hedge by investing
in assets and derivatives that have higher payoffs in bad times (e.g., put options, gold). The latter assets
are sensitive to information, and hence, would have λm 6= 0.

5Consider, for example, a firm with cash flows b and three tradable securities with payoffs C1 = b−g1(b),
C2 = g1(b)− g2(b), C3 = g2(b), where g1(b) and g2(b) are arbitrary continuous functions. The replicating
portfolio for cash flow b is given by λ = (1, 1, 1)>, because b = C1 + C2 + C3, and does not depend on
the distribution of cash flow b or functions g1(b) and g2(b). The latter result is similar to how replicating
portfolios for options in a binomial model do not depend on real probabilities of states of the economy.
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is satisfied for debt and equity with the replicating portfolio λ = (1, 1)> because b =
min(b,K) + max(b − K, 0). The prices of debt and equity can be obtained by solving
equation (31). Portfolio λ = (1, 1)> does not depend on K, and hence, the sufficient
statistic, the posterior distribution of ε, and the posterior probabilities of states also do
not depend on K. As a result, the face value of debt K is irrelevant for the amount of
information jointly revealed by the prices of debt and equity.

Our irrelevance result is not a mere consequence of the Modigliani–Miller theorem
because of a market imperfection in the form of informational asymmetry. This result
emerges because investor I buys the same number of units of debt and equity to replicate
the risk factor b, which is similar to buying directly a security with payoff b. Such portfolio
composition of investor I is difficult to anticipate without our theory because, in general,
the uninformed investor may want to purchase less informationally sensitive securities such
as debt min(b,K) when K is small. Then, the informed investor would hold more equity
than debt in equilibrium.

Similar to the Modigliani-Miller theorem, the economic value of the irrelevance condi-
tions is that they help identify plausible situations when the capital structure is relevant
for the informativeness of asset prices. For example, our analysis of debt and equity relies
on costless default on debt whereas in reality firms may face considerable bankruptcy costs
[e.g., Altman (1984); Andrade and Kaplan (1998)]. Hence, the irrelevance result breaks
down in the presence of costly defaults, as we show below.6

Consider a firm with cash flow bn in state ωn such that b1 < b2 < ... < bN . The firm
loses fraction χ of its value in the case of default so that the final payoffs of debt and equity
are given by min(b,K) − χb1{b<K} and max(b −K, 0), respectively. The cash flow b can
no longer be replicated by trading only debt and equity. In addition to debt and equity,
we allow the investors to trade Arrow-Debrew (AD) securities with payoffs 1{ω=ωn}, where
n ≤ N − 2. These securities help achieve protection in default states, and in this respect
are similar to credit default swaps. The firm cash flow can be replicated as follows:

b = χ
∑

n: bn<K
bn1{ω=ωn} + (min(b,K)− χb1{b<K})︸ ︷︷ ︸

debt with costly default

+ max(b−K, 0)︸ ︷︷ ︸
equity

,

6Another realistic example where the capital structure affects the informativeness of prices is an
economy with an interplay between investment decisions and security payoffs. Consider, for exam-
ple, an economy where raising capital K by issuing debt changes the probabilities of states so that
πn(ε) = exp{an + (bn + g(K)b2

n)ε}/
∑N

j=1 exp{aj + (bj + g(K)b2
j )ε}, where g(K) is an increasing function

of K. Thus, investing K increases the probability of high payoffs when ε > 0, and hence, the investment
decision reveals information about ε. Assuming that investors can trade a derivative with payoff b2, the
risk factor can be replicated as b+g(k)b2 = min(K, b)+max(b−K, 0)+g(K)b2. Therefore, the replicating
portfolio λ = (1, 1, g(K)) depends on K and the amount of information is affected by debt K, similar to
the example below. More detailed investigation of this interplay we reserve for future research.
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and hence, the replicating portfolio is given by λ = (χb1, . . . , χbn, 0, . . . , 0, 1, 1)>, where n
is the largest integer such that bn < K. We then evaluate the informativeness of prices
using the posterior variance of shock ε, which is reported in Lemma 6 below.
Lemma 6 (Posterior variance of shock ε). The posterior variance of ε is given by:

var[ε|s] = 1
h2λ>Σ−1

ν λ/γ2
I + 1/Σ2

0
+ varU [b]

(h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0)2 . (41)

From equation (41), we see that defaults affect the informativeness of prices because
the replicating portfolio λ depends on both the cost of default χ and the face value of debt
K. To simplify the exposition, we assume that Σν = σ2

νE, where E is an identity matrix.
We further assume that σ2

0 is small and/or bn has low variability, so that the second term
in (41) is small. Then, keeping only the first term in (41) for tractability, we find that

var[ε|s] ≈ 1
h2(2 + χ2∑

bn<K b
2
n)/(γ2

I σ
2
ν) + 1/σ2

0
. (42)

Equation (42) reveals that the posterior variance of shock ε is a decreasing function of
the face value of debt K and the cost of default χ. The intuition is that default becomes
more likely as the face value of debt K increases, and hence, more AD securities are
needed for hedging and more information is revealed through their prices. The latter
result is consistent with the empirical evidence showing that credit default swaps reveal
information about cash flow distributions of underlying firms [e.g., Blanco, Brennan, and
Marsh (2005); Longstaff, Mithal, and Neis (2005)].

4.2. Effective Completeness and Volatility Derivatives

We now apply our model to study the economic role of volatility derivatives. These
derivatives are widely traded in financial markets, and hence, adding them to our analysis
makes it more realistic. We show that introducing volatility derivatives to incomplete
markets makes these markets effectively complete and, moreover, their prices quantify
the value of information to uninformed investors. As discussed in Section 3.3, effective
completeness requires that the measure of market incompleteness (37) is zero, κU = 0.
Proposition 4 below provides necessary and sufficient conditions for effective completeness.
Proposition 4 (Conditions for effective completeness).

i) Suppose, the market is incomplete, that is, M < N , and the informational spanning
condition (28) is satisfied. Then, the market is effectively complete if and only if there
exists a replicating portfolio for squared risk factor b2

n. That is, there exist constant λ̃0 and
vector λ̃ ∈ RM−1 such that b2

n = λ̃0 + C(ωn)>λ̃, for all n = 1, . . . , N .
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ii) If the quadratic derivative with payoffs b2
n is tradable, then the informed investor holds

a short position and the uninformed investor holds a long position in this derivative
iii) If the market is effectively complete, the prices of risky assets are given by equation
(16), as in a complete market, with the only difference that vectors λ, ν, and matrices Ω, E
and Q are of lower dimensions: λ, ν ∈ RM−1, Ω ∈ R(N−1)×(M−1), and E, Q ∈ R(M−1)×(M−1).
Moreover, the CAPMs in Corollaries 1 and 2 also hold in the effectively complete markets.

Proposition 4 confirms the risk sharing analysis in Section 3.3. As discussed in Sec-
tion 3.3, the measure of market incompleteness (40) implies that investors U and I have
different subjective valuations of assets with quadratic payoffs b2 in incomplete markets.
Moreover, investor U has higher valuation of this derivative than investor I in the incom-
plete market. Consequently, allowing informed investors to sell securities with such payoffs
to uninformed investors generates gains from trade. Proposition 4.ii verifies that investor
I sells a quadratic derivative to investor U .

We demonstrate the implications of Proposition 4 in a simple economy with one asset
that has payoff C1 = b/λ1. The proposition implies that the market can be effectively
completed by introducing a derivative security with a quadratic payoff such as C2

1 or
(C1−ERN[C1])2. The last security is similar to a simple variance swap (SVIX) introduced
in Martin (2013). The prices of this security and the underlying asset are then given in
closed form by varRN[C1]e−rT and ERN[C1]e−rT , respectively. Therefore, we interpret assets
with quadratic payoffs as volatility derivatives.

Next, we explain the importance of volatility derivatives for achieving effective com-
pleteness. Taking logs on both sides of equation (39) for the marginal rates of substitu-
tion, after simple algebra, we find that the market is effectively complete [i.e., `n = 0 in
equation (39)] if and only if γUWU,T ,n − γIWI,T ,n − ` = ln (πUn (p)/πn(ε)). The expression
γUWU,T ,n−γIWI,T ,n− ` can be interpreted as the payoff of a portfolio that invests in bonds
and γUθ∗U −γIθ∗I units of the risky assets. Hence, effective completeness is feasible if only if
the log-ratio of probabilities ln (πUn (p)/πn(ε)) can be replicated by a portfolio of tradable
assets [see Lemma A.8 in the Appendix]. Moreover, the log-probability ln(πUn (p)) is a
quadratic function of bn [see equations (15) and (A.29)], and hence, Pareto allocations of
wealth are quadratic functions of bn. Therefore, the existence of a replicating portfolio for
b2
n is essential for Pareto optimality.

Previous literature has noted that introducing contracts and securities with quadratic
payoffs can lead to Pareto-optimality in CARA-normal models of syndicates with belief
heterogeneity [e.g., Wilson (1968)] and REE models of asset markets [e.g., Brennan and
Cao (1996)]. However, CARA-normal models have very restrictive structure of asset pay-
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offs, and there is no indication or anticipation in this literature that the latter property of
quadratic derivatives might hold in more general models. Moreover, quadratic derivatives
do not play any methodological role in CARA-normal models because the asset prices in
these models are available in closed form and do not depend on whether the quadratic
derivatives are traded or not [see Lemma 7 below]. Our methodological contribution is to
show that quadratic derivatives significantly enhance the tractability of models where the
normality of asset payoffs is relaxed. Introducing these derivatives gives rise to analytical
asset prices [studied in Section 4.3 below]. We observe that incomplete market prices, in
general, solve nonlinear equations (31) in terms of inverse functions, and are difficult to
compute in multi-asset settings even by numerical methods. We also contribute to the
literature by uncover a simple yet general approach for completing markets by introducing
a security that replicates the log-ratio of investors’ probabilities. This approach works not
only for our REE model but also for models where investors have heterogeneous beliefs.

Finally, we study the implications of volatility derivatives for the valuation of infor-
mation. Conditional on observing the sufficient statistic s, we define the shadow value of
information as the amount of wealth Ŵ that the uninformed investor is willing to give up
to become informed. Although we primarily focus on the complete-market economy, we
derive Ŵ in a more general incomplete market economy. Proposition 5 reports our result.
Proposition 5 (Shadow value of information). The amount of wealth that the unin-
formed investor is willing to give up to become informed is given by

Ŵ = 1
2γU

varRN,U [b]
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− κU

γU
, (43)

where κU ≥ 0 is the measure of market incompleteness given by (37), and the variance is
computed under the risk-neutral measure of investor U in (36).

Proposition 5 sheds further light on the economic role of volatility derivatives. When
the volatility derivatives are traded, and hence, the market is effectively complete, the
measure of market incompleteness is zero, κU = 0. Moreover, in the effectively complete
market the variance in equation (43) is computed under the unique risk-neutral measure
(17), which coincides with the incomplete-market measures (36). In particular, consider
an effectively complete market with two securities with payoffs C1 and (C1 − ERN[C1])2.
Then, the price of the second asset quantifies the value of information and by how much
investor I is better off than investor U . The latter result also complements the widespread
use of the volatility index VIX as the “fear gauge” in financial markets, which increases
during times of uncertainty when information is more valuable.

Proposition 5 also sheds light on the value of information in the incomplete market. In
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such markets, the volatility index is not traded, and hence, the value of information cannot
be inferred from the prices of tradable securities. However, this value still features the risk-
neutral variance of risk factor b computed under the risk-neutral measure of investor U .
Moreover, equation (43) shows that the value of information is reduced by the measure of
market incompleteness κU because market incompleteness constrains the use of information
to fewer assets, which makes the information less valuable.

4.3. Closed Form Asset Prices and Higher Order Moments

In this section, for a broad class of payoff distributions, we derive new analytic expres-
sions for asset prices in effectively complete markets and study the effects of higher order
moments on asset prices. Because volatility derivatives are actively traded in financial mar-
kets, our method based on effectively complete markets provides an economically realistic
and tractable tool for studying asset pricing with asymmetric information.

Our benchmark is the economy with one risky asset with payoff C1 that has a continuous
unconditional PDF ϕC(x). The informed investor observes signal ε = C1 + u, where
u ∼ N (µ0, σ

2
0). The uninformed investor learns about ε from prices, and noise traders

submit exogenous demand ν1. This economy is a special limiting case of our economy in
Section 2 with distribution parameters an and bn given by equations (7) when N →∞, as
noted in Remark 1 and demonstrated in Lemma A.2 in the Appendix. From equations (7)
we observe that the informational spanning condition is satisfied because bn = C1(ωn)/σ2

0.
Following Section 4.2, we make the economy effectively complete by adding a volatility

derivative with payoff C2
1 . To facilitate the comparison of the economies with and without

the volatility derivative, we assume that the noise traders do not trade in the derivative.
As a result, the prices in the incomplete and effectively complete markets depend on the
same scalar sufficient statistic s = hε/(γIσ2

0) + ν1. The equilibrium is not fully revealing
because the derivative is informationally irrelevant7 (as defined in Section 4.1), that is,
b = C1/σ

2
0 + 0 · C2

1 . Proposition 6 below reports asset prices in the two economies.
Proposition 6 (Equilibrium prices). The prices of the asset with payoff C1 that has
PDF ϕC(x) in the effectively complete and incomplete markets are given by

Pcom(s) = PC
(
γIσ

2
0s/h− µ0, σcom

)
e−rT , Pinc(s) = PC

(
γIσ

2
0 ŝ(s)/h− µ0, σ0

)
e−rT , (44)

7The volatility derivative is made informationally irrelevant only to facilitate the comparison between
complete and incomplete markets in this application. However, in general, the volatility derivative does
not need to be informationally irrelevant as, for example, when b = C1/σ

2
0 + C2

1 .
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respectively, where the pricing function PC(µ, σ) is given by equation

PC (µ, σ) =
E
[
C1 exp

(
− (C1−µ)2

2σ2

)]
E
[
exp

(
− (C1−µ)2

2σ2

)] , (45)

E[·] is the expectation with respect to PDF ϕC(x), s = hε/(γIσ2
0) + ν1, ŝ(s) in the equation

for Pinc(s) is an increasing implicit function of s satisfying equation

PC
(
γIσ

2
0 ŝ(s)/h− µ0, σ0

)
= PC

(
γIσ

2
0s/h− µ0 + γUσ

2
inc(s− ŝ(s))/(1− h), σinc

)
, (46)

and the volatility parameters σcom and σinc are given by:

σcom = σ0√
1− (1− h)/γU

h/γI + (1− h)/γU
1

1 + h2/ (γ2
I σ

2
νσ

2
0)

, σinc = σ0√
1− 1

1 + h2/ (γ2
I σ

2
νσ

2
0)

. (47)

Moreover, both prices Pcom(s) and Pinc(s) are increasing functions of s.
Equations (44) show that the price of an asset with payoff C1 admits similar represen-

tations in terms of pricing function (45) both in the effectively complete and incomplete
markets. Price Pcom(s) is given in closed form in the sense that finding this price does not
require solving any equations and it is in terms of only exogenous parameters specified
in Section 2. Price Pinc(s) in the incomplete market is less tractable because it is given
in terms of an implicit function ŝ(s), which solves non-linear equation (46). The latter
equation is a consistency condition, which makes informed and uninformed investors agree
on the incomplete-market price, as shown in the proof of Proposition 6 in the Appendix.

To further highlight the role of quadratic derivatives in achieving tractability, we derive
the equilibrium prices in a CARA-normal economy. Lemma 7 reports our results.
Lemma 7. In the case of normally distributed asset payoff C1 ∼ N (µC, σ2

C) the price of
this asset is the same in incomplete and complete markets, is linear in s, and is given by:

P (s) = σ2
comσ

2
C

σ2
C + σ2

com

(
γIσ

2
0s/h− µ0

σ2
com

+ µC
σ2
C

)
e−rT , (48)

where volatility σ2
com is given in the first equation in (47).

Lemma 7 shows that adding a quadratic derivative to an incomplete-market CARA-
normal economy does not affect the price of the underlying asset. The latter result is
in contrast to Proposition 6, which shows that, for more general distributions, complete-
market prices are available in closed-form whereas incomplete-market prices are not.

As the first application of Proposition 6, we derive an expansion of the price Pcom(s)
in terms of higher order moments of the cash flow C1. Proposition 7 reports the result.
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Proposition 7 (Expansion in terms of moments). Let mn = E
[(

C1−µC
σC

)n]
be the

standardized moments under the PDF ϕC(x). The pricing function (45) is then given by

PC(µ, σ) = µC + σC

∞∑
n=0

Hn

(µ− µC
σC

)(σC
σ

)nmn+1

n!
∞∑
n=0

Hn

(µ− µC
σC

)(σC
σ

)nmn

n!

, (49)

where Hn(x) are Hermite polynomials satisfying a recursive equation Hn+1(x) = xHn(x)−
nHn−1(x) with the initial conditions H1(x) = x and H0(x) = 1.
Equation (49) provides an explicit link between the asset price and the higher-order mo-
ments. We now evaluate the impact of payoff skewness on the asset risk premia by lin-
earizing equation (49) assuming that volatility σC is small. We derive the unconditional
risk premium EU [C1]− Pcom(s)erT , averaged over different values of s, which captures the
effects of skewness that do not depend on particular realizations of s. To focus on the
effects of the asymmetry of information, we assume that the informed and uninformed
investors have the same risk aversion γ. Corollary 3 reports our result.
Corollary 3. Suppose, γI = γU = γ and σ2

C is small. Then, the unconditional risk
premium of the risky asset, averaged over the realizations of s, is given by:

EU [C1]− Pcom(s)erT ≈ −m3σ
3
C

2
(
γ2σ2

ν + h(1− h)
σ2

0 + h2/(γ2σ2
ν)
)
, (50)

where m3 is the skewness of cash flow C1 under the prior cash flow distribution ϕC(x).
Equation (50) reveals that the risk premium is a decreasing function of skewness and that
assets with negative (positive) skewness on average have a positive (negative) risk premium.
The two components in brackets on the right-hand side of the equation decompose the
skewness effect into two terms, the effect of the random asset supply and the effect of
asymmetric information, respectively. The first term implies that the relationship between
the risk premium and skewness holds due to noisy asset supply even without the asymmetry
of information. However, the second term demonstrates that the asymmetry of information
amplifies the sensitivity of the risk premium to skewness.

The relationship between the risk premium and skewness arises because positive skew-
ness makes low payoffs less likely, and hence, makes holding the security less risky and
decreases the risk premium. Similarly, negative skewness increases the risk premium. The
latter effect is amplified by learning from prices. For example, in the case of positive
skewness, the uninformed investors would attribute a large negative sufficient statistic s
to noises ν1 and u rather than to low cash flow C1, and hence, would require lower risk
premium than in the absence of learning.
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Albagli, Hellwig, and Tsyvinski (2013) find similar results in a model with risk-neutral
investors, position limits, and heterogeneously informed investors. They also discuss large
empirical literature documenting a negative relation between the risk premium and skew-
ness. Breon-Drish (2015) considers a single-asset binomial model with more general distri-
butions for ε and supply shocks and derives conditions under which uninformed demand
curves bend backwards, in which case asset prices react more strongly than in a setting
in which all traders are informed. Our Corollary 3 complements the latter results by
showing that the relationship between the risk premium and skewness also holds in a no-
arbitrage setting with risk averse and asymmetrically informed investors and for general
payoff distributions.

Next, as a second application of Proposition 6, we provide analytic pricing functions
(45) for the following payoff distributions:

ϕC(x) =
L∑
l=1

wl
1√

2πσ̂C,l
exp

(
−(x− µ̂C,l)2

2σ̂2
C,l

)
, x ∈ R, (Mixture of Normals), (51)

ϕC(x) = 1
Λx

k−1 exp
(
− x2

2σ̂2
C

− δx
)
, x ≥ 0, (Generalized Gamma), (52)

ϕC(x) = 2√
2πσ̂C

exp
(
−(x− µ̂C)2

2σ̂2
C

)
Φ
(
α
x− µ̂C
σ̂C

)
, x ∈ R, (Skew-normal), (53)

respectively, where w1 + . . . + wL = 1, wl ≥ 0, Λ is a normalizing constant, σ̂C,l > 0 and
σ̂C > 0 are scale parameters, µ̂C,l, δ and µ̂C are shift parameters, and k ≥ 1 is an integer
power, α is a skewness parameter, and Φ(x) is the standard normal cumulative distribution
function (CDF). We note that: mixture of normals (51) is widely employed for non-
parametric estimation of general PDFs [Greene (2008, p. 416)]; generalized gamma (52)
has positive support and incorporates exponential (k = 1, σ̂C → ∞), gamma (σ̂C → ∞),
Rayleigh (k = 2), and truncated normal (k = 1) distributions; and the skew-normal
distribution (53) extends the normal distribution to allow for skewness [Azzalini (1985)].
Proposition 8 reports pricing functions (45) for distributions (51)–(53).
Proposition 8 (Pricing functions in analytic form).
i) When ϕC(x) is a mixture of normals (51), the pricing function PC(µ, σ) is given by:

PC(µ, σ) =

L∑
l=1

wl
µσ̂2

C,l + µ̂C,lσ
2(

σ̂2
C,l + σ2

)3/2 exp
(
−1

2
(µ− µ̂C,l)2

σ̂2
C,l + σ2

)
L∑
l=1

wl
1√

σ̂2
C,l + σ2

exp
(
−1

2
(µ− µ̂C,l)2

σ̂2
C,l + σ2

) . (54)
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ii) When ϕC(x) is a generalized gamma PDF (52) with an integer power k the pricing
function PC(µ, σ; k) is given in terms of PC(µ, σ; k− 1) by the following recursive formula:

PC(µ, σ; k) =



σ̂2
Cσ

2

σ̂2
C + σ2

(
µ

σ2 − δ + k − 1
PC(µ, σ; k − 1)

)
, if k > 1,

σ̂2
Cσ

2

σ̂2
C + σ2

(
µ

σ2 − δ
)

+ σ̂Cσ√
σ̂2
C + σ2

Φ̂
 σ̂Cσ√

σ̂2
C + σ2

(
µ

σ2 − δ
) , if k = 1,

(55)

where Φ̂(x) = exp(−0.5x2)/
(√

2πΦ(x)
)
, and Φ(x) is the standard normal CDF.

iii) When ϕC(x) is a skew-normal PDF (53) the pricing function PC(µ, σ) is given by:

PC(µ, σ) = µσ̂2
C + µ̂Cσ

2

σ̂2
C + σ2 + σ̂2

Cσ
2

σ̂2
C + σ2

sgn (α)√
σ̂2
C

α2 + σ̂2
Cσ

2

σ̂2
C + σ2

Φ̂

 σ̂2
C

σ̂2
C + σ2

sgn (α)(µ− µ̂C)√
σ̂2
C

α2 + σ̂2
Cσ

2

σ̂2
C + σ2

 , (56)

where Φ̂(x) = exp(−0.5x2)/
(√

2πΦ(x)
)
, Φ(x) is the standard normal CDF, and sgn(x) =

x/|x| when x 6= 0 and sgn(0) = 0.
The pricing function (54) for the mixture of normals is derived in terms of elementary

functions, and pricing functions (55) and (56) for the generalized gamma and the skew-
normal distribution are in terms of the inverse Mills ratio Φ̂(x) = exp(−0.5x2)/

(√
2πΦ(x)

)
,

widely employed in statistics. The pricing functions (54)–(56) then give rise to analytic
complete-market price Pcom(s) in (44) of the asset with payoff C1, which is in terms of basic
and widely used functions. Pricing functions also facilitate the computation of incomplete-
market price Pinc(s) in (44), which involves solving non-linear equation (46) numerically.

Panels (a), (b), and (c) of Figure 1 plot complete-market prices Pcom(s) when asset
payoff C is drawn from distributions (51)–(53), respectively. Panels (a) and (b) show that
non-normality of payoff C1 makes asset prices non-linear functions of the sufficient statistic
s = hε/(γIσ2

0) + ν1. In particular, panel (a.i) demonstrates that even a small change in
s can lead to large price changes [see also Breon-Drish (2010)]. Therefore, more general
distributions give rise to effects that are not captured by CARA-normal models, where
prices are linear functions of s.

Panel (c) of Figure 1 plots price Pcom(s) for the standard normal distribution with
zero skewness and the skew-normal distribution for which the distribution parameters are
chosen in such a way that payoff C1 has mean µC = 0 and variance σ2

C = 1, as for the
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Figure 1: Asset prices in effectively complete markets.
Panels (a), (b), and (c) show the effectively complete market price Pcom(s) when payoff PDF ϕC(x)
is a mixture of normals (51), a generalized gamma (52), and a skew-normal (53), respectively.
Panel (c) shows price Pcom(s) for the case of zero skewness (solid blue line) and positive skewness
0.75 (dashed red line). For panel (a) σ̂C,1 = σ̂C,2 = 1, µ̂C,1 = −µ̂C,2 = 3, w1 = w2 = 0.5; for panel
(b) σ̂C = 1, δ = 2, k = 3; for panel (c) µC = 0, σ2

C = 1. The remaining parameters are: µ0 = 0,
σ0 = 1, σν = 1, h = 0.5, γI = γU = 1, r = 0, T = 1.

standard normal, but has skewness of 0.75.8 Equation (56) decomposes the pricing function
PC(µ, σ) for the skew-normal distribution (53) into two terms, where the first term is the

8The mean, variance, and skewness of a skew-normal random variable are given by µC = µ̂C+σ̂C

√
2/πα̂,

σ2
C = σ̂2

C

(
1− 2α̂2/π

)
, skew = 0.5(4−π)

(
α̂
√

2/π
)3
/
(
1− α̂22/π

)3/2
, respectively, where α̂ = α/

√
1 + α2

[e.g., Azzalini (1985)]. We calibrate the parameters so that µC = 0, σC = 1, and skew = 0.75.
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pricing function for a normally distributed payoff and the second term isolates the effect
of skewness and shows that skewness is priced. The comparison of prices on panel (c)
shows that skewness introduces non-linearity and convexity in asset prices and gives rise
to higher prices than in the case of normally distributed payoffs when |s| is large. These
higher prices are in line with lower risk premia implied by equation (50).

