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I study a general class of noisy rational expectations models that nests the standard
Grossman and Stiglitz (1980) and Hellwig (1980) models, but relaxes the usual assumption of joint
normality of asset pay-offs and supply, and allows for more general signal structures. I provide a
constructive proof of existence of equilibrium, characterize the price function, and provide sufficient
conditions for uniqueness within the class of equilibria with continuous price functions, which are met
by both the Grossman and Stiglitz (1980) models and the Hellwig (1980) models with a continuum of
investors. My solution approach does not rely on the typical “conjecture and verify” method, and I exhibit
a number of non-normal examples in which asset prices can be characterized explicitly and in a closed form.
The results presented here open up a broad class of models for applied work. To illustrate the usefulness
of generalizing the standard model, I show that in settings with non-normally distributed pay-offs, shocks
to fundamentals may be amplified purely due to learning effects, price drifts can arise naturally, and the
disagreement–return relation depends in a novel way on return skewness.
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1. INTRODUCTION

In this article, I provide a constructive proof of equilibrium existence for a class of noisy
rational expectations (RE) models that nests the standard Grossman and Stiglitz (1980) and
Hellwig (1980) models and that does not rely on normality assumptions. The model permits
many common distributions for asset pay-offs and permits general signal structures and asset
supply distributions. In many natural settings, the price can be characterized explicitly in a
closed form. I also provide sufficient conditions for uniqueness of equilibrium within the class of
equilibria with continuous price functions, hereafter referred to as continuous equilibria, which
are met by the Grossman and Stiglitz (1980) and the Hellwig (1980) models with a continuum of
investors. In addition to being of independent theoretical interest, these results open up a broader
class of models for applications; like the standard model, this generalization would also allow
straightforward extensions to include multiple assets (Admati, 1985) and short-sale or borrowing
constraints (Yuan, 2005).
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Noisy RE models are workhorse models for studying the effects of asymmetric information
in financial markets. The model of Grossman and Stiglitz (1980), and similar ones due
to Hellwig (1980) and Diamond and Verrecchia (1981) are the foundation for models that
guide our understanding of many economic phenomena: information acquisition in financial
markets (Grossman and Stiglitz, 1980; Verrecchia, 1982), the operation of information markets
(Admati and Pfleiderer, 1986, 1987, 1990), financial market crashes, crises, and contagion
(Gennotte and Leland, 1990; Kodres and Pritsker, 2002; Yuan, 2005; Angeletos and Werning,
2006), cross-asset learning (Admati, 1985), insider trading (Leland, 1992), feedback effects from
financial markets to firm cash flows (Hirshleifer et al., 2006; Ozdenoren and Yuan, 2008), and
exchange rate dynamics (Bacchetta and van Wincoop, 2006), among others.1

Despite their ubiquity, most noisy RE models depend on strong assumptions that all random
variables are jointly normally distributed and that all agents have constant absolute risk aversion
(CARA) utility functions. This set of assumptions leads to elegant solutions but fails to capture
important features of asset markets. Two obvious criticisms are that normality of asset pay-
offs violates limited liability and precludes any consideration of the effects of higher moments.
Moreover, the standard solution method is based on conjecturing a price that is linear in signals
and supply and then showing that such a conjecture is consistent with equilibrium. This method
provides no guidance on how to solve more general models, and uniqueness is neither claimed nor
established. Due to the complexity and apparent intractability of alternative noisy RE models,
there remain open questions as to whether (i) there exist general variations on the standard
CARA-Normal model that are analytically tractable but do not require the assumption of normally
distributed pay-offs, signals, and asset supplies, and (ii) whether there exist non-linear equilibria
in the standard model. The main contribution of this article is to furnish answers to both of these
questions, providing a solution to a broad class of models that nests the standard model and
presenting a set of sufficient conditions under which the equilibrium is unique within the class of
continuous equilibria.2

I also show that the generalization provided here is more than a mere technical point. Indeed,
even seemingly innocuous changes to pay-off or supply distributions can dramatically change
standard comparative static results. For instance, I find that “small” shocks to fundamentals
may lead to “large” changes in price, prices may exhibit drift-like effects, and the relation
between investor disagreement and returns can depend in a novel way on return skewness. Thus,
generalizing the standard model allows one to conclude that a number of “standard” results
commonly accepted in the literature are not robust to plausible alternative assumptions.

The primary difficulty in solving noisy rational expectations models is that the asset price
must both convey information to investors and clear the market, which presents a complicated
non-linear fixed-point problem that does not fit well into any standard fixed-point theorems. When
there is a hierarchical information structure with one informed and one uninformed investor, I
avoid this problem by exploiting the market-clearing condition to determine a priori a statistic
that is informationally equivalent to any continuous equilibrium price. The intuition for this result
relies on a simple fact: for a given investor, the asset price can reveal no less than the net trade of
all other investors in the economy. With this statistic pinned down, investor beliefs follow from
Bayes’ rule, and a simple first-order condition (FOC) characterizes demand functions. The asset

1. There is a distinct but related literature, following Kyle (1985) and Kyle (1989), that studies the consequences
of asymmetric information in markets in which some traders behave strategically.

2. Following completion of an earlier draft, it was brought to my attention that Pálvölgyi and Venter (2015)
demonstrate how to construct a class of discontinuous price functions in both the Grossman and Stiglitz (1980) and
Hellwig (1980) models.
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price is easily established by imposing market clearing. Moreover, if the statistic determined in the
first step is identical for any possible price function, then uniqueness follows almost immediately.

In a dispersed information setting in which traders’ information sets are not nested, it is not
necessarily possible to pin down the information content of the price independently of the price
function. The reason is that in this case all investors will learn from the asset price, not only the
‘uninformed’ investor. Nevertheless, motivated by the results in the two type case, I show that
focusing on price functions that are of a particular “generalized linear” form delivers equilibrium
characterization and existence results in a set of economies that nests the finite-investor case of
Hellwig (1980). Moreover, in economies with a continuum of investors and an additive signal
structure with normally-distributed errors, the construction used in the two-types setting can be
applied directly and uniqueness is demonstrated.

This article is part of a growing literature that seeks to generalize noisy RE models beyond
the CARA-Normal framework. Albagli et al. (2013) is the most closely related recent work.
They also analyse a class of non-linear noisy RE models, but their focus is on how alternative
pay-off assumptions affect information aggregation. Ausubel (1990a) and Barlevy and Veronesi
(2000, 2003) are also closely related to this work. Ausubel (1990b) demonstrates existence
and uniqueness of a partially revealing equilibrium in a two-good, two-agent model in which
uninformed agents do not know the preferences of informed agents. Barlevy and Veronesi (2000,
2003) construct an equilibrium in a simple noisy RE model in which traders are risk-neutral
and face a portfolio constraint, and they focus on a particular parametric distribution for random
variables.3 Other related work must make more substantial concessions and resort to non-standard
model settings or approximation to arrive at a solution. Vanden (2008) solves a non-linear noisy RE
model driven by gamma distributions but depends upon a non-standard definition of noise trading.
Peress (2004) analyses the interaction between wealth effects and information acquisition by using
a “small risk” log-linear approximation. Bernardo and Judd (2000) develop a computational
procedure for solving noisy RE models numerically and demonstrate the non-robustness of
some results from the standard Grossman and Stiglitz (1980) model. Banerjee and Green (2015)
consider an economy in which the uninformed investors are uncertain about the presence of an
informed investor, and Adrian (2009) studies a dynamic model in which investors are myopic
and have non-Normal priors.

There are also a similar strands of literature that deal with non-noisy settings and settings in
which traders behave strategically. DeMarzo and Skiadas (1998) study the properties a class of
static economies that nests Grossman (1976); they demonstrate uniqueness of Grossman’s (1976)
fully revealing linear equilibrium and give robust examples of partially revealing equilibria when
pay-offs are non-normal. Foster and Viswanathan (1993) study (linear) equilibria in the Kyle
(1985) model when random variables are elliptically distributed, and Bagnoli et al. (2001) derive
necessary and sufficient conditions on probability distributions for existence of linear equilibria in
various market making models. Rochet and Vila (1994) study existence and uniqueness properties
in a class of models similar to Kyle (1985) in which informed traders observe the amount of noise
trade. Finally, Bhattacharya and Spiegel (1991) study non-linear equilibria in a noisy RE model
with strategic informed traders, and Spiegel and Subrahmanyam (2000) consider a model of
market making in which an informed trader has private information about the mean and variance
of an asset’s pay-off.

3. Chamley (2008) points out an error in the computation of the value of information in Barlevy and Veronesi
(2000). Nevertheless, the characterization of the financial market equilibrium in their paper is correct.
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2. MODEL

The model is of a simple static economy, as in Grossman and Stiglitz (1980) and Hellwig (1980).
There are two dates, t ∈{0,1}. At the first date, t =0, investors trade financial assets. At the final
date, t =1, assets make liquidating pay-outs. There are two assets, a risky asset with pay-off Ṽ ,

distributed on some set V ⊆R,4 and a risk-free asset, which is the numeraire, that pays off 1 and
has price normalized to 1. It is trivial to extend the model to permit an exogenous, positive return
on the risk-free asset.

There are N +1 investors, indexed by i∈{1,...,N}∪{U}, who have utility over wealth at t =1,
with CARA utility functions, which I formalize in the following Assumption.

Assumption 1 (CARA utility) . Investors have CARA utility with risk tolerance τi : ui(w)=
−exp

{
− 1

τi
w
}

.

Investors are endowed with shares of the risky asset and holdings of the risk-free asset that
they can trade in the financial market. Without loss of generality, I normalize the endowments
to zero, since a CARA investor’s demand for risky assets does not depend on initial wealth.
Investors i∈{1,...,N} observe signals S̃i, each distributed on S ⊆R before the financial market
opens. They can also condition their demands on the equilibrium price. I refer to these investors
as informed investors. I denote the collection of all signals by S̃ ≡ (̃S1,...,S̃N )∈SN . The final
investor U does not observe any signals but can condition his/her demand on the equilibrium
price. This investor is referred to as the uninformed investor. Owing to the assumption of CARA
utility, standard aggregation theorems (Rubinstein, 1974; Ingersoll, 1987, p. 217–219) imply that
each investor can be thought of as a representative agent for an underlying mass of investors
who observe a common signal S̃i (or no signal, in the case of the uninformed investor) and have
aggregate risk tolerance equal to τi. Thus, without loss of generality, I assume that no two signals
are identical. That is there do not exist distinct i,j∈{1,...,N} for which Prob(̃Si = S̃j)=1.

The pay-off Ṽ and signals S̃ are jointly distributed according to some cumulative distribution
function (cdf) FṼ ,̃S :V×SN →[0,1]. The marginal cdfs and the joint cdfs of subsets of the signals

use analogous notation (e.g. the marginal of S̃i is denoted FS̃i
). Conditional cdfs are written in the

form FṼ |̃Si
. If a random variable has a probability density function (pdf), I use the same notational

conventions but with lower case f in place of F.
To prevent fully revealing prices and provide a motive for trade, there is a random component

to the supply of the asset. The supply is equal to z+Z̃ , where z∈R is a known constant, and
the supply shock Z̃ is distributed independently of all other random variables in the economy,
according to cdf FZ̃ on some set Z ⊆R.5 Since z is known, one could simply absorb it into the
shock Z̃; however, once one moves beyond the normal distribution there is often no notationally
simple way to do this, therefore, it is convenient to be able to adjust the constant separately.

All investors are price takers.All probability distributions and other parameters of the economy
are common knowledge, and therefore, investors are only asymmetrically informed about the asset

4. In general, I use the notational convention that random variables are denoted by capital letters with tildes,
supports of random variables and functions by calligraphic capital letters, and realizations of random variables by lower
case letters without tildes. An exception to this convention is that I follow tradition and use ε̃ for error terms when
specifying particular functional forms for signals below.

5. It is equivalent to introduce noise or liquidity traders who submit price inelastic demand functions uncorrelated
with the asset pay-off. One can also permit price elasticity in the supply by specifying supply=z+ Z̃ +ζ (p), where ζ is
an increasing function.
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pay-off Ṽ . Also, signals are taken to be exogenous—they have been fixed via some unmodelled
information-acquisition stage before the financial market opens.

2.1. Equilibrium

The definition of equilibrium in the financial market is standard and makes the typical
measurability restriction on the price function suggested by Kreps (1977) to rule out prices
that reveal more than the pooled information of all investors. Let P(s,z) denote the equilibrium
risky-asset price for given realizations of S̃ =s and Z̃ =z. Let Xi(si,p) denote the quantity of
shares demanded by informed investor i as a function of his/her signal and price, and let XU (p)
denote the quantity of shares demanded by the uninformed investor as a function of the price.

Definition 1 (Financial market equilibrium). A noisy rational expectations equilibrium in the
financial market is a measurable function P :SN ×Z →R, and measurable demand functions
for investors Xi(·) such that all investors maximize expected utility, conditional on their
information sets

Xi(si,p)∈argmax
x∈R

E

[
−exp

{
− 1

τi
x(Ṽ −p)

}∣∣∣∣̃Si =si,P(̃S,Z̃)=p

]
, i∈{1,...,N},

XU (p)∈argmax
x∈R

E

[
−exp

{
− 1

τU
x(Ṽ −p)

}∣∣∣∣P(̃S,Z̃)=p

]
,

and markets clear in all states

N∑
i=1

Xi(si,P(s,z))+XU (P(s,z))=z+z, ∀(s,z)∈SN ×Z.

3. TWO-TYPES MODEL

In this section, I examine the special case in which there is a single informed investor, as in
Grossman and Stiglitz (1980). This setting illustrates the main insights of the article and can be
addressed under a rather general set of assumptions.

The following two assumptions are essential for the characterization of the equilibrium.
Further technical assumptions will be introduced below as needed.

Assumption 2 (Single informed). There is a single informed investor, N =1. All quantities
associated with him/her are subscripted by I (e.g. signal S̃I , risk-tolerance τI ).

Assumption 3 (Exponential family) . The conditional distribution of the pay-off Ṽ given S̃I =sI
has a cdf that can be written in the form

dFṼ |̃SI
(v|sI )=exp{kI sI v−gI (kI sI )}dHI (v), v∈V,sI ∈S. (3.1)

where kI >0 is a constant, the function gI :GI →R has domain GI which is an interval satisfying
kIS ⊆GI ,

6 and the function HI :R→R is (weakly) increasing and right-continuous.

6. I follow the notational convention that given scalars α,β ∈R and sets A,B⊆R, the set αA+βB is defined as
αA+βB≡{αa+βb :a∈A,b∈B}.
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Assumption 2 is self-explanatory.Assumption 3 may appear complex at first glance. It requires
that the informed investor’s conditional distribution lies in a so-called exponential family with
parameter kI sI .7 This allows for a unified treatment of many common distributions, including
the normal, binomial, exponential, and gamma, all of which are exponential families, as well
as various signal structures. Indeed, the combination of Assumption 1 and 3 (and later, its
generalization in Assumption 10) is the key to the article. In tandem, these assumptions will
lead to informed investor demand functions that are linear in the signal sI , though not typically
in the price.

I present a number of properties of exponential families in Appendix A.1, but I will address a
few important points here. Let MṼ |̃SI

(u|sI )≡E[exp{uṼ}|̃SI =sI ] denote the conditional moment
generating function (mgf). The mgf of a probability distribution encapsulates information about
all of its moments, which can be obtained by differentiating. LemmaA6 shows that the conditional
mgf for an exponential family is MṼ |̃SI

(u|sI )=exp{gI (u+kI sI )−gI (kI sI )}. Hence, all conditional
moments are determined by the shape of gI and the value of kI sI . The set GI represents the set
of admissible parameters for the distribution of Ṽ . The requirement that kIS ⊆GI ensures that
all possible realizations of the “parameter” kI sI lie within this set. For instance, if the pay-off is
conditionally exponentially distributed with rate −kI sI this condition ensures that the distribution
of S̃I is such that the rate is always positive.

Note that the constant kI can always be normalized to 1 after appropriately rescaling the
signal S̃I ; however, allowing for explicit consideration of the constant will prove convenient
in the multiple-investor version of the model. Both the assumption that kI is positive and that
kI sI is a linear function of sI are without loss of generality. If the kI sI terms in the distribution
were instead replaced by the more general expression k′

I bI (s′
I ) for some non-zero k′

I , signal s′
I ,

and function bI , one could define an informationally equivalent signal S̃I =sgn(k′
I )bI (̃S′

I ) and let
kI =|k′

I | to place the distribution in the desired form. I choose to do this as part of the Assumption
so as to not have to carry around extra notation.

If the standard CARA-Normal model is an idealization of a world in which investors run
linear regressions to predict asset pay-offs, then Assumption 3 generalizes to a world in which
investors run generalized linear models to predict asset pay-offs.8 Suppose that X̃ is a vector of
regressors that are to be used as predictors. In a generalized linear model, the econometrician
specifies that the pay-off is drawn according to an exponential family distribution with mean
that is a function of X̃ ′β for some coefficient vector β. An example is logistic regression, which
models the probability of a binary outcome by specifying log-odds that are linear in a set of
regressors. In the general case considered here, the regressor for the informed investor is his/her
signal and Lemma A8 in the Appendix shows that the conditional mean is g′

I (kI sI ). Hence, kI is
like a regression coefficient.

Assumption 3 allows for many common continuous and discrete distributions for pay-offs
and for various assumptions about the joint distributions of pay-offs and signals. The following
two examples illustrate some natural settings in which it is met.

Example 1 (Binomial distribution, general signal structure) . The asset pay-off follows a
binomial distribution on V ={VL,VH}. The informed investor receives a signal S̃0, jointly

7. See Bernardo and Smith (2000, Ch. 4.5.3) or Casella and Berger (2002, Ch. 3.4) for details. The terminology
may be somewhat confusing if the reader has not previously encountered exponential families. Requiring the pay-off to be
distributed according to a distribution in an exponential family is not the same as requiring that the pay-off be distributed
according to the exponential distribution. The specification in equation (3.1) is substantially more general and includes
the exponential distribution as a special case.

8. See McCullagh and Nelder (1989) for a textbook treatment of generalized linear models.
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distributed with Ṽ . Suppose that this signal is non-degenerate in that it does not fully
reveal Ṽ .

I now show how this setup fits the exponential family assumption after potentially transforming

the signal. Define the random variable S̃I = log

(
fṼ |̃S0

(VH |̃S0)

fṼ |̃S0
(VL |̃S0)

)
as the informed investor’s log-odds.

The log-odds are a sufficient statistic for S̃0: once one has observed S̃I , additionally observing S̃0
directly does not provide any additional information about Ṽ . The conditional pdf can be written
as a function of the realization sI

fṼ |̃SI
(v|sI )=

{ exp{sI }
1+exp{sI } v=VH

1
1+exp{sI } v=VL.

Since Ṽ takes only two values, the numerators of these expressions can be captured in one

term, exp
{

v−VL
VH−VL

sI

}
, which allows one to write the pdf as

fṼ |̃SI
(v|sI )= exp{ v−VL

VH−VL
sI }

1+exp{sI } I{v∈{VL,VH}}

=exp
{

1
VH −VL

sI v− 1
VH −VL

sI VL−log
(

1+exp
{

(VH−VL) sI
VH −VL

})}
I{v∈{VL,VH}}, (3.2)

where the second line moves the denominator into the exponential in the numerator and pulls
apart the v−VL

VH−VL
term.

By inspection, this distribution is in the form of equation (3.1) with

kI = 1

VH −VL
(3.3)

gI (kI sI )=VLkI sI +log(1+exp{(VH −VL)kI sI }) (3.4)

dHI (v)=

⎧⎪⎨⎪⎩
1 v=VL

1 v=VH

0 v /∈{VL,VH},
or, equivalently, HI (v)=

⎧⎪⎨⎪⎩
0 v<VL

1 VL ≤v<VH

2 VH ≥v.

(3.5)

To identify the sets that appear in Assumption 3, note that the support of the function gI is GI =R,

as it is clear by inspection that gI is defined on the entire real line. The support of the log-odds, S,

depends on the underlying signal structure, but since GI =R the condition kIS ⊆GI will always
be satisfied.

Example 2 (General pay-off distribution, additive Normal signal) . Suppose that Ṽ is dis-
tributed according to an arbitrary distribution FṼ on some set V ⊆R. The informed investor
receives an additive signal about the pay-off, S̃I = Ṽ + ε̃I , where ε̃I ∼N(0,σ 2

I ) is an independently
distributed error.

Let φ(·|μ,σ 2) denote the density of a N(μ,σ 2) random variable, and use Bayes’ rule to
compute the joint distribution of Ṽ and S̃I

dFṼ ,̃SI
(v,sI )=φ(sI |v,σ 2

I )dFṼ (v).
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Using Bayes rule again, the conditional distribution of Ṽ satisfies

dFṼ |̃SI
(v|sI )= φ(sI |v,σ 2

I )dFṼ (v)∫
V φ(sI |x,σ 2

I )dFṼ (x)dx
.

To continue, plug in the normal density φ(sI |v,σ 2
I )= exp{−(sI−v)2/2σ 2

I }√
2πσ 2

I

. The key step for

verifying the exponential family form is to expand the quadratic function in the exponential
and notice that terms that are constant with respect to x and v and appear in both the numerator
and denominator cancel

fṼ |̃SI
(v|sI )=

exp

{
sI

σ 2
I

v− 1
2

v2

σ 2
I

}
dFṼ (v)

∫
V exp

{
sI

σ 2
I

x− 1
2

x2

σ 2
I

}
dFṼ (x)

=exp

{
sI

σ 2
I

v−log

(∫
V

exp

{
sI

σ 2
I

x− 1

2

x2

σ 2
I

}
dFṼ (x)

)}
exp

{
−1

2

v2

σ 2
I

}
dFṼ (v),

where the second equality pulls the expression in the denominator into the exponential function
in the numerator.

By inspection, this density is in the desired form with

kI = 1

σ 2
I

gI (kI sI )= log

(∫
V

exp

{
kI sI x− 1

2

x2

σ 2
I

}
dFṼ (x)

)

dHI (v)=exp

{
−1

2
v2

σ 2
I

}
dFṼ (v), or, equivalently, HI (v)=

∫ v

−∞
exp

{
−1

2
x2

σ 2
I

}
dFṼ (x).

The sets that appear in Assumption 3 are as follows. The support of gI is GI =R, since the −x2

term in the exponential implies that the integral that defines gI converges for any kI sI ∈R. The
support of S̃I is S =R due to the normally distributed error. Clearly, kIS ⊆GI , as required.

These two examples are by no means the only ones that satisfy the exponential family
assumption. I focus on them because they employ some commonly made assumptions about
pay-offs and produce straightforward solutions for the asset price. The existence and uniqueness
results below are presented in general terms and are not limited to these examples.

3.1. Characterizing the equilibrium

The goal in this section is to characterize the equilibrium price in the two-types model. The
essential difficulty to overcome is that the equilibrium price must both clear the market and
be consistent with investors’ beliefs. If the random variables in the model were jointly normally
distributed, the standard solution approach is well known. It involves conjecturing a price function
that is linear (affine) in the realizations of signal sI and supply z, solving the investors’ updating
and portfolio problems given the price function, and substituting their demand functions into
the market-clearing condition. Solving the resulting linear equation for the price and matching
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the coefficients with the original conjecture produces, a system of three equations with three
unknowns. Grossman and Stiglitz (1980) show that these equations can be solved in closed form
for the coefficients of the price function.

With a non-normal joint distribution, the “conjecture and verify” technique is not available
since the functional form of the price is not clear a priori. However, suppose that the informed
investor has a demand function that is additively separable in the signal and some transformation
of the price, XI (sI ,p)=asI −g(p). The market-clearing condition requires that in any equilibrium,

asI −g(P(·))+XU (P(·))=z+z,

or rearranging

1

a
(g(P(·))−XU (P(·))+z)=sI − 1

a
z.

Since the left-hand side depends on (sI ,z) only through P(·), this implies that any equilibrium price
function must reveal the statistic S̃I − 1

a Z̃. Hence, one can determine the information content of the
price function independently of its functional form.9 With this statistic in hand, the uninformed
investor’s equilibrium beliefs are pinned down, and one can also characterize his/her demand
independently of the price function. Finding an equilibrium price then reduces to finding a price
that clears the market.

The rest of this section walks through the equilibrium derivation described above and presents
heuristic proofs. All results are proven rigorously in Appendix A.2. I begin by writing down the
informed investor’s partial equilibrium demand function, which takes the linear form above due
to Assumptions 1–3. Let (V ,V ) denote the interior of the convex hull of V. This set is an open
interval since V ⊆R. Demand will only be finite for prices p∈ (V ,V ) since those are the prices that
preclude arbitrage. I will also require the following purely technical assumption, which guarantees
that the FOC is necessary and sufficient for an optimum for the informed investor.

Assumption 4. The interval GI is open.

Lemma 1 (Informed demand). Suppose that Assumptions 1–4 hold and that p∈ (V ,V ). Let
GI ≡ (g′

I )−1, where gI (·) is the function from the informed investor beliefs in equation (3.1). The
demand function of the informed investor is

XI (sI ,p)=τI (kI sI −GI (p)). (3.6)

I give a brief sketch of the proof here. The informed investor’s optimization problem is

max
x∈R

E

[
−exp

{
− 1

τI
x(Ṽ −p)

}
|̃SI =sI

]
=max

x∈R

−exp
{

1
τI

xp+gI

(
kI sI− 1

τI
x
)
−gI (kI sI )

}
,

where I use Lemma A6 to compute the conditional expectation in a closed form. Since GI , the
domain of gI , is assumed to be an open interval, this problem involves maximizing a continuously

9. I use the term “information content” informally. More precisely, determining the “information content” means
determining a univariate random variable that depends on both S̃I and Z̃ , such that the σ -algebras generated by the price
and by this random variable are identical. For parsimony and to be comparable with prior literature, I suppress the measure
theoretic details here, as throughout the article.
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differentiable and strictly concave function over an open set, so the FOC is necessary and sufficient
for an optimum. The FOC reduces to

g′
I

(
kI sI − 1

τI
x

)
=p.

Supposing that g′
I is invertible and GI ≡ (g′

I )−1 is well defined at p, one can apply GI to both sides
and rearrange to deliver the demand function in the Lemma. The function GI (·), which depends
on the joint distribution of the signal and pay-off, has an intuitive interpretation as the investor’s
price reaction function.

As the informed demand takes the desired additively separable form, one may substitute into
the market-clearing condition and rearrange to obtain

1

kI
GI (P(sI ,z))− XU (P(sI ,z))

kIτI
+ z

kIτI
=sI − z

kIτI
. (3.7)

Hence, conditioning on the equilibrium price allows the uninformed investor to infer the realized
value sU of the statistic S̃U ≡ S̃I − 1

kIτI
Z̃. The next Lemma formalizes this point.

Lemma 2. Suppose that Assumptions 1–4 hold. Let P(·) be any equilibrium price function, and
choose any (sI ,z) and (ŝI ,ẑ)∈S×Z. If P(sI ,z)=P(ŝI ,ẑ) then sI − z

kIτI
= ŝI − ẑ

kIτI
.