4.4. Liquidity and Financial Innovation

In this Section, we study the effects of asymmetric information and financial innovation on
market liquidity. We first define market illiquidity as the price impact of the noisy supply
given by a Jacobian matrix [∂P/∂ν] with elements ∂Pm/∂νl, similar to the literature [e.g.,
Vayanos and Wang (2012), Cespa and Foucault (2014)]. We derive the price impacts in
the effectively complete and incomplete markets in Proposition 9.
Proposition 9 (Price impacts). The price impact matrices of the noise traders in the
effectively complete and incomplete markets are given by:[

∂Pcom
∂ν

]
= e−rT varRN[C](E +Q)

h/γI + (1− h)/γU
, (57)

[
∂Pinc
∂ν

]
= e−rT

(
h

γI
varRN,I[C]−1 + (1− h)

γU
varRN,U [C]−1

)−1

(E +Q), (58)

where matrix Q is given by equation (19).
Equation (57) demonstrates that the price impact of noise traders is proportional to the

risk-neutral variance-covariance matrix varRN[C] when the market is effectively complete.
For example, in a simple market with only two tradable assets C1 and C2

1 and no noise
traders in the market for the quadratic derivative the first asset’s illiquidity is proportional
to varRN[C1]. For this asset, we define its liquidity as the reciprocal of illiquidity, given
by 1/ varRN[C1]. The novelty of our analysis is that it links liquidity directly to the risk-
neutral rather than physical variance as in the related literature [e.g., Vayanos and Wang
(2012)]. The inverse relationship between liquidity and risk-neutral volatility is in line with
empirical findings. In particular, Chung and Chuwonganant (2014) show that liquidity is
negatively related to VIX, and Nagel (2012) shows that the returns of liquidity provision
are high when VIX is high, which may lead to evaporation of liquidity.

The price impact of noise traders can be decomposed into substitution and learning
effects, which correspond to terms varRN[C] and varRN[C]Q in equation (57), respectively.
The first term shows that a demand shock νl to asset l affects prices of all assets correlated
with asset l. This is because the change in the price of asset l leads to portfolio rebalancing
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Figure 2: Price impact of noise traders when C1 drawn from a mixture of normals.
The Figure shows the noise traders’ price impacts in the effectively complete and incomplete
markets, ∂Pcom/∂ν and ∂Pinc/∂ν, as functions of the sufficient statistic s when cash flow C1 PDF
is a mixture of normals (51) with parameters σ̂C,1 = σ̂C,2 = 1, µ̂C,1 = −µ̂C,2 = 3, w1 = w2 = 0.5.
The remaining parameters are: µ0 = 0, σ0 = 1, σν = 1, h = 0.5, γI = γU = 1, r = 0, T = 1.

across all assets. For example, if shock νl is positive, the price of asset l increases, and
hence, investors partially substitute asset l with asset m positively correlated with asset l.
This substitution then increases the price of asset m.

The second term, varRN[C]Q, arises due to the difficulty of disentangling the effects of
noise ν and shock ε. If noisy demand νl increases the prices of some assets, such increases
may be partially attributed to a positive shock ε. Hence, noisy demand νl affects the
posterior distribution of ε, and through this distribution affects the prices of assets other
than l. Thus, learning from prices generates contagions by spreading demand shocks across
assets. The latter effect of learning is similar to the mechanism in Cespa and Foucault
(2014) where investors learn information about an asset from the information about other
assets, which may lead to liquidity crashes. Finally, we observe that matrix Q given by
equation (19) has a hump-shaped coefficient proportional to h(1 − h). Consequently, the
learning effect vanishes when investors have the same information (i.e., h = 0 or h = 1).

Next, we compute the price impacts in the economy of Section 4.3 where investors
trade a single risky asset with cash flows C1 and the informed investor receives a signal
ε = C1 + u, u ∼ N(µ0, σ

2
0). Investors can also complete the market by introducing a

security with quadratic payoff C2
1 . Figure 2 shows the price impacts of noise traders in

the effectively complete and incomplete markets when the cash flow C1 is drawn from a
mixture of normal distributions (51). We observe that the effect of introducing a quadratic
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derivative has an ambiguous effect on liquidity, which goes up or down depending on the
sufficient statistic s. We attribute this ambiguity to two forces pushing liquidity in different
direction. On one hand, as discussed in Section 4.2, introducing a quadratic derivative
compensates the uninformed investor for the uncertainty in the market, and hence allows
this investor to trade more in the risky asset. On the other hand, part of the trading volume
shifts from the underlying to the quadratic derivative, which reduces trading and liquidity
in the underlying asset. Finally, we observe that in a CARA-normal economy financial
innovation does not affect the liquidity of the underlying asset because, as shown in Lemma
7, completing the CARA-normal economy does not affect the price of the underlying asset.

5. Extensions and Robustness

Noisy signals of shock ε. Our baseline model in Section 2.1 assumes that the informed
investors observe the realization of economic shock ε. In reality, the informed investors
may only observe a noisy signal about ε. We here extend our model to economies where
the informed investor observes a signal given by ε̂ = ε + z, where z ∼ N (0, σ2

z). Lemma
A.11 in the Appendix shows that the latter economy is equivalent to our baseline economy
where the probabilities of states and the distribution of shock are given by

πn(ε̂) = eân+b̂nε̂∑
N

j=1 e
âj+b̂j ε̂

, ϕε̂(x) =

(∑
N

j=1 e
âj+b̂jx

)
e−0.5(x−µ0)2/(σ2

0+σ2
z)∫∞

−∞

(∑
N

j=1 e
âj+b̂jx

)
e−0.5(x−µ0)2/(σ2

0+σ2
z)dx

, (59)

where ân = an + 0.5(bn +µ0/σ
2
0)2/(1/σ2

z + 1/σ2
0) and b̂n = bn/(1 +σ2

z/σ
2
0). We observe that

probabilities and the shock distribution in (59) have the same structure as in the baseline
analysis. Moreover, the economic factor b̂ is proportional to b. Therefore, all our results
remain valid in this extended model.
Complete markets with general distributions. In Section IA2 of the Internet Ap-
pendix, we extend our no-arbitrage complete-market methodology to an economy with
general probabilities of states πn(ε), distribution ϕε(x) of the aggregate shock, and dis-
tribution ϕν(x) of noise trader demands. We obtain closed-form solutions in the general
case. We also consider a special case where noise trader demand is drawn from a mixture
of normal distributions (51). Using analytical expressions, we show that in the latter econ-
omy the asset price is a non-monotone function of the sufficient statistic and also identify
a security which makes an incomplete market effectively complete.
Noisy endowments and financial innovation. In Section IA2 of the Internet Ap-
pendix, we extend our analysis to economies in which noise traders are replaced with
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noisy endowments at the final date. These endowments prevent prices from fully revealing
the shock ε that determines state probabilities πn(ε). The main advantage of this new set-
ting is that it allows us to analyze the welfare effects of a financial innovation. Moreover,
this setting also allows us to relax the informational spanning condition (28).

We assume that the state probabilities πn(ε) are given by equation (1) and that there
are no noise traders in the economy. The informed investor receives state-dependent noisy
income at date T , which is generated by claims to non-tradable assets, and is given by

eI,n = W̃0,I(α + βbn + η), (60)

where α is a constant, β ∼ N (0, σ2
β), η ∼ N (0, σ2

η), where variables β and η are uncorre-
lated with each other and with shock ε. The structure of endowments (60) is motivated
by the CAPM and captures the endowment’s exposure to the aggregate risk factor b. The
exposure coefficient β (analogous to CAPM beta) is known to the informed investors but
not to the uninformed investors. The endowment may represent a net asset or liability.
Therefore, β can have either sign, and we model it as a normally distributed variable.

First, we show that a quadratic security with payoff b2 effectively completes the market
and the asset prices, derived in Proposition IA2.1 of the Internet Appendix, are analogous
to those in our main analysis. Hence, our results on the effect of asymmetric information
and the role of quadratic derivatives are robust to introducing noisy endowments. Second,
in Proposition IA2.2 we derive equilibrium in an incomplete market and replace the infor-
mational spanning condition with a weaker condition C = g(b), where g(x) is a monotone
function. We also compute investors’ welfare and study the welfare effects of financial
innovation that effectively completes the market.
Information aggregation with multiple types of investors. In Section IA3 of the
Internet Appendix, we study an economy with K types of investors that have different
risk aversions and each type receives a signal ei = ε+ xi, where xi ∼ N (0, 1/τi), and τi is
the signal precision. The investors maximize their expected CARA utility conditional on
observing asset prices p and the private signal ei.

We conjecture and verify that investors’ optimal portfolios are separable in prices p
and signals ei, and can be decomposed as θ∗i (p; ei) = θ1,i(p) + λκiei. We show that asset
prices in this setting are functions of the sufficient statistic given by ŝ = λ

∑k
i=1 kiei + λ,

where constants ki solve a system of non-linear equation. We show that this system of
equations has at least one solution, and exactly one solution in the symmetric equilibrium
where investors’ risk aversions γi and signal precisions τi are exactly the same.

Similar to our baseline setting, we show that the quadratic derivative makes the finan-
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cial market effectively complete. Moreover, asset prices in the latter market are available
in closed form and have similar structure to asset prices in our baseline setting. When
the market is incomplete, asset prices can be characterized in terms of inverse functions,
similar to Proposition 3 in our baseline analysis.
Multidimensional shock ε. In Section IA4 of the Internet Appendix, we generalize our
model to incorporate multidimensional shocks ε ∈ RK. We consider an economy where
the probabilities of states πn(ε) and the prior PDF of shock ε are given by

πn(ε) = ean+b>n ε∑
N

j=1 e
aj+b>j ε

, n = 1, . . . , N,

ϕε(x) =

(∑
N

j=1 e
aj+b>j x

)
e−0.5(x−µ0)>Σ−1

0 (x−µ0)∫
RK
(∑

N

j=1 e
aj+b>j x

)
e−0.5(x−µ0)>Σ−1

0 (x−µ0)dx
,

where ε, bn, µ0 ∈ RK, and Σ0 ∈ RK×K is a positive-definite matrix. When the market is
complete, we show that the risk-neutral probabilities, asset prices, and investor portfolios
have the same structure as in our baseline analysis in Section 3, with the main difference
that the replicating portfolio λ is replaced by a matrix Λ.

Similar to the baseline setting, we impose the informational spanning condition when
the market is incomplete. This condition guarantees the existence of K tradable portfolios
that replicate the aggregate risk factor b, and is given by

b>n = Λ0 + C(ωn)>Λ, (61)

where Λ0 ∈ RK and Λ ∈ R(M−1)×K.
We show that despite the multidimensionality of shock ε only one security is needed to

effectively complete the market. The payoffs of this security are quadratic forms of the risk
factor realizations bn ∈ RK and are given by b>n (h2Λ>Σ−1

ν Λ/γ2
I + Σ−1

0 )−1bn, where Λ is the
matrix of replicating portfolios such that condition (61) is satisfied. In the economy with
a scalar shock (K = 1) the latter payoff reduces to a quadratic derivative b2

n/(h2λ>Σ−1
ν λ+

1/σ2
0), as in Section 4.2.

6. Conclusion

We develop a tractable REE model with multiple risky assets with realistic payoff struc-
tures. Our model provides a tractable setting for studying the effects of information
aggregation on asset prices where prices and portfolios are available in closed form. We
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derive a three-factor CAPM with asymmetric information, which provides a bridge between
standard risk-based models of asset pricing and models with asymmetric information.

Our results yield necessary and sufficient conditions under which the informed de-
mands for derivative securities reveal information about the underlying asset. Absent any
additional frictions other than the asymmetry of information, these conditions imply the
irrelevance of the face value of debt for the total amount of information revealed by the
debt and equity of a firm. The conditions for the irrelevance of the capital structure also
help identify situations in which the capital structure is not informationally redundant. In
particular, we show that the irrelevance of capital structure breaks down in the presence
of bankruptcy costs. Our analysis also uncovers an important role of volatility derivatives.
These derivatives make incomplete markets effectively complete, and their prices quantify
market illiquidity and the shadow value of information for uninformed investors.
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Appendix: Proofs

Lemma A.1 (Prior mean and prior variance of ε and prior probabilities). Let
ε have PDF (2). Then, its mean µε and variance σ2

ε in terms of (µ0, σ
2
0) are given by:

µε =

∑
N

j=1 exp
(
aj +

µ2
j

2σ2
0

)
µj

∑
N

j=1 exp
(
aj +

µ2
j

2σ2
0

) , (A.1)

σ2
ε = σ2

0 +


∑

N

j=1 exp
(
aj +

µ2
j

2σ2
0

)
µ2
j

∑
N

j=1 exp
(
aj +

µ2
j

2σ2
0

) −

(∑
N

j=1 exp
(
aj +

µ2
j

2σ2
0

)
µj

)2

(∑
N

j=1 exp
(
aj +

µ2
j

2σ2
0

))2

 , (A.2)

where µj = bjσ
2
0 + µ0.

Proof of Lemma A.1. We compute µε = E[ε] and σ2
ε = var[ε] with PDF ϕε(x) given

by (2), and after straightforward integration, we obtain equations (A.1) and (A.2). �

Lemma A.2 (Special Cases). Let payoff C1 have general unconditional continuous
PDF ϕC(x). Suppose, the informed investor receives signal ε = C1 + u, where u ∼
N (µ0, σ

2
0). Then, the latter economy is a limiting case (when N → ∞) of our N-state

economy with C1(ωn) = CN + (CN − CN)(n− 1)/(N − 1) and distribution parameters

an = −C1(ωn)2

2σ2
0
− µ0C1(ωn)

σ2
0

+ ln [ϕC(C1(ωn))] , bn = C1(ωn)
σ2

0
, (A.3)

when N →∞ and CN and CN converge to lower and upper limits of payoff C1.

Proof of Lemma A.2. Consider a discretized economy with one risky asset with payoff
C1(ωn) = CN+(CN−CN)(n−1)/(N−1), where n = 1, . . . , N , and let the informed investor
receive signal ε = C1(ω) + u, where u ∼ N (µ0, σ

2
0). The unconditional probabilities

of C1(ωn) are given by Prob(C1(ωn)) = ϕC(C1(ωn))/
(∑N

n=1 ϕC(C1(ωn))
)
. The original

continuous-space economy is a limiting case of the latter economy because as N →∞, the
distributions Prob(C1(ω) ≤ x) and Prob(C1(ω) ≤ x|ε) converge pointwise to the respective
continuous-space distributions. We show that the latter discretized economy is a special
case of ours when parameters an and bn are given by equations (A.3) by verifying that in
our economy Prob(C1(ωn)) = ϕC(C1(ωn))/

(∑N
n=1 ϕC(C1(ωn))

)
and ε = C1(ω) + u.

46

Electronic copy available at: https://ssrn.com/abstract=2446873



Consider the unconditional probability Prob(C1(ωn)) in the model of Section 2:

Prob(C1(ωn)) =
∫ ∞
−∞

πn(x)ϕε(x)dx = 1
Λ

∫ ∞
−∞

ean+bnx−0.5(x−µ0)2/σ2
0dx = 1

Λ̃
ean+0.5(µ0+bnσ2

0)2/σ2
0 ,

where Λ and Λ̃ are constants. Substituting an and bn from equations (A.3) into the above
equation, after some algebra, we verify that Prob(C1(ωn)) = ϕC(C1(ωn))/∑N

n=1 ϕC(C1(ωn)).
Next, we verify that ε = C1(ω) +u, where u ∼ N (µ0, σ

2
0). Substituting an and bn from

(A.3) into equation (2) for PDF ϕε(x), after some algebra, we obtain:

ϕε(x) =
∑N
n=1 e

−0.5(x−C1(ωn)−µ0)2/σ2
0ϕC(C1(ωn))∫∞

−∞

(∑N
n=1 e

−0.5(x−C1(ωn)−µ0)2/σ2
0ϕC(C1(ωn))

)
dx
.

The above PDF is the convolution of the unconditional distributions of C1(ω) and a normal
distribution N (µ0, σ

2
0), and hence is the PDF of ε = C1(ω) + u, where u ∼ N (µ0, σ

2
0). �

Proof of Lemma 1. Taking log on both sides of investor I’s FOC (10), and substituting
wealth WI,T ,n from the budget constraint (5), we obtain:

(θ∗I )>(C(ωn)− erTp) = 1
γI

(
ln
(
πn(ε)

)
− ln

(
πRN
n

))
+ const, n = 1, . . . , N, (A.4)

where const is a constant. Subtracting equation (A.4) for n = N from the other equations
in (A.4), we obtain a system of N − 1 equations with N − 1 unknown components of θ∗I :

(θ∗I )>(C(ωn)− C(ωN)) = 1
γI

(
ln
(
πn(ε)
πN(ε)

)
− ln

(
πRN
n

πRN
N

))
, n = 1, . . . , N − 1, (A.5)

Solving the system of equations (A.5), we obtain investor I’s optimal portfolio

θ∗I (p; ε) = Ω−1

γI

{(
ln
(
π1(ε)
πN(ε)

)
, . . . , ln

(
πN−1(ε)
πN(ε)

))
−
(

ln
(
πRN

1
πRN
N

)
, . . . , ln

(
πRN
N−1
πRN
N

))}>
.

(A.6)
Finally, substituting πn(ε) from (1) into the above equation, we obtain portfolio (11). �

Proof of Lemma 2. Let s ≡ hλε/γI + ν denote the sufficient statistic. From Bayes
rule, the PDF of ε conditional on s is given by:

ϕε|s(x|y) = ϕs|ε(y|x)ϕε(x)∫∞
−∞ ϕs|ε(y|x)ϕε(x)dx. (A.7)

Because ν ∼ N (0,Σν), s = hλε/γI + ν conditional on ε has a multivariate normal distri-
bution N (hλε/γI,Σν). Hence, substituting ϕs|ε(y|x) into equation (A.7), we have

ϕε|s(x|y) =
exp

{
−0.5

(
y − hλx/γI

)>
Σ−1
ν

(
y − hλx/γI

)}
ϕε(x)

G1(y) , (A.8)
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where G1(y) normalizes the density. Next, to find probability πUn (p), from the market
clearing condition (13), we note that in equilibrium s = −H(p). We focus on equilibrium
where prices only reveal the sufficient statistic s. Hence, πUn (p) = E

[
πn(ε)|P (ε, ν) = p

]
=

E[πn(ε)|s = −H(p)]. Calculating the last conditional expectation, we obtain:

πUn (p) = E[πn(ε)|s = −H(p)]

=
∫ ∞
−∞

ean+bnx∑
N

j=1 e
aj+bjx

ϕε|s
(
x| −H(p)

)
dx = 1

G1(y)

∫ ∞
−∞

edn(x)dx,
(A.9)

where dn(x) is a quadratic function of x given by:

dn(x) = an + bnx− 0.5
(
hλx/γI +H(p)

)>
Σ−1
ν

(
hλx/γI +H(p)

)
− 0.5(x− µ0)2/σ2

0

=− h
2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
2

(
x− µ0/σ

2
0 + bn − hλ>Σ−1

ν H(p)/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0

)2

+ an + 1
2
b2
n + 2bn

(
µ0/σ

2
0 − hλ>Σ−1

ν H(p)/γI
)

h2(λ>Σ−1
ν λ/γ2

I ) + 1/σ2
0

+ g(p),

(A.10)
where g(p) is a normalizing function. Substituting dn(x) from equation (A.10) into integral
(A.9) and integrating, we obtain equation (15) for πUn (p). �

Proof of Proposition 1. First, we find the optimal portfolios of investors, and then
recover the equilibrium prices from the market clearing condition. The portfolio of investor
I is given by equation (11) in Lemma 1. To find investor U ’s portfolio θ∗U(p), we follow
similar steps as in Lemma 1: 1) take the log of both sides of investor U ’s FOC (10);
2) subtract the N th equation from the rest; 3) solve the N − 1 equations for the N − 1
positions of U ’s portfolio. This gives θ∗U(p) in terms of investor U ’s probabilities πUn (p)

θ∗U(p) = 1
γU

Ω−1


(

ln
(
πU1 (p)
πUN(p)

)
, . . . , ln

(
πUN−1(p)
πUN(p)

))>
− ṽ(p)

 , (A.11)

where ṽ is given by equation (12). Substituting πUn (p) from (15) into (A.11) we obtain:

θ∗U(p) = 1
γU

Ω−1

ã+ 1
2
b̃(2) − 2b̃

(
hλ>Σ−1

ν H(p)/γI − µ0/σ
2
0

)
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− ṽ(p)

 , (A.12)

where vectors ã, b̃, b̃(2) ∈ RN−1 are given by:

ã = (a1 − aN , . . . , aN−1 − aN), b̃ = (b1 − bN , . . . , bN−1 − bN), (A.13)

b̃(2) = (b2
1 − b2

N , . . . , b
2
N−1 − b2

N). (A.14)
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Substituting λ = Ω−1b̃ and H(p) = (1− h)θ∗U − hΩ−1
(
ṽ − ã

)
/γI from (14) into (A.12), we

obtain:

θ∗U(p) =
Ω−1

(
â− ṽ(p)

)
γU

+ µ0/(γUσ2
0)λ

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0
−QH(p),

=
hQΩ−1

(
ṽ(p)− ã

)
(1− h)γI

− Ω−1(ṽ(p)− â)
γU

+ µ0/(γUσ2
0)λ

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0
−Qθ∗U(p),

(A.15)

where â and matrix Q are are given by:

â = ã+ 0.5b̃(2)

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0
, Q = h(1− h)

γUγI

λλ>Σ−1
ν

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0
. (A.16)

Solving linear equation (A.15) for portfolio θ∗U(p), we obtain portfolio θ∗U(p) in (20).
Next, we find the equilibrium prices. Substituting optimal portfolios θ∗I (p; ε) and θ∗U(p)

from equations (11) and (20) into the market clearing condition hθ∗I (p; ε)+(1−h)θ∗U(p)+ν =
0, after rearranging terms, we obtain the following equation for vector ṽ(p):
(
E +Q

)−1
(
hQΩ−1(ṽ(p)− ã)

γI
− (1− h)Ω−1(ṽ(p)− â)

γU
+ (1− h)µ0/(γUσ2

0)λ
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)

−
hΩ−1

(
ṽ(p)− ã

)
γI

+ hλε

γI
+ ν = 0.

(A.17)

The above equation can be further simplified by noting that

(E +Q)−1 1
γI
QΩ−1(ṽ(p)− ã) = (E +Q)−1(E +Q− E) 1

γI
Ω−1(ṽ(p)− ã)

= 1
γI

Ω−1(ṽ(p)− ã)− (E +Q)−1 1
γI

Ω−1(ṽ(p)− ã).

Substituting the latter expression into equation (A.17), canceling like terms, substituting
â from equation (A.16) into equation (A.17), and solving it for ṽ(p)− ã we obtain

ṽ(p) = ã+ 1
2

(1− h)/γU
h/γI + (1− h)/γU

b̃(2) + 2(µ0/σ
2
0)b̃

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+
Ω
(
E +Q

)
s

h/γI + (1− h)/γU
, (A.18)

where ã, b̃, and b̃(2) are given by (A.13) and (A.14), or element-wise for n = 1, . . . , N − 1:

ṽn = an−aN+1
2

(1− h)/γU
h/γI + (1− h)/γU

(b2
n − b2

N) + 2(µ0/σ
2
0)(bn − bN)

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+
(C(ωn)− C(ωN))>

(
E +Q

)
s

h/γI + (1− h)/γU
.