As noted earlier, it is the additively separable form of informed demand that allows one to
determine the information content of price without solving for equilibrium.10 Additive separability
implies that the informed investor’s trading aggressiveness ∂XI

∂sI
(sI ,p)=τI kI is independent of the

price. Since the information revealed by the price depends on the trading aggressiveness, but
the aggressiveness does not depend on the price, one can pin down S̃U independently of P(·).
In Section 1 of the online Appendix available as Supplementary Material, I show that CARA
utility and the exponential family assumption are also necessary for an investor with twice
continuously differentiable utility function to have an additively separable demand. This suggests
that constructing equilibrium by identifying a linear statistic independently of the price function
may be difficult to generalize beyond the setting considered here, at least in situations in which
investors are risk-averse and face no constraints on demand.11

From Lemma 2, one may be tempted to conclude that any equilibrium price function can
depend on (sI ,z) only through the quantity sU . However, without further assumptions, that need
not be the case. The Lemma implies only that any equilibrium price reveals at least S̃U =sU . That

is, the price reveals that the realization of (̃SI ,Z̃) lies on the line segment
{

(sI ,z) :sI − z
kIτI

=sU

}
. It

does not imply that the price reveals only this fact. For the purpose of constructing an equilibrium,
this is not a problem—one can simply focus on price functions that depend only on S̃U . However,
it will be shown in Section 3.2 below that by restricting attention to continuous functions of sI
and z one can in fact rule out the existence of other equilibria.

I turn now to the uninformed investor’s problem. The conditional distribution of Ṽ given
S̃U follows from Bayes rule, but since the exact form is not important for the derivation that

10. Indeed, the derivation of equilibrium could have proceeded by assuming additive separability in the informed
demand and only later writing down conditions on primitives that guarantee such a functional form. I abstain from this
approach to avoid placing restrictions directly on equilibrium objects.

11. Albagli et al. (2013) show that a similar linear statistic construction can be used in a model with a continuum
of risk-neutral traders who face a portfolio constraint.
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follows I defer the result to Lemma A11 in Appendix A.2. With this distribution pinned down,
solving the uninformed’s portfolio problem is simple. One may suppose that he observes S̃U
directly, rather than explicitly updating from the price. His/her demand will then depend on the
realized value sU and the (numerical) value of the price, p, but without any updating from p
itself. To capture this fact, I modify notation slightly and denote his/her demand as a function of
sU and p by XU (sU ,p).12 Under the following assumption, which is analogous to Assumption 4
and guarantees that the objective function is defined on an open set, a standard FOC pins down
XU (sU ,p).

Assumption 5. The conditional distribution of Ṽ given S̃U =sU has a conditional mgf that
converges within some (potentially infinite) non-empty open interval containing zero and diverges
outside this interval: specifically, there exist 0<η0,δ0 ≤∞, which may depend on sU, such that∫

V
exp{ut}dFṼ |̃SU

(v|sU )<∞ ∀u∈ (−δ0,η0)∫
V

exp{ut}dFṼ |̃SU
(v|sU )=∞ ∀u∈ (−∞,−δ0]∪[η0,∞).

Lemma 3 (Uninformed demand). Suppose that Assumptions 1–5 hold, p∈ (V ,V ), and the
uninformed investor’s information set consists only of S̃U . His/her demand, XU (sU ,p), is
characterized implicitly by the following equation∫

V
(v−p)exp

{
− 1

τU
XU (sU ,p)v

}
dFṼ |̃SU

(v|sU )=0, (3.8)

where the conditional distribution FṼ |̃SU
is given in Lemma A11.

Lemma 3 characterizes the uninformed investor’s demand, assuming that an equilibrium price
function exists that depends only on sU =sI − z

kIτI
. It remains to characterize this price function

and demonstrate existence. From this point forward, I will abuse notation by writing P(sU ) to
denote such a price function, despite the fact that Definition 1 formally defined P(·) as a function
of (sI ,z).

Fix any sU ∈support(̃SU )≡S− 1
kIτI

Z. The expression for uninformed demand in equa-
tion (3.8) must hold state-by-state in equilibrium so that when an equilibrium price P(sU ) is
substituted in, ∫

V
(v−P(sU ))exp

{
− 1

τU
XU (sU ,P(sU ))v

}
dFṼ |̃SU

(v|sU )=0. (3.9)

The market-clearing condition requires that in equilibrium the demand of the uninformed investor
equals the supply of the asset net of the informed demand

XU (sU ,P(sU ))=z−τI (kI sU −GI (P(sU ))).

Substituting this expression into equation (3.9), therefore, produces an expression that
characterizes the equilibrium price implicitly, supposing that it exists.

12. The one-argument demand function introduced earlier, XU (p), relates to this two-argument function as XU (p)=
XU (P−1(p),p).
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Proposition 1. Suppose that Assumptions 1–5 hold, and assume that a price function that
depends on (sI ,z) only through sU =sI − z

kIτI
exists. Then, P(·) is characterized implicitly as∫

V
(v−P(sU ))exp

{[
τI

τU
(kI sU −GI (P(sU )))− z

τU

]
v

}
dFṼ |̃SU

(v|sU )=0. (3.10)

To better understand the meaning of the integral in equation (3.10), rearrange and write out

the utility function in general terms, uU (w)=−exp
{
− 1

τU
w
}

to obtain

P(sU )=
E

[
Ṽ u′

U

(
Ṽ (z−τI (kI sU −GI (P)))

)∣∣∣∣̃SU =sU

]
E

[
u′

U

(
Ṽ (z−τI (kI sU −GI (P)))

)∣∣∣∣̃SU =sU

] .

This looks like a typical asset pricing Euler equation except that the “endowment” of the agent,
z−τI (kI sU −GI (P)), is the residual supply. Accordingly, one can interpret equation (3.10) as
a representative agent pricing formula in which the representative uninformed investor’s risky-
asset holding is itself endogenously determined. This implicit characterization of the price also
clarifies that the assumption of CARA utility for the uninformed investor is not necessary and can
be generalized to essentially arbitrary utility functions, up to restrictions to guarantee existence
of expected utility.

In particular situations, the integral in equation (3.10) can be evaluated in a closed form,
which gives the possibility of solving explicitly for P(sU ). One would then check that the function
P(·) so defined is one-to-one in sU , which is a necessary condition due to Lemma 2. Without
an explicit expression for the integral, one can establish existence with an intermediate value
theorem argument. It suffices to show that for fixed sU , the aggregate excess demand function
τI (kI sU −GI (p)+XU (sU ,p)−z is a continuous function of the variable p and crosses zero at least
once. This guarantees existence of some point p∗(sU )∈R at which equation (3.10) is satisfied.
Having found a p∗(sU ) corresponding to each sU , define the function P(sU )≡p∗(sU ). As long
as this function is one-to-one, then it is an equilibrium price function. To provide this existence
result, I require some additional technical assumptions.

Assumption 6. The support of kI (̃SU − z
kIτI

) is a subset of GI . That is kIS− 1
τI

Z− 1
τI

z⊆GI .

Assumption 7. The supply Z̃ is distributed according to a density function f̃Z that is log-concave.
That is log f̃Z is a concave function.13

Assumption 8. The function K(v,sU ) in the uninformed cdf FṼ |̃SU
(v|sU ) in equation (A.7) in

Lemma A11 is continuous in sU for each v.

Assumptions 6–8 are mostly economically innocuous. Assumption 6 is a minimal condition
for existence. It is necessary and sufficient for equilibrium to exist when only informed investors
participate in the risky-asset market. It guarantees that for any (sI ,z) there exists a solution p∗ to the
market-clearing condition in that case, τI (kI sI −GI (p))=z+z. Assumption 7 is sufficient (though

13. This assumption implies that the support Z is a (potentially infinite) interval (Theorem 1.8, Ch. 4 Karlin, 1968).
There is an analogue of logconcavity for discrete distributions that could be appended to Assumption 7, but at the cost of
additional notational complexity. See An (1997) for details.
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not necessary) to guarantee that the price function produced by equation (3.10) is monotone.
Assumption 8 is a continuity condition on uninformed investor beliefs and will guarantee that the
price function is continuous in sU . It is needed for the uniqueness result, but not for existence.

The following Proposition records the fact that under the assumptions above, there is an
equilibrium in the model.

Proposition 2 (Equilibrium existence) . Suppose that Assumptions 1–7 hold. Then there exists
an equilibrium price function which is defined implicitly by the expression in Proposition 1. If
Assumption 8 also holds, this price function is continuous in sU.

A drawback of the function in Proposition 1 is that without further assumptions it can only be
characterized implicitly. This makes it difficult to interpret and limits its usefulness for applied
work. While comparative statics can be performed using the implicit function theorem, embedding
the economy here into larger models is difficult without explicit solutions. Nevertheless, if one
also assumes that the conditional distribution of Ṽ given S̃U is in the exponential family, an
explicit solution is available.

Assumption 9 (Exponential family, conditional on S̃U ) . The conditional distribution of Ṽ
given S̃U =sU can be written

dFṼ |̃SU
(v|sU )=exp{kUbU (sU )v−gU (kUbU (sU ))}dHU (v), (3.11)

v∈V,sU ∈Support(̃SU )

where kU >0 is a constant, the function bU :support(̃SU )→R is increasing, the function
gU :GU →R has domain GU which is an interval satisfying kU bU (Support(̃SU ))⊆GU , and the
function HU :R→R is (weakly) increasing and right-continuous.

As in the case of the informed investor, the assumption that kU is positive is without loss
of generality. Unlike the case of the informed investor, it is analytically convenient to allow
explicitly for the possibility that sU interacts non-linearly with kU via the function bU (sU ).14 I
show in equation (A.17) in Appendix A.3 that Assumption 9 is always met in the binomial setting
of Example 1. In that case, regardless of the distribution of the supply shock, the conditional
distribution of Ṽ given S̃U remains binomial, which is an exponential family. I also show in
equation (A.22) that the Assumption is met in Example 2 if the supply shock follows a normal
distribution. In that case, S̃U can be written S̃U = Ṽ + ε̃I − 1

kIτI
Z̃, and it was shown in Section 3

that an additive signal with normally distributed error leads to a exponential family conditional
distribution.

If Assumption 9 holds then Proposition 1 produces an explicit function for the price, which I
record in the following Corollary.

Corollary 1. Suppose that Assumptions 1–7 and 9 hold. Let G be the aggregate (risk-tolerance-
weighted) price reaction function

G(p)≡τI GI (p)+τUGU (p).

An equilibrium exists and the price function is given by

P(sU )=G−1(τI kI sU +τUkUbU (sU )−z).

14. In the case of the informed investor, this possibility was taken care of via the definition of sI so as to not have
to carry around additional notation.
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Here I briefly sketch the proof. From equation (3.6), informed demand is

XI (sI ,p)=τI (kI sI −GI (p)),

and under Assumption 9, the uninformed investor’s FOC produces a similar demand function

XU (sU ,p)=τU (kUbU (sU )−GU (p)).

The market-clearing condition pins down the equilibrium price

τI (kI sI −GI (P(sU )))+τU (kUbU (sU )−GU (P(sU )))=z+z,

and rearranging to isolate P produces the expression in the Corollary. SinceAssumption 9 required
bU to be increasing, this function is monotone in sU as required.

3.2. Equilibrium uniqueness

To prove uniqueness, I restrict attention to price functions that are continuous in the signal
and supply. Continuity seems to be a reasonable condition to impose in a “smooth” model
in which informed beliefs and demand depend continuously on sI . However, this assumption
does exogenously restrict the equilibria under consideration. Jordan (1982) shows in a non-
noisy economy that there may exist complicated discontinuous price functions that are arbitrarily
close to fully revealing, and Pálvölgyi and Venter (2015) construct discontinuous equilibria in
the standard CARA-Normal setting.

Under the continuity assumption, the following Lemma records the fact that any price function
must reveal only the value of sU .

Lemma 4. Suppose that Assumptions 1–4 hold and that S and Z are (potentially infinite)
intervals. Choose any sU ∈Support(̃SU )≡S− 1

kIτI
Z. Then any continuous equilibrium price

function is constant on the line segment {(sI ,z) :sI − z
kIτI

=sU}. That is, any continuous price
function depends on (sI ,z) only through sU =sI − z

kIτI
.

Lemma 4 implies that any continuous equilibrium price function is informationally equivalent to
the statistic S̃U . The idea behind the Lemma is as follows. Suppose that there exists a continuous
price function that is not constant along the given line segment. Then one can find a point (s0

I ,z
0)

and a sufficiently small ε>0 such that the set of points along the segment that are close to this point,

{(sI ,z) :sI − z
kIτI

=s0
I − z0

kIτI
}∩(Bε(s0

I ,z
0)\{(s0

I ,z
0)}), is both non-empty (due to S and Z being

intervals) and contains only points that lead to different equilibrium prices P(sI ,z) �=P(s0
I ,z

0) (by
continuity and the choice of (s0

I ,z
0)). Furthermore, since S and Z are intervals, the ball Bε(s0

I ,z
0)

also contains points that do not lie in {(sI ,z) :sI − z
kIτI

=s0
I − z0

kIτI
}. Because P is continuous, some

of these points have prices that are equal to the prices for other nearby points that do lie on the
line segment. This contradicts Lemma 2, which implied that identical equilibrium prices can only
arise for states that lie on the same line segment {(sI ,z) :sI − z

kIτI
=sU}.

Given the typically ad hoc method of analysing noisy rational expectations models, the
question of uniqueness has remained open (Veldkamp, 2011, p. 93). However, it is now
straightforward to demonstrate uniqueness among continuous equilibria, which requires proving
that for fixed sU , the aggregate excess demand function τI (kI sU −GI (p)+XU (sU ,p)−z crosses
zero at most once as p increases.
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Proposition 3 (Equilibrium uniqueness) . Suppose that Assumptions 1–8 hold and that the
supports S and Z are intervals. Then the equilibrium price function characterized in Proposition
1 exists, is continuous, and is unique within the class of continuous price functions.

Uniqueness is in some sense unsurprising. In models in which agents do not learn from
price, multiplicity can arise if wealth effects are sufficiently strong to prevent aggregate demand
from sloping downward at all prices. CARA utility rules out wealth effects, and by Lemma 4
the equilibrium is equivalent to one in which the uninformed do not condition on price, but
instead observe only the statistic S̃U . It follows that aggregate demand is downward sloping
and the equilibrium is unique. As a corollary, this implies that the usual linear equilibrium in
Grossman and Stiglitz (1980) is unique among continuous equilibria.

4. DERIVATION OF EQUILIBRIUM IN EXAMPLE 1

For illustrative purposes, in this section, I walk through the equilibrium derivation for Example
1. I defer all technical details to Appendix A.3, along with the derivation for Example 2, and here
present only the essential details. Along with the assumption that the conditional distribution of
Ṽ follows a binomial distribution, suppose that the informed investor’s log-odds S̃I follows an
arbitrary continuous distribution with density f̃SI

, and the supply shock Z̃ follows an arbitrary
continuous distribution with continuously differentiable and log-concave density f̃Z . These
smoothness assumptions will carry over to the price function. Furthermore, to avoid tedious
consideration of boundary behaviour, suppose that the log-odds S̃I has full support on R.15

To begin, one requires the informed investor’s demand function, which can be determined
using Lemma 1. Equations (3.3) and (3.4) show kI = 1

VH−VL
and gI (kI sI )=VLkI sI +log(1+

exp{(VH −VL)kI sI }), so the demand function follows after computing the price reaction function
GI = (g′

I )−1. We have

g′
I (kI sI )=VL +(VH −VL)

exp{(VH −VL)kI sI }
1+exp{(VH −VL)kI sI } ,

so

GI (p)= 1

VH −VL
log

(
p−VL

VH −p

)
.

Lemma 1 delivers the informed demand

XI (sI ,p)= τI

VH −VL

(
sI −log

(
p−VL

VH −p

))
.

The market-clearing condition is

τI

VH −VL

(
sI −log

(
P(·)−VL

VH −P(·)
))

+XU (P(·))=z+z,

and rearranging to isolate terms involving P(·) implies that the statistic inferred by the uninformed
investor is

S̃U = S̃I − VH −VL

τI
Z̃.

15. Another way to avoid the possibility of full revelation of the signal at the boundaries is to assume that the supply
shock Z̃ has full support.
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Let fṼ |̃SU
denote the uninformed investor’s conditional pdf, which I characterize explicitly

in equation (A.15) in Appendix A.3. Owing to the binomial distribution for Ṽ , this conditional
distribution remains binomial but with log-odds

bU (sU )≡ log

(
fṼ |̃SU

(VH |sU )

1−fṼ |̃SU
(VH |sU )

)
. (4.1)

Since the uninformed investor also faces a binomially distributed asset, his/her demand is linear
in his/her log-odds

XU (sU ,p)= τU

VH −VL

(
bU (sU )−log

(
p−VL

VH −p

))
.

The market-clearing condition requires that in equilibrium, the price P(sU ) satisfies

τI
VH−VL

(
sI −log

(
P(sU )−VL
VH−P(sU )

))
+ τU

VH−VL

(
bU (sU )−log

(
P(sU )−VL
VH−P(sU )

))
=z+z.

Rearranging this equation produces an explicit expression for P(sU )

P(sU )=VL +(VH −VL)
exp

{
τI

τI+τU
sU + τU

τI+τU
bU (sU )− VH−VL

τI+τU
z
}

1+exp
{

τI
τI+τU

sU + τU
τI+τU

bU (sU )− VH−VL
τI+τU

z
} . (4.2)

5. APPLICATIONS

In this section, I briefly illustrate a few novel implications of the non-normal model in the context
of the binomial example developed above. In all applications, I continue to assume that S̃I has full
support and that the density of Z̃ is continuously differentiable. This implies that the uninformed
investor’s log-odds bU (sU ) is a differentiable function of sU and therefore that the price function
(equation (4.2)) is also differentiable. Though a full consideration of any of the applications is
beyond the scope of this article, they suggest some directions in which one could further develop
the model.

5.1. Price reaction to information

Motivated by the fact that asset prices seem often to be subject to movements that cannot
be easily explained by news (Roll, 1988; Cutler et al., 1989), a number of researchers have
attempted to generate large price movements via learning from prices (Gennotte and Leland,
1990; Romer, 1993; Barlevy and Veronesi, 2003; Yuan, 2005). While learning from endogenous
variables provides a plausible explanation for price movements without public news, it turns
out to be somewhat difficult to capture such effects in standard models without introducing
additional frictions. As shown by Gennotte and Leland (1990) and Yuan (2005), in a standard
Grossman and Stiglitz (1980) model investor demand curves are everywhere downward sloping,
and hence no investors act as “feedback traders”, trading in the same direction as a price
movement. It follows that prices never react more strongly than in an otherwise-identical setting
with only informed investors.16

16. Admati (1985) shows in a multiple-asset setting and Wang (1993) in a dynamic setting that demand curves for
some assets may be upward-sloping when pay-offs are normally distributed. However, since linear demand curves never
bend backward over themselves it is not possible to generate large price movements of the sort considered here.
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It turns out that in the binomial model, uninformed investor demand may be upward sloping in
some regions, even in the absence of frictions, leading to amplified price reactions.17 In a rational
expectations setting, price changes generally have three effects on asset demand. The first two
effects are standard substitution and income effects. CARA utility rules out any income effect,
and the substitution effect tends to make demand curves slope down. The third effect, which is
novel to settings with asymmetric information, is an information effect (Admati, 1985). All else
equal, if a lower price signals that the asset pay-off is likely to be lower, agents want to buy less of
the asset as its price decreases. This effect tends to make demand curves slope up. Taken together,
in a model in which agents have CARA utility, demand can slope upward only in situations in
which the information effect is sufficiently strong to swamp the substitution effect. The following
Proposition provides a characterization of such situations.

Proposition 4. If the distribution of the informed investor’s log-odds S̃I satisfies ∂
∂x

f ′̃
SI

(x)

f̃SI
(x) ≤

exp{x}
1+exp{x}

1
1+exp{x} , for all x∈S, then uninformed investor demand slopes down at all prices p.

Conversely, if there exists a non-empty open interval (a,b) on which ∂
∂x

f ′̃
SI

(x)

f̃SI
(x) >

exp{x}
1+exp{x}

1
1+exp{x} ,

then there exists a log-concave distribution for the supply shock and a non-empty open interval
(p,p) such that for for prices p∈ (p,p), uninformed investor demand slopes up.

This Proposition shows that uninformed investor demand may slope upward purely due to
learning effects, even without any additional frictions or constraints.The condition on the elasticity

of the pdf, ∂
∂x

f ′̃
SI

(x)

f̃SI
(x) , is essentially a requirement that in some region the information conveyed by

a price change must be sufficiently large to overcome the substitution effect.
A simple distribution for S̃I that captures both cases in the Proposition is a power distribution

with exponent a>0 and support parameter k >0:

f̃SI
(x)= a

ka xa−1I{x∈ (0,k]}

It follows that for any x∈ (0,k),

∂

∂x

f ′̃
SI

(x)

f̃SI
(x)

= 1−a

x2
.

Hence, if a≥1, uninformed demand slopes down, regardless of the supply distribution, since
for all x∈ (0,k),

∂

∂x

f ′̃
SI

(x)

f̃SI
(x)

= 1−a

x2
≤0<

exp{x}
1+exp{x}

1

1+exp{x}
Conversely, if a<1, then there exist an interval of x’s close to zero such that

∂

∂x

f ′̃
SI

(x)

f̃SI
(x)

= 1−a

x2
>

1

4
≥ exp{x}

1+exp{x}
1

1+exp{x} ,

17. The models mentioned above consider frictions that cause aggregate demand to bend backward which generates
a discontinuous price function. As shown in Section 4, the price function is continuous in the binomial model, so true
“crashes” of this sort do not arise here.
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(a) (b)

Figure 1

Panel (a): Uninformed demand curve when log-odds S̃I follow a power distribution with a=1/2, k =4 and the supply

shock is distributed N(0,0.05). Panel (b): Uninformed demand curve when log-odds S̃I follow a power distribution with

a=2, k =4 and the supply shock is distributed N(0,0.05). Other parameters: τI =0.2,τU =0.8,VL =0,VH =1,z=1.

and hence there exist supply distributions such that unformed demand is upward sloping over
some region of prices. Figure 1 illustrates both possibilities in a setting with a normally-distributed
supply shock.18

5.2. Other applications

In this section, I briefly consider two other applications concerning price drifts and the relation
between returns and investor disagreement.

5.2.1. Price drifts. Post-announcement drift (Bernard and Thomas, 1989, 1990) and
time-series momentum effects (Moskowitz et al., 2012) are well documented, and have been
argued by some to be evidence of irrationality among market participants (Daniel et al., 1998;
Hong and Stein, 1999). However, there has been recent interest in rationalizing such effects in
noisy RE models (Allen et al., 2006). However, Banerjee et al. (2009) show that in standard one-
period CARA-Normal models asset prices always exhibit reversals.19 It turns out that once one
entertains the possibility of alternative pay-off distributions, this is no longer true.

To formulate a notion of drifts and reversals in the model, I use a definition that is similar to
that used in the static section of Banerjee et al. (2009).

Definition 2. Prices exhibit price drift (reversals) at price p̂ if E[Ṽ −P|P=p] is an increasing
(decreasing) function of p at p= p̂.

This definition is meant as a reduced form for a three date model in which the final price is P2 = Ṽ ,
the time one equilibrium price is P1 =P(sU ), and the price before any information is revealed

18. Note that for this illustration the fact that the power distribution places zero probability on log-odds less
than zero (success probabilities less than 1/2) is without loss of generality. One can always translate and rescale the
distribution to arrange for an arbitrary support. Another remedy is to consider a symmetric power distribution with
density f̃SI

(x)= a
2ka |x|a−1

I{x∈[−k,k]}, though this density is not differentiable at zero for all choices of a.

19. Strictly speaking, Banerjee et al. (2009) consider a Hellwig-style model (1980) with dispersed information, but
it is easy to show that the absence of drifts carries over to a Grossman and Stiglitz (1980) model.
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is normalized to a constant value P0 = VH+VL
2 consistent with a setting, in which there is no

asymmetric information nor noise shock (though the exact value of this constant is immaterial for
the result). The definition then refers to whether E[P2 −P1|P1 −P0] is increasing or decreasing
in P1 −P0.

As shown by Banerjee et al. (2009), in static CARA-Normal models asset prices exhibit
reversals at all p. The intuition for this is quite simple—when random variables are jointly
normally distributed and noise is present traders are cautious to adjust their expectations about
the pay-off less than one-for-one with changes in the price. While it is difficult to formulate
conditions which guarantee either drifts or reversals in the general version of the binomial model,
the following Proposition shows that both can arise naturally, even when all random variables
follow symmetric distributions and uninformed log-odds bU (sU ) are “well-behaved”.

Proposition 5. Suppose that both S̃I and Z̃ are symmetrically distributed with mean zero and
that the fixed component of supply is z=0. Suppose further that the derivative of the uninformed
investor’s log-odds, b′

U (sU ), is uniformly strictly bounded between 0 and 1. Then,

• Prices exhibit reversals in a neighbourhood of p= VH+VL
2• There exist p<p such that prices exhibit drifts at p<p and p>p.

This Proposition shows that the unconditional relation between prices and future returns is
generally ambiguous. More precisely, the result implies that if an econometrician conditions on
“large” price movements, they should tend to find evidence of drifts, whereas if they condition
on “small” price movements they should tend to find evidence of reversals.

5.2.2. The relation between disagreement and returns. A number of empirical papers
document a negative relation between investor disagreement and future returns (e.g. Diether et al.,
2002; Goetzmann and Massa, 2005). The difference of opinions (DO) theory of Miller (1977)
implies that when investors agree to disagree and there are short-sale constraints, stocks about
which there is more disagreement will tend to have higher valuations and hence lower returns.
On the contrary, in CARA-Normal models, there is a positive relation between disagreement
and returns—high disagreement is associated with high risk and hence high returns. Thus, one
interpretation of the existing empirical evidence is that investors agree to disagree and do not
fully condition on prices.20 However, I show below that the above predictions may be clouded
in settings when uncertainty is not normally distributed. The reason is that return skewness also
plays a role in the disagreement–return relation. The economic intuition for this effect is quite
simple. If returns are, for example negatively skewed, then a large amount of disagreement also
tends to be associated with a below average return.

Consider a slight reinterpretation of the binomial model in which there is a unit mass of agents
with identical risk tolerance τ. Let λ denote the proportion of investors who are informed. This
setup can be accommodated by setting the aggregate risk tolerances of each group to τI =λτ

and τU = (1−λ)τ. In this simple setting, disagreement is given by the cross-sectional variance in
expectations about Ṽ which, up to multiplication by the constant λ(1−λ), is(

E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2
.

20. Banerjee (2011) points out the difficulty of distinguishing RE and DO models in a static setting. To distinguish
the hypotheses, he considers how disagreement relates to the dynamic properties of returns and trading volume and finds
evidence largely consistent with conditioning on prices.
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The following proposition characterizes the covariance between (dollar) returns, Ṽ −P(̃SU ),
and investor disagreement.

Proposition 6. Let πI (sI )= exp{sI }
1+exp{sI } denote the informed investor’s conditional probability of

a high pay-off. Then,

Cov
(

Ṽ −P(̃SU ),
(
E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

)
= (VH −VL)2{Cov

(
E[Ṽ −P(̃SU )|̃SU ],Var(πI (̃SI )|̃SU )

)
+(VH −VL)E

[
Ŝkew(πI (̃SI )|̃SU )

]}
,

where

Ŝkew(πI (̃SI )|̃SU )=E

[(
πI (̃SI )−E[πI (̃SI )|̃SU ])3

∣∣∣∣̃SU

]
is the unnormalized conditional skewness (third central moment).

The proposition says that the relation between disagreement and returns is driven by two
forces, the covariance between the conditional risk premium and the conditional variance of the
probability of a high pay-off, and the (unnormalized) conditional skewness.21 The first effect
is intuitive and appears in earlier work. In a rational expectations setting, high disagreement is
associated with high risk and hence high returns. The second effect is also intuitive but has not
appeared before given the exclusive focus on linear normal models. Hence, Proposition 6 suggests
a novel role for return skewness in determining the sign of the disagreement return relation, which
may be important if the sign of this relation is to be interpreted as evidence as to whether investors
rationally learn from prices.