Let vn be given by equation (18). Then, vector ṽ(p) ∈ RN−1 has elements vn − vN .
From the definition of vector ṽ in equation (12), we find that πRN

n = evn−vN/
(∑

N

j=1 e
vj−vN

)
for n = 1, . . . , N . Canceling e−vN , we obtain probabilities (17).
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Finally, we show that P (ε, ν) is an invertible on its range function of s = hλε/γI + ν,
and hence, observing prices reveals unique s. First, because the risk-neutral probabilities
are unique, there is a one-to-one mapping between these probabilities and prices. From
equation (12) we observe that there is an one-to-one mapping between ṽ and the vector
of risk-neutral probabilities. Finally, from equation (A.18) there is an one-to-one mapping
between ṽ and s, which, by transitivity, completes the proof. �

Proof of Proposition 2. We now find the derivatives of portfolios θ∗i with respect to
prices p. Substituting πRN

N = 1− πRN
1 − . . .− πRN

N−1 into the risk-neutral valuation equation
(8), we obtain:

pm =
[
πRN

1

(
Cm(ω1)−Cm(ωN)

)
+ . . .+πRN

N−1

(
Cm(ωN−1)−Cm(ωN)

)
+Cm(ωN)

]
e−rT , (A.19)

where m = 1, . . . , N − 1. From the definition of vector ṽ in (12) we observe that πRN
n =

eṽn/(1 + ∑N−1
n=1 e

ṽn). First, we need to compute ∂ṽ/∂p. To do this, we find the Jacobian
Jp = ∂p/∂ṽ and then by the inverse function theorem we have ∂ṽ/∂p = J−1

p . Let Jπ be
the Jacobian of vector (πRN

1 , . . . , πRN
N−1)>, that is, a matrix with (n, k) element given by

∂πRN
n /∂ṽk. Differentiating equation (A.19) we find that Jp = Ω>Jπe−rT , and hence

JpΩ erT = Ω>JπΩ. (A.20)

To find Jπ we first calculate ∂πRN
n /∂ṽk, where πRN

n is given by equation (17):

∂πRN
n

∂ṽk
= ∂πRN

n

∂vk
=


−πRN

n πRN
k , if n 6= k,

πRN
n − (πRN

n )2, if n = k.
(A.21)

for n, k = 1, . . . , N − 1, where the first equality follows from ṽk = vk − vN . From equa-
tion (A.21) we find Jπ = diag{πRN

1 , . . . , πRN
N−1} − (πRN

1 , . . . , πRN
N−1)>(πRN

1 , . . . , πRN
N−1), where

diag{. . .} is a diagonal matrix. Substituting Jπ into equation (A.20) we obtain:

JpΩ erT = Ω>
(
diag{πRN

1 , . . . , πRN
N−1} − (πRN

1 , . . . , πRN
N−1)>(πRN

1 , . . . , πRN
N−1)

)
Ω. (A.22)

Recalling that Ω is a matrix with rows (C(ωn)− C(ωN))>, and denoting C̃n =
(
Cn(ω1)−

Cn(ωN), . . . , Cn(ωN−1)− Cn(ωN)
)>

, we find that the (n, k) element of matrix JpΩerT is:

{JpΩ erT}n,k = C̃>n diag{πRN
1 , . . . , πRN

N−1}C̃k − C̃>n (πRN
1 , . . . , πRN

N−1)>(πRN
1 , . . . , πRN

N−1)C̃k

= ∑
N

i=1

(
Cn(ωi)− Cn(ωN)

)(
Ck(ωi)− Ck(ωN)

)
πRN
i

−
(∑

N

i=1

(
Cn(ωi)− Cn(ωN)

)
πRN
i

) (∑
N

i=1

(
Ck(ωi)− Ck(ωN)

)
πRN
i

)
= covRN(Cn, Ck),
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where to derive the second equality we added zero terms
(
Cn(ωN) − Cn(ωN)

)(
Ck(ωN) −

Ck(ωN)
)
πRN
N ,

(
Cn(ωN)−Cn(ωN)

)
πRN
N and

(
Ck(ωN)−Ck(ωN)

)
πRN
N to summations, and then

removed constants Cn(ωN) and Ck(ωN), because they do not affect covariances.
Therefore, we conclude that JpΩ erT = varRN[C]. Then, by the inverse function the-

orem, we now find that Ω−1∂ṽ/∂p =
(
varRN[C]

)−1
erT . Using the latter equality and

differentiating optimal portfolios (11) and (20) with respect to p we obtain that the first
of these two partial derivatives is given by equation (21) and the second is given by:

∂θ∗U(p)
∂p

= 1
1− h

(
h

γI
E −

( h
γI

+ 1− h
γU

)
(E +Q)−1

)(
varRN[C]

)−1
erT . (A.23)

We note the following equation for the inverse matrix (E +Q)−1:

(E +Q)−1 = E − hλλ>Σ−1
ν

γUγI
(
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
+ h(1− h)λ>Σ−1

ν λ
,

which can be verified by multiplying both sides of the latter equation by E + Q. Substi-
tuting (E +Q)−1 above into equation (A.23), we obtain equation (22) for ∂θ∗U(p)/∂p>.

Finally, we demonstrate that θ∗I,m(p; ε) is downward sloping in pm. This result follows
from the fact that matrix (varRN[C])−1 is positive-definite (as the inverse of a positive-
definite matrix), and its element m of the diagonal is given by e>m(varRN[C])−1em > 0,
where em = (0, 0, . . . , 1, . . . , 0)> is a vector with mth element equal to 1 and other elements
equal to zero. Then, from equation (21) it follows that ∂θ∗I,m(p; ε)/∂pm < 0. �

Proof of Corollary 1. Let m = πRN/πUe−rT . Then, equation (23) follows from equation
(1.12) in Cochrane (2005, p. 14), and equation (24) is derived analogously to equation
(6.4) in Cochrane (2005, p. 102) in the proof of a theorem in Cochrane (2005, p. 101). �

Proof of Corollary 2. From equations (17) and (15) for the probabilities πRN and πU ,
we obtain

πRN
n

πUn
= G(s) exp

{
−1

2
h/γI

(1− h)/γU + h/γI

b2
n + 2bn(µ0/σ0 + hλ>Σ−1

ν s/γI)
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0
+ C(ωn)>s

(1− h)/γU + h/γI

}
,

(A.24)
where G(s) does not depend on state ω. Next, we express s in terms of E[ν|s]. We note
that E[ν|s] = E[s− hλε/γI|s]. Then, using equation (A.49) for E[ε|s], we obtain

s = E[ν|s] + hλ

γI

µ0/σ
2
0 + EU [bn] + hλ>Σ−1

ν s/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
. (A.25)

Substituting s from the above equation into equation (A.24) and then using the informa-
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tional spanning condition bn = λ0 + C(ωn)>λ, we obtain:

πRN
n

πUn
= g0(s) exp

{
−1

2
h/γI

(1− h)/γU + h/γI

b2
n − 2bnEU [b]

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+ C(ωn)>E[ν|s]
(1− h)/γU + h/γI

}
.

(A.26)
Assuming that either γI or γU is small, and using approximation ex ≈ 1 + x for small
x, from the above equation we obtain equation (25). Three-factor model (26) and the
interpretations of βki follow from the theorem in Cochrane (2005, p. 107). The expressions
for the risk premia Λi are given in Cochrane (2005, p. 108). �

Proof of Lemma 3. The price of an Arrow-Debreu security is given by ERN[1{ω=ωn}]e−rT =
πRN
n e−rT . Hence, the return is given by EU [1{ω=ωn}]/(πRN

n e−rT ) = πUn/π
RN
n erT . Equation (27)

follows, after some algebra, from equation (A.26). Differentiating (27) w.r.t. t, we obtain:

∂EU [Rn]
∂t

= (bn − EU [b])2EU [Rn]− EU [Rn]ERN
[
(b− EU [b])2 π

U

πRN

]
= (bn − EU [b])2EU [Rn]− EU [Rn]EU

[
(b− EU [b])2

]
=
[
(bn − EU [b])2 − varU [b]

]
EU [Rn]. �

Proof of Lemma 4. i) Using simple algebra, it can be easily observed that the portfolio
choice of the informed investor is equivalent to solving the following problem:

max
θI
−∑N

j=1 πj(0) exp{bjε− γIθ>I (C(ωj)− erTp)} =

max
θI
− exp{Ẽ[b]ε− γIθ>I (Ẽ[C]− erTp) + κ̃(bε− γIθ>I C)},

where κ̃(X) = ln
(
Ẽ[eX ]

)
− Ẽ[X]. The above problem is equivalent to (29).

ii) Suppose, condition (28) is satisfied. Then, substituting portfolio (30) into (29) and
using simple algebra, we find that bε cancels out from the second term of (29) and θ̂∗I
solves optimization problem that does not depend on ε:

max
θ̂I

erTp>θ̂I − gI(θ̂I), (A.27)

where gI(θ̂I) = ln
(∑N

i=1 exp{ai + C(ωi)>θ̂I}
)
. Hence, θ̂∗I only depends on prices p. �

Proof of Proposition 3.

Step 1 (Portfolio of investor I). Investor I’s optimization problem (A.27) yields the
FOC for the optimal θ̂∗I = λε− γIθ∗I :

fI
(
θ̂∗I
)

= erTp, (A.28)
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where fI(x) ≡ g′I(x) is given by (32). Assuming that fI(·) is invertible (as verified below),
gives θ̂∗I = f−1

I (erTp). Then, using θ̂∗I = λε− γIθ∗I , we find portfolio θ∗I (p; ε) in (34).
Step 2 (Posterior probabilities and portfolio of investor U). Substituting investor
I’s portfolio (30) into the market clearing condition, we obtain: hλε/γI + ν + Ĥ(p) = 0,
where Ĥ(p) = −hf−1

I (erTp)/γI + (1 − h)θ∗U(p), analogous to condition (13) for complete
markets. Hence, the posterior probabilities can be found similar to Lemma 2, and are given
by equation (15) in which H(p) is replaced by Ĥ(p). Substituting bn = λ0 +C(ωn)>λ from
Condition (28) into equation (15) with Ĥ(p) instead of H(p), we obtain:

πUn (p) = 1
G3(p) exp

(
an + 1

2
b2
n + 2C(ωn)>(λµ0/σ

2
0 − hλλ>Σ−1

ν Ĥ(p)/γI)
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0

)
, (A.29)

where G3(p) is a normalizing function. Substituting probabilities πUn (p) into investor U ’s
objective function (9), after some algebra, we obtain:

−∑N
n=1 π

U
n (p) exp

{
−γU

(
WU,0e

rT +
(
C(ωn)− erTp

)>
θU
)}

= − 1
G4(p) exp

(
γUe

rTp>θU + gU

(
λµ0/σ

2
0 − hλλ>Σ−1

ν Ĥ(p)/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
− γUθU

))
,

(A.30)

where G4(p) is some function of prices and gU : RM−1 → R is a function given by:

gU(x) = ln
 N∑
j=1

exp
{
aj + 1

2
b2
j

h2(λ>Σ−1
ν λ/γ2

I ) + 1/σ2
0

+ C(ωj)>x
} .

From equation (A.30), we find that investor U ’s optimization problem becomes

min
θU

γUe
rTp>θU + gU

(
λµ0/σ

2
0 − hλλ>Σ−1

ν Ĥ(p)/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
− γUθU

)
.

Let fU(x) ≡ g′U(x), then the FOC for investor U ’s optimal portfolio θ∗U is,

fU

(
λµ0/σ

2
0 − hλλ>Σ−1

ν Ĥ(p)/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
− γUθ∗U

)
= erTp.

Assuming that fU is invertible (as verified below), and erTp belongs to its range, we obtain

λµ0/σ
2
0 − hλλ>Σ−1

ν Ĥ(p)/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
− γUθ∗U = f−1

U (erTp) . (A.31)

Substituting for Ĥ(p) = −hf−1
I (erTp) /γI +(1−h)θ∗U(p) and factoring out γUθ∗

U
(p) we have

λµ0/σ
2
0 + h2λλ>Σ−1

ν f−1
I (erTp) /γ2

I

h2(λ>Σ−1
ν λ/γ2

I ) + 1/σ2
0

− γUθ∗U(p) (E +Q) = f−1
U (erTp) ,
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where E is the identity matrix and matrix Q is given in (A.16). Solving for θ∗U(p) yields

θ∗U(p) = 1
γU

(E +Q)−1
(
λµ0/σ

2
0 + h2λλ>Σ−1

ν f−1
I (erTp) /γ2

I

h2(λ>Σ−1
ν λ/γ2

I ) + 1/σ2
0

− f−1
U (erTp)

)

= (E +Q)−1
(
hQf−1

I (erTp)
(1− h)γI

− f−1
U (erTp)
γU

+ µ0/(γUσ2
0)λ

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

)
.

(A.32)

Step 3 (Invertibility of fI(x) and fU(x)). Functions fI(x) and fU(x) are special cases
of function f(x; t) in equation (A.36) below for t = 0 and t = 0.5/(h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0).
Function f(x; t) has positive-definite and invertible Jacobian by Lemma A.3 below. Hence,
by Lemma A.4 below, fI(x) and fU(x) are invertible on their ranges.
Step 4 (Equation for asset prices). Substituting θ∗I and θ∗U from equations (34) and
(35) into the market clearing condition hθ∗I (p; ε) + (1− h)θ∗U(p) + ν = 0 yields, after some
algebra, equation (31) for price vector P (ε, ν).
Step 5 (Existence of Equilibrium). Finally, we show that there exists unique vector of
prices satisfying equation (31). Denote xI = f−1

I

(
erTP (ε, ν)

)
and xU = f−1

U

(
erTP (ε, ν)

)
.

Hence, fI(xI) = fU(xU) = erTP (ε, ν). From the latter equation and equation (31) for
P (ε, ν), we obtain the following system of equations for xI and xU :

hxI
γI

+ (1− h)xU
γU

=
(
E +Q

)
s+ (1− h)µ0/(γUσ2

0)λ
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0
, (A.33)

fI(xI) = fU(xU). (A.34)

From equations (A.28) and (A.31), we note that xI and xU are related to portfolios:

xI = λε− γIθ∗I , xU = λµ0/σ
2
0 − hλλ>Σ−1

ν Ĥ(p)/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
− γUθ∗U . (A.35)

From (A.33), we find that xU = x̄− ηxI, where η = γUh/(γI(1− h)) and x̄ is given by

x̄ =
γU
(
E +Q

)
s

1− h + (µ0/σ
2
0)λ

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0
.

Substituting xU = x̄ − ηxI into equation (A.34), we find that xI solves fI(xI) = fU(x̄ −
η xI). The latter equation is a special case of equation f(x; 0) = f(x̄ − η x; t) in (A.39)
below with t = 0.5/(h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0), because f(x; 0) = fI(x), f(x; t) = fU(x).
Hence, by Lemma A.5, equation fI(xI) = fU(x̄ − η xI) has a unique, continuous, and
differentiable solution xI. Because P (ε, ν) = e−rTfI(xI), price exists, is unique, continuous,
differentiable, and invertible on its range function of x̄, and hence, also of the sufficient
statistic s. �
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Lemma A.3.
i) Consider function f(x; t) : RM−1 × R→ RM−1 given by:

f(x; t) =
∑

N

j=1C(ωj) exp{aj + tb2
j + C(ωj)>x}∑

N

j=1 exp{aj + tb2
j + C(ωj)>x}

. (A.36)

Then, for all x and t, f(x; t) has an invertible positive-definite Jacobian given by:

∂f(x; t)
∂x

= varπ[C], (A.37)

where varπ[C] is a variance-covariance matrix under a certain probability measure π(x; t).
ii) Consider function f̂(x; t) = f(x; 0) − f(x̄ − η x; t) for a fixed x̄ and η > 0. Then, this
function also has a positive-definite and invertible Jacobian ∂f̂(x; t)/∂x for all x and t.

Proof of Lemma A.3. i) Differentiating function f(x; t) with respect to x, we obtain:

∂f(x; t)
∂x

=
∑

N

j=1C(ωj)C(ωj)> exp{aj + tb2
j + C(ωj)>x}∑

N

j=1 exp{aj + tb2
j + C(ωj)>x}

−
∑

N

j=1C(ωj) exp{aj + tb2
j + C(ωj)>x}∑

N

j=1 exp{aj + tb2
j + C(ωj)>x}

∑
N

j=1C(ωj)> exp{aj + tb2
j + C(ωj)>x}∑

N

j=1 exp{aj + tb2
j + C(ωj)>x}

= varπ[C],

(A.38)

where the variance varπ[C] is computed under a probability measure given by πj(x; t) =
exp{aj + tb2

j + C(ωj)>x}/
(∑

N

j=1 exp{aj + tb2
j + C(ωj)>x}

)
.

Matrix varπ[C] has elements covπ(Ci, Cj). It is positive-definite and invertible because
all assets are non-redundant. Suppose, varπ[C] is not invertible. Then, the columns of this
matrix are linearly dependent, and hence, there exist constants λm such that covπ(λ1C1 +
. . . λM−1CM−1, Cm) = 0 for all m = 1, . . . ,M − 1. Multiplying the latter equalities by λm
and summing up, we obtain varπ[λ1C1 + . . . λM−1CM−1] = 0. Hence, λ1C1 + . . . λM−1CM−1

is a constant, which contradicts non-redundancy of the riskless asset.
ii) Function f̂(x; t) has Jacobian ∂f(x; 0)/∂x + η ∂f(x̄− η x; t)/∂x, which is the sum of
positive-definite and invertible matrices, and hence is positive-definite and invertible. �

Lemma A.4 (Gale and Nikaidô). Let f(x) : RM−1 → RM−1 be a continuous differen-
tiable function with a positive-definite Jacobian. Then, function f(x) is injective, that is,
invertible on its range, so that ∀x1, x2 ∈ RM−1 such that f(x1) = f(x2) we have x1 = x2.
Proof of Lemma A.4. See the proof of Theorem 6 in Gale and Nikaidô (1965). �
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Lemma A.5 Consider function f(x; t) : RM−1 × R → RM−1 given by equation (A.36).
Then, for all fixed x̄ ∈ RM−1, η > 0 and t ∈ R there exists unique x which solves equation

f(x; 0) = f(x̄− η x; t). (A.39)

Moreover, solution x(t; x̄) is continuous and differentiable in t and x̄.
Proof of Lemma A.5. The proof proceeds in three steps.
Step 1. Let us fix x̄ and show that the solution of equation (A.39) exists for all t. For
t = 0 equation (A.39) has solution x0 = x̄/(1+η). Function f̂(x; t) ≡ f(x; 0)−f(x̄−η x; t)
is continuously differentiable and has an invertible Jacobian with respect to x by Lemma
A.3. Hence, by the implicit function theorem (Theorem A.1 below), there exists a unique
continuously differentiable function x(t) that solves (A.39) in some interval t ∈ (−t−, t+),
where t± > 0. Next, we show that t+ = +∞, and the proof that t− = +∞ is analogous.

Suppose, t+ is finite. Let (−t−, t+) be the largest open interval in which a unique
solution exists. We show in steps 2 and 3 below that there exists a unique solution of
equation f̂(x; t+) = 0. Because f̂(x; t) has a positive definite and invertible Jacobian
[see Lemma A.3], by the implicit function theorem, the solution can be extended to some
t > t+, which contradicts the fact that (−t−, t+) is the largest interval in which a unique
solution exists. Therefore, this leads to a contradiction, and hence, t+ = +∞.

Step 2. We show that f̂(x; t+) = 0 has a unique solution, which implies that t+ = +∞,
as shown above. Consider a sequence tk ↑ t+ and solutions xk such that

f(xk; 0) = f(x̄− η xk; tk). (A.40)

Suppose, xk are bounded by some constant A, i.e., |xk| < A. Then, by Weierstrass
Theorem [e.g., Rudin (1976, Theorem 2.42)], there exists a convergent subsequence such
that xkn → x∗ as n → +∞. Taking limit kn → ∞ in equation (A.40), by the continuity
of f(x; t) we find that f̂(x∗; t+) = 0. This solution is unique by Lemma A.4 because
f(x; 0)− f(x̄− η x; t) has positive-definite Jacobian by Lemma A.3. Hence, t+ = +∞.

Step 3. It remains to prove that xk is indeed bounded. Suppose, xk is unbounded, i.e.,
there exist indices kn such that |xkn| → ∞, as kn → ∞. We renumber elements kn by
k, and hence, assume that |xk| → ∞. Let j(k) = arg max

j
C(ωj)>xk. Because j(k) takes

only finite number of values from 1 to N , there exists index j∗ such that j∗ = j(kn) for an
infinite sequence of kn →∞. Without loss of generality, we assume that j∗ = 1 (otherwise,
we relabel states ωn accordingly) and also focus on subsequence kn and relabel its elements
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by k. Hence, C(ω1)>xk ≥ C(ωj)>xk for all j = 1, . . . , N . Similarly, we find a subsequence
xk such that C(ω1)>xk ≥ C(ω2)>xk ≥ C(ωj)>xk for all j = 2, . . . , N . Similarly, there
exists xk such that

C(ω1)>xk ≥ . . . ≥ C(ωm)>xk > C(ωm+1)>xk ≥ . . . ≥ C(ωN)>xk, (A.41)

for all k, where m is the fist index for which C(ωm)>xk −C(ωm+1)>xk → +∞ as k →∞.
The existence of such an index m is guaranteed by Lemma A.7 below.

Next, we take the limit k → ∞ in equation (A.40). Ordering (A.41) simplifies the
computation of this limit. Consider the following probability measure πj(x; t):

πj(x; t) =
exp{aj + tb2

j + C(ωj)>x}∑
N

j=1 exp{aj + tb2
j + C(ωj)>x}

. (A.42)

Because 0 ≤ πj(xk; t) ≤ 1, by Weierstrass theorem there exists a subsequence xk such that
πj(xk; 0)→ π+

j and πj(x̄−η xk; tk)→ π−j for all j = 1, . . . , N , where ∑N
j=1 π

+
j = ∑N

j=1 π
−
j =

1, 0 ≤ π+
j ≤ 1 and 0 ≤ π−j ≤ 1. Next, we demonstrate that

π+
j = 0, for j = m+ 1, . . . , N, (A.43)

π−j = 0, for j = 1, . . . ,m. (A.44)

To derive equalities (A.43) and (A.44), we use inequalities (A.41) and the fact that
C(ωm)>xk − C(ωm+1)>xk → +∞ as k →∞, to obtain for all j > m:

π+
j = lim

k→+∞
πj(xk; 0) ≤ lim

k→+∞

exp{aj + C(ωj)>xk}
exp{am + C(ωm)>xk}

≤ lim
k→+∞

exp{aj + C(ωm+1)>xk}
exp{am + C(ωm)>xk}

= 0.

Similarly, for all j ≤ m we obtain:

π−j = lim
k→+∞

πj(x̄− η xk; tk)≤ lim
k→+∞

exp{aj + tkb
2
j + C(ωj)>x̄− η C(ωj)>xk}

exp{am+1 + tkb2
m+1 + C(ωm+1)>x̄− η C(ωm+1)>xk}

≤ lim
k→+∞

exp{aj + tkb
2
j + C(ωj)>x̄− η C(ωm)>xk}

exp{am + tkb2
m + C(ωm+1)>x̄− η C(ωm+1)>xk}

= 0.

Using equations (A.43) and (A.44) and taking the limit k → +∞ in (A.40), we obtain:

π+
m+1C(ωm+1) + . . .+ π+

NC(ωN) = π−1 C(ω1) + . . .+ π−mC(ωm).

Transposing both sides of the above equation and multiplying by xk, we obtain:

π+
m+1C(ωm+1)>xk + . . .+ π+

NC(ωN)>xk = π−1 C(ω1)>xk + . . .+ π−mC(ωm)>xk. (A.45)
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From the fact that ∑N
j=1 π

+
j = ∑N

j=1 π
−
j = 1, demonstrated above, equations (A.43)–(A.45),

and inequality (A.41), we obtain:

π+
m+1C(ωm+1)>xk + . . .+ π+

NC(ωN)>xk ≤ C(ωm+1)>xk < C(ωm)>xk

≤ π−1 C(ω1)>xk + . . .+ π−mC(ωm)>xk.
(A.46)

Inequalities (A.46) contradict equation (A.45). Consequently, xk is bounded. Hence, as
shown in step 2 above, t+ = +∞, which proves the global existence of x(t; x̄). The
continuity and differentiability of x(t; x̄) follows from the implicit function theorem. �

Theorem A.1 (Implicit Function Theorem). Consider a continuously differentiable
function f̂(x; t) : RM−1×R→ RM−1. Suppose, f̂(x0; t0) = 0 and the Jacobian ∂f̂(x0; t0)/∂x
is invertible. Then, there exist open sets U and V such that x0 ∈ U , t0 ∈ V , and a unique
continuously differentiable function x(t) : V → U such that f̂(x(t); t) = 0.
Proof of Theorem A.1. This is a special case of Theorem 9.28 in Rudin (1976). �

Lemma A.6. Consider a sequence xk such that |xk| → ∞ as k →∞. Then, there exists
index m such that sequence |C(ωm)>xk| is unbounded.
Proof of Lemma A.6. Suppose, on the contrary, there exists constant A such that
|C(ωm)>xk| < A for all m and k. Because all securities are non-redundant, the matrix
with columns C(ωn), n = 1, . . . , N has rank M−1 and vectors C(ωn) span RM−1. Without
loss of generality, assume that the M−1 vectors C(ω1),. . . , C(ωM−1) form a basis in RM−1.

Consider vector el = (0, . . . , 0, 1, 0, . . . , 0)>∈ RM−1 with lth element equal to 1 and all
other elements equal to 0. Then, there exist constants αm,l such that el = α1,lC(ω1) +
. . .+ αM−1,lC(ωN). It can be easily observed that xk is bounded, because for all l

|e>l xk| ≤ |α1,l||C(ω1)>xk|+ . . .+ |αM−1,l||C(ωM−1)>xk| ≤ A(M − 1) max
m,l
|αm,l|,

which contradicts |xk| → ∞. Hence, |C(ωm)>xk| is unbounded for some m. �

Lemma A.7. Consider a sequence xk such that |xk| → ∞ as k →∞. Then, there exists
index m such that sequence |C(ωm)>xk − C(ωm+1)>xk| is unbounded.
Proof of Lemma A.7. Suppose, on the contrary, sequence |C(ωm)>xk−C(ωm+1)>xk| is
bounded for all m. The latter easily implies that |C(ωi)>xk −C(ωj)>xk| < A for all i and
j and some constant A. Because all assets are non-redundant, vectors (C(ωn)>, 1)> ∈ RM ,
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where n = 1, . . . , N , span RM . Without loss of generality, assume that the first M vectors
(C(ωn)>, 1)> form a basis in RM . Hence, there exist unique (α1, . . . , αM)> such that:

α1C(ω1) + . . .+ αMC(ωM) = 0,
α1 + . . .+ αM = 1.

(A.47)

We solve equations (A.47) and for an arbitrary index m we obtain:

|C(ωm)>xk| = |(α1 + . . .+ αM)C(ωm)>xk − (α1C(ω1)>xk + . . .+ αMC(ωM)>xk)|

≤ |α1||C(ωm)>xk − C(ω1)>xk|+ . . .+ |αM ||C(ωm)>xk − C(ωM)>xk|

≤ Amax
l
|αl|,

contradicting the result of Lemma A.6 that |C(ωm)>xk| is unbounded for some m. �

Proof of Lemma 5. Substituting the risk-neutral probabilities (36) into (38), and noting
that due to the properties of risk-neutral distributions ERN,i[Wi,T ] = Wi,0e

rT , we obtain:

κ̂ = ERN,U
[
ln
(πU(p)
π(ε)

)]
+ ERN,I

[
ln
( π(ε)
πU(p)

)]
.

Substituting π(ε) from (1) and πU(p) from (A.29) into the above equation, we find:

κ̂ = 0.5ERN,U
[b2 + 2b(µ0/σ

2
0 + hλ>Σ−1

ν s/γI)
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
−bε

]
−0.5ERN,I

[b2 + 2b(µ0/σ
2
0 + hλ>Σ−1

ν s/γI)
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
−bε

]
.