6. INFORMATION AGGREGATION

In this section, I consider the aggregation of dispersed information. Perhaps surprisingly, one
can still characterize the equilibrium price in certain cases, sometimes explicitly. My main goal
in this section is to write down an equation for the price—a multidimensional analogue of the
characterization in Proposition 1—rather than provide the most general possible existence result.
The technical conditions that are sufficient to guarantee existence are analogous to those in
Assumptions 4–7 above. Nevertheless, to demonstrate that the characterization results are not
vacuous, in Appendix A.6 I provide full existence proofs for a special case of the binomial
economy from Example 1 when traders receive additive signals about the log-odds of the pay-off
and the general case of Example 2 in which traders receive conditionally iid signals about the
pay-off itself.

The results in the two-types setting in Section 3 indicated that the key ingredient for the
tractability of standard CARA-normal models is not the linearity of the price function itself, but
rather the fact that the equilibrium price is informationally equivalent to a linear statistic of the
signal and supply. In that vein, I make the following definition.

21. Strictly speaking, the second term involves the conditional third moment, under the uninformed investors’
information set, of the informed investors’ expectation of the pay-off. In a setting in which investors learn about the
pay-off itself rather than a parameter governing the pay-off, this term is truly equal to the conditional third moment of
the pay-off. See the earlier manuscript Breon-Drish (2012) for details.
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Definition 3. An equilibrium is a generalized linear equilibrium and the associated equilibrium
price function is a generalized linear price function if the equilibrium price can be written in
the form P(L(s,z)) for some linear function L :SN ×Z →R and some monotone function P :
L(SN ×Z)→R.

By restricting attention to generalized linear equilibria, one is essentially generalizing the
“conjecture and verify” method from conjecturing a price function to conjecturing the information
content of the price function. Thus, the results below are silent about price functions that are not of
the generalized linear form. Similar conjectures about the information content of price also appear
in some models with trading constraints (e.g. Yuan, 2005; Bai et al., 2006; Marin and Olivier,
2008). However, I show in Section 2 of the online Appendix available as Supplementary Material
and sketch briefly below that if one is willing to entertain an additive signal structure, as in
Example 2, and a continuum of informed investors, as is often the case in applied work, then
generalized linear equilibria are unique within the class of continuous equilibria.

Consider the full version of the model in which there are N informed investors, each of
whom observes a signal S̃i jointly distributed with Ṽ , along with an uninformed investor U. In a
generalized linear equilibrium, observation of the equilibrium price is equivalent to observation
of some linear statistic of the form L(̃S,Z̃)=∑N

j=1ajS̃j −Z̃ .22 Supposing for a moment that a
generalized linear equilibrium exists, the difficulty lies in determining the coefficients of the
function L. With a single informed investor, the market-clearing condition uniquely pins down
the coefficients, but introducing multiple informed investors complicates this step. Each investor
would like to use the price to learn about the others’ signals, hence L must be solved for as part
of the equilibrium.

The following assumption is the natural multiple-investor analogue of Assumption 3 and
allows one to identify the statistic L that must be revealed by any generalized linear price function.

Assumption 10 (Exponential family, conditional on S̃i and L(·)) . For any i∈{1,...,N} and
any linear statistic of the form L(̃S,Z̃)=∑N

j=1ajS̃j −Z̃, the conditional distribution of Ṽ given

S̃i =si and L(̃S,Z̃)=� can be written

dFṼ |̃Si ,̃L
(v|si,�)=exp{L̂i(si,�)v−gi(L̂i(si,�);a)}dHi(v;a), (6.1)

for some function L̂i(si,�)=ki1(a)si +ki2(a)bi(�;a), where ki1,ki2 :RN →R, bi(·;a) is increasing
in its first argument, gi(·;a) is twice continuously differentiable with g′′

i (·;a)>0, and Hi(·;a) is
(weakly) increasing.

Assumption 10 may appear rather dense and intimidating. However, it simply requires that
the conditional distribution of the pay-off given (̃si,L(·)) lies in an exponential family. Here, the
“constants” ki1(a) and ki2(a) as well as the functions bi, gi, and Hi that characterize the distribution
may depend on the coefficients a in the linear statistic. Returning to the earlier interpretation of
exponential family beliefs from Section 3, the functions ki1(a) and ki2(a) are like coefficients on
the investor’s private signal S̃i and the “public” signal L(̃S,Z̃) when she fits a generalized linear
model to predict the asset’s pay-off.

With Assumption 10 in place, one can pin down the statistic L on which the price must
depend. Suppose that a generalized linear equilibrium exists and conditional beliefs are as in

22. The assumption that the coefficient on on Z̃ is −1 is without loss of generality. One can always rescale L by
dividing by a constant and absorb the constant into the function P.
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Assumption 10. By computing expected utilities and differentiating, the demand of investor i can
be written in closed form as a weighted sum of private information and public information

Xi(si,�,p)=τi (ki1(a)si +ki2(a)bi(�;a)−Gi(p;a)),

where Gi(p;a)≡ (g′
i)

−1(·;a) is the price reaction function.
In equilibrium, the market-clearing holds

N∑
i=1

τi (ki1(a)si +ki2(a)bi(�;a)−Gi(P(�);a))+XU (P(�))−z−z=0,

which can be rearranged as

N∑
i=1

τiGi(P(�);a)−XU (P(�))−
N∑

i=1

τiki2(a)bi(�;a)+z=
N∑

i=1

τiki1(a)si −z. (6.2)

Equation (6.2) says that the left-hand side, a function of �=∑N
j=1ajsj −z, equals∑N

i=1τiki1(a)si −z. For this to be true globally in (s,z), it must be the case that � also equals∑N
i=1τiki1(a)si −z.Thus, the coefficients must satisfy ai =τiki1(a) for all i.The following Lemma

records this fact.

Lemma 5 (Price-information equations) . Suppose that Assumptions 1 and 10 hold and that
P(L(·)) is a generalized linear price function. The coefficients a∗ ≡ (a∗

1,...,a∗
N ) of the function L

solve the following system of N “price-information” equations

a∗
i =τi ki1(a∗) i∈{1,...,N}. (6.3)

Hence, in equilibrium the function L is given by L∗(s,z)≡∑N
i=1a∗

i si −z.

The price information equations are similar to the usual system defining the price coefficients
in the Hellwig (1980) model. Examining the equations shows that prices aggregate information
in an intuitive way. The coefficient a∗

i on each investor’s signal is equal to his/her responsiveness
to private information, weighted by his/her risk tolerance. Thus, investors whose beliefs respond
more strongly to their signals (high ki1) or who are more risk tolerant (high τi) will see their
signals weighted more heavily in the price. While it is difficult to formulate general conditions
on the functions ki1 that guarantee existence of a solution to the price information equations, it is
straightforward to use a fixed-point argument based on Lemma 3.1 of Hellwig (1980) to prove
existence in particular cases. I do this for the Example economies in Appendix A.6.

Having pinned down L∗, the construction of the price function proceeds as in the two-types
case. However, it is worth pointing out that, depending on whether there are multiple solutions
to the price information equations, there may exist multiple generalized linear equilibria. Given
a particular solution to the price-information equations, the following Proposition provides an
implicit characterization of the asset price.

Proposition 7. Suppose that Assumptions 1 and 10 hold, and suppose that there exists a
solution a∗ ≡ (a∗

1,...,a∗
N ) to the price-information equations from Lemma 5, with corresponding

function L∗.
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Define b as the aggregate (risk-tolerance-weighted) version of ki2(a∗)bi(·;a∗)

b(�;a∗)≡
N∑

i=1

τiki2(a∗)bi(�;a∗)

and let G be the aggregate (risk-tolerance-weighted) price reaction function

G(p;a∗)≡
N∑

i=1

τiGi(p;a∗).

If the function P(·) characterized implicitly by the following equation exists and is monotone
in L∗ ∫

V
(v−P(L∗(s,z)))exp

{
1
τU

[L∗(s,z)+b(L∗(s,z);a∗)−G(P(L∗(s,z));a∗)−z]v
}

×dFṼ |̃L∗ (v|L∗(s,z))=0,

then a generalized linear equilibrium exists, with price function P(L∗(s,z)).

Proposition 7 is the multiple-investor analogue of the implicit characterization in Proposition 1.
Having determined L∗, investor demand functions are known, and to characterize the price one
simply imposes market clearing by substituting the residual supply of the asset into the uninformed
investor’s FOC. As in the two-investor case, a drawback of Proposition 7 is that without further
assumptions the price can only be characterized implicitly. However, if one also requires for the
uninformed investor an exponential family condition on beliefs, or considers a setting with only
informed investors, an explicit solution is available.

Assumption 11 (Exponential family, conditional on L(·)) . For any linear statistic of the form
L(̃S,Z̃)=∑N

j=1ajS̃j −Z̃, the conditional distribution of Ṽ given L(̃S,Z̃)=� can be written

dFṼ |̃L(v|�)=exp{L̂U (�)v−gi(L̂U (�);a)}dHU (v;a), (6.4)

for some function L̂U (�)=kU2(a)bU (�;a), where kU2 :RN →R, bU (·;a) is increasing in its first
argument, gU (·;a) is twice continuously differentiable with g′′

U >0, and HU (·;a) is (weakly)
increasing.

Assumption 11 holds holds in the N >1 cases of Examples 1 and 2 considered in Appendix A.6
if the supply shock follows a normal distribution. See equation (A.38) for Example 1, and
equation (A.40) and the immediately following discussion for Example 2. Those equations
characterize the beliefs of an arbitrary informed investor, of which an uninformed investor is
a limiting case when the private signal becomes infinitely noisy.

If Assumption 11 holds or if there are no uninformed investors (τU =0) then Proposition 7
produces an explicit function for the price, which I record in the following Corollary.

Corollary 2. Suppose that Assumption 1 holds, and that either (i) Assumptions 10 and 11 hold
or (ii) Assumption 10 holds and there are no uninformed investors (τU =0). Suppose that there
exists a solution a∗ ≡ (a∗

1,...,a∗
N ) to the price-information equations from Lemma 5.
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Define b as the aggregate (risk-tolerance-weighted) version of ki2(a∗)bi(·;a∗)

b(�;a∗)≡
N∑

i=1

τiki2(a∗)bi(�;a∗)+τUkU2(a∗)bU (�;a∗),

and let G be the aggregate (risk-tolerance-weighted) price reaction function

G(p;a∗)≡
N∑

i=1

τiGi(p;a∗)+τUGU (p;a∗).

Then if the function G−1(·;a∗) is well defined on {�+b(�;a∗)−z :�∈support(̃L)}, there exists a
generalized linear equilibrium with price function

P(L∗(s,z))=G−1(L∗(s,z)+b(L∗(s,z);a∗)−z;a∗).
Assumption 10 and 11 may appear to be restrictive to the point of requiring that the pay-off

and signals be jointly normally distributed. That is not the case. There are other natural pay-off
and signal structures that satisfy the assumptions, including a special case of Example 1 and all
cases of Example 2. I compute the equilibria in these economies in Appendix A.6

6.1. Uniqueness in a continuum case of Example 2

While I have been unable to discover any general uniqueness results for the finite-
investor model with dispersed information, in Section 2 of the online Appendix available as
Supplementary Material I consider a version of the model with a continuum of investors who
receive additive signals with normally distributed errors (Example 2). In this setting, uniqueness
within the class of continuous equilibria re-emerges under an additional economically innocuous
restriction that rules out certain singularly continuous (Cantor-like) functions. I briefly sketch the
derivation here.

In this model, each investor i∈[0,1] receives a signal S̃i = Ṽ + ε̃i, where ε̃i follow independent
normal distributions N(0,σ 2

i ). The key difference with the finite-investor version of Example 2
is that with a continuum of investors no individual εi’s enter the price. When that is true, each
investor’s optimal portfolio is additively separable in si and p for any continuous price function.
This allows one to bring to bear the techniques from the two-types case in Section 3 which relied
heavily on additive separability.

Here I briefly sketch the proof of additive separability and refer the interested reader to the
details in the online Appendix available as Supplementary Material. Note that because S̃i and Z̃
are conditionally independent given Ṽ one can use Bayes’ rule to write the joint distribution of
(Ṽ ,S̃i,P(Ṽ ,Z̃)) as

dFṼ ,̃Si,P(·)(v,si,p)∝exp

{
− 1

2σ 2
i

(si −v)2

}
dsi fP(·)|Ṽ (p|v)dp fṼ (v)dv.

This expression is proportional to the conditional density that the investor uses when forming
his/her portfolio, where the constant of proportionality depends only on (si,p), and therefore
divides out of the FOC.
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Plugging into investor i’s FOC and dividing out terms that are constant with respect to v yields∫
V

(v−p)exp

{
−

(
1

τi
Xi(si,p)− si

σ 2
i

)
v

}
fP(·)|Ṽ (p|v)exp

{
− 1

2σ 2
i

v2

}
fṼ (v)dv=0,

which implies that 1
τi

Xi(si,p)− si

σ 2
i

can be written purely as a function, hi,P(·)(p), of the realized

price. Rearranging yields

Xi(si,p)=τi

(
si

σ 2
i

+hi,P(·)(p)

)
.

Plugging into the market-clearing condition and using the same argument as in Lemma 4 in the
hierarchical information case implies that any continuous price function must reveal only a linear
combination of signals and supply shock. Uniqueness of equilibrium then follows directly.

7. CONCLUSION

In this article, I have presented a class of noisy RE economies that nests the standard CARA-
Normal setting of Grossman and Stiglitz (1980) and Hellwig (1980). I provided a constructive
proof of existence of equilibrium and in the two-types and continuum-of-investors settings have
given sufficient conditions for uniqueness of this equilibrium within the class of continuous
equilibria. I have also exhibited some examples in which explicit solutions are available. The
results presented here open up a broad class of models for applications, a few of which I have
given a brief treatment, including price reaction to information, price drifts and reversals, and
the disagreement–return relation. The model could be generalized in a straightforward way
to incorporate multiple assets (thus extending Admati (1985)) by appealing to multivariate
exponential families for pay-off distributions and/or to include trading constraints by following
the method of Yuan (2005). I leave these problems for future work.

APPENDIX

A. PROOFS

A.1. Properties of the exponential family conditional distribution

In this section, I collect a few properties of the exponential family conditional distribution from Assumption 3,

dFṼ |̃SI
(v|sI )=exp{kI sI v−gI (kI sI )}dHI (v), v∈V,sI ∈S,

where GI denotes the support of gI and satisfies kIS ⊆GI .

Lemma A6 (mgf). Fix sI ∈S and let MṼ |̃SI
(u|sI )≡E

[
exp{uṼ}|̃SI =sI

]
denote the conditional mgf. Then, {u∈R :

MṼ |̃SI
(u|sI )<∞}={u∈R :u+kI sI ∈GI }, and

MṼ |̃SI
(u|sI )=exp{gI (u+kI sI )−gI (kI sI )}.

Proof The density must integrate to 1 ∫
V

exp{kI sI v−gI (kI sI )}dHI (v)=1

⇒
∫

V
exp{kI sI v}dHI (v)=exp{gI (kI sI )},

Therefore, ∫
V

exp{uv}exp{kI sI v−gI (kI sI )}dHI (v)=exp{gI (u+kI sI )−gI (kI sI )},
which is well defined and finite as long as u+kI sI lies in GI , the domain of gI . ‖
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Lemma A7 (Differentiability of gI ). The function gI is infinitely continuously differentiable in the interior of GI and is
strictly convex.

Proof From Lemma A6, the conditional mgf of Ṽ is defined for any u such that u+kI sI ∈GI and one can write

gI (u+kI sI )= logMṼ |̃SI
(u|sI )+gI (kI sI ) (A.1)

It is well known that mgfs are analytic in the interior of their domain of existence (Billingsley, 1995, p. 278). Since u+kI sI

ranges over the interior of GI as u ranges over the interior of the interval of convergence of the mgf, it follows from
equation (A.1) that the function gI is analytic in the interior of GI , and therefore is infinitely continuously differentiable.
To show convexity, use the previous expression for gI (u+kI sI ) and differentiate both sides twice with respect to u

g′′
I (u+kI sI )=

MṼ |̃SI
(u|sI )M ′′̃

V |̃SI
(u|sI )−(M ′̃

V |̃SI
(u|sI ))2

(MṼ |̃SI
(u|sI ))2

= E
[
exp{uṼ}|̃SI =sI

]
E
[
Ṽ2 exp{uṼ}|̃SI =sI

]−(
E
[
Ṽ exp{uṼ}|̃SI =sI

])2

(MṼ |̃SI
(u|sI ))2

.

Positivity of this expression follows from the Cauchy–Schwarz inequality, which states E[|X̃Ỹ |]≤
√

E
[
X̃2

]√
E
[
Ỹ2

]
for

any random variables X̃ and Ỹ , with equality if and only if X̃ and Ỹ are linearly dependent. Taking X̃ =exp{u Ṽ
2 } and

Ỹ = Ṽ exp{u Ṽ
2 }, and squaring both sides of the inequality shows that g′′

I (u+ksI )>0. ‖

Lemma A8 (Moments). The conditional moments of Ṽ are given by the derivatives of the mgf from Lemma A6, evaluated
at u=0

E
[
Ṽ n |̃SI =sI

]= dn

dun
exp{gI (u+kI sI )−gI (kI sI )}

∣∣∣∣
u=0

.

The first four moments are

E
[
Ṽ |̃SI =sI

]=g′
I (kI sI )

E

[
Ṽ2 |̃SI =sI

]
=g′′

I (kI sI )+(g′
I (kI sI ))2

E

[
Ṽ3 |̃SI =sI

]
=g′′′

I (kI sI )+3g′′
I (kI sI )g′

I (kI sI )+(g′
I (kI sI ))3

E

[
Ṽ4 |̃SI =sI

]
=g′′′′

I (kI sI )+4g′′′
I (kI sI )g′

I (kI sI )+3(g′′
I (kI sI ))2

+6g′′
I (kI sI )(g′

I (kI sI ))2 +(g′
I (kI sI ))4.

Proof Recall that the n-th derivative of the mgf, evaluated at u=0, delivers the n-th raw moment of the distribution
(Theorem 2.3.7, Casella and Berger, 2002). Hence, the general expression follows immediately from the expression for
the mgf from Lemma A6.

For the first moment, one has

E
[
Ṽ |̃SI =sI

]= d

du
MṼ |̃SI

(u|sI )

∣∣∣∣
u=0

= d

du
exp{gI (u+kI sI )−gI (kI sI )}

∣∣∣∣
u=0

=g′
I (u+kI sI )exp{gI (u+kI sI )−gI (kI sI )}

∣∣∣∣
u=0

=g′
I (kI sI ).

Repeating this for higher derivatives of the mgf gives the explicit results for the remaining raw moments. ‖

A.2. Proofs of results in Section 3

This Appendix presents proofs of all results found in Section 3. For clarity, it is divided into three parts. The first part
derives some preliminary results that relate to the portfolio optimization problem faced by a CARA investor. These
results will be used in later proofs. The second part provides proofs for the results from the text that relate to the partial
equilibrium demand functions of informed and uninformed investors. Finally, the last part provides proofs of the existence
and uniqueness results.
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A.2.1. Some preliminaries. Before beginning the proofs of the main results in the article, I present two
preliminary Lemmas on investors’ partial equilibrium portfolio problem. The following Lemma establishes that for a
CARA investor facing an asset whose pay-off has an mgf that converges on an open set, the investor’s FOC is necessary
and sufficient for an optimum, and there is a finite solution to the FOC if and only if there are no arbitrage opportunities
in the market.

Lemma A9. Consider an investor with CARA utility with risk tolerance τ. Suppose that conditional on his/her
information set F , the asset pay-off Ṽ ∈V is distributed according to a non-degenerate distribution with mgf that is
finite only on a (potentially infinite) non-empty open interval (−δ,η), δ,η>0.23 Then

• The investor’s FOC is necessary and sufficient for the optimal portfolio, which is unique when it exists.
• An optimal portfolio exists if and only if the asset price p lies in (V ,V ), the interior of the convex hull of V .

Proof To begin, I establish that the investor’s problem has a finite maximum if and only if there exists a portfolio x that
satisfies the FOC. Consider the investor’s problem

max
x

E

[
−exp

{
− 1

τ
x(Ṽ −p)

}∣∣F]
=max

x

∫
V

−exp

{
− 1

τ
x(v−p)

}
dFṼ |F (v)

This objective function is an mgf evaluated at − 1
τ

x.Assuming that the mgf of Ṽ is finite on (−δ,η), the investor’s objective

function is finite for portfolios x in the interval {x :− 1
τ

x∈ (−δ,η)}= (−τη,τδ), and is equal to −∞ outside of this interval.
Since mgf are analytic (Billingsley, 1995, p.278), his/her objective function is (infinitely) continuously differentiable,
and since the pay-off distribution is non-degenerate it is also strictly concave. It is well known that for a differentiable
and strictly concave objective function defined on an open set, the optimization has a well-defined maximizer x∗ if and
only if there exists an x∗ satisfying the FOC24∫

V
(v−p)exp

{
− 1

τ
x∗(v−p)

}
dFṼ |F (v)=0.

Moreover, due to the strict concavity of the objective function, the optimum is unique when it exists.
It remains to demonstrate that the given restrictions on p are necessary and sufficient for the existence of a solution to

the FOC. To show that the existence of a finite optimal portfolio implies p∈ (V ,V ), suppose that the investor has a finite
optimal portfolio but that p /∈ (V ,V ). Without loss of generality, suppose that p lies below (V ,V ). Then, with probability
1, the asset pay-off is greater than or equal to the price

P
(
Ṽ ≥p|F)=∫

V
I{v≥p}dFṼ |F (v)=1,

and with strictly positive probability the pay-off is strictly greater than the price

P
(
Ṽ >p|F)=∫

V
I{v>p}dFṼ |F (v)≥

∫
V

I{v>V}dFṼ |F (v)>0.

Due to these facts, it follows that for all candidate portfolios x∈ (−τη,τδ), we have∫
V

(v−p)exp

{
− 1

τ
x(v−p)

}
dFṼ |F (v)=

∫
V

(v−p)exp

{
− 1

τ
x(v−p)

}
I{v≥p}dFṼ |F (v)>0,

from which it follows that the FOC cannot be satisfied. This contradicts the assumption that the investor has a finite
optimal portfolio. Hence, if the investor has an optimal portfolio, it must be the case that p∈ (V ,V ).

Conversely, suppose that p∈ (V ,V ). To show that the investor has a finite optimal portfolio, it suffices to show that
there exists an x∗ ∈ (−τη,τδ) that satisfies the FOC∫

V
(v−p)exp

{
− 1

τ
x∗(v−p)

}
dFṼ |F (v)=0.

To prove that such an x∗ exists, I employ an intermediate value theorem argument. Because the integral that appears in the
FOC is the derivative of the mgf of Ṽ −p and mgfs are infinitely continuously differentiable in their domain of existence,
the integral is a continuous function of x.

23. At this level of generality, both the support V and the interval (−δ,η) are allowed to depend on the information
set F .

24. See any text on convex analysis (e.g. Boyd and Vandenberghe, 2004, Ch. 4)

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/82/3/868/1577193 by U

niversite and EPFL Lausanne user on 12 M
arch 2020



[12:32 12/6/2015 rdv012.tex] RESTUD: The Review of Economic Studies Page: 895 868–921

BREON-DRISH EXISTENCE AND UNIQUENESS NOISY RE 895

Parameterize x(ω)=−τω, for ω∈ (−δ,η). This parameterization captures all portfolios x∈ (−τη,τδ) for which the
objective function is finite. With this expression for the portfolio, one can write the FOC as∫

V
(v−p)exp

{
− 1

τ
x(ω)(v−p)

}
dFṼ |F (v)=

∫
V

(v−p)exp{ω(v−p)}dFṼ |F (v).

Since p∈ (V ,V ), this integral can be divided into positive and negative parts, both of which are non-zero.∫
V

(v−p)exp{ω(v−p)}dFṼ |F (v)=
∫

V
I{V≤v<p}(v−p)exp{ω(v−p)}dFṼ |F (v)

+
∫

V
I{p<v≤V}(v−p)exp{ω(v−p)}dFṼ |F (v).

Note that the set {v=p} contributes zero to the integral and so can be omitted.
I now show that as ω↑η, the negative integral over {v :V ≤v<p} remains bounded, whereas the integral over

{v :p<v≤V} becomes unboundedly large. Consider first the negative integral. Note that for ω∈ (0,η),∣∣∣∣∫V
I{V≤v<p}(v−p)exp{ω(v−p)}dFṼ |F (v)

∣∣∣∣≤∫
V

I{V≤v<p} |v−p|exp{ω(v−p)}dFṼ |F (v)

≤
∫

V
I{V≤v<p} |v−p|dFṼ |F (v)

<∞,

where the first inequality follows from the triangle inequality, the second inequality follows because exp{ω(v−p)}<1
on {v<p}∩{ω>0}, and the final inequality follows because Ṽ has a finite mgf, and therefore Ṽ has finite moments of
all orders. This shows that the integral over {v :V ≤v<p} remains bounded as ω tends to its upper boundary.

Now, consider the positive integral over {v :p<v≤V}. Note that because p∈ (V ,V ), there exists some k >p such
that there is a strictly positive probability that the pay-off exceeds k

P(Ṽ ≥k|F )=
∫

V
I{k<v≤V}dFṼ |F (v)>0. (A.2)

The integral over {v :p<v≤V} can be bounded below using:∫
V

I{p<v≤V}(v−p)exp{ω(v−p)}dFṼ |F (v)=
∫

V
I{p<v<k}(v−p)exp{ω(v−p)}dFṼ |F (v)

+
∫

V
I{k≤v≤V}(v−p)exp{ω(v−p)}dFṼ |F (v)

≥
∫

V
I{k≤v≤V}(v−p)exp{ω(v−p)}dFṼ |F (v)

≥ (k−p)
∫

V
I{k≤v≤V}exp{ω(v−p)}dFṼ |F (v) (A.3)

where the first equality splits up the integral, the first inequality disregards one of the integrals, which is positive, and
the second inequality uses the fact that v−p≥k−p>0 for v>k. Now, consider the limiting value of the integral in
equation (A.3) as ω tends to η. There are two cases to consider, η=∞ and η<∞. If η=∞, then it follows from Fatou’s
lemma that

liminf
ω↑η

∫
V

I{k≤v≤V}exp{ω(v−p)}dFṼ |F (v)≥
∫

V
I{k≤v≤V} liminf

ω↑η
exp{ω(v−p)}dFṼ |F (v)=∞,

and, therefore, integral over {v :p<v≤V} becomes unboundedly large as ω tends to the upper boundary. If η<∞, then
since the mgf converges only on an open set, it follows that the mgf must diverge as ω approaches η

lim
ω↑η

∫
V

exp{ω(v−p)}dFṼ |F (v)=∞. (A.4)
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To apply this fact to demonstrate the limiting behaviour of the integral equation (A.3), split up the integral in
equation (A.4) to write it as∫

V
exp{ω(v−p)}dFṼ |F (v) (A.5)

=
∫

V
I{v≤p}exp{ω(v−p)}dFṼ |F (v)+

∫
V

I{p<v}exp{ω(v−p)}dFṼ |F (v)

=
∫

V
I{v≤p}exp{ω(v−p)}dFṼ |F (v)+

∫
V

I{p<v<k}exp{ω(v−p)}dFṼ |F (v)

+
∫

V
I{v≥k}exp{ω(v−p)}dFṼ |F (v). (A.6)

The first two integrals in equation (A.6) remain bounded as ω→η, since for ω>0,∫
V

I{v≤p}exp{ω(v−p)}dFṼ |F (v)≤
∫

V
I{v≤p}dFṼ |F (v)<∞,∫

V
I{p<v<k}exp{ω(v−p)}dFṼ |F (v)≤exp{η(k−p)}

∫
V

I{p<v<k}dFṼ |F (v)<∞.