Using the fact that under the risk-neutral probabilities the price of a portfolio with payoff
b is given by ERN,U [b] = ERN,I[b], we simplify the above expression for κ̂ as follows:

κ̂ = 1
2

ERN,U [b2]− ERN,I[b2]
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
= 1

2
varRN,U [b]− varRN,I[b]
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
. �

Proof of Lemma 6. Using the conditional PDF (A.8), we obtain

E[εk|s] =
∫ ∞
−∞

xkϕε|s(x|s)dx = 1
G1(s)

N∑
n=1

∫ ∞
−∞

xkedn(x)dx, (A.48)

where ϕε|s(x|s) is given by (A.8), G1(s) is a normalization function, and dn(x) is given by
equation (A.10). Computing the integral (A.48) for k = 1 and k = 2, we obtain:

E[ε|s] =
N∑
n=1

µ0/σ
2
0 + bn + hλ>Σ−1

ν s/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
πUn (p) = µ0/σ

2
0 + EU [bn] + hλ>Σ−1

ν s/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
,(A.49)

E[ε2|s] = 1
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0
+ EU

[(µ0/σ
2
0 + bn + hλ>Σ−1

ν s/γI
h2(λ>Σ−1

ν λ/γ2
I ) + 1/σ2

0

)2]
. (A.50)

Combining (A.49) and (A.50), we obtain the conditional variance (41). �
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Lemma A.8. i) The market is effectively complete if and only if there exists a portfolio
that replicates ln (πn(ε)/πUn (p)), that is, there exist ω-independent λ̂0 ∈ R and λ̂ ∈ RM−1

such that
ln
(
πn(ε)
πUn (p)

)
= λ̂0 + C(ωn)>λ̂. (A.51)

ii) The equilibrium Pareto efficient portfolios are given by:

θ∗I = 1
γI

λ̂(1− h)/γU − ν
h/γI + (1− h)/γU

, (A.52)

θ∗U = − 1
γU

λ̂h/γI + ν

h/γI + (1− h)/γU
. (A.53)

Proof of Lemma A.8. i) Suppose, the market is effectively complete. Taking logs on
both sides of the equation (39) with `n = 0, and rearranging terms, we find that γUWU,T ,n−
γIWI,T ,n−` = ln (πUn (p)/πn(ε)). Hence, the log-ratio of probabilities can be replicated by a
portfolio of γUθ∗U−γIθ∗I units of risky assets and γU(WU,0−p>θ∗U)erT−γI(WI,0−p>θ∗I )erT−`
units of bond.

Suppose, there exist λ0 ∈ R and λ̂ ∈ RM−1 such that (A.51) holds. Hence, πn(ε) =
πUn (p) exp(λ̂0 +C(ωn)>λ̂). Substituting πn(ε) into investor I’s optimization (3), we obtain:

max
θI

E
[
−e−γIWI,T

∣∣∣ε, p] = max
θI

[
−

N∑
n=1

πUn (p)eλ̂0+C(ωn)>λ̂−γIWI,T ,n

]
. (A.54)

Substituting wealth WI,T ,n from the budget constraint (5) into optimization (A.54), and
rearranging terms, we observe that this optimization is equivalent to maximizing

max
θI

[
−

N∑
n=1

πUn (p)e−γI(C(ωn)−erT p)>(θI−λ̂/γI)
]

= max
θ̂

[
−

N∑
n=1

πUn (p)e−γU (C(ωn)−erT p)>θ̂
]
,

(A.55)
where, by a change of variable, θ̂ = (θI − λ̂/γI)(γI/γU). The second optimization in (A.55)
is the same as that of investor U . Hence, θ∗U = θ̂∗ = (θ∗I − λ̂/γI)(γI/γU), or, equivalently:

γIθ
∗
I − γUθ∗U = λ̂. (A.56)

Multiplying (A.56) by (C(ωn) − erTp), we obtain γI(C(ωn) − erTp)>θ∗I − γU(C(ωn) −
erTp)>θ∗U = (C(ωn) − erTp)>λ̂. The latter equation and budget constraints (5) then im-
ply γUWU,T ,n − γIWI,T ,n − ` = ln (πUn (p)/πn(ε)), where ` does not depend on ωn, which is
equivalent to the Pareto efficiency condition (39) with `n = 0.
ii) The equilibrium Pareto efficient portfolios satisfy the market clearing condition (6) and
efficiency condition (A.56). Solving the latter two equations with two unknowns, we obtain
portfolios (A.52) and (A.53). �
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Proof of Proposition 4. i) Substituting πn(ε) from (1) and πUn (p) from (A.29) into
ln(πn(ε)/πUn ), and using market clearing Ĥ(p) = −s, where s = (hλε/γI + ν), we find:

ln
(
πn(ε)
πUn (p)

)
= bnε−

1
2
b2
n + 2bn

(
µ0/σ

2
0 + hλ>Σ−1

ν (hλε/γI + ν) /γI
)

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+ const, (A.57)

where const does not depend on state ωn. The log-ratio of probabilities in (A.57) is a
quadratic function of bn. Hence, by Lemma A.8, the optimal portfolios are Pareto efficient
if and only if there exists a portfolio that replicates b2

n.
ii) Substituting bn = λ0 +C(ωn)>λ from (28) and b2

n = λ̃0 +C(ωn)>λ̃ from the conditions
of Proposition 4 into (A.57), we find that the the replicating portfolio λ̂ in (A.51) for the
ratio ln(πn(ε)/πUn ) is given by:

λ̂ = λ

(
ε− µ0/σ

2
0 + hλ>Σ−1

ν s/γI
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
− 0.5λ̃
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0
. (A.58)

Substituting (A.58) into equation (A.52) for the portfolio of the informed investor, we
observe that investor I shorts portfolio λ̃, which replicates the quadratic derivative. Con-
sequently, investor I sells the quadratic derivative to investor U .
iii) From the FOC of investor I (A.28), we find that P (ε, ν) = fI(λε − γIθ∗I ). Using the
expression for fI(x) in (32), we obtain:

P (ε, ν) =
∑N
j=1C(ωj) exp {aj + C(ωj)>(λε− γIθ∗I )}∑N

j=1 exp {aj + C(ωj)>(λε− γIθ∗I )}
. (A.59)

Using θ∗I from (A.52), and the spanning condition bn = λ0 + C(ωn)>λ, we obtain:

C(ωn)>(λε− γIθ∗I ) = (bn − λ0)ε− (1− h)/γUC(ωn)>λ̂
h/γI + (1− h)/γU

+ 1
h/γI + (1− h)/γU

C(ωn)>ν,

(A.60)
where λ̂ is such that ln(πn(ε)/πUn (p)) = λ̂0+C(ωn)>λ̂. Hence, C(ωn)>λ̂ = ln(πn(ε)/πUn (p))−
λ̂0. Substituting C(ωn)>λ̂ and ln(πn(ε)/πUn (p)) from (A.57) into (A.60), after some alge-
bra, we find that an +C(ωn)>(λε− γIθ∗I ) = vn + const, where vn is given by (18) in which
λ, ν ∈ RM−1, Ω ∈ R(N−1)×(M−1), and E, Q ∈ R(M−1)×(M−1), and const does not depend on
ωn. Substituting an + C(ωn)>(λε− γIθ∗I ) into (A.59), we find the price. �

Proof of Proposition 5. Consider an atomistic uninformed investor that becomes in-
formed and has risk aversion γU and wealth W̃I. The prices are not affected by this investor
becoming informed. From equation (34) for the trading strategy of the informed investor,
we see that γIθ∗I does not depend on γI . Hence, γIWI is the same for all informed investors,
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up to a constant. Therefore, equation (39) for the marginal rate of substitution also holds
(albeit with a different constant `) for the informed investor with risk aversion γU . Taking
conditional expectation E[·|s] on both sides of the latter equation, we obtain:

E[πn(ε) exp{−γUW̃I,T ,n}|s]
πUn (p) exp{−γUWU,T ,n}

= e
˜̀+`n , (A.61)

where ˜̀ does not depend on ωn. We note that `n is not affected by taking conditional
expectations on both sides of (39) since it does not depend on ε [see Lemma A.9 below].

Let JI(W0) be the expected utility of the atomistic uninformed investor who becomes
informed, under probabilities πn(ε), and JU(W0) be the expected utility of the uniformed
investor. From the uninformed investor’s point of view, the expected utility of the informed
investor is E[JI|s]. Using equation (A.61), we obtain:

E[JI|s] = −E[∑N

n=1 πn(ε) exp{−γUW̃I,T ,n}|s] = −∑N

n=1 π
U
n (p) exp{−γUWU,T ,n + ˜̀+ `n}

= −∑N

n=1 π
RN,U
n (p) exp{˜̀+ `n}

∑
N

n=1 π
U
n (p) exp{−γUWU,T ,n}

= exp{˜̀}ERN,U [exp{`n}]JU = exp{ˆ̀+ κU}JU ,
(A.62)

where ˆ̀= ˜̀− ERN,U [`n], where JU is the expected utility of investor U , and ERN,U [·] is the
expectation under the risk-neutral measure of investor U in (36). Let Ŵ be the amount
of wealth that investor U is willing to give up to become informed, so that E[JI(W0 −
Ŵ )|s] = JU(W0). We note that E[JI(W0 − Ŵ )|s] = E[JI(W0)|s] exp{γUŴ}. Therefore,
E[JI(W0− Ŵ )|s] = exp{γUŴ + ˆ̀+κU}JU(W0), and hence, Ŵ = −(ˆ̀+κU)/γU . It remains
now to find ˆ̀.

Define function F (z) = E[exp{zε}/∑N

j=1 exp{aj + bjε}]. Substituting πn(ε), πUn (p) =
E[πn(ε)|s], and θ∗I from (30) into (A.61), we obtain:

exp{(θ̂∗I (p) + γUθ
∗
U)>(C(ωn)− erTp)}F (λ0 + erTλ>p)

F (bn) = exp{˜̀+ `n}. (A.63)

Using the informational spanning condition (28), we find that λ0 + erTλ>p = λ0 +
λ>ERN,U [C(ωn)] = ERN,U [bn]. Using the latter fact, equation (A.69) for function F (z)
in Lemma A.10 below, and taking logs on both sides of equation (A.63), we obtain:

(θ̂∗I (p) + γUθ
∗
U)>(C(ωn)− erTp) + (hλ>Σ−1

ν s/γI + µ0/σ0 + ERN,U [bn])2

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

−(hλ>Σ−1
ν s/γI + µ0/σ0 + bn)2

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

= ˆ̀+ (`n − ERN,U [`(ω)]).
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Next, we take expectation ERN,U [·] on both sides of the above equation, and notice that its
first term cancels because ERN,U [C(ωn)] = erTp. Then, after some algebra, we obtain

ˆ̀= −1
2

varRN,U [bn]
h2λ>Σ−1

ν λ/γ2
I + 1/σ2

0
.

As shown above, Ŵ = −(ˆ̀+ κU)/γU , and hence, we obtain equation (43). �

Lemma A.9. 1) The measure of market incompleteness κU given by equation (37) and
the time-varying parameter `n of the probability-weighted ratio of marginal utilities (39)
are functions of the sufficient statistic s, and depend on ε only via s.
2) If C ∼ N (µC, σ2

C), then the measure of market incompleteness (37) is given by:

κU = 1
2

(
1/σ2

0 + 1/σ2
C

1/σ2
inc + 1/σ2

C

− 1− ln
(

1/σ2
0 + 1/σ2

C

1/σ2
inc + 1/σ2

C

))
, (A.64)

where σinc is given in (47).
Proof of Lemma A.9. 1) Substituting θ∗I from (30) into wealth WI, we find that the
probability πRN,I

n in (36) is given by:

πRN,I
n =

exp
{
an + bnε− (λε− θ̂∗I (p))>C(ωn)

}
∑

N

j=1 exp
{
aj + bjε− (λε− θ̂∗I (p))>C(ωj)

} =
exp

{
an + θ̂∗I (p)>C(ωn)

}
∑

N

j=1 exp
{
aj + θ̂∗I (p)>C(ωj)

} ,
where the second equality uses λ>C(ωn) = bn − λ0 from the informational spanning con-
dition (28). Hence, πRN,I

n only depends on s via the asset prices p. Probability πRN,U
n in

(36) depends only on s because investor U does not observe ε. Hence, κU in (37) does
not depend on ε. Finally, from equations (36) for the risk-neutral measures and the ratio
of probability-weighted marginal utilities (39) we observe that `n can be chosen such that
exp{`n} = πRN,I

n /πRN,U
n , and then `n does not depend on ε as shown above.

2) Next, we derive the measure of market incompleteness in a setting where C ∼ N(µC, σ2
C)

and ε = C + u, where u ∼ N(µ0, σ
2
0). Equation (46) for the asset prices in incomplete

markets implies that the risk-neutral measures of investor I and U are given by:

πRN,i = exp{−0.5(C1 − µi)2/σ2
i } − 0.5(C1 − µC)2/σ2

C}∫ ∞
−∞

exp{−0.5(C1 − µi)2/σ2
i } − 0.5(C1 − µC)2/σ2

C}dC1

, i = I, U, (A.65)

where σI = σ0, σU = σinc given by (47), and

µI = ŝ(s)/h− µ0, µU = γIσ
2
0s/h− µ0 + γUσ

2
inc(s− ŝ(s))/(1− h), (A.66)

and ŝ(s) solves the consistency equation (46). Simplifying equation (A.65) we obtain:

πRN,i =
exp

{
−0.5

(
1/σ2

i + 1/σ2
C

)(
C1 −

µi/σ
2
i+µC/σ2

C

1/σ2
i+1/σ2

C

)}
√

2π
√
σ2
i σ

2
C/(σ2

i + σ2
C)

. (A.67)
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Moreover, the consistency equation (46) takes the form:

µI/σ
2
I + µC/σ

2
C

1/σ2
I + 1/σ2

C

= µU/σ
2
U + µC/σ

2
C

1/σ2
U + 1/σ2

C

. (A.68)

Then, substituting measures (A.67) into the measure of incompleteness (37) and using
(A.68), after some algebra, we find that κU is given by equation (A.64). �

Lemma A.10. Let F (z) = E[exp{zε}/∑N

j=1 exp{aj + bjε}]. Then, F (z) is given by

F (z) = exp
{(hλ>Σ−1

ν s/γI + µ0/σ0 + z)2

h2λ>Σ−1
ν λ/γ2

I + 1/σ2
0

} 1
Ĝ(s)

, (A.69)

where Ĝ(s) does not depend on z.
Proof of Lemma A.10. Using conditional PDF (A.8), we obtain:

F (z) =
∫ ∞
−∞

exp{zε− 0.5(s− hλε/γI)>Σ−1
ν (s− hλε/γI − 0.5(ε− µ0)2/σ2

0)} dε

G(s) ,

where G(s) does not depend on z. Integrating, we obtain equation (A.69). �

Proof of Proposition 6. By Lemma A.2, the model is a limiting case of a discrete model
with parameters an and bn given by Equations (7) when N → ∞. Therefore, we derive
prices for the discrete state-space case and then take the limit N →∞.

First, consider an effectively complete market with a quadratic derivative C1(ωn)2.
Because bn = C1(ωn)/σ2

0, we obtain that λ = (1/σ2
0, 0)>, where λ is defined in Condition

(28), and hence, C1(ωn)2 is informationally irrelevant. By Proposition 4, the asset prices
are given by equation (16) in terms of vn in (18). Because, by assumption, there is no
noise in the market for C1(ωn)2, we take the limit in which noise ν2 → 0 in the equation
for prices.9 Substituting an and bn from (7) and λ = (1/σ2

0, 0)> in equation (18) for vn,
taking limit ν2 → 0 and denoting s = hε/(γIσ2

0) + ν1, after some algebra, we obtain:

vn =−C1(ωn)2

2σ2
com

− C1(ωn)
(
µ0

σ2
com

− 1
h/γI + (1− h)/γU

(
1 + h(1− h)/(γIγUσ2

νσ
2
0)

1 + h2/(γ2
I σ

2
νσ

2
0)

)
s

)

+ ln[ϕC(C1(ωn))] = −

(
C1(ωn)− (γIσ2

0s/h− µ0)
)2

2σ2
com

+ ln[ϕC(C1(ωn))] + (γIσ2
0s/h− µ0)2

2σ2
com

,

where volatility parameter σ2
com is given in (47). Substituting vn into Equations (17) and

9When ν2 = 0 the same prices P (ε, ν) can be obtained directly without taking the limit.
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(16) for the risk-neutral probabilities and prices, we obtain:

Pcom(s) =
∑N
n=1C1(ωn) exp

(
− (C1(ωn)−γIσ2

0s/h+µ0)2

2σ2
com

)
ϕC(C1(ωn))∑N

n=1 exp
(
− (C1(ωn)−γIσ2

0s/h+µ0)2

2σ2
com

)
ϕC(C1(ωn))

e−rT

=
E
[
C1 exp

(
− (C1−γIσ2

0s/h+µ0)2

2σ2
com

)]
E
[
exp

(
− (C1−γIσ2

0s/h+µ0)2

2σ2
com

)] e−rT ≡ PC(γIσ2
0s/h− µ0, σcom)e−rT .

(A.70)

Equation (A.70) gives the price Pcom(s) in (44) for the discrete state-space, and it also
holds for continuous state-space by taking the limit N →∞.

Next, we turn to the incomplete-market case with one risky asset and derive prices
using P (ε, ν) = fI(xI)e−rT = fU(xU)e−rT , which follows from FOC (A.28) and condition
(A.34). Substituting fI(x) and fU(x) from Equations (32) and (33) into the equation for
P (ε, ν) and observing that Σν = σ2

ν , we obtain:

Pinc(s)erT =
∑N
n=1C1(ωn) exp {an + C1(ωn)xI}∑N

n=1 exp {an + C1(ωn)xI}

=
∑N
n=1C1(ωn) exp {an + 1

2
b2
n

h2λ2/(γ2
Iσ

2
ν)+1/σ2

0
+ C1(ωn)xU}∑N

n=1 exp {an + 1
2

b2
n

h2λ2/(γ2
Iσ

2
ν)+1/σ2

0
+ C1(ωn)xU}

,

where xI and xU solve the system of equations (A.33) and (A.34). Substituting λ = 1/σ2
0,

an and bn from (7) into the above equation for Pinc(s), similarly to (A.70) we obtain:

Pinc(s) = PC(σ2
0xI − µ0, σ0)e−rT = PC(σ2

incxU − µ0σ
2
inc/σ

2
0, σinc)e−rT , (A.71)

where volatility σinc is given in (47). Next, from equation (A.33), we express xU in terms
of xI and, after some algebra, we find that σ2

incxU −µ0σ
2
inc/σ

2
0 = γIσ

2
0s/h−µ0 + γUσ

2
inc(s−

hxI/γI)/(1 − h). Substituting the latter equality into the second equation in (A.71) and
denoting ŝ(s) ≡ hxI/γI, we obtain price Pinc(s) in (44), and also equation (46) for ŝ(s).

Differentiating PC(µ, σ) with respect to µ, after some algebra, we obtain:

∂PC(µ, σ)
∂µ

=
E
[
C2

1 exp
(
− (C1−µ)2

2σ2

)]
σ2E

[
exp

(
− (C1−µ)2

2σ2

)] −
E

[
C1 exp

(
− (C1−µ)2

2σ2

)]
σE

[
exp

(
− (C1−µ)2

2σ2

)]
2

= v̂ar[C1]
σ2 > 0,

where variance v̂ar[C1] is calculated under the new probability measure, which is given
by ϕC(C1) exp (−(C1 − µ)2/(2σ2)) /E [exp (−(C1 − µ)2/(2σ2))]. Therefore, PC(µ, σ) is an
increasing function of µ, and hence, Pcom(s) is increasing in s. Differentiating equation
(46) with respect to s and solving for ŝ′(s), we find that:

ŝ′(s) = γIσ
2
0(∂PC(µU(s), σinc)/∂µ)

γIσ2
0(∂PC(µI(s), σ0)/∂µ) + γUσ2

inc(∂PC(µU(s), σinc)/∂µ) > 0,
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where µI(s) = γIσ
2
0 ŝ(s)/h−µ0 and µU(s) = γIσ

2
0s/h−µ0 +γUσ

2
inc(s− ŝ(s))/(1−h). Hence,

Pinc(s) = PC(γIσ2
0 ŝ(s)/h− µ0, σinc) is an increasing function of s. �

Proof of Proposition 7. From formula 8.957 in Gradshteyn and Ryzhik (2007)

ext−0.5t2 =
∞∑
n=0

Hn(x) t
n

n! , (A.72)

where Hn+1(x) = 2xHn(x)−2nHn−1(x) (formula 8.952 in Gradshteyn and Ryzhik (2007)).
Then, we note that

exp
(
−(C1 − µ)2

2σ2

)
= exp

(
−(C1 − µC)2

2σ2
C

σ2
C

σ2 + C1 − µC
σC

σC
σ

µ− µC
σ

− (µ− µC)2

2σ2

)
. (A.73)

Next, we expand (A.73) using (A.72), and then substituting the result into equation (45),
we obtain the expansion (49). �

Proof of Corollary 3. Similar to the derivation of the prices in incomplete and complete
markets in Proposition 7, we find that EU [C1] = PC(γIσ2

0s/h−µ0, σinc), where σinc is given
in equation (47). Next, we consider the expansion (49) and retain only terms that have
the order of magnitude 1/σ0 and 1/σ2

0. We note that when 1/σ2
0 is small then 1/σ2, where

σ is either σcom or σinc is even smaller. Hence, from the expansion (49) we obtain the
following approximation:

PC(µ, σ) ≈ µC + σ2
C

σ2 (µ− µC) + σ3
C

2σ2

[(µ− µC
σ

)2
− 1

]
. (A.74)

Using equation (A.74), we obtain the following expression for the risk premium:

EU [C]− Pcom(s)erT = PC(γIσ2
0s/h− µ0, σinc)− PC(γIσ2

0s/h− µ0, σcom)

≈ σ2
C

σ2
inc

(γIσ2
0s/h− µ0 − µC) + σ3

C

2σ2
U

[(γIσ2
0s/h− µ0 − µC

σU

)2
− 1

]

− σ2
C

σ2
com

(γIσ2
0s/h− µ0 − µC)− σ3

C

2σ2
com

[(γIσ2
0s/h− µ0 − µC

σcom

)2
− 1

]
,

where σinc and σcom are given in (47). The above expression depends on a random sufficient
statistic s. Next, we take the expectation with regard to s, and taking into account that
E[γIσ2

0s/h− µ0 − µC] = 0 and var[s] = h2σ2
ε/(γ2

I σ
4
0) + σ2

ν , we obtain:

EU [C]− Pcom(s)erT ≈ −m3σ
3
C

2
h/γI

h/γI + (1− h)/γU

(σ2
C

σ2
0

( 1
σ2
inc

+ 1
σ2
com

) 1
1 + h2/(γ2

I σ
2
νσ

2
0)+γ

2
I σ

2
0σ

2
ν/h

2

σ2
com

)
.

The above expression shows that EU [C]− Pcom(s)erT ≈ −m3σ
3
CA(h), where A(h) > 0. To

further simplify the expression for the risk premium, we ignore terms of the order σ5
C, and
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assume that γU = γI = γ. Then, after some algebra, we obtain:

EU [C]− Pcom(s)erT ≈−m3σ
3
C

2
h/γI

h/γI + (1− h)/γU

(γ2
I σ

2
0σ

2
ν/h

2

σ2
com

)

= −m3σ
3
C

2
(
γ2σ2

ν + h(1− h)
σ2

0 + h2/(γ2σ2
ν)
)
. �

Proof of Proposition 8. i) We derive equation (54) by substituting PDF (51) into
equation (45), and then finding the expectations in equation (45) in closed form.
ii) Rewriting the expectations under the generalized gamma distribution (52) in the pricing
function (45) as integrals, after simple algebra, we obtain:

PC(µ, σ; k) =

∫ +∞

0
Ck

1 exp
{
−1

2

(
1
σ̂2
C

+ 1
σ2

0

)
C2

1 +
(
µ

σ2 − δ
)
C1

}
dC1∫ +∞

0
Ck−1

1 exp
{
−1

2

(
1
σ̂2
C

+ 1
σ2

0

)
C2

1 +
(
µ

σ2 − δ
)
C1

}
dC1

. (A.75)

For the case k = 1 the above pricing function can be easily computed in closed form, and
is given in equation (55) for k = 1. For general integer k > 1, denote the integrals in the
numerator and the denominator of (A.75) by Ik and Ik−1, respectively. Using integration
by parts, we obtain the following recursive equation for Ik:

Ik = σ̂2
Cσ

2

σ̂2
C + σ2

[(
µ

σ2 − δ
)
Ik−1 −

∫ +∞

0
Ck−1

1

(
exp

{
−1

2

(
1
σ̂2
C

+ 1
σ2

0

)
C2

1 +
(
µ

σ2 − δ
)
C1

})′
dC1

]

= σ̂2
Cσ

2

σ̂2
C + σ2

((
µ

σ2 − δ
)
Ik−1 + (k − 1)Ik−2

)
.

Dividing both sides by Ik−1 and using PC(µ, σ; k) = Ik/Ik−1, we obtain equation (55).
iii) Under the skew-normal distribution (53) the pricing function (45) becomes:

PC(µ, σ) =

∫ +∞

−∞
C1 exp

{
−(C1 − µ)2

2σ2 − (C1 − µ̂C)2

2σ̂2
C

}
Φ
(
α
C1 − µ̂C
σ̂C

)
dC1∫ +∞

−∞
exp

{
−(x− µ)2

2σ2 − (C1 − µ̂C)2

2σ̂2
C

}
Φ
(
α
C1 − µ̂C
σ̂C

)
dC1

. (A.76)

Denote by J1 and J0 the integrals in the numerator and the denominator, respectively.
After some algebra and integration by parts, we obtain:

J1 = exp
{
−1

2
(µ− µ̂C)2

σ̂2
C + σ2 −

1
2

(µ̂− µ)2

σ̂2
C/α

2 + σ̂2

}
sgn(α)σ̂3√
σ̂2
C/α

2 + σ̂2
+ σ̂2

Cµ+ σ2µ̂C
σ̂2
C + σ2 J0,

J0 = exp
{
−1

2
(µ− µ̂C)2

σ̂2
C + σ2

}∫ ∞
−∞

exp
{
−(x− µ̂)2

2σ̂2

}
Φ
(
α
x− µ̂C
σ̂C

)
dx

=
√

2πσ̂ exp
{
−1

2
(µ− µ̂C)2

σ̂2
C + σ2

}
Φ
sgn(α)(µ̂− µ̂C)√

σ̂2
C/α

2 + σ̂2

 ,
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where σ̂ = σ̂2
Cσ

2/(σ̂2
C+σ2), µ̂ = (σ̂2

Cµ+σ2µ̂C)/(σ̂2
C+σ2), and the computation of J0 uses the

following integral 8.259.1 in Gradshteyn and Ryzhik (2007):
∫∞
−∞ exp(−px2) erf(a+bx)dx =

(
√
π/p) erf(a√p/

√
b2 + p), where the error function is given by erf(x) ≡ 2Φ(x

√
2)−1. After

some algebra, we obtain PC(µ, σ) = J1/J0 given by equation (56). �

Proof of Lemma 7. For the case of C1 ∼ N (µC, σ2
C) from equation (54) with L = 1,

we observe that PC(µ, σ) = (µσ2
C + µCσ

2)/(σ2
C + σ2). Consequently, equation (46) for ŝ(s)

becomes linear. Solving the latter equation, we obtain:

ŝ(s) = σ2
C + σ2

0
σ2
com + σ2

C

s+ µ0 + µC
σ2
com + σ2

C

σ2
com − σ2

0
γIσ2

0/h
, (A.77)

where σcom is given in (47). Substituting (A.77) into (44), after some algebra, we obtain:

Pinc(s) = (γIσ2
0 ŝ(s)/h− µ0)σ2

C + µCσ
2
0

σ2
C + σ2

0
= (γIσ2

0s/h− µ0)σ2
C + µCσ

2
com

σ2
com + σ2

0
= Pcom(s), (A.78)

and hence, the two prices coincide. After some algebra, we obtain equation (48) for the
price. �

Proof of Proposition 8. Differentiating equation (31) for the incomplete market price,
we obtain

∂

∂ν

(
hf−1

I (erTP )
γI

+ (1− h)f−1
U (erTP )
γI

)
= E +Q. (A.79)

Next, we use the fact that ∂f−1(y)/∂y = f ′(x)−1. Differentiating functions fI(x) and fU(x),
and noting that xI = f−1

I (erTP ) and xU = f−1
U (erTP ) are given by equations (A.35), we

obtain that f ′I(xI) = varRN,I[C] and f ′U(xU) = varRN,U [C]. Substituting the expressions for
derivatives into equation (A.79), after some algebra, we obtain the expression for ∂P/∂ν
for the incomplete market in equation (58). Equation (57) for the complete market can
be obtained as a special case of (58) when varRN,I[C] = varRN,U [C] = varRN[C], because the
risk-neutral measure in the complete market is unique. �

Lemma A.11. Consider an economy where the probabilities of states are given by equa-
tion (1) and the distribution of shocks is given by (2). Suppose, the informed investor
observes a noisy signal ε̂ = ε+ z, where z ∼ N (0, σ2

z). Then, the economy is equivalent to
the baseline economy where the probabilities of states and the shock distribution are as in
(59) and the informed investor observes shock ε̂.
Proof of Lemma A.11. Using Bayes’ law, we observe that

ϕε|ε̂(x|y) =
ϕε̂|ε(y|x)ϕε(x)

ϕε̂(y) =
∑

N

j=1 exp{an + bnx} exp{−0.5(y − x)2/σ2
z − 0.5(x− µ0)2/σ2

0}
ϕε̂(y) .
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Using the law of total probability, after some algebra, we find that

πn(ε̂) =
∫ ∞
−∞

πn(x)ϕε|ε̂(x|ε̂)dx = eân+b̂nε̂∑
N

j=1 e
âj+b̂j ε̂

,

ϕε̂(y) =
∫ ∞
−∞

ϕε̂|ε(x|y)ϕε(x)dx =

(∑
N

j=1 e
âj+b̂jy

)
e−0.5(y−µ0)2/(σ2

0+σ2
z)∫∞

−∞

(∑
N

j=1 e
âj+b̂jy

)
e−0.5(y−µ0)2/(σ2

0+σ2
z)dx

,

where ân = an + 0.5(bn + µ0/σ
2
0)2/(1/σ2

z + 1/σ2
0) and b̂n = bn/(1 + σ2

z/σ
2
0). Investor U

learns ε̂ from asset prices in the same way as in the baseline model. �
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Internet Appendix

“Multi-Asset Noisy Rational Expectations
Equilibrium with Contingent Claims”

Georgy Chabaukari Kathy Yuan Konstantinos E. Zachariadis

In this Internet Appendix, we present several extensions of our model to demonstrate
the robustness of our methodology and results to various alternative specifications. In
Section IA1, we examine a complete market economy where probabilities of states, and
distributions of shock ε and noise trader demands ν are general. In Section IA2, we
extend our analysis to the economy with random endowment shocks and without noise
traders. In Section IA3, we consider a model of information aggregation with multiple
heterogeneously informed investors. Finally, in Section IA4, we generalize our results to
the case of multidimensional shocks ε.

IA1 Complete Markets with General Distributions

In this section, we extend the analysis of Section 3.1 to a complete-market economy with
general probabilities of states πn(ε), distribution ϕε(x) of the aggregate shock, and distri-
bution ϕν(z) of noise trader demands. For the simplicity of exposition, we assume that
informed and uninformed investors and noise traders all have the same mass 0.5, so that
the mass parameter is h = 0.5. We find asset prices P (ε, ν) and investor I’s portfolio
θ∗I (p; ε) in closed form in terms of simple integrals, and investor U ’s portfolio θ∗U(p) as a
solution of a fixed-point problem. First, we derive portfolio θ∗I (p; ε) below.
Lemma IA1.1 (Investor I’s optimal portfolio). Investor I’s optimal portfolio is

θ∗I (p; ε) = 1
γI

Ω−1
(
ξ̃(ε)− ṽ(p)

)
, (IA.1)

where Ω ∈ R(N−1)×(N−1) is a matrix of excess payoffs with elements Ωn,k = Ck(ωn)−Ck(ωN),
and ξ̃(ε) ∈ RN−1 and ṽ(p) ∈ RN−1 are the vectors of log ratios of real and risk-neutral
probabilities, respectively, given by:

ξ̃(ε) =
(

ln
(
π1(ε)
πN(ε)

)
, . . . , ln

(
πN−1(ε)
πN(ε)

))>
, (IA.2)

ṽ(p) =
(

ln
(
πRN

1
πRN
N

)
, . . . , ln

(
πRN
N−1
πRN
N

))>
. (IA.3)
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Portfolio θ∗I (p; ε) is still available in closed form but is no longer a linear function of ε.1

Nonetheless, it remains separable in shock ε and prices p. Substituting θ∗I (p; ε) into the
market clearing condition (6), we obtain:

Ω−1ξ̃(ε)
γI

+ ν + H̃(p) = 0, (IA.4)

where H̃(p) = θ∗U(p) − Ω−1ṽ(p)/γI. As in the main text, we focus on equilibrium prices
that reveal the sufficient statistic Ω−1ξ̃(ε)/γI + ν. The derivation of equilibrium proceeds
in the same way as in Section 3. Proposition IA1.1 reports the result.
Proposition IA1.1 (Equilibrium with M = N , general case). Let probabilities πn(ε)
and PDFs ϕε(x) and ϕν(z) of shock ε and noise ν be continuous and bounded functions
on R and RM−1, respectively. Then, the following statements hold.
i) If there exists an REE, then the vector of asset prices P (ε, ν) and risk-neutral probabil-
ities πRN

n are given by:

P (ε, ν) =
[
πRN

1 C(ω1) + πRN
2 C(ω2) + . . .+ πRN

N C(ωN)
]
e−rT , (IA.5)

πRN
n = evn∑

N

j=1 e
vj
, (IA.6)

where probability parameters vn are given by:

vn = γI
γI + γU

Ψn

(
−Ω−1ξ̃(ε)

γI
− ν

)
+ γIγU
γI + γU

C(ωn)>
(

Ω−1ξ̃(ε)
γI

+ ν

)
, (IA.7)

where function Ψn is given by the following integral:

Ψn(z) = ln
(∫ +∞

−∞
πn(x)ϕε(x)ϕν

(
−Ω−1ξ̃(x)

γI
− z

)
dx

)
, (IA.8)

and vector ξ̃(ε) is given by equation (IA.2). Investor I’s portfolio is given by equation
(IA.1) and investor U ’s portfolio solves the following fixed point equation:

θ∗U(p) = 1
γU

Ω−1
(

Ψ̃
(
θ∗U(p)− Ω−1ṽ(p)

γI

)
− ṽ(p)

)
, (IA.9)

1It is easy to show that in our complete market the distribution of asset payoffs conditional on ε is
from the exponential family, that is, has the following form:

Prob(C(ωn)|ε) = exp
{
C(ωn)>Ω−1ξ̃(ε)− ln

[
N∑
i=1

exp
(
C(ωi)>Ω−1ξ̃(ε)

)]}
, for n = 1, . . . , N.

We are grateful to Bradyn Breon-Drish for pointing this out to us.
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where ṽ(p) ∈ RN−1 has elements vn− vN , and Ψ̃(z) ∈ RN−1 has elements Ψn(z)−ΨN(z).
ii) The REE in which investor U observes only asset prices exists if and only if Ψ̃(s)/γU −
Ωs : RM−1 → RM−1 is an invertible function on its range, or equivalently, the price vector
P (ε, ν) is an invertible function of the sufficient statistic Ω−1ξ̃(ε)/γI + ν on its range.

Proposition IA1.1 provides tractable equilibrium prices (IA.5). Finding these prices does
not involve solving any equations but may require numerical integration. Investor U ’s
portfolio θ∗U(p) solves a fixed-point equation. The equilibrium is derived in terms of function
Ψ̃(z), which is the vector of log ratios of posterior probabilities of investor U , as shown
in the proof of Proposition IA1.1 below. When shock ε has PDF (2) and ν is normally
distributed, Ψ̃(z) becomes a linear function of z. Then, equation (IA.9) for θ∗U(p) can be
solved in closed form, and the equilibrium coincides with that in Proposition 1.

Proposition IA1.1 provides a necessary and sufficient condition for the existence of equi-
librium in which investor U observes only the asset prices. The condition requires function
Ψ̃(s)/γU −Ωs to be invertible or, equivalently, price P (ε, ν) to be an invertible function of
the sufficient statistic on its range. When this condition is satisfied, investor U can infer
the sufficient statistic from the prices and calculate posterior probabilities, accordingly.
When function P (ε, ν) is not invertible, observing P (ε, ν) does not reveal the sufficient
statistic. This last fact is not consistent with the existence of equilibrium because observ-
ing prices reveals the sufficient statistic from the market clearing condition (IA.4). Similar
non-existence of equilibrium occurs in a model with one risky asset in Breon-Drish (2010)
when the asset price is a non-monotone function of the sufficient statistic. The intuition
is that the informed and uninformed investors may trade assets in opposite directions,
which makes prices less informative than the sufficient statistic because informed demands
are offset by uninformed demands. This may happen when noise trader demands lead to
higher asset prices that investor U may confuse with good news about the realization of ε.

When prices P (ε, ν) do not reveal the sufficient statistic Ω−1ξ̃(ε)/γI + ν, it can still be
inferred in economies where investor U additionally observes the residual demand of the
informed investor and noise traders, Θ̂ ≡ θ∗I (p; ε) + ν. In particular, using the informed
demand (IA.1), we find that Ω−1ξ̃(ε)/γI + ν = Θ̂ + Ω−1ṽ(p)/γI. Hence, the residual
demand Θ̂ may reveal additional information that is not in prices. The information in Θ̂ is
redundant only when prices reveal the sufficient statistic. In that case, Θ̂ can be inferred
by substituting prices p into the market clearing condition Θ̂ + θ∗U(p)=0. Such inference is
not possible when prices are less informative than Θ̂ because investor U ’s portfolio θ∗U(p; Θ̂)
becomes a function of Θ̂, as shown below, and cannot be found without knowing Θ̂.
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The assumption that investor U observes the residual demand Θ̂ is similar to that in
the literature on microstructure theory [e.g., Kyle (1985)] where an uninformed market
maker observes Θ̂. Allowing investor U to observe Θ̂ restores the existence of equilibrium,
as shown in Breon-Drish (2010) in economies with one risky asset. Proposition IA1.2
below derives the equilibrium in a multi-asset economy where investor U can observe the
residual demand Θ̂ and demonstrates its existence.
Proposition IA1.2 (Equilibrium when θ∗I (p; ε) + ν can be observed). If investor
U can learn about shock ε both from asset prices p and the residual demand of informed
and noise traders Θ̂ = θ∗I (p; ε) + ν, then there exists unique REE with asset prices and
risk-neutral probabilities given by equations (IA.5) and (IA.6). The informed investor’s
portfolio is given by equation (IA.1), and the uninformed investor’s portfolio is given by:

θ∗U
(
p; Θ̂

)
= 1
γU

Ω−1
(

Ψ̃
(
−Θ̂− Ω−1ṽ(p)

γI

)
− ṽ(p)

)
, (IA.10)

where Ψ̃(z) is a vector with elements Ψn(z)−ΨN(z), and Ψn(z) are given by (IA.8).
Next, we provide an example of an economy where asset prices are available in analytic

form and are non-invertible functions of the sufficient statistic. Specifically, we consider
an economy where probabilities πn(ε) and PDF of the aggregate shock ϕε(x) are given by
Equations (1) and (2), respectively, as in the baseline analysis. The market is complete, and
investors can trade an underlying asset with payoffs C1(ωn) = bn/λ1, N−2 informationally
irrelevant state contingent claims, and a bond. We assume that the noise traders only trade
in the market for the underlying asset. However, in contrast to our baseline analysis in
Section 3.1, the noise trader demand ν1 in the market for the underlying asset is non-
normal, and its PDF is a mixture of normals given by:

ϕν(x) = w√
2πσν

exp
(
−(x− µν,1)2

2σ2
ν

)
+ 1− w√

2πσν
exp

(
−(x− µν,2)2

2σ2
ν

)
, (IA.11)

where 0 ≤ w ≤ 1, σν > 0, and µν,1, µν,2 ∈ R. Proposition IA1.3 presents the asset prices.
Proposition IA1.3 (Asset Prices when Noise is a Mixture of Normals). Let
πn(ε), ϕε, and ϕν be given by Equations (1), (2), and (IA.11), respectively. Then the price
of the asset with payoff C1(ω) = b/λ1 in the above economy is a function of s = λ1ε/γI +ν1

and is given by equation (IA.5), where risk-neutral probabilities πRN
n are given by:

πRN
n =

ev̂n
(
wev̂1,n + (1− w)ev̂2,n

) γI
γI+γU

∑
N

j=1 e
v̂j
(
wev̂1,j + (1− w)ev̂2,j

) γI
γI+γU

, (IA.12)
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and parameters v̂n, v̂1,n and v̂2,n are as follows:

v̂n = an + 1
2

γI
γI + γU

b2
n + 2(µ0/σ

2
0)bn

λ2
1/(σ2

νγ
2
I ) + 1/σ2

0
+ γIγU
γI + γU

(
1 + λ2

1/(γUγIσ2
ν)

λ2
1/(σ2

νγ
2
I ) + 1/σ2

0

)
bns

λ1
, (IA.13)

v̂l,n =− 1
γI

µν,l
2σ2

0σ
2
ν

γI (µν,l − 2s) + 2λ1(µ0 + bnσ
2
0)

λ2
1/(σ2

νγ
2
I ) + 1/σ2

0
, l = 1, 2. (IA.14)

Figure IA.1 shows the price of the underlying asset with cash flow C1 when the noise
trader demand PDF is a mixture of normals, given by equation (IA.5) with risk-neutral
probabilities (IA.12), for calibrated parameters. We observe that the price is a non-
monotone function of the sufficient statistic s.

When w = 0 or w = 1 and µν,1 = µν,2 = 0, the model reduces to the baseline
model in Section 3.1, and the risk-neutral probability parameter v̂n in equation (IA.13)
coincides with parameter vn in equation (18) in the baseline model for h = 0.5. We
now look at a particular example in which the underlying asset has payoffs C1(ωn) =
CN + (CN − CN)(n− 1)/(N − 1) and distribution parameters an and bn are as follows:

an = −C1(ωn)2

2σ2
0
− µ0C1(ωn)

σ2
0

+ ln [ϕC(C1(ωn))] , bn = C1(ωn)
σ2

0
, (IA.15)

where ϕC(x) = xk−1 exp(−x2/σ̂2
C − δx)/Λ, x > 0, is a generalized gamma distribution,

Λ > 0 is a normalizing constant, k ≥ 1 is a power parameter, and δ is a drift parameter.
As demonstrated in Lemma A.2 in the Appendix, in the limit N →∞, the economy with
parameters (IA.15) converges to an economy where payoff C1 has continuous PDF ϕC(x),
and ε is a signal given by ε = C1 + u, where u ∼ N(µ0, σ

2
0). Figure IA.1 plots the price

of the underlying asset Pcom(s) as a function of sufficient statistic s for specific model
parameters given in the legend of the figure. The figure demonstrates that the price is a
non-monotone function of sufficient statistic s, and hence, the equilibrium only exists if
the uninformed investor can observe the residual demand.

We note that when the market is incomplete, the conditions for its effective com-
pleteness remain the same as in Sections 3.2 and 4.2 of the paper. That is, the market is
effectively complete if the probability-weighted ratio of marginal utilities is constant across
the states of the economy:

πn(ε) exp{−γIWI,T ,n}
πUn (p) exp{−γUWU,T ,n}

= e`. (IA.16)

Following the analysis in Section 4.2, taking logs on both sides of equation (IA.16) we find
that γUWU,T,n − γIWI,T,n − l = ln(πUn (p)/πn(ε)). Lemma A.8 in the paper shows that the
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Figure IA.1: Price of the Underlying Asset when Noise is Mixture of Normals.
This Figure shows the complete market price of the underlying asset Pcom(s) as a function of the
sufficient statistic s = λ1ε/γI + ν1 in a model where distribution parameters an and bn are given
by (IA.15). Noise trader demand has mixture of normals PDF (IA.11) with weight w = 0.5. The
other distribution and preferences parameters are: µ0 = 0, σ0 = 1, σν = 0.5, σ̂C = 1, k = 3,
δ = 2, µν,1 = −µν,2 = 4, N = 1000, γI = γU = 1, r = 0, and T = 1.

latter equation implies that the market is effectively complete if there exists a portfolio
that replicates ln(πUn (p)/πn(ε)). The latter lemma does not make any distributional as-
sumptions about ε and ν. Therefore, we can use this lemma to identify the security that
completes the market when the noise trader demand is not normally distributed. Lemma
IA.2 below, derives this security for the above economy where the noise trader demand
has the mixture of normals PDF given by (IA.11).
Lemma IA.2 (Effective Completeness). Let πn(ε), ϕε, and ϕν be given by Equations
(1), (2), and (IA.11), respectively. Suppose, there is only one risky asset with the payoff
C1n = bn/λ1 traded in the economy. Then, the market becomes effectively complete if and
only if a security or portfolio with the following payoff becomes available for trading:

C2n = 1
2

b2
n

λ2
1/(σ2

νγ
2
I ) + 1/σ2

0
+ ln

(
wev̂1,n + (1− w)ev̂2,n

)
, (IA.17)

where v̂l,n are given by (IA.14).

IA1.1 Proofs

Proof of Lemma IA1.1. Investor I’s optimal portfolio in equation (A.6) in the proof
of Lemma 1 holds for general probabilities πn(ε). Hence, substituting ξ̃(ε) from equation
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(IA.2) into equation (A.6), we obtain equation (IA.1). �

Proof of Proposition IA1.1. i) Suppose, the equilibrium exists. First, we find the
posterior probabilities. Let s = Ω−1ξ̃(ε)/γI + ν. Similar to equation (A.7), by Bayes rule,

ϕε|s(x|y) =
ϕν
(
y − Ω−1ξ̃(x)/γI

)
ϕε(x)∫+∞

−∞ ϕν
(
y − Ω−1ξ̃(x)/γI

)
ϕε(x)dx

. (IA.18)

From the market clearing condition (IA.4) we note that in equilibrium s = −H̃(p). Then,
similar to the proof of Lemma 2, investor U ’s posterior probabilities πUn (p) are given by:

πUn (p) =
∫ +∞

−∞
πn(x)ϕε|s

(
x| − H̃(p)

)
dx

= 1
G1(p)

∫ +∞

−∞
πn(x)ϕε(x)ϕν

(
−Ω−1ξ̃(x)

γI
− H̃(p)

)
dx =

exp
{

Ψn

(
H̃(p)

)}
G1(p) ,

(IA.19)

where G1(p) is a normalizing function and Ψn(·) is given by (IA.8). The integrals in
Equations (IA.18) and (IA.19) exist because ϕν(·) and ϕε(·) are bounded and continuous.

Next, we derive investor U ’s portfolio. Equation (A.11) in the proof of Proposition 1
derives this portfolio for general posterior and risk-neutral probabilities. From equation
(IA.19), we obtain that ln(πUn/πUN) = Ψn

(
H̃(p)

)
− ΨN

(
H̃(p)

)
= Ψ̃n

(
H̃(p)

)
. Substituting

this expression in equation (A.11), we have

θ∗U(p) = 1
γU

Ω−1
(
Ψ̃
(
H̃(p)

)
− ṽ(p)

)
. (IA.20)

Substituting H̃(p) = θ∗U(p)−Ω−1v(p)/γI into equation (IA.20), we obtain equation (IA.9).
Then, we find vector ṽ(p). Subtracting Ω−1ṽ(p)/γI from both sides of (IA.20), multi-

plying both sides by Ω, using H̃(p) = −Ω−1ξ̃(ε)/γI − ν, and rearranging terms we obtain:

1
γU

Ψ̃
(
−Ω−1ξ̃(ε)

γI
− ν

)
+ Ω

(
Ω−1ξ̃(ε)
γI

+ ν

)
= γI + γU

γIγU
ṽ(p). (IA.21)

After some algebra, we obtain components of vector ṽ(p) ∈ RN−1 from equation (IA.21):

ṽn = γIγU
γI + γU

(
1
γU

Ψn

(
−Ω−1ξ̃(ε)

γI
− ν

)
− 1
γU

ΨN

(
−Ω−1ξ̃(ε)

γI
− ν

)

+ (C(ωn)− C(ωN))>
(

Ω−1ξ̃(ε)
γI

+ ν

))
.
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where n = 1, . . . , N − 1. From the fact that ṽn = ln(πRN
n /πRN

N ) we obtain:

πRN
n =



eṽn

1 +∑N−1
i=1 eṽi

, n = 1, . . . , N − 1,

1
1 +∑N−1

i=1 eṽi
, n = N.

(IA.22)

It can be easily verified that ṽn = vn − vN , where vn is defined in equation (IA.7). Sub-
stituting ṽn = vn − vN into equation (IA.22), after simple algebra, we obtain risk-neutral
probabilities (IA.6). The prices are then given by equation (IA.5) because of the absence
of arbitrage. This completes the derivation of equilibrium when it exists.
ii) Suppose, there exists an REE. First, we show that Ψ̃(s)/γU−Ωs is invertible on its range.
Suppose, it is not. Then, there exist s′ and s′′ such that Ψ̃(s′)/γU −Ωs′ = Ψ̃(s′′)/γU −Ωs′′

but s′ 6= s′′. Pick (ε′, ν ′) and (ε′′, ν ′′) such that s′ = Ω−1ξ̃(ε′)/γI+ν ′ and s′′ = Ω−1ξ̃(ε′′)/γI+
ν ′′. From equation (IA.21) we observe that vector ṽ(p), and, hence, also the risk-neutral
probabilities (IA.22), are the same for (ε′, ν ′) and (ε′′, ν ′′). Then, from equation (IA.5)
for P (ε, ν), we find that P (ε′, ν ′) = P (ε′′, ν ′′). Hence, P (ε, ν) is not injective. In Lemma
IA.2 below, we prove that the price vector is injective if an REE exists, which leads to a
contradiction. Therefore, Ψ̃(s)/γU − Ωs is invertible on its range.

Let Ψ̃(s)/γU−Ωs be invertible on its range. Then, we show that the fixed-point equation
(IA.9) has a unique solution. Subtracting Ω−1ṽ(p)/γI from both sides of equation (IA.9)
and then multiplying both sides by Ω, after some algebra, we find that θ∗U(p) satisfies

1
γU

Ψ̃
(
θ∗U(p)− Ω−1ṽ(p)

γI

)
− Ω

(
θ∗U(p)− Ω−1ṽ(p)

γI

)
= γI + γU

γIγU
ṽ(p). (IA.23)

Equation (IA.23) has a unique solution θ∗U(p), which is an implicit function of ṽ(p), because
Ψ̃(s)/γU −Ωs is invertible on its range and because the right-hand side of (IA.23) belongs
to this range when vn is given by equation (IA.7). By construction, θ∗I (p; ε) and θ∗U(p)
are optimal. Then, it can be easily verified that the market clearing condition (IA.4) is
also satisfied when the risk-neutral probabilities are given by equation (IA.6). Hence, the
equilibrium exists.