Given that equation (A.4) is true, it must, therefore, be the case that

lim
ω↑η

∫
V

I{v≥k}exp{ω(v−p)}dFṼ |F (v)=∞.

Returning to equation (A.3), one concludes that the integral over {v :p<v≤V} becomes unboundedly large as ω↑η since

lim
ω↑η

∫
V

I{p<v≤V}(v−p)exp{ω(v−p)}dFṼ |F (v)≥ (k−p)lim
ω↑η

∫
V

I{k≤v≤V}exp{ω(v−p)}dFṼ |F (v)

=∞.

Summarizing the above, it has been shown that for sufficiently large ω∈ (0,η), the portfolio x(ω)=−τω satisfies∫
V

(v−p)exp

{
− 1

τ
x(ω)(v−p)

}
dFṼ |F (v)>0.

Running through the same sequence of steps above for ω↓−δ, it follows that for sufficiently small ω∈ (−δ,0), the
portfolio x(ω) satisfies ∫

V
(v−p)exp

{
− 1

τ
x(ω)(v−p)

}
dFṼ |F (v)<0.

Combining these results, the intermediate value theorem implies that there exists some finite portfolio x∗ that satisfies
the FOC ∫

V
(v−p)exp

{
− 1

τ
x∗(v−p)

}
dFṼ |F (v)=0.

‖
The next Lemma applies Lemma A9 to the partial equilibrium portfolio problems of the informed and uninformed

investors and establishes an equivalence between (V ,V ), and the range of the function g′
I that appears in the informed

investor’s beliefs.

Lemma A10. Suppose that Assumptions 1–5 hold and that the uninformed investor observes S̃U . Fix any realization of
(̃SI ,Z̃)= (sI ,z) and the associated realization S̃U =sU =sI − 1

kI τI
z. The following statements are equivalent.

(a) The informed investor’s portfolio problem has a finite optimum and a well defined, unique optimal portfolio
given by the solution to his/her FOC.

(b) The uninformed investor’s portfolio problem has a finite optimum and a well defined, unique optimal portfolio
given by the solution to his/her FOC.

(c) The price p lies in the interior of the convex hull of V, p∈ (V ,V ).
(d) The price p lies in the range of the function g′

I (·), p∈g′
I (GI ).
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Proof I begin by proving (a) ⇐⇒ (c). Under Assumptions 2–3, there is a single informed investor, whose conditional
beliefs are of the exponential family form. Lemma A6 shows that his/her conditional mgf of Ṽ is finite only on the set
{ω :ω+kI sI ∈GI }, which under Assumption 4 is an open interval. From Lemma A9, it follows that statements (a) and (c)
are equivalent.

To show (b) ⇐⇒ (c), I again will invoke Lemma A9. Under Assumption 5, the mgf of Ṽ , conditional on S̃U is finite
only in a non-empty open interval. From Lemma A9 it follows that statements (b) and (c) are equivalent.

To conclude, I show (a) ⇐⇒ (d). I showed in the first part of the proof that all of the assumptions of Lemma A9 are
satisfied for the informed investor. Hence, he/she has a finite optimal portfolio if and only if there is a portfolio x∗ that
satisfies his/her FOC. His/her objective function is

max
x∈R

E

[
−exp

{
− 1

τI
x(Ṽ −p)

}
|̃SI =sI

]
=max

x∈R

−exp

{
1

τI
xp+gI

(
kI sI − 1

τI
x

)
−gI (kI sI )

}
,

where the equality uses Lemma A6 to write out the expectation explicitly.
There is a unique, finite x∗ that achieves this maximum if and only if there exists a unique, finite x∗ that solves the

FOC

g′
I

(
kI sI − 1

τI
x∗

)
=p.

An x∗ that satisfies the FOC exists if and only if p∈g′
I (GI ) — that is, if and only if (g′

I )−1(p) exists. Lemma A7 guarantees
that g′

I is strictly increasing and therefore that this x∗ is unique when it exists. ‖

A.2.2. Proofs of results on investors’ partial equilibrium demand functions.

Proof (Lemma 1). It was shown in the proof of Lemma A10 that as long as p∈ (V ,V ) the informed investor’s optimal
portfolio is characterized by the FOC

g′
I

(
kI sI − 1

τI
XI (sI ,p)

)
=p

⇒ XI (sI ,p)=τI (kI sI −(g′
I )−1(p)),

Defining the price reaction function, GI = (g′
I )−1, produces the expression in the Lemma. ‖

Proof (Lemma 2). It suffices to show that P(sI ,z)=P(ŝI ,ẑ) implies that sI − z
kI τI

= ŝI − ẑ
kI τI

. Suppose that (sI ,z) and (ŝI ,ẑ)
satisfy P(sI ,z)=P(ŝI ,ẑ). Lemma 1 demonstrated that under Assumptions 1–4, the informed investor’s demand function
is τI (kI sI −GI (p)). Hence, the market-clearing condition requires

z+z−τI (kI sI −GI (P(sI ,z)))=XU (P(sI ,z))

=XU (P(ŝI ,ẑ))

=z+ ẑ−τI (kI ŝI −GI (P(ŝI ,ẑ)))

=z+ ẑ−τI (kI ŝI −GI (P(sI ,z))),

where the first equality follows from the market-clearing condition in the state (sI ,z), the second equality uses the fact
that P(sI ,z)=P(ŝI ,ẑ), the third equality follows from market clearing in the state (ŝI ,ẑ), and the last equality again uses
P(sI ,z)=P(ŝI ,ẑ).

The above chain of equalities implies that

sI − z

kIτI
= ŝI − ẑ

kIτI
.

‖
The following Lemma presents an expression for the uninformed investor’s conditional beliefs.

Lemma A11. The conditional distribution of Ṽ given S̃U =sU , FṼ |̃SU
(v|sU ), is given by

dFṼ |̃SU
(v|sU )=K(v,sU )dHI (v), (A.7)

where

K(v,sU )=
∫
S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))exp{kI xv−gI (kI x)}dFS̃I

(x)∫
S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))dFS̃I

(x)
.
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Proof (Lemma A11). Since S̃U is a convolution of S̃I and − 1
kI τI

Z̃, the conditional distribution of S̃I given S̃U is

dFS̃I |̃SU
(sI |sU )=

I

{
sI ∈sU + 1

kI τI
Z

}
fZ (kIτI (sI −sU ))dFS̃I

(sI )∫
S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))dFS̃I

(x)
,

where the indicator function makes explicit the fact that depending on the support Z, observation of S̃U may reveal that
S̃I lies in some proper subset of S.

Integrating the conditional cdf of Ṽ given S̃I against this distribution produces the conditional cdf of Ṽ given S̃U

FṼ |̃SU
(v|sU )

=
∫

S
FṼ |̃SI

(v|x)dFS̃I |̃SU
(x|sU )

=
∫
S
[∫

V I{y≤v}exp{kI xy−gI (kI x)}dHI (y)
]
I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))dFS̃I

(x)∫
S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))dFS̃I

(x)

=
∫
V I{y≤v}∫S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))exp{kI xy−gI (kI x)}dFS̃I

(x)dHI (y)∫
S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))dFS̃I

(x)
,

where the third equality holds because the integrand in the numerator is positive, and hence Fubini’s Theorem allows for
changing the order of integration.

This completes the proof since the expression in the Lemma is seen to be the Lebesgue–Stieltjes differential
corresponding to this conditional cdf. ‖
Proof (Lemma 3). The uninformed investor’s optimization problem is

max
x

∫
V

−exp

{
− 1

τU
x(v−p)

}
dFṼ |̃SU

(v|sU ),

where FṼ |̃SU
is characterized in Lemma A11.

Lemma A10 implies that for p∈ (V ,V ) the optimal demand exists, is unique, and is characterized by the FOC∫
V

(v−p)exp

{
− 1

τU
XU (sU ,p)(v−p)

}
dFṼ |̃SU

(v|sU )=0.

Dividing out exp
{

1
τU

XU (sU ,p)p
}
, which is constant with respect to v, produces equation (3.8). ‖

At this point it will be useful to provide two results which characterize how informed and uninformed investor
demand depends on the signals sI and sU , and the price p.

Lemma A12. Suppose that Assumptions 1–5 hold and that the uninformed investor’s information set consists only of
S̃U . Fix sI and sU . Both the informed and uninformed investors’optimal portfolios are continuous and strictly decreasing
in p.

Proof (Lemma A12). Since investors have CARA utility, Proposition 1 of Cheng et al. (1987) implies that demand
functions are strictly decreasing in price. The intuition for the result is simple—holding information constant, a change
in price has both income and substitution effects. The assumption of CARA utility precludes income effects, and with
only a substitution effect, demand must decrease with price.

Continuity for the demand of the informed investor is immediate upon inspection of his/her optimal demand in
equation (3.6). For the uninformed investor, recall that the FOC uniquely defines his/her demand function according to∫

V
(v−p)exp

{
− 1

τU
XU (sU ,p)(v−p)

}
dFṼ |̃SU

(v|sU )=0.

The FOC can be written in terms of conditional mgfs as

M ′̃
V |̃SU

(
− 1

τU
XU (sU ,p)|sU

)
−pMṼ |̃SU

(
− 1

τU
XU (sU ,p)|sU

)
=0.

The conditional mgf and its derivative are continuous functions of their argument for fixed sU and the FOC is continuous
in p. Furthermore, demand is uniquely defined for fixed p. It follows from the implicit function theorem that the function
XU (sU ,p) defined implicitly by this expression is itself continuous in p. ‖
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Lemma A13. Suppose that Assumptions 1–5 and 7 hold and that the uninformed investor’s information set consists only
of S̃U . Fix p∈ (V ,V ). The informed investor’s optimal portfolio XI (sI ,p) is strictly increasing in sI , and the uninformed
investor’s optimal portfolio XU (sU ,p) is increasing in sU .

To prove Lemma A13, I introduce a new definition and establish a property of uninformed investor beliefs that is
needed for the result. The following definition follows Definition 1 of Jewitt (1987) (or Definition 1.1 in Chap. 2 of Karlin
(1968)).

Definition 4 (Total positivity). A function K :X ×Y ⊆R
2 →R is totally positive of order 2 (TP2) if K(x,y)≥0 and for

any choice of x1 <x2 and y1 <y2, ∣∣∣∣K(x1,y1) K(x1,y2)
K(x2,y1) K(x2,y2)

∣∣∣∣≥0,

where |·| represents the determinant.25

Total positivity of order 2 goes by several different names in the literature, including: the monotone likelihood ratio
property (Milgrom, 1981), affiliation (Milgrom and Weber, 1982), and log-supermodularity (Athey, 2002). The condition
captures a notion of good news (Milgrom, 1981). If the conditional pdf of Ṽ given S̃U is TP2 then increases in the realization
S̃U =sU produce upward shifts in the conditional distribution of Ṽ under the likelihood ratio stochastic ordering, which
is essentially a stronger version of the first-degree stochastic dominance order.

The following Proposition records the fact that the TP2 property is preserved under composition.

Proposition 8 (Composition formula for totally positive functions). Let M :X ×W →R and L :W ×Y →R be TP2

and suppose that h :W →R is non-decreasing. Then the function

K(x,y)=
∫

M(x,w)L(w,y)dh(w)

is TP2.

The proof is provided in Karlin (1968), so I omit it here. The intuition can be easily seen by considering the case in
which M and L are conditional densities. Suppose that the conditional distributions of X̃ given W̃ and W̃ given Ỹ are
TP2—increases in W̃ are good news about X̃ and increases in Ỹ are good news about W̃ . The composition formula implies
that increases in Ỹ are also good news about X̃. In the context of the model, increases in the informed investor’s signal S̃I

are good news about the pay-off Ṽ and increases in the uninformed investor’s signal S̃U are good news about S̃I . Hence,
increases in S̃U are good news about Ṽ .

The following Corollary records the fact that the uninformed investor’s conditional distribution is TP2.

Corollary 3 (Corollary to Lemma A11). Under Assumption 7, the function K(v,sU ) that appears in the conditional
distribution FṼ |̃SU

(v|sU ) in Lemma A11 is TP2.

Proof (Corollary 3). Let

K(v,sU )=
∫
S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))exp{kI xv−gI (kI x)}dFS̃I

(x)∫
S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU ))dFS̃I

(x)

be the function in the integral in the uninformed investors’ beliefs.
Notice first that the denominator of K is positive and is a function only of sU and not v, so its behaviour does not affect

whether the function K is totally positive. Hence, it suffices to show that the numerator
∫
S I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−

sU ))exp{kI xv−g(kI x)}dFS̃I
(x) is TP2 in (v,sU ). The indicator function is TP2 in (x,sU ) (Athey (2002), Lemma 3), and

under Assumption 7, the function fZ (kIτI (x−sU )) is TP2 in (x,sU ). Hence, I

{
x∈sU + 1

kI τI
Z

}
fZ (kIτI (x−sU )) is TP2 in

(x,sU ). Furthermore, exp{kI xv−g(kI x)} is TP2 in (v,x) because ∂2

∂v∂x logexp{kI xv−g(kI x)}>0. Hence, it follows from
the composition formula that the numerator is TP2 in (v,sU ) and therefore that K(v,sU ) is TP2. ‖

25. In the case that K is strictly positive and twice differentiable, then K is TP2 if and only if ∂2

∂x∂y logK(x,y)≥0.

See, e.g. (Jewitt, 1987 or Karlin, 1968).
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I now finally return to the proof of Lemma A13.

Proof (Lemma A13). The result for the informed investor is immediate upon inspection of his/her portfolio in
equation (3.6). For the uninformed investor, Corollary 3 shows that the function K(v,sU ) that appears in his/her beliefs
in Lemma A11 is TP2. It, therefore, follows from Proposition 2 of Landsberger and Meilijson (1990) that uninformed
demand is increasing in sU . ‖

A.2.3. Proofs of existence and uniqueness results.