Finally, we show that Ψ̃(s)/γU − Ωs is invertible on its range if and only if the price
vector P (ε, ν) is an invertible function of the sufficient statistic on its range. Consider
equation P (ε, ν) = p. Next, we find unique corresponding risk-neutral probabilities πRN

n

and unique vector ṽ(p) = (ln(πRN
1 /πRN

N ), . . . , ln(πRN
N−1/π

RN
N ))> from (IA.5) and (IA.6). Then,

we find unique sufficient statistic by solving equation (IA.21), which has unique solution
because Ψ̃(s)/γU−Ωs is invertible. Hence, P (ε, ν) is an invertible function of the sufficient
statistic. �
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Lemma IA.2 If there exists an REE then the vector of risky asset prices P (ε, ν) is an
injective function of the sufficient statistic Ω−1ξ̃(ε)/γI + ν.
Proof of Lemma IA.2. First, we observe that if P (ε′, ν ′) = P (ε′′, ν ′′) then ṽ(P (ε′, ν ′)) =
ṽ(P (ε′′, ν ′′)), where ṽ(p) =

(
ln(πRN

n /πRN
N ), . . . , ln(πRN

N−1/π
RN
N )

)>
. This is because the risk-

neutral probabilities are unique solutions of the risk-neutral pricing equations (8) due to
the absence of arbitrage, and they uniquely determine vector ṽ(p).

The rest is similar to the proof of Lemma B.1 in Breon-Drish (2010). Suppose, P (ε, ν)
is not injective. Then, there exist (ε′, ν ′) and (ε′′, ν ′′) such that P (ε′, ν ′) = P (ε′′, ν ′′) but
Ω−1ξ̃(ε′)/γI + ν ′ 6= Ω−1ξ̃(ε′′)/γI + ν ′′. We denote the latter and the former statistics by s′′

and s′, respectively. Then, from the market clearing condition (IA.4), we obtain:

0 = s′ + θ∗U(P (ε′, ν ′))− Ω−1ṽ(P (ε′, ν ′))
γI

= s′ + θ∗U(P (ε′′, ν ′′))− Ω−1ṽ(P (ε′′, ν ′′))
γI

= s′ − s′′ + s′′ + θ∗U(P (ε′′, ν ′′))− Ω−1ṽ(P (ε′′, ν ′′))
γI

= s′ − s′′.

Hence, s′ = s′′, which leads to a contradiction. �

Proof of Proposition IA1.2. Investor U observes prices p and the combined de-
mand Θ̂ = θ∗I (p; ε) + ν. Investor U then infers the sufficient statistic from the equa-
tion Ω−1ξ̃(ε)/γI + ν = Θ̂ + Ω−1ṽ(p)/γI, which can be easily proven by substituting
in Θ̂ and θ∗I (p; ε) from equation (IA.1). Next, following similar steps as in the proof
of Proposition IA1.1 we find that the posterior probabilities are given by πUn (p; Θ̂) =
exp{Ψn(−Θ̂−Ω−1ṽ(p)/γI)}/G1(p), where Ψn(z) is given by equation (IA.8) and G1(p) is
a normalizing function. The rest of the proof follows the proof of part (i) of Proposition
IA1.1. The prices are not required to be invertible functions of the sufficient statistic be-
cause investor U learns the sufficient statistic from the additional variable Θ̂. �

Proof of Proposition IA1.3. The sufficient statistic is given by Ω−1ξ̃(ε)/γI + ν, where
ξ̃(ε) = ã + b̃ε, and ã and b̃ are vectors with elements an − aN and bn − bN , respectively.
Because noise traders only trade in the market for the underlying asset, ν = (ν1, 0, . . . , 0)>.
Substituting ξ̃(ε) and ν into the sufficient statistic we obtain: Ω−1ξ̃(ε)/γI + ν = se1 +
Ω−1ã/γI, where s = λ1ε/γI + ν1 is a one-dimensional statistic and e1 = (1, 0, . . . , 0)>.
Therefore, only the first component of vector Ω−1ξ̃(ε)/γI + ν is random, and hence, the
sufficient statistic is effectively one-dimensional and given by s + c1, where c1 is the first
component of vector Ω−1ã/γI. Hence, we use this one-dimensional statistic in the proof.

First, we compute function Ψn(z) in equation (IA.8). Substituting πn(ε) from (1),
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ϕε(x) from (2), and ϕν(x) from (IA.11), we find that the expression under the integral in
equation (IA.8) is given by:

ϕ̂(x) = exp(an + bnx)
G

exp
(
−(x− µ0)2

2σ2
0

)(
w exp

(
−(c1 + z + λ1x/γI + µν,1)2

2σ2
ν

)

+ (1− w) exp
(
−(c1 + z + λ1x/γI + µν,2)2

2σ2
ν

))
,

where G is a constant. Integrating ϕ̂(x) and taking log, we obtain Ψn(z) as follows:

Ψn(z) = ln
(∫ +∞

−∞
ϕ̂(x)dx

)

= g + an + 1
2
b2
n + 2bn (µ0/σ

2
0 − (c1 + z)λ1/(σ2

νγI))
λ2

1/(σ2
νγ

2
I ) + 1/σ2

0

+ ln
{
w exp

(
− µν,1

2σ2
0σ

2
νγI

γI (µν,1 + 2(c1 + z)) + 2λ1(µ0 + bnσ
2
0)

λ2
1/(σ2

νγ
2
I ) + 1/σ2

0

)

+ (1− w) exp
(
− µν,2

2σ2
0σ

2
νγI

γI (µν,2 + 2(c1 + z)) + 2λ1(µ0 + bnσ
2
0)

λ2
1/(σ2

νγ
2
I ) + 1/σ2

0

)}
,

(IA.24)

where g is a constant. Then, the parameters vn in equation (IA.6) are given by:

vn = γI
γI + γU

Ψn(−c1 − s) + γU
γI + γU

an + γIγU
γI + γU

bns

λ1

= ĝ + v̂n + γI
γI + γU

ln
(
wev̂1,n + (1− w)ev̂2,n

)
,

where v̂n and v̂l,n are given by Equations (IA.13) and (IA.14), respectively, and ĝ is a
constant. Substituting vn in equation (IA.6) for the risk-neutral probabilities, we note
that constant ĝ cancels out and we obtain risk-neutral probabilities (IA.12). �

Proof of Lemma IA.2. The sufficient statistic in the incomplete market remains the
same as in the economy studied in Proposition IA1.3. Therefore, equation (IA.19) for
the uninformed probability πUn , and equation (IA.24) for function Ψn(z) remain the same.
Consequently, the log-ratio of probabilities becomes:

ln
(

πUn
πn(ε)

)
= g1 + g2bn + C2n,

where C2n is given by (IA.17). We note that bn can be replicated by trading the available
risky asset with payoff C1n = bn/λ1. Hence, by Lemma A.8, the market is complete if and
only if a security with payoff C2n is tradable. �
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IA2 Noisy Endowments and Financial Innovation

We extend our analysis to economies in which noise traders are absent and the informed
investors receive noisy endowments. These endowments prevent prices from being fully
revealing and allow us to analyze the welfare effects of a financial innovation when a new
security is introduced to an incomplete-market economy. Moreover, noisy endowments
allow us to replace the informational spanning condition (28) with a weaker condition.

The state probabilities πn(ε) are given by equation (1), as in the main analysis, and
there are no noise traders in the economy. The informed investor receives state-dependent
noisy income at date T , which is generated by claims to non-tradable assets, given by

eI,n = W̃0,I(α + βbn + η), (IA.25)

where α is a constant, β ∼ N (0, σ2
β), η ∼ N (0, σ2

η), where random variables β and η are
uncorrelated with each other and with shock ε. The structure of endowments (IA.25) is
inspired by the CAPM. It implies that the informed investors are exposed to the aggregate
risk factor b. The exposure to that factor, denoted by β (analogously to CAPM), is known
to the informed investors but not to the uninformed investors. Exposure β performs the
same role as noise trader demand in our main analysis, and prevents uninformed investors
from observing shock ε. The endowment may represent a net liability, in which case β
can be negative. Therefore, because β can have either sign, we model it as a normally
distributed variable. Constant return α and shock η are added to complete the analogy
with the CAPM. They do not play any role in our analysis and do not affect the results.
Consequently, without loss of generality, we set α = 0, η = 0, and W̃0,I = 1.

The informed and uninformed investors solve the following optimization problems:

max
θI

E
[
−e−γIWI,T

∣∣∣ε, β, p], (IA.26)

max
θU

E
[
−e−γUWU,T

∣∣∣P (ε, β) = p
]
, (IA.27)

respectively, where P (ε, β) is the vector of risky asset prices, subject to their self-financing
budget constraints

Wi,T = Wi,0e
rT + (C − erTp)>θi + ei, i = I, U. (IA.28)

For the simplicity of exposition, we assume that the uninformed investors do not have any
endowment, eU = 0. The total mass of informed investors is h. Because there are no noise
traders in the economy, the market clearing condition is given by

hθ∗I + (1− h)θ∗U = 0. (IA.29)
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First, we derive the equilibrium in a market with two risky assets with payoffs b and b2,
and show that this market is effectively complete. Proposition IA2.1 reports the results.
Proposition IA2.1 (Effectively complete-market equilibrium). Suppose, the in-
vestors trade two assets with payoffs C1n = bn and C2n = b2

n. Then, the market is effectively
complete, the asset prices and risk-neutral probabilities are given by

P (ε, ν) =
[
πRN

1 C(ω1) + πRN
2 C(ω2) + . . .+ πRN

N C(ωN)
]
e−rT , (IA.30)

πRN
n = evn∑

N

j=1 e
vj
, (IA.31)

where C(ωn) = (C1n, C2n)> and probability parameters vn are given in closed form by:

vn = an + 1
2

(1− h)/γU
h/γI + (1− h)/γU

b2
n + 2(µ0/σ

2
0)bn

1/(γ2
I σ

2
β) + 1/σ2

0
+ bn(1 +Q)hs
h/γI + (1− h)/γU

, (IA.32)

Q = (1− h)
γIγUh

1/σ2
β

1/(γ2
I σ

2
β) + 1/σ2

0
. (IA.33)

The trading strategies of investors are given by:

θ∗I = (1− h)/γU
h/γI + (1− h)/γU

1
1 + σ2

0/(γ2
I σ

2
β)

(
γIs− µ0

γI
,− σ2

0
2γI

)>
, (IA.34)

θ∗U = h/γI
h/γI + (1− h)/γU

1
1 + σ2

0/(γ2
I σ

2
β)

(
µ0 − γIs
γU

,
σ2

0
2γU

)>
. (IA.35)

From Proposition IA2.1, we observe that the expression for the asset prices (IA.30) is
the same as in a model with noise traders described in Proposition 4 where the market is
effectively complete, hλ = 1, and the noise trader demand is zero in the market for the
quadratic derivative b2. Consequently, the economic implications of asymmetric informa-
tion and the quadratic derivatives are the same as in the analysis with noise traders.

Next, we turn to the analysis of the incomplete-market equilibrium. In the economy
with noisy endowments the informational spanning condition (28) in our main analysis
can be replaced by a weaker condition. In particular, substituting probabilities πn(ε) from
equation (1) and the wealth (IA.28) into the objective function (IA.26), we observe that
the optimization problem of the informed investor reduces to the following problem:

max
θI
−

N∑
n=1

exp{an + γIbn(ε/γI − β)− γI(C − erTp)>θI}, (IA.36)

and hence, the optimal strategy is a function of the sufficient statistic s = ε/γI −β even if
condition (28) is violated. Consequently, if the REE exists, the asset price is also a function
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of the statistic s. Proposition IA2.2 below characterizes the equilibrium and demonstrates
its existence under a weaker condition than the informational spanning condition (28). For
simplicity, we focus on an economy with a single risky asset.
Proposition IA2.2 (Incomplete-market equilibrium). Suppose, the state-ωn asset
payoffs are given by Cn = g(bn), where g(x) is a monotone continuously differentiable
function. Then, there exists a REE in which the asset price is a monotone function of the
sufficient statistic s = ε/γI − β, and solves the following nonlinear equation:

hf−1
I (erTP (s))

γI
+ (1− h)f−1

U (erTP (s))
γU

= 0, (IA.37)

where functions fI(x) and fU(x) are invertible and given by

fI(x) =
∑N
j=1C(ωj) exp {aj + γIsbn + Cjx}∑N

j=1 exp {aj + γIsbn + Cjx}
, (IA.38)

fU(x) =
∑N
j=1C(ωj) exp {aj + 1

2
b2
j+2bj(µ0/σ2

0+s/(γIσ2
β))

1/(γ2
Iσ

2
β

)+1/σ2
0

+ Cjx}∑N
j=1 exp {aj + 1

2
b2
j+2bj(µ0/σ2

0+s/(γIσ2
β

))
1/(γ2

Iσ
2
β

)+1/σ2
0

+ Cjx}
. (IA.39)

The investors’ trading strategies are given by θ∗i = −f−1
i (erTP (s))/γi, where i = I, U .

We use Proposition IA2.2 to compute the equilibrium without the informational span-
ning condition by solving equation (IA.37) numerically. Figure IA.2a shows the price of
the quadratic derivative C2

1 , where C1 = b > 0, in an incomplete market economy where
this derivative is the only traded asset, and also in the effectively complete market where
the underlying with payoff C1 is additionally traded. In the first of these economies the
informational spanning condition is violated because the economic factor b is not spanned
by payoff C2

1 . Nevertheless, we observe that the prices of C2
1 in the incomplete and com-

plete markets are very close and difficult to distinguish on a graph. Figure IA.2b shows
investor I’s trading strategy in the quadratic derivative in both markets. We observe that
the strategy is non-linear in sufficient statistic s in the incomplete market, and a constant
when the market is complete.

The main advantage of the model with noisy endowments is that it allows us to ana-
lyze investor welfare gains/losses from completing the market without the need to account
for noise traders’ welfare. To make the value function of investor I comparable to that
of investor U , we use conditional expectation E[JI|s] instead of value function JI, be-
cause JI additionally depends on shock ε which is not observed by uninformed investors.
Expectation E[JI|s] evaluates investor I’s welfare from the viewpoint of investor U , and
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(a) Price of volatility derivative C2
1 (b) I’s trading strategy in volatility derivative

Figure IA.2: Prices and trading strategies for the volatility derivative C2
1 .

Panel (a) shows the price of the volatility derivative C2
1 in the incomplete and complete markets.

Panel (b) shows investor I’s trading strategy in this derivative both in incomplete and complete
markets. The cash flow C1 has a generalized gamma PDF (52) with parameters σ̂C = 1, δ = 2,
k = 3. The other parameters are: µ0 = 0, σ0 = 1, σν = 1, h = 0.5, γI = γU = 1, r = 0, T = 1.

an uninformed econometrician or a policy maker. Lemma IA2.1 below reports the value
functions.
Lemma IA2.1 (Welfare). The expected value functions of investors conditional on
observing the sufficient statistic s are given by:

E[JI|s] = −
∑N
n=1 exp{an + γIbns− γI(C(ωn)− erTp)>θ∗I}∑N

n=1 exp
{
an + 1

2
b2
n+2bn(s/(γIσ2

β
)+µ0/σ2

0)
1/(γ2

Iσ
2
β

)+1/σ2
0

} , (IA.40)

JU =−
∑N
n=1 exp

{
an + 1

2
b2
n+2bn(s/(γIσ2

β)+µ0/σ2
0)

1/(γ2
Iσ

2
β

)+1/σ2
0

− γU(C(ωn)− erTp)>θ∗U
}

∑N
n=1 exp

{
an + 1

2
b2
n+2bn(s/(γIσ2

β
)+µ0/σ2

0)
1/(γ2

Iσ
2
β

)+1/σ2
0

} . (IA.41)

We use the results in Lemma IA2.1 to evaluate the welfare implications of completing
the market by comparing the value functions (IA.40) and (IA.41) in the incomplete and
effectively complete markets. Figures IA.3a–IA.3b show welfare gains of investors I and
U , respectively, from completing the market by adding an asset C2

1 to the economy with
asset C1. Figures IA.3c–IA.3d show welfare gains from adding an asset C1 to the economy
with asset C2

1 , and Figures IA.3e–IA.3f show welfare gains from adding an asset C2
1 to the

economy with assets C1 and C4
1 . The underlying asset payoff C1 has a generalized gamma

PDF (52). The parameters of the PDF and investor risk aversions are described in the
legend of Figure IA.3.
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(a) I’s gain from adding C2
1 to C1 (b) U ’s gain from adding C2
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Figure IA.3: Welfare gain from financial innovation.
This Figure shows the welfare gains of investors I and U from adding securities to various
incomplete markets. Panels (a)–(b) show the welfare gains from adding a security with payoff
C2

1 to the market with security C2
1 , Panels (c)–(d) show gains from adding C1 to C2

1 , and Panels
(e)–(f) show gains from adding C2

1 to C1 and C4
1 . Cash flow C1 has a generalized gamma PDF

(52) with parameters σ̂C = 1, δ = 2, k = 3. The remaining parameters are: µ0 = 0, σ0 = 1,
σν = 1, h = 0.5, γI = 1 and γU = 2, r = 0, T = 1.
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From Figure IA.3, we observe that completing single-asset economies with asset payoffs
C1 and C2

1 , respectively, improves the welfare of both investors, and hence, is Pareto
improving. Moreover, because the welfare improves for all values of the sufficient statistic
s, the ex-ante welfare before investors observe any signals and endowments also improves
when the market becomes complete. We also observe that the informed investor gains
more than the uninformed investor when the new security is introduced. However, we
observe that completing an economy with two assets C1 and C4

1 results in a lower welfare
of investor I (for most s) and higher welfare of investor U (for all s). The latter result also
holds if we compare ex-ante welfares before observing the signals and endowments.

Our results on the welfare effects of financial innovation are consistent with the theoret-
ical results in Elul (1999), who shows that in a single consumption good incomplete-market
economy at least one of the investors is better off due to financial innovation. Therefore,
it is not feasible to construct a security adding which to the market makes all investors
worse off.

IA2.1 Proofs

Proof of Proposition IA2.1. The derivation of equilibrium in the case when both assets
b and b2 are traded and the demonstration of the effective completeness can be obtained
following the same steps as in the proof of Proposition 4 in our main analysis. �

Proof of Proposition IA2.2. Suppose, price P (s) is monotone in s (as verified below),
and hence, investor U can extract s from prices and filter out the information about shock
ε. Then, following the same steps as in the derivation of posterior probabilities (15) in the
main analysis, we find that the posterior probabilities are given by:

πUn (p) = 1
G(p) exp

an + 1
2
b2
n + 2bn

(
µ0/σ

2
0 + s/(γIσ2

β)
)

1/(γ2
I σ

2
β) + 1/σ2

0

 . (IA.42)

We substitute probabilities (IA.42) and πn(ε) into the objective functions (IA.26) and
(IA.27), solving the optimization problems, we obtain the following first order conditions:

fI(−γIθ∗I ) = fU(−γUθ∗U) = erTp. (IA.43)

The latter equation and the market clearing condition (IA.29) then imply equation (IA.37)
for the asset price, and the expressions for the optimal strategies.

From the market clearing condition, we obtain that θ∗I = −(1 − h)/hθ∗U . Substituting
θ∗I into (IA.43), we rewrite the FOC as an equation for θ∗U given by fI(γI(1 − h)θ∗U/h) =
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fU(−γUθ∗U). The existence of the solution θ∗U and the invertibility of functions fi(x) can be
proven in the same way as in the proof of Proposition 3 in our main analysis.

It remains to prove the monotonicity of function P (s). Differentiating equation fI(γI(1−
h)θ∗U/h) = fU(−γUθ∗U) w.r.t. s, we obtain the derivative (θ∗U(s))′:

(θ∗U(s))′ = λ̂ covRN,U(C, b)− γI covRN,I(C, b)
γUh varRN,U(C) + γI(1− h) varRN,I(C)h, (IA.44)

where λ̂ = 1/(γIσ2
β)/(1/(γ2

I σ
2
β) + 1/σ2

0), and the covariances are computed under the risk-
neutral probability measures of investors I and U , respectively.

From (IA.43), the price is given by P (s) = fU(−γUθ∗U)e−rT . Differentiating the price,
and then substituting in the expression for (θ∗U(s))′ from equation (IA.44), we obtain:

erTP ′(s) = λ̂ covRN,U(C, b)− γUθ′U(s) varRN,U(C)

=
1/(γIσ2

β)
1/(γ2

I σ
2
β) + 1/σ2

0

γI(1− h) varRN,I(C)
γUh varRN,U(C) + γI(1− h) varRN,I(C) covRN,U(C, b)

+γI
γUh varRN,U(C)

γUh varRN,U(C) + γI(1− h) varRN,I(C) covRN,I(C, b).

(IA.45)

Next, we use the following result from Schmidt (2003): if g1(x) and g2(x) are increasing
functions, then cov(g1(b), g2(b)) ≥ 0. From this result, it easily follows that if C = g(b),
where g(x) is a monotone function, then covRN,i(C, b) ≥ 0 (≤ 0) if g(x) is an increasing
(decreasing) function. Consequently, equation (IA.45) and the monotonicity of payoff
C = g(b) imply that P (s) is a monotone function, and hence, the uninformed investor can
observe the sufficient statistic s by inverting function P (s). �

Proof of Lemma IA2.1. First, we derive the distribution of shock ε conditional on
observing statistic s. Following exactly the same steps as in Lemma 2 in the main analysis,
we obtain:

ϕε|s(x|y) =
exp

{
− (y−x/γI)2

2σ2
β
− (x−µ0)2

2σ2
0

}∑N
n=1 exp{an + bnx}

G0(y)∑N
n=1 exp

{
an + 1

2
b2
n+2bn(s/(γIσ2

β
)+µ0/σ2

0)
1/(γ2

Iσ
2
β

)+1/σ2
0

} , (IA.46)

where G0(y) is given by:

G0(y) =
∫ ∞
−∞

exp
{
−(y − x/γI)2

2σ2
β

− (x− µ0)2

2σ2
0

}
dx.

Substituting probabilities πn(ε) into the objective function of investor I, we compute
the expected value function of investor I as follows

E[JI|s] = −
∫ ∞
−∞

∑N
n=1 exp{an + γIbns− γI(C(ωn)− erTp)>θ∗I}∑N

n=1 exp{an + bnx}
ϕε|s(x|s)dx. (IA.47)
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Substituting distribution (IA.46) into the latter equation, after some simplifications, we
obtain the expected value function (IA.40). Equation (IA.41) for JU can be obtained by
substituting probabilities (IA.42) into investor U ’s objective function (IA.27). �

IA3 Information Aggregation

In this section, we extend our solution approach to models of information aggregation
by heterogeneously informed investors à la Hellwig (1980). We show that similar to our
baseline setting, such models can be solved in closed form when the financial market is
complete and volatility derivatives with payoffs given by quadratic functions of asset cash
flows make the financial markets effectively complete.

We consider an economy with the same set of assets, probabilities of states πn(ε),
distribution ϕε(x) of the aggregate shock, and distribution ϕν(z) of noise trader demands
as in Section 2.1 of our baseline setting. The difference with our baseline setting is in the
types of agents and their information. There are K types of investors with risk aversions
γi and normally distributed signals over shock ε:

ei = ε+ xi, (IA.48)

where all xi ∼ N (0, 1/τi) are independent from each other and of ε, ν, for i = 1, . . . , K.
As in our baseline setting in Section 2.1, investors maximize their expected utilities over
terminal wealth, given by

max
θi

E
[
−e−γiWi,T

∣∣∣ei, p], (IA.49)

subject to their self-financing budget constraints

Wi,T = Wi,0e
rT + (C − erTp)> θi, i = 1, . . . , K. (IA.50)

By P (e, ν) we denote the equilibrium asset prices as functions of the vector of signals
e ≡ (e1, . . . , eK)> and noise trader demands ν. The prices are determined from the market
clearing condition. The definition of equilibrium is as follows.
Definition of Equilibrium. A competitive noisy rational expectations equilibrium is a
vector of risky asset prices P (e, ν) and investor portfolios θ∗i (p; ei) that solve optimization
problems (IA.49) subject to self-financing budget constraints (IA.50), taking asset prices as
given, for i = 1, . . . , K, and satisfy the market clearing condition:

K∑
i=1

θ∗i (P (e, ν); ei) + ν = 0. (IA.51)
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IA3.1 Economy with M = N securities

We start with the complete-market case with M = N . All K investors agree on risk-
neutral probabilities because these probabilities are uniquely determined from the pricing
equation (8) as functions of observed prices p. However, investors assign different real
probabilities to states ωn. In particular, investor i’s real posterior probabilities are given
by πin(p; ei) = E

[
πn(ε)|P (e, ν) = p, ei

]
. The latter expression for πin(p; ei) can be obtained

by rewriting investor i’s expected utility (IA.49) as follows:

E
[
−e−γiWi,T |ei, P (e, ν) = p

]
= −

N∑
n=1

πin(p; ei)e−γiWi,T,n . (IA.52)

Moreover, as before, the first order conditions of investors equate their marginal utilities
and SPDs [e.g., Duffie (2001, p. 5)] and are given by:

γie
−γiWi,T,n = `i

πRN
n e−rT

πin(p; ei)
(IA.53)

where `i are Lagrange multipliers for the budget constraints. From Equations (IA.53), we
find optimal wealths Wi,T , and recover optimal portfolios from budget constraints (IA.50).

To find the posterior probabilities, similar to the single asset cases in Hellwig (1980)
and Breon-Drish (2015), we conjecture (and later verify) that investors’ optimal portfolios
θ∗i (p; ei), i = 1, . . . , K are additively separable in prices p and signals ei:

θ∗i (p; ei) = θ1,i(p) + λkiei, (IA.54)

where ki are investor-specific constants, and λ is a replicating portfolio for the risk factor
b, given by λ = Ω−1(b1 − bN , . . . , bN−1 − bN)>, as in our baseline analysis in Section 3.1.
Substituting portfolios (IA.54) into the the market clearing condition (IA.51), we obtain

Ĥ(p) + λ
K∑
i=1

ki · ei + ν = 0, (IA.55)

where Ĥ(p) is a function of prices, given by

Ĥ(p) ≡
K∑
i=1

θ1,i(p). (IA.56)

The market clearing condition (IA.55) then implies that, if the equilibrium exists, investors
can infer the following sufficient statistic from asset prices:

ŝ≡ λ
K∑
i=1

ki · ei + ν. (IA.57)
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The posterior probabilities are given by πin(p; ei) = E[πn(ε)|ŝ, ei], and can be solved as in
our baseline setting. These probabilities are reported in the Lemma below.
Lemma IA3.1 (Posterior probabilities of states). The posterior probabilities of states
ωn conditional on observing the sufficient statistic ŝ are given by:

πin(p; ei) = 1
Gi(p; ei)

exp

an + 1
2

b2
n + 2bn

(
µ0/σ

2
0 − λ̃>Σ̃−1

i

(
Ĥ(p),−ei

)>)
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

 , (IA.58)

i = 1, . . . , K, where function Ĥ(p) is given by equation (IA.56), Gi(p; ei) is a normalizing
function, λ̃ ≡

(
λ1
∑

K

j=1 kj, . . . , λN−1
∑

K

j=1 kj, 1
)>

, and

Σ̃i ≡

 (λλ>∑K

j=1 k
2
j/τj + Σν) λki/τi

λ>ki/τi 1/τi

 (IA.59)

is the variance-covariance matrix of the vector (ŝ, ei)> conditional on ε.
From Lemma IA3.1 we observe that, in contrast to our baseline analysis, the sufficient
statistic ŝ and signal ei are correlated because investor i’s information affects all prices,
and hence also the sufficient statistic. Therefore, each investor has a different posterior
not only via the private signal ei but also because of the variance-covariance matrix Σ̃i.
The expression for the posterior probabilities (IA.58) are very similar to the uninformed
investor’s posterior probabilities (15) in our baseline setting, and can be obtained from the
latter probabilities by replacing hλ/γI, Σν , and H(p) with λ̃, Σ̃i, and (Ĥ(p),−ei)>.

We then find the equilibrium as follows. From the FOC (IA.53) for investor i, we
find optimal portfolios θ∗i (p; ei) in terms of probabilities (IA.58). After that, we construct
the information function Ĥ(p) in equation (IA.56). Similar to our baseline setting, the
information function Ĥ(p) depends on probabilities (IA.58), and hence, solves a linear
fixed-point problem, which we are able to solve in closed form. Proposition IA3.1 reports
the equilibrium.
Proposition IA3.1 (Equilibrium with M = N assets and Heterogeneous Agents).

i) In the class of equilibria with separable demand functions (IA.54) and for a given set of
constants ki, i = 1, . . . , K there exists unique equilibrium in which prices only reveal the
sufficient statistic ŝ. In this equilibrium, the vector of risky asset prices P (ŝ) ≡ P (e, ν)
and risk-neutral probabilities πRN

n are given by:

P (ŝ) =
[
πRN

1 C(ω1) + πRN
2 C(ω2) + . . .+ πRN

N C(ωN)
]
e−rT , (IA.60)

πRN
n = evn∑

N

j=1 e
vj
, (IA.61)
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where probability parameters vn are given in closed form by:

vn = an +
 K∑
j=1

1
γj

−11
2

K∑
j=1

b2
n + 2bnµ0/σ

2
0

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

) + C(ωn)>
E +

K∑
j=1

Q̂j

 ŝ
 ,
(IA.62)

Q̂i = 1
γi

1
τi + 1/σ2

0

λλ>Σ−1
ν

∑
j 6=i kj/λ

>Σ−1
ν λ

1/λ>Σ−1
ν λ+∑

j 6=i k
2
j/τj +

(∑
j 6=i kj

)2
/
(
τi + 1/σ2

0

) , (IA.63)

where E is an identity matrix, Q̂i, E ∈ R(N−1)×(N−1), λ = Ω−1(b1 − bN , . . . , bN−1 − bN)>,
λ̃ =

(
λ1
∑

K

j=1 kj, . . . , λN−1
∑

K

j=1 kj, 1
)>

, and Σ̃i is defined in equation (IA.59).
ii) Portfolios θ∗i (p; ei), i = 1, . . . , N − 1 are given by

θ∗i (p; ei) = Ω−1Ai
γi

+ λµ0/σ
2
0

γi
(
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

) − Q̂iĤ(p) + λkiei, where (IA.64)

Ĥ(p) =
E +

K∑
j=1

Q̂j

−1 K∑
j=1

Ω−1Aj
γj

+
K∑
j=1

λµ0/σ
2
0

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

)
 , (IA.65)

where Ai = ã+ 0.5b̃(2)/
(
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

)
− ṽ(p) ∈ RN−1, ṽ = (v1− vN , . . . , vN−1− vN), ã =

(a1 − aN , . . . , aN−1 − aN), and b̃(2) = (b2
1 − b2

N , . . . , b
2
N−1 − b2

N).
iii) Constants ki, i = 1, . . . , K solve the system of fixed point equations:

ki = 1
γi

τi
τi + 1/σ2

0

1/λ>Σ−1
ν λ+∑

j 6=i k
2
j/τj −

∑
j 6=i kjki/τi

1/λ>Σ−1
ν λ+∑

j 6=i k
2
j/τj +

(∑
j 6=i kj

)2
/
(
τi + 1/σ2

0

) . (IA.66)

These equations have a solution that satisfies the bound:

0 < ki <
1
γi

τi
τi + 1/σ2

0
, i = 1, . . . , K. (IA.67)

Proposition IA3.1 extends the no-arbitrage valuation approach to economies with het-
erogeneous information á la Hellwig (1980) and provides asset prices in closed form in
terms of expected discounted payoffs under risk-neutral probabilities, familiar from the
asset-pricing literature. As in our baseline setting of Section 3.1 (Proposition 1) prices are
non-linear functions of a sufficient statistic. This non-linearity is in contrast to the single-
asset CARA-normal noisy REE model with heterogeneous information of Hellwig (1980),
where prices are linear functions of the sufficient statistic, but akin to the single-asset
model of Breon-Drish (2015, sec. 6) for asset payoffs belonging to the exponential family.
Finally, the equations (IA.66) for ki’s are very similar (with trivial notational differences)
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to those in Hellwig (1980, eqs. 8a) and in Breon-Drish (2015, eqs. A.39). Below we present
two special cases of this general setup for which we can find solutions for the constants
ki’s in closed form.
Remark IA3.1 (Particular Cases).
1. Informed & Uninformed investors. Note that we can retrieve our baseline setup by
setting K = 2, γ1 = γI/h, τ1 = ∞, γ2 = γU/(1 − h), τ2 = 0. Then it is easy to see that
from Equations (IA.66) k1 = 1/γ1 = h/γI and k2 = 0. This implies that ŝ = hλε/γI + ν,
since investor I has perfect information and embeds it in prices by trading, while investor
U only has the prior information.
2. Symmetric investors. In the special case where τi = τ , γi = γ we look for a symmetric
solution ki = k for all i = 1, . . . , K. Equations (IA.66) reduce to a single cubic equation:

k3(K − 1)
(
K + 1/(τσ2

0)
)
λ>Σ−1

ν λ/τ + k
(
1 + 1/(τσ2

0)
)
− 1/γ = 0,

which has a unique solution because the left-hand side is an increasing function of k.

IA3.2 General Economy with M ≤ N Securities

In this section, we study incomplete markets with M ≤ N . As in Section 3.2 of our
baseline analysis, we impose the informational spanning condition (28), which requires
that the aggregate risk factor bn can be replicated by a portfolio of assets, that is,

bn = λ0 + C(ωn)>λ, (IA.68)

where λ0 is a constant and λ = (λ1, . . . , λM−1)>. As in the previous section, we conjec-
ture that portfolios θ∗i (p; ei) are separable in price p and signal ei [see equation (IA.54)].
Consequently, following the same steps as in the complete-market case M = N , we find
that the equilibrium prices are functions of the same sufficient statistic ŝ. Hence, because
investors i observe the same information as in the complete-market case, their posterior
beliefs πin(p; ei) are given by equation (IA.58). Given these probabilities, we derive the op-
timal portfolios, and then the asset prices from the market clearing condition. Proposition
IA3.2 reports the equilibrium.
Proposition IA3.2 (Equilibrium with M ≤ N assets and Heterogeneous Agents).

i) Let the informational spanning condition (IA.68) be satisfied. In the class of equilibria
with separable demand functions (IA.54) and for a given set of constants ki, i = 1, . . . , K
there exists unique continuously differentiable and invertible on its range price function
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P (ŝ) that is the unique solution of equation

K∑
j=1

f−1
j

(
erTP (ŝ)

)
γj

=
(
E +

K∑
j=1

Q̂j

)
ŝ+

K∑
j=1

λµ0/σ
2
0

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

) , (IA.69)

where E is an identity matrix, Q̂i is given by equation (IA.63), Q̂i, E ∈ R(M−1)×(M−1),
λ = (λ1, . . . , λM−1)>, λ̃ =

(
λ1
∑

K

j=1 kj, . . . , λM−1
∑

K

j=1 kj, 1
)>

, and Σ̃i is given by equation
(IA.59). Functions fi : RM−1 → RM−1 for i = 1, . . . , K are invertible on their ranges and
given by

fi(x) =

∑N
j=1C(ωj) exp {aj + 1

2
b2
j

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
+ C(ωj)>x}

∑N
j=1 exp {aj + 1

2
b2
j

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
+ C(ωj)>x}

. (IA.70)

ii) The optimal portfolios for each i = 1, . . . , K are given by

θ∗i (p; ei) = −
f−1
i

(
erTp

)
γi

+ λµ0/σ
2
0

γi
(
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

) − Q̂iĤ
inc(p) + λkiei, where (IA.71)

Ĥ inc(p) =
E +

K∑
j=1

Q̂j

−1− K∑
j=1

f−1
j (erTp)
γj

+
K∑
j=1

λµ0/σ
2
0

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

)
 . (IA.72)

iii) Constants ki, i = 1, . . . , K solve the same system of fixed point equations (IA.66) that
have a solution satisfying bounds (IA.67).
Portfolios (IA.71) have similar structure as the complete-market portfolios. Furthermore,
both in incomplete and complete markets, with heterogeneous agents, prices are non-linear
functions of the sufficient statistic ŝ. However, in incomplete markets, in general, the prices
are not available in closed form and satisfy non-linear equations (IA.69).

IA3.3 Effective Completeness and Volatility Derivatives

We now apply the model to study the role of volatility derivatives as in Section 4.2.
We show that adding volatility derivatives to incomplete markets makes these markets
effectively complete, that is, allows investors to achieve Pareto-optimal allocations. In a
setting where investors have different probabilities of states Pareto optimality requires the
marginal rate of substitution (MRS) across states n,m to be the same for investors i, j
[see., Amershi (1985); Brennan and Cao (1996)]:

πin(p; ei) exp{−γiWi,T ,n}
πim(p; ei) exp{−γiWi,T ,m}

= πjn(p; ej) exp{−γjWj,T ,n}
πjm(p; ej) exp{−γjWj,T ,m}

, (IA.73)

23

Electronic copy available at: https://ssrn.com/abstract=2446873



for all n 6= m and all i 6= j, or equivalently, for all states n and all i 6= j :

πin(p; ei) exp{−γiWi,T ,n}
πjn(p; ej) exp{−γjWj,T ,n}

= `, (IA.74)

where ` does not depend on the state ωn (but may depend on i, j and signals). Proposition
IA3.3 below provides necessary and sufficient conditions for effective completeness.
Proposition IA3.3 (Effective Completeness with Heterogeneous Agents).

i) Suppose, the market is incomplete, that is, M < N , and the informational spanning
condition (IA.68) is satisfied. Then, the market is effectively complete if and only if there
exists a replicating portfolio for squared risk factor realizations b2

n, that is, there exist
constant λ̂0 and vector λ̂ ∈ RM−1 such that b2

n = λ̂0 + C(ωn)>λ̂, for all n = 1, . . . , N .
ii) If the market is effectively complete, the prices of risky assets are given by equation
(IA.60), as in a complete market, with the only difference that vectors λ, λ̃, ν, and matrices
Ω, E, Σν, Σ̃i and Q̂i are of lower dimensions: λ, λ̃, ν ∈ RM−1, Ω ∈ R(N−1)×(M−1), and
E, Σν , Σ̃i, Q̂i ∈ R(M−1)×(M−1), for all i = 1, . . . , K.
As in the baseline setting with uninformed and informed investors, the proposition implies
that the market can be effectively completed by introducing a derivative security with a
quadratic payoff such as C2

1 or (C1−ERN[C1])2. The prices of this security and the under-
lying asset are then given in closed form by varRN[C1]e−rT and ERN[C1]e−rT , respectively.

IA3.4 Proofs

Proof of Lemma IA3.1: Let s̃i = (ŝ, ei)>. Then, from Bayes rule, the PDF of ε
conditional on observing s̃i is given by

ϕε|s̃i(e|s, y) = ϕs̃i|ε(s, y|e)ϕε(e)∫
ϕs̃i|ε(s, y|e)ϕε(e)de

. (IA.75)

From equation (IA.48), the signal is conditionally normal, and given by ei = ε+xi. Hence,
ei|ε ∼ N (ε, 1/τi). The sufficient statistic is given by ŝ = λ

∑
K

j=1 kjej + ν, which implies
that cov(ŝ, ei|ε) = λki/τi. Therefore, the sufficient statistic is conditionally normal and is
given by ŝ = λ

∑
K

j=1 kjε+ λ
∑
j 6=i kj · xj + λki · xi + ν. Then, vector s̃i is also conditionally

normal, and after computing its moments, we obtain s̃i|ε ∼ N
(
λ̃ε, Σ̃i

)
, where matrix Σ̃i

is given by equation (IA.59), and vector λ̃ is given by

λ̃ =
λ1

K∑
j=1

kj, . . . , λN−1

K∑
j=1

kj, 1
> . (IA.76)
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Hence, substituting normal PDF ϕs̃i|ε(s, y|e) into equation (IA.75), we obtain

ϕε|s̃i(e|s, y) =
exp

{
−0.5

(
(s, y)> − λ̃ε

)>
Σ̃−1
i

(
(s, y)> − λ̃ε

)}
ϕε(e)

G1,i(s, y) , (IA.77)

where G1,i(s, y) normalizes the density.
Next, we find probability πin(p; ei) given by πin(p; ei) = E[πn(ε)|ŝ = −Ĥ(p), ei]. Calcu-

lating the latter conditional expectation, we obtain:

πin(p; ei) =
∫ +∞

−∞

ean+bne∑N
j=1 e

aj+bje
ϕε|s̃i(e|s = −Ĥ(p), ei = y)de = 1

G1,i(ŝ, y)

∫ +∞

−∞
ed
i
n(e)de,

(IA.78)

where din(e) is a quadratic function of e given by:

din(e) = an + bn · e− 0.5
λ̃e+

Ĥ(p)
−y

> Σ̃−1
i

λ̃e+
Ĥ(p)
−y

− 0.5(e− µ0)2/σ2
0

=− λ̃
>Σ̃−1

i λ̃+ 1/σ2
0

2

e− µ0/σ
2
0 + bn − λ̃>Σ̃−1

i

(
Ĥ inc(p),−ei

)>
λ̃>Σ̃−1

i λ̃+ 1/σ2
0


2

+ an

+1
2

b2
n + 2bn

(
µ0/σ

2
0 − λ̃>Σ̃−1

i

(
Ĥ inc(p),−ei

)>)
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

+ g(p, y), (IA.79)

where g(p, y) is a normalizing function. Substituting din(e) from equation (IA.79) into
integral (IA.78) and integrating, we obtain equation (IA.58) for πin(p; ei). �

Proof of Proposition IA3.1: Below we adapt the proof of Proposition 1 in the case of
heterogeneous agents: namely, first we find the optimal portfolios of investors, and then
recover the equilibrium prices from the market clearing condition. In particular, we use
that now investors have different posterior probabilities πin(p; ei) [see equation (IA.58)] to
get the analogue of equation (A.12)

θ∗i = Ω−1

γi

(
ã+ 1

2
b̃(2) + 2b̃µ0/σ

2
0

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
− b̃Λ1,iĤ(p)
λ̃>Σ̃−1

i λ̃+ 1/σ2
0
− ṽ(p)

)
︸ ︷︷ ︸

θ1,i

+λ
Λ2,i/γi

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
ei︸ ︷︷ ︸

λkiei

,

(IA.80)

where ṽ(p), ã, b̃, b̃(2) ∈ RN−1 are defined in Equations (12), (A.13), (A.14), respectively.
Furthermore, recall that λ = Ω−1b̃, λ̃ = [∑k

j=1 kjλ
>, 1]>, Σ̃i is defined in equation (IA.59),

and Λ1,i, Λ2,i are defined in equation (IA.86) of Lemma IA3.4.1 (presented below).
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We conjectured in equation (IA.54) that θ∗i = θ1,i + λkiei, hence the notation above.
Therefore, ki’s solve the fixed point equations:

ki = Λ2,i/γi

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
, i = 1, . . . , K.

Now, substituting for Λ2,i from equation (IA.86) and using equation (IA.83) for λ̃>Σ̃−1
i λ̃

in terms of λ>Σ−1
ν λ we have after some algebra that for each i:

ki = τi
γi

1 + λ>Σ−1
ν λ

(∑
j 6=i k

2
j/τj −

∑
j 6=i kjki/τi

)
λ>Σ−1

ν λ
(∑

j 6=i kj
)2

+ (τi + 1/σ2
0)
(
1 + λ>Σ−1

ν λ
∑
j 6=i k

2
j/τj

) .
Furthermore, if we factor out λ>Σ−1

ν λ from the numerator and denominator we arrive to
equation (IA.66). Lemma IA3.4.2 below establishes the existence of a solution and the
corresponding bounds reported in Proposition IA3.1-iii).

Now, we can sum up the identified θ1,i in equation (IA.80) and use definition (IA.56)
Ĥ(p) = ∑K

j=1 θ1,j to solve for Ĥ(p):

Ĥ(p) =
K∑
j=1

{
Ω−1

γj

(
ã+ 1

2
b̃(2) + 2b̃µ0/σ

2
0

λ̃>Σ̃−1
j λ̃+ 1/σ2

0
− b̃Λ1,jĤ(p)
λ̃>Σ̃−1

j λ̃+ 1/σ2
0
− ṽ(p)

)}

⇒ Ĥ(p) =
(
E +

K∑
j=1

λ
Λ1,j

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

)
︸ ︷︷ ︸

Q̂j

)−1 K∑
j=1

Ω−1

γj

(
ã+ 1

2
b̃(2) + 2b̃µ0/σ

2
0

λ̃>Σ̃−1
j λ̃+ 1/σ2

0
− ṽ(p)︸ ︷︷ ︸

Aj

)
.

(IA.81)

Using the definitions of Q̂j and Aj, as indicated above, in equation (IA.81) we arrive
to equation (IA.65). Substituting (IA.65) in equation (IA.80) leads to the expression of
the optimal portfolios in equation (IA.64). We can further simplify Q̂j defined above by
substituting for Λ1,j from equation (IA.86) and λ̃>Σ̃−1

j λ̃ in terms of λ>Σ−1
ν λ from equation

(IA.83). After some algebra, we arrive to equation (IA.63).
Next, we find the equilibrium prices. Substituting Ĥ(p) from equation (IA.81) into

the market clearing condition (IA.55), after rearranging terms, we obtain the following for
vector ṽ(p), which is the analogue of equation (A.17) in the main text:

K∑
j=1

1
γj

ã+ 1
2
b̃(2) + 2b̃µ0/σ

2
0

λ̃>Σ̃−1
j λ̃+ 1/σ2

0

− K∑
j=1

1
γj
ṽ(p) + Ω

(
E +

K∑
j=1

λ
Λ1,j

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

))ŝ = 0

⇒ ṽ(p) =
 K∑
j=1

1
γj

−1
K∑
j=1

1
γj

ã+ 1
2
b̃(2) + 2b̃µ0/σ

2
0

λ̃>Σ̃−1
j λ̃+ 1/σ2

0


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+
 K∑
j=1

1
γj

−1

Ω
(
E +

K∑
j=1

λ
Λ1,j

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

)
︸ ︷︷ ︸

Q̂j

)
ŝ. (IA.82)

Writing the above element-wise for n = 1, . . . , N leads to (IA.62). From the definition
of vector ṽ in equation (12), we find that πRN

n = evn−vN/
(∑

N

j=1 e
vj−vN

)
for n = 1, . . . , N .

Canceling e−vN , we obtain probabilities (IA.61). Following similar arguments to Proposi-
tion 1, we can verify that P (ŝ) is an invertible on its range function of ŝ = λΣK

j=1kjej +ν =
λΣK

j=1kjε+ λΣK
j=1kjxj + ν, and hence, observing prices reveals unique ŝ. �

Lemma IA3.4.1 (Posterior precision). The effect on posterior probabilities stemming
from noisy supply λ̃>Σ̃−1

i λ̃ can be decomposed as

λ̃>Σ̃−1
i λ̃ =

λ>Σ−1
ν λ

(∑
j 6=i kj

)2

1 + λ>Σ−1
ν λ

∑
j 6=i k

2
j/τj

+ τi, (IA.83)

where λ = Ω−1(b1 − bN , . . . , bN−1 − bN)> and λ̃ is given by (IA.76).

Proof of Lemma IA3.4.1: Let Σ̂ ≡ λλ>
∑

K

j=1 k
2
j/τj + Σν . It is easy to verify that

Σ̂−1 = Σ−1
ν − Σ−1

ν λ
(
1/(

K∑
j=1

k2
j/τj) + λ>Σ−1

ν λ
)−1

λ>Σ−1
ν . (IA.84)

Furthermore, it can be directly verified that

Σ̃−1
i = 1

1− λ>Σ̂−1λk2
i /τi

 Σ̂−1
(
1− λ>Σ̂−1λk2

i /τi
)

+ Σ̂−1λλ>Σ̂−1k2
i /τi −Σ̂−1λki

−λ>Σ̂−1ki τi

 .
(IA.85)

Using equation (IA.85), equation (IA.84), and λ̃ in equation (IA.76), we obtain:

λ̃>Σ̃−1
i = 1

1− λ>Σ̂−1λk2
i /τi

[
λ>Σ̂−1

(∑
K

j=1 kj − ki
)
, τi −

∑
K

j=1 kjkiλ
>Σ̂−1λ

]
≡
[
Λ1,i Λ2,i

]
, (IA.86)

and

λ̃>Σ̃−1
i λ̃ =

λ>Σ̂−1λ
∑

K

j=1 kj
(∑

K

j=1 kj − ki
)

+ τi −
∑

K

j=1 kjkiλ
>Σ̂−1λ

1− λ>Σ̂−1λk2
i /τi

= λ>Σ̂−1λ
( K∑
j=1

kj − ki
)2 1

1− λ>Σ̂−1λk2
i /τi

+ τi

=
λ>Σ−1

ν λ
(∑

K

j=1 kj − ki
)2

1 + λ>Σ−1
ν λ

(∑
K

j=1 k
2
j/τj − k2

i /τi
) + τi. �
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Lemma IA3.4.2 (Existence of solution and bounds for ki). Equations (IA.66) for
ki, i = 1, . . . , K have a solution that satisfies bounds (IA.67).

Proof of Lemma IA3.4.2: The proof essentially replicates Hellwig (1980, proof of
Lemma 3.1) and by association Breon-Drish (2015, proof of Lemma A15). We first prove
the bounds. We start with the lower bound. Assume there exists non-empty set I− ≡ {i ∈
{1, . . . , K} : ki ≤ 0}. Then let i0 ≡ arg maxi∈I− ki/τi. Observe that for i0:

1/λ>Σ−1
ν λ+

∑
j 6=i0

k2
j/τj −

∑
j 6=i0

kjki0/τi0 = 1/λ>Σ−1
ν λ+

K∑
j=1

k2
j/τj −

K∑
j=1

kjki0/τi0

>
K∑
j=1

k2
j/τj −

K∑
j=1

kjki0/τi0

>
∑
j∈I−

k2
j/τj −

∑
j∈I−

kjki0/τi0

=
∑
j∈I−

kj(kj/τj − ki0/τi0 ≥ 0,

where the first equality follows from adding and subtracting k2
i0/τi0 , the first inequality

follows because 1/λ>Σ−1
ν λ is positive, the second from the definition of I−, and the last

from the definitions of i0 and I−. The above implies that the numerator in the last fraction
of (IA.66) is positive and hence also ki0 since the denominator and the rest of the fractions
are trivially positive. But this is a contradiction to i0 ∈ I− and so I− = ∅ and ki > 0 for
all i. From ki > 0 we also have that the last fraction of (IA.66) is less than one and hence
we get the upper bound on ki. Given these bounds we will show existence of a solution.

Define mappings T0 : ×K
j=1Γj → RK and T1 : ×K

j=1Γj → ×K
j=1Γj, where

Γi ≡
[
0, 1
γi

τi
τi + 1/σ2

0

]
,

as follows:

(T0k)i = 1
γi

τi
τi + 1/σ2

0

1/λ>Σ−1
ν λ+∑

j 6=i k
2
j/τj −

∑
j 6=i kjki/τi

1/λ>Σ−1
ν λ+∑

j 6=i k
2
j/τj +

(∑
j 6=i kj

)2
/
(
τi + 1/σ2

0

) , i = 1, . . . , K,

(T1k)i =


0, if (T0k)i < 0,

(T0k)i, if (T0k)i ∈ Γi,
1
γi

τi
τi + 1/σ2

0
, if (T0k)i >

1
γi

τi
τi + 1/σ2

0
.

The product of compact sets Γi is compact and mapping T1 is continuous and maps
×K
j=1Γj into itself. Then by Brouwer’s fixed point theorem T1 has a fixed point in ×K

j=1Γj.
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It remains to verify that the fixed point let k∗ is in the interior of ×K
j=1Γj. Suppose first

that there is i such that k∗i = 0. Then

(T0k
∗)i = 1

γi

τi
τi + 1/σ2

0

1/λ>Σ−1
ν λ+∑

j 6=i k
∗
j

2/τj

1/λ>Σ−1
ν λ+∑

j 6=i k
∗
j

2/τj +
(∑

j 6=i k
∗
j

)2
/
(
τi + 1/σ2

0

) ∈ (0, 1
γi

τi
τi + 1/σ2

0

)
,

hence (T1k
∗)i = (T0k

∗)i > 0 = k∗i , which is a contradiction since we should have k∗i =
(T1k

∗)i. Since, k∗i > 0 for all i it follows that (T0k
∗)i < τi/

(
γi(τi + 1/σ2

0)
)

and hence also
(T1k

∗)i < τi/
(
γi(τi + 1/σ2

0)
)

for all i. Thus the fixed point is in the interior of ×K
j=1Γj. �

Proof of Proposition IA3.2. Below we adapt the proof of Proposition 3 in the case of
heterogeneous agents. The only substantial point of departure from that proof is existence
of equilibrium where we adopt an alternative technique suggested by a referee.
Step 1 (Posterior probabilities and portfolio of investor i). As mentioned given
conjecture (IA.54) the market clearing condition with incomplete markets is analogous to
condition (IA.55) for complete markets. The posterior probabilities can be found similar
to Lemma IA3.1, and are given by equation (IA.58) in which Ĥ(p) is replaced by Ĥ inc(p).

Substituting probabilities πin(p; ei) into investor i’s objective function (IA.52), after
some algebra, we obtain the FOC for investor i’s optimal portfolio θ∗i and the analogue to
equation (A.30),

fi

λµ0/σ
2
0 − λλ̃>Σ̃−1

i

(
Ĥ inc(p),−ei

)>
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

− γiθ∗i

 = erTp⇒

λµ0/σ
2
0 − λλ̃>Σ̃−1

i

(
Ĥ inc(p),−ei

)>
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

− γiθ∗i = f−1
i (erTp) . (IA.87)

Above we use the fact that functions fi, defined in equation (IA.70), are invertible in their
ranges [as special cases of f(x; t) in equation (A.36), see Lemmas A.3-A.4] and assume
that erTp belongs to the range of fi. Hence, solving for θ∗i in equation (IA.87) we have:

θ∗i = 1
γi

(
−f−1

i (erTp) + λµ0/σ
2
0

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
− λΛ1,iĤ

inc(p)
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

)
︸ ︷︷ ︸

θ1,i

+λ
Λ2,i/γi

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
ei︸ ︷︷ ︸

λkiei

,

(IA.88)

where Λ1,i, Λ2,i are defined in equation (IA.86) of Lemma IA3.2. Again, we conjectured
that θ∗i = θ1,i + λkiei, hence the notation above. Importantly, as we can see, ki’s solve
the same fixed point Equations (IA.66) as in the complete market case. Hence, solutions
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exist from Lemma IA3.4.1, and satisfy bounds (IA.67). Proceeding, we use the defini-
tion of Ĥ inc(p) = ∑

K

j=1 θ1,j and equation (IA.88) and after some algebra we get equation
(IA.72) for Ĥ inc(p). Then substituting equation (IA.72) back in equation (IA.88), we ar-
rive at equation (IA.71) for θ∗i , where Q̂i is defined in equation (IA.63) but now has lower
dimension Q̂i ∈ R(M−1)×(M−1).
Step 2 (Equation for asset prices). Substituting Ĥ inc(p) from equation (IA.72) into
the market clearing condition Ĥ inc(p) + ŝ = Ĥ inc(p) + λ

∑
K

j=1 kjej + ν = 0 yields, after
some algebra, equation (IA.69) for price vector P (ŝ).
Step 3 (Existence of Equilibrium). Finally, we show that there exists unique vector
of prices satisfying equation (IA.69).2 We aim to show that the left-hand-side (LHS) of
equation (IA.69) is globally invertible using the Hadamard’s Global Inverse Function The-
orem. From Lemma IA3.4.2 below this amounts to showing that the LHS is a continuously
differentiable function with a non-zero determinant of the Jacobian matrix and proper.

First, note that since the distribution of cash flows is supported on a finite set of points,
the domain of fi is all of RM−1. As the domain is open, Barndorff-Nielsen (2014, Theorem
9.2) implies that the range is A = int(conv(support(C(ω)))), which, given the assumption
of no redundant assets, is the set of prices that do not admit arbitrage.

Second, let the LHS of equation (IA.69) (i.e., the sum of the inverse of the price
sensitive parts of investors’ portfolios weighted by one over their risk aversion parameter)
be denoted by f

(
erTP (ŝ)

)
. Since each fi has positive definite Jacobian [see Lemma A.3]

and is continuously differentiable [see equation (IA.70)] the same properties are inherited
by each inverse f−1. So also their weighted sum f is a continuously differentiable function
and has a non-zero determinant of the Jacobian matrix.

Third, take any compact set K ⊂ RM−1. Because f is continuous it is immediate
that the pre-image f−1(K) is closed and furthermore, since the domain A of f is bounded
f
−1(K) is necessarily bounded. Hence, f−1(K) is compact. So f is proper.

Therefore, from the Hadamard’s Global Inverse Function Theorem f is a bijection and
has a continuously differentiable inverse. Hence, prices exist and are given by:

P (ŝ) = e−rTf
−1((

E +
K∑
j=1

Q̂j

)(
λ

K∑
j=1

kjej + ν
)

+
K∑
j=1

1
γj

λµ0/σ
2
0

λ̃>Σ̃−1
j λ̃+ 1/σ2

0

)
;

where P is a unique, continuous, differentiable, and invertible on its range function of the
right-hand-side of equation (IA.69), and so, also of sufficient statistic ŝ. �

2We thank an anonymous referee for this proof of existence.
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Lemma IA3.4.2 (Hadamard’s Global Inverse Function Theorem). Let B1,B2 ⊂
RN be connected, open sets. A continuously differentiable function g : B1 → B2 is a
bijection and has a continuously differentiable inverse if and only if the determinant of
the Jacobian matrix is everywhere nonzero and g is proper (i.e., the pre-image g−1 maps
compact sets to compact sets).

Proof of Lemma IA3.4.2: See Krantz and Parks (2012, Chapter 6). �

Lemma IA3.4.3. The market with heterogeneous agents is effectively complete if and
only if for all i 6= j there exists a portfolio that replicates ln (πin(p; ei)/πjn(p; ej)), that is,
there exist (i, j)-dependent but ω-independent λ0 ∈ R and λ ∈ RM−1 such that

ln
(
πin(p; ei)
πjn(p; ej)

)
= λ0 + C(ωn)>λ. (IA.89)

Proof of Lemma IA3.4.3: The proof follows identical steps to that of Lemma A.8-i).
However, in contrast to having two separate Equations (A.54) and (A.55) for I and U ,
respectively, using equation (IA.89) we now have that for each i optimization becomes:

max
θi

[
−

N∑
n=1

πjn(p; ej)e−γi(C(ωn)−erT p)>(θi−λ/γi)
]

= max
θ̂

[
−

N∑
n=1

πjn(p; ej)e−γj(C(ωn)−erT p)>θ̂
]
,

(IA.90)
where θ̂ ≡ (θi − λ/γi)(γi/γj). The second optimization in (IA.90) is the same as that of
investor j. Hence, θ∗j = θ̂∗ = (θ∗i − λ/γi)(γi/γj), or, equivalently:

γiθ
∗
i − γjθ∗j = λ, (IA.91)

which is the counterpart of equation (A.56). So following the same steps as Lemma A.8-i),
by using equation (IA.91) and budget constraints (IA.50) we have γjWj,T ,n − γiWi,T ,n −
ln(`) = ln (πjn(p; ej)/πin(p; ei)), where ` does not depend on ωn (though depends on i, j),
which is equivalent to the Pareto efficiency condition (IA.74). �

Proof of Proposition IA3.3: i) The proof follows identical steps to that of Proposition
4-i). Substituting πin(p; ei) and πjn(p; ej) from (IA.58) into the log-ratio ln (πin(p; ei)/πjn(p; ej)),
and using the fact that by market clearing Ĥ inc(p) = −ŝ we have that the log-ratio of prob-
abilities is a quadratic function of bn. Recall that bn = λ0 +C(ωn)>λ by equation (IA.68).
Hence, by Lemma IA3.4.3, the optimal portfolios are Pareto efficient if and only if there
exists a portfolio that also replicates b2

n.
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ii) If the market is effectively complete equation (IA.73) by definition holds for all i 6= j

and between states n and say N . Let us focus on the MRS of investor i. We substitute
probabilities from equation (IA.58) and wealth from the budget constraint (IA.50), and
after some algebra we arrive at:

πin(p; ei) exp{−γiWi,T ,n}
πiN(p; ei) exp{−γiWi,T ,N}

= exp
{
ãn + 1

2

b̃2
n + 2b̃n

(
µ0/σ

2
0 − λ̃>Σ̃−1

i

(
Ĥ inc(p),−ei

)>)
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

−γi
(
C(ωn)− C(ωN)

)>
θ∗i
}
, (IA.92)

Multiply equation (IA.87) by
(
C(ωn)− C(ωN)

)>
bearing in mind the definition of b̃n:

γi
(
C(ωn)−C(ωN

)>
θ∗i =

bn
(
µ0/σ

2
0 − λ̃>Σ̃−1

i

(
Ĥ inc(p),−ei

)>)
λ̃>Σ̃−1

i λ̃+ 1/σ2
0

−
(
C(ωn)−C(ωN

)>
f−1
i (erTp) .

Substituting for γi
(
C(ωn)− C(ωN

)>
θ∗i from the last equation to equation (IA.92) yields:

πin(p; ei) exp{−γiWi,T ,n}
πiN(p; ei) exp{−γiWi,T ,N}

= exp
{
ãn + 1

2
b̃2
n

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
−
(
C(ωn)− C(ωN)

)>
f−1
i (erTp)

}
.

(IA.93)

If we repeat the same calculations we did to reach equation (IA.93) for j, then condition
(IA.73) implies that for all i 6= j, using also b̃2

n =
(
C(ωn)− C(ωN)

)>
λ̂:

1
2

λ̂

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
− f−1

i (erTp) = 1
2

λ̂

λ̃>Σ̃−1
j λ̃+ 1/σ2

0
− f−1

j (erTp) . (IA.94)

Now, in equation (IA.94) multiply both sides by 1/γj and sum over j. Then use equation
(IA.69) to substitute for ∑K

j=1 f
−1
j /γi to arrive at:

K∑
j=1

1
γj

1
2

λ̂

λ̃>Σ̃−1
i λ̃+ 1/σ2

0
−

K∑
j=1

1
γj
f−1
i (erTp) =

K∑
j=1

( 1
γj

1
2

λ̂

λ̃>Σ̃−1
j λ̃+ 1/σ2

0

)
−R(ŝ),

(IA.95)

where R(ŝ) is the right-hand-side (RHS) of equation (IA.69). Solving for the equilibrium
price function P (ŝ) = p in equation (IA.95) we have that for all i ∈ 1, . . . , K:

P (ŝ) = e−rTfi

( K∑
j=1

1
γj

)−1 K∑
j=1

( 1
γj

1
2

λ̂

λ̃>Σ̃−1
j λ̃+ 1/σ2

0

)
−
( K∑
j=1

1
γj

)−1
R(ŝ)− 1

2
λ̂

λ̃>Σ̃−1
i λ̃+ 1/σ2

0

 ,
(IA.96)
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Now, using the definition of fi in equation (IA.70) the price in equation (IA.96) is the
discounted expectation P (ŝ) = e−rT

∑
N

n=1 qnC(ωn) with respect to probability

qn ≡

exp
{
an + 1

2
( K∑
j=1

1
γj

)−1 K∑
j=1

( b2
n

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

))− ( K∑
j=1

1
γj

)−1
C(ωn)>R(ŝ)

}
∑N
m=1 exp

{
am + 1

2
( K∑
j=1

1
γj

)−1 K∑
j=1

( b2
m

γj
(
λ̃>Σ̃−1

j λ̃+ 1/σ2
0

))− ( K∑
j=1

1
γj

)−1
C(ωm)>R(ŝ)

} ,
(IA.97)

where we again used the fact that b2
n = λ̂0 + C(ωn)>λ̂. Note that probabilities qn in

equation (IA.97) are the unique risk-neutral probabilities under effective completeness in
the incomplete market case. Now, if we substitute R(ŝ) from the RHS of equation (IA.69)
after some algrebra we see that qn = πRN

n , where πRN
n are the risk-neutral probabilities

in the complete market case [see equation (IA.61)]. The only difference is that vectors
λ, λ̃, ν, and matrices Ω, E, Σν , Σ̃i and Q̂i are of lower dimensions: λ, λ̃, ν ∈ RM−1,
Ω ∈ R(N−1)×(M−1), and E, Σν , Σ̃i, Q̂i ∈ R(M−1)×(M−1), for all i = 1, . . . , K. Therefore, prices
are given by equation (IA.60) as in a complete market. �

IA4 Multidimensional Shock

In this section, we extend our analysis to economies with a multidimensional aggregate
shock ε ∈ RK, where K > 1. We derive equilibrium in the complete market case, where the
number of securities is equal to the number of states, M = N , and also obtain derivatives
that make incomplete markets with M < N effectively complete. We show that asset
prices have similar structure to the prices in our baseline setting in Section 3.

We consider an economy with the same set of assets, distribution ϕν(z) of noise trader
demands, and informed and uninformed investors as in Section 2.1. The difference with
our baseline setting is that shock ε and the aggregate risk factor bn of the probabilities
of states are now K-dimensional vectors. In this new setting, the probabilities of states
πn(ε) and the prior shock distribution ϕε(x) are now given by:

πn(ε) = ean+b>n ε∑
N

j=1 e
aj+b>j ε

, n = 1, . . . , N, (IA.98)

ϕε(x) =

(∑
N

j=1 e
aj+b>j x

)
e−0.5(x−µ0)>Σ−1

0 (x−µ0)∫
RK
(∑

N

j=1 e
aj+b>j x

)
e−0.5(x−µ0)>Σ−1

0 (x−µ0)dx
, (IA.99)

where ε, bn, µ0 ∈ RK, and Σ0 ∈ RK×K is a positive-definite matrix. Equations (IA.98)
and (IA.99) are multidimensional extensions of the probabilities of states (1) and shock

33

Electronic copy available at: https://ssrn.com/abstract=2446873



distributions (2) in our baseline setting. The optimization problems of investors I and U ,
their corresponding budget constraints, and the definition of equilibrium are the same as
in Section 2.2 [see equations (3)–(6)].

IA4.1 Economy with M = N securities

Here we derive the equilibrium in the complete market case with M = N following the
same steps as in our baseline setting. In particular, the first order conditions are given
by equations (10) as before. These conditions allow us to find the trading strategy of the
informed investor in terms of shock ε and risk-neutral probabilities of states. Lemma IA4.1
reports this trading strategy in closed form.
Lemma IA4.1 (Investor I’s optimal portfolio with multidimensional shock).
Investor I’s optimal portfolio is given by:

θ∗I (p; ε) = Λε
γI
− Ω−1(ṽ(p)− ã)

γI
, (IA.100)

where Ω ∈ R(N−1)×(N−1) is a matrix of excess payoffs with elements Ωn,k = Ck(ωn) −
Ck(ωN), Λ = Ω−1B̃> ∈ RN−1×K, with B̃ ∈ RK×N−1 and elements B̃k,n = bk,n − bk,N ,
ã = (a1 − aN , . . . , aN−1 − aN)> ∈ RN−1, and ṽ(p) ∈ RN−1 is the vector of log ratios of
risk-neutral probabilities, given by:

ṽ(p) =
(

ln
(
πRN

1
πRN
N

)
, . . . , ln

(
πRN
N−1
πRN
N

))>
. (IA.101)

The optimal portfolio (IA.100) has the same structure as portfolio (11) in the baseline
setting, with the only difference that the replicating portfolio λ in the baseline setting
is now a matrix Λ with K rows corresponding to K replicating portfolios. These K

portfolios help allocate more wealth to more likely states. Substituting equation (IA.100)
in the market clearing condition (6) yields the sufficient statistic s = hΛε/γI + ν. Below
we report the posterior state probabilities of U after observing prices p.
Lemma IA4.2 (Posterior probabilities of states with multidimensional shock).
The posterior probabilities of states ωn conditional on observing the sufficient statistic
s = hΛε/γI + ν are given by:

πUn (p) = 1
G(p) exp

{
an + 1

2
(
b>n Σ̂−1bn + 2b>n Σ̂−1

(
Σ−1

0 µ0 + hΛ>Σ−1
ν s/γI

))}
, (IA.102)

where Σ̂ = h2Λ>Σ−1
ν Λ/γ2

I + Σ−1
0 ∈ RK×K, and G(p) is a normalizing function.
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Equation (IA.102) is a multi-dimensional extension of posterior probabilities (15) in our
baseline setting. Next, we find the risk-neutral probabilities and asset prices in the economy
following the same steps as in Section 3. Proposition IA4.1 reports the results.
Proposition IA4.1 (Equilibrium with M = N assets with multidimensional
shock). i) There exists unique equilibrium in which prices only reveal the sufficient statistic
s = hΛε/γI+ν. In this equilibrium, the vector of risky asset prices P (ε, ν) and risk-neutral
probabilities πRN

n are given by:

P (ε, ν) =
[
πRN

1 C(ω1) + πRN
2 C(ω2) + . . .+ πRN

N C(ωN)
]
e−rT , (IA.103)

πRN
n = evn∑

N

j=1 e
vj
, (IA.104)

where probability parameters vn are given in closed form by:

vn = an + 1
2

(1− h)/γU
h/γI + (1− h)/γU

(
b>n Σ̂−1bn + 2b>n Σ̂−1Σ−1

0 µ0
)

+
C(ωn)>

(
E +Q

)
s

h/γI + (1− h)/γU
,

(IA.105)

Q = h(1− h)
γIγU

ΛΣ̂−1Λ>Σ−1
ν , (IA.106)

Σ̂ = h2Λ>Σ−1
ν Λ/γ2

I + Σ−1
0 , (IA.107)

where E is an identity matrix, Q,E ∈ R(N−1)×(N−1), Σ̂ ∈ RK×K, Λ = Ω−1B̃> ∈ RN−1×K,
and B̃ ∈ RK×N−1 is a matrix with elements B̃k,n = bk,n − bk,N .
ii) Portfolio θ∗I (p; ε) is given by equation (IA.100) and portfolio θ∗U(p) is given by

θ∗U(p) =
(
E +Q

)−1
(
hQΩ−1(ṽ(p)− ã)

(1− h)γI
− Ω−1(ṽ(p)− â)

γU
+ ΛΣ̂−1Σ−1

0 µ0/γU

)
, (IA.108)

where ṽ(p) ∈ RN−1 is given by (IA.101) and has elements vn − vN in equilibrium, and
ã, â ∈ RN−1 have elements an − aN and an − aN + 0.5(b>n Σ̂−1bn − b>N Σ̂−1bN), respectively.
The expressions for the risk-neutral probabilities, asset prices, and the portfolio of the
uninformed investor in our baseline setting derived in Proposition 1 are simple special
cases of those in Proposition IA4.1 when shock ε is a scalar, that is, K = 1. Moreover, the
corresponding expressions in Proposition 1 and Proposition IA4.1 have the same structure.

IA4.2 Effective Completeness

In this section, we derive securities such that opening up trading in these securities makes
incomplete markets with M < N effectively complete. Similar to our baseline analysis, we
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impose the informational spanning condition

b>n = Λ0 + C(ωn)>Λ, (IA.109)

where Λ0 ∈ RK, Λ ∈ R(M−1)×K, and bn ∈ RK is a vector of aggregate risk factors in
state ωn. Similar to our baseline setting, condition (IA.109) guarantees the existence
of K replicating portfolios for the aggregate risk factors. Condition (IA.109) facilitates
tractability by making the portfolio of the informed investor separable in shock ε and
prices p. For brevity, we do not study the incomplete-market equilibrium, which can be
derived as in our baseline setting.

Our focus here is to understand which assets effectively complete the market in the case
M < N . As demonstrated in Section 3, the market is effectively complete if and only if
the log-ratio of the investors’ probabilities ln (πn(ε)/πUn (p)) can be replicated by a portfolio
of traded assets. The latter result remains valid in our extension with multidimensional
shocks, because the first order conditions of investors and the condition for the effective
completeness are not affected by the dimensionality of shock ε.
Proposition IA4.2 (Effective completeness with multidimensional shock).

Suppose, the market is incomplete, that is, M < N , and the informational spanning condi-
tion (IA.109) is satisfied. Then, the market is effectively complete if and only if there exists
a replicating portfolio for b>n Σ̂−1bn, that is, there exist constant λ̂0 and vector λ̂ ∈ RM−1

such that b>n Σ̂−1bn = λ̂0 + C(ωn)>λ̂, for all n = 1, . . . , N , where Σ̂ is given by (IA.107).
The asset prices and risk-neutral probabilities are given by the same equations (IA.103)–
(IA.104) as in the complete market case.
The main economic implication of Proposition IA4.2 is that, despite the multidimension-
ality of shock ε, only one extra derivative is needed to complete the market and the payoff
of this derivative in state ωn is a quadratic form of bn given by b>n Σ̂−1bn. Proposition
IA4.2 is a generalization of Proposition 4 in our baseline setting, which establishes the
conditions for the effective completeness in economies with scalar shocks ε. In particular,
for the special case of a scalar shock ε matrix Σ̂ becomes a constant, and hence, we recover
the main result of Proposition 4 that the market is effectively complete if and only if a
portfolio with payoffs b2

n is traded in the market.
Proposition IA4.2 and the informational spanning condition (IA.109) imply that the

market can be completed by introducing a derivative with payoffs given by (C(ωn) −
ERN[C(ωn)])>ΛΣ̂−1Λ>(C(ωn) − ERN[C(ωn)]), because these payoffs can be equivalently
rewritten as quadratic forms of bn using condition (IA.109). The value of the latter deriva-
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tive is then given by

ERN[(C − ERN[C])>ΛΣ̂−1Λ>(C − ERN[C])]e−rT = tr
(
varRN[C]ΛΣ̂−1Λ>

)
e−rT , (IA.110)

where tr(·) is a matrix trace, and we use the fact that for column vectors a and b we have
that a>b = tr(ba>).

Next, we consider an example where matrix Λ of replicating portfolios is diagonal,
Λ = diag{λ1, . . . , λK}, and assume that K = M − 1. In this case, the informational
spanning condition (IA.109) implies that bk,n = λkCk(ωn), and hence, for each shock εk

the corresponding sensitivity can be replicated by a tradable asset. For further tractability,
we assume that Σν = σ2

νEM−1 and Σ0 = σ2
0EK, where Ei is the Ri×i identity matrix. Then,

matrix ΛΣ̂Λ> is a diagonal matrix with elements 1/
(
h2/(γ2

I σ
2
ν) + 1/(λ2

kσ
2
0)
)
, and hence,

the price of the quadratic derivative is given by
K∑
k=1

varRN[Ck]e−rT
h2/(γ2

I σ
2
ν) + 1/(λ2

kσ
2
0) . (IA.111)

We observe that price (IA.111) alternatively can be viewed as a price of a volatility index,
defined as a portfolio of quadratic derivatives with payoffs (C(ωk)− E[C(ωk)])2.

IA4.3 Proofs

Proof of Lemma IA4.1: The proof follows identical steps as that of Lemma 1, with
the only differentiation that ε is a vector so that we need to introduce matrices Λ and B̃

instead of vectors λ and b̃. �

Proof of Lemma IA4.2: The proof follows identical steps as that of Lemma 1. In
particular Equation (A.7) holds as is for ε, x ∈ RK, while (A.8) becomes:

ϕε|s(x|y) =
exp

{
−0.5

(
y − hΛx/γI

)>
Σ−1
ν

(
y − hΛx/γI

)}
ϕε(x)

G1(y) , (IA.112)

where G1(y) normalizes the density. The integral in Equation (A.9) is now K-th dimen-
sional, where the exponent is:

dn(x) = an + b>nx− 0.5
(
hΛx/γI +H(p)

)>
Σ−1
ν

(
hλx/γI +H(p)

)
− 0.5(x− µ0)>Σ−1

0 (x− µ0),
(IA.113)

where H(p) = (1 − h)θ∗U(p) − hΩ−1
(
ṽ(p) − ã

)
/γI is the informational contents of prices,

and H(p) = −s from the market clearing condition. After a bit of algebra, substituting
dn(x) from Equation (IA.113) into the K-th dimensional version of integral (A.9) and
integrating, we obtain Equation (IA.102) for πUn (p). �

37

Electronic copy available at: https://ssrn.com/abstract=2446873



Proof of Proposition IA4.1: The proof follows identical steps as that of Proposition
1, with the only difference that ε, bn, and µ0 are now vectors rather than scalars, and we
have matrices Λ and Σ0 instead of vector λ and scalar σ2

0. �

Proof of Proposition IA4.2: The uninformed probabilities πUn in the incomplete mar-
ket are still given by the same equation (IA.102), as in the complete market, because the
sufficient statistics remains the same as in the complete market. Substituting πn(ε) from
(IA.98) and πUn from (IA.102) into ln(πn(ε)/πUn ), we find:

ln
(
πn(ε)
πUn (p)

)
= b>n ε−

1
2
(
b>n Σ̂−1bn + 2b>n Σ̂−1

(
Σ−1

0 µ0 + hΛ>Σ−1
ν (hΛε/γI + ν)/γI

))
+ const,

(IA.114)
where const does not depend on state ωn. The log-ratio of probabilities in (IA.114) is a
function of b>n Σ̂−1bn. Hence, by Lemma A.8, which holds unchanged for multidimensional
shock ε, the optimal portfolios are Pareto efficient if and only if there exists a portfolio
that replicates b>n Σ̂−1bn. �
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