Proof (Proposition 2). Fix realizations (̃SI ,Z̃)= (sI ,z) and the associated realization sU =sI − 1
kI τI

z. It suffices to show

that there exists some price p∈ (V ,V ) for which the market-clearing condition holds

XI (sI ,p)+XU (sU ,p)−(z+z)=0.

I will use an intermediate value theorem argument to demonstrate existence of such a p. Define p0 =E[Ṽ |̃SU =sU ].
I claim that p0 ∈ (V ,V ). When the price is p0, the uninformed investor perceives the risky asset as having zero risk
premium and his/her optimal demand is equal to zero. Hence, Lemma A10, which showed the equivalence of finite
demand and prices lying in (V ,V ), establishes p0 ∈ (V ,V ). Consider also pI =g′

I (k(sU − 1
kI τI

z)), which would be the

equilibrium price if there were only informed investors in the economy.26 Assumption 6 guarantees kI (sU − 1
kI τI

z)∈GI ,

and hence pI ∈g′
I (GI ). Lemma A10, therefore, implies pI ∈ (V ,V ).

Let p=min{p0,pI } and p=max{p0,pI }. The interval [p,p] lies in (V ,V ) due to the fact that both p0 and pI do. I will
show that there exists a market-clearing price in this interval. If p0 =pI , then the proof is done since this price clears the
market. For p0 �=pI , note that

XI (sI ,p)+XU (sU ,p)−(z+z)≥XI (sI ,pI )+XU (sU ,p0)−(z+z)=0

XI (sI ,p)+XU (sU ,p)−(z+z)≤XI (sI ,pI )+XU (sU ,p0)−(z+z)=0,

where the first line follows because p≤p0,pI and demand functions are strictly decreasing in price by Lemma A12. The
second line follows similarly because p≥p0,pI .

Since Lemma A12 established that both investors’demand functions are continuous in p, the existence of a p at which
the market-clearing condition holds now follows from the intermediate value theorem. Moreover, because aggregate
demand is strictly decreasing in p, this market-clearing price is in fact unique for each fixed sU .

To complete the proof of existence, it must be shown that the price function characterized here is one-to-one. Consider
the function on the left-hand side of the market-clearing condition

τI (ksU −GI (p))+XU (sU ,p)−z=0.

Under Assumption 7, XU is increasing in sU , therefore, this function is strictly increasing in sU . This function is also
strictly decreasing in p owing to Lemma A12. Hence, the equilibrium price function must be strictly increasing in sU and
therefore one-to-one. This completes the proof of existence.

It remains to demonstrate continuity of the price function. The first part of the proof showed that there exists a price
function defined implicitly by

τI (kI sU −GI (P(sU )))+XU (sU ,P(sU ))−z=0.

Lemma A12 established that the function in this expression is continuous and strictly decreasing in price, so that there is
a unique market-clearing price corresponding to each sU . The desired conclusion will, therefore, follow from the implicit
function theorem if it can be shown that XU is jointly continuous in sU ,p. Consider the FOC that defines the uninformed
investor’s optimal demand implicitly∫

V
(v−p)exp

{
− 1

τU
XU (sU ,p)v

}
K(v,sU )dHI (v)=0,

where I substitute in for dFṼ |̃SU
from Lemma A11. Assumption 8 guarantees that K(v,sU ) is continuous in sU for each

v, so the integrand is continuous in (sU ,p). Since the log concavity of Z̃ implies that the conditional distribution of Ṽ

26. In that case, the market clearing condition is

τI (kI sI −GI (p))=z+z⇒p=G−1
I

(
kI sI − 1

τI
(z+z)

)

⇒p=g′
I

(
kI

(
sU − 1

kIτI
z

))
,

where the second line follows because G−1
I =g′

I and sU =sI − 1
kI τI

z.
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has tails that are at most exponential, an application of the dominated convergence theorem implies that passing limits
through the integral sign is allowed. It follows that the integral is a continuous function of (sU ,p). Therefore, from the
implicit function theorem applied to the FOC, the uninformed investor’s demand function is continuous in (sU ,p). Again
applying the implicit function theorem, this time to the market-clearing condition, implies that the equilibrium price is
continuous in sU . ‖
Proof (Corollary 1). Under Assumptions 1–7 existence is guaranteed, so it remains to verify the expression for the price.
The proof proceeds similarly to that of Proposition 1 and could alternately be derived as a special case, so I omit some
detail.

From Lemma 1 the informed investor’s demand function is

XI (sI ,p)=τI (kI sI −GI (p)),

and since Assumption 9 requires uninformed investor beliefs to have the exponential family form, his/her demand takes
a similar form

XU (sU ,p)=τU (kU bU (sU )−GU (p)).

Imposing market clearing gives

τI (kI sI −GI (p))+τU (kU bU (sU )−GU (p))=z+z

⇒τI (kI sU −GI (p))+τU (kU bU (sU )−GU (p))=z

⇒τI kI sU +τU kU bU (sU )−z=G(p),

where the second line follows from grouping the terms involving sI and z into a single one involving sU and the third
line rearranges and uses the definition of the aggregate price reaction function, G=τI GI +τU GU . Applying G−1 to both
sides of the final line produces the expression in the Corollary. ‖

The following lemma is required for the proof of Lemma 4.

Lemma A14. Suppose that Assumptions 1–4 hold and that S and Z are intervals. Then any continuous equilibrium
price function is strictly monotone in sI for any fixed z and is strictly monotone in z for any fixed sI .

Proof (Lemma A14). I prove only the first statement in the proof. The proof of the second is analogous.
Fix any z∈Z. Given that P(·,z), considered as a function of its first argument, is assumed to be continuous and defined

on an interval, it suffices to show that P(·,z) is one-to-one in the first argument. Assume that P(·,z) is not one-to-one.
Then, there exist distinct possible realizations s �= ŝ of S̃I with P(s,z)=P(ŝ,z).

Under Assumptions 1–4, the informed investor’s demand function takes the form from Lemma 1. Plugging into the
market-clearing condition implies that the existence of such s �= ŝ would imply

0=XU (P(s,z))+τI (kI s−GI (P(s,z)))−z−z

=XU (P(ŝ,z))+τI
(
kI s−GI (P(ŝ,z))

)−z−z

�=XU (P(ŝ,z))+τI
(
kI ŝ−GI (P(ŝ,z))

)−z−z

=0,

where the first equality follows from market clearing in state (s,z), the second equality holds because P(s,z)=P(ŝ,z),
the inequality follows from s �= ŝ, and the final equality is the market-clearing condition in state (ŝ,z). ‖
Proof (Lemma 4). Let P(·) be an equilibrium price function. Assume to the contrary that there exists some s0

U ∈
Support(̃SU ) along which P is not constant. Let Q={P(sI ,z) :sI − z

kI τI
=s0

U } be the set of values that P takes for states

along s0
U . Take any p∈Q. Then there exists (s0

I ,z
0)∈Q with P(s0

I ,z
0)=p and by continuity of P there exists a sequence

(sn
I ,z

n)∈Q converging to (s0
I ,z

0) such that P(sn
I ,z

n)→P(sI ,z). By the assumption that P is not constant along s0
U and is

continuous, the point (s0
I ,z

0) and this sequence can be chosen so that P(sn
I ,z

n) �=P(s0
I ,z

0) for all n and P(sn
I ,z

n) converges
monotonically to P(s0

I ,z
0). Without loss of generality, assume P(sn

I ,z
n)↓P(sI ,z). Since the Assumptions guarantee that

the informed investor’s demand takes the linear form in Lemma 1, it follows from the market-clearing condition and the
fact that sn

I − zn

kI τI
=s0

U for all n that

τI (kI s0
U −GI (P(sn

I ,z
n)))+XU (P(sn

I ,z
n))=z ∀n, and (A.8)

τI (kI s0
U −GI (P(s0

I ,z
0)))+XU (P(s0

I ,z
0))=z. (A.9)
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Subtracting line (A.8) from line (A.9) and rearranging yields

XU (P(sn
I ,z

n))−XU (P(s0
I ,z

0))=τI

[
GI (P(sn

I ,z
n))−GI (P(s0

I ,z
0))

]
∀n. (A.10)

Now, keep z0 fixed and let ŝn
I be any sequence such that ŝn

I converges (strictly) monotonically to s0
I and P(ŝn

I ,z
0)=

P(sn
I ,z

n) for all n sufficiently large, n≥N . Such a sequence exists because Lemma A14 implies that P must be strictly
monotone and continuous in sI for fixed z0, and P(sn

I ,z
n) is decreasing in n by construction. For ŝn

I the market-clearing
condition implies that

τI

(
kI ŝn

I − z0

τI
−GI (P(ŝn

I ,z
0))

)
+XU (P(ŝn

I ,z
0))=z ∀n (A.11)

Subtract line (A.9) from line (A.11) and use the fact that s0
U =s0

I − z0

kI τI
, to yield

XU (P(ŝn
I ,z

0))−XU (P(s0
I ,z

0))−τI

[
GI (P(ŝn

I ,z
0))−GI (P(s0

I ,z
0))

]
=−τI (ŝn

I −s0
I ) ∀n. (A.12)

Now, use the fact that P(ŝn
I ,z

0)=P(sn
I ,z

n) for n≥N and plug into (A.12) to produce

XU (P(sn
I ,z

n))−XU (P(s0
I ,z

0))−τI

[
GI (P(sn

I ,z
n))−GI (P(s0

I ,z
0))

]
=−τI (ŝn

I −s0
I ) ∀n≥N . (A.13)

Using equation (A.10) to substitute for the left-hand side of equation (A.13) gives

0=−τI (ŝn
I −s0

I ) ∀n≥N,

which is a contradiction because ŝn
I �=s0

I for all n. ‖
Proof (Proposition 3). It was established in Proposition 2 that under Assumptions 1–8 the function P(sU ) defined by
equation (3.10) exists and is continuous in sU . It was also shown in the proof of that result that for fixed sU , there exists a
unique market-clearing price. This establishes that any price function that depends on (sI ,z) only through sU is uniquely
defined by equation (3.10). It remains to establish that any continuous price function can depend only on sU . However,
since S and Z are intervals Lemma 4 guarantees this. Hence, the price function in equation (3.10) is the unique continuous
price function. ‖

A.3. Equilibrium derivation in N =1 case of Examples 1 and 2

Proof (Example 1). Before deriving the equilibrium, I will verify that Assumptions 4–9 are met. Assumption 3 was
verified in Section 3 in the text.

First, consider Assumption 4, which requires that GI , the support of gI , be an open set. From the derivation of the
informed investor beliefs in equation (3.2) in the text, the support of gI is GI =R, which is open.

Next, consider Assumption 5, which requires that the uninformed investor’s conditional mgf converge on an open
set. This assumption is also met since the uninformed investor’s conditional distribution is binomial, and any binomial
distribution has an mgf that converges on the entire real line (Casella and Berger, 2002). To derive explicitly the
uninformed investor’s conditional beliefs about Ṽ , note that because S̃U = S̃I − VH −VL

τI
Z̃ is a convolution the conditional

distribution of S̃I given S̃U =sU follows easily from Bayes’ rule

f̃SI |̃SU
(sI |sU )= f̃SU |̃SI

(sU |sI )f̃SI
(sI )

f̃SU
(sU )

=
τI

VH −VL
fZ̃

(
τI

VH −VL
(sU −sI )

)
f̃SI

(sI )

f̃SU
(sU )

, (A.14)

where the marginal of S̃U is

f̃SU
(sU )=

∫ ∞

−∞
τI

VH −VL
fZ̃

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)dx.

It is helpful to keep track of the support of this conditional distribution explicitly. This support will typically vary with
the realization sU if the supply shock is distributed on any set other than the entire real line. Let Z and Z denote the endpoints
of the (potentially infinite) interval Z on which Z̃ is supported, and let s(sU )=sU + VH −VL

τI
Z and s(sU )=sU + VH −VL

τI
Z

be the corresponding endpoints of the support of the conditional distribution of S̃I .

Integrating over the density for S̃I derived above, the uninformed investor’s conditional pdf for the pay-off Ṽ is thus

fṼ |̃SU
(v|sU )=

∫ s(sU )

s(sU )
fṼ |̃SI

(v|x)f̃SI |̃SU
(x|sU )dx

=
∫ s(sU )

s(sU )

exp
{

x v−VL
VH −VL

}
1+exp{x}

τI
VH −VL

fZ̃

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)

f̃SU
(sU )

I{v∈{VL,VH }}dx (A.15)
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which is a binomial distribution with log-odds

bU (sU )≡ log

⎛⎝∫ s(sU )
s(sU )

exp{x}
1+exp{x} fZ̃

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)dx∫ s(sU )
s(sU )

1
1+exp{x} fZ̃

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)dx

⎞⎠. (A.16)

Therefore, as in equation (3.2) for the informed investor, the pdf can be condensed into the form

fṼ |̃SU
(v|sU )=exp

{
1

VH −VL
bU (sU )v− 1

VH −VL
bU (sU )VL −log

(
1+exp

{
(VH −VL) bU (sU )

VH −VL

})}
×I{v∈{VL,VH }}. (A.17)

To verify the remaining assumptions, first consider Assumption 6, which restricted the supports of the distributions.
This assumption is met because GI =R implies that kIS− 1

τI
Z− 1

τI
z⊆GI , regardless of the values of S,Z, and z.

Assumption 7, which restricted the distribution of the supply shock Z̃ to have a log-concave density is satisfied by
assumption. Finally, Assumption 8 on the continuity of uninformed investor beliefs is met. From the expression in
equation (A.17), fṼ |̃SU

(v|sU ) will be continuous in sU as long as the log-odds bU (sU ) are. Since the supply shock Z̃ has a
continuously differentiable density function, the integrands that appear in the log-odds are continuous, and because fZ is
log-concave, and therefore has tails that are at most exponential, the dominated convergence theorem allows us to pass
limits through the integrals in equation (A.16) and conclude that fṼ |̃SU

(v|sU ) is in fact continuous in sU .
Since Assumptions 1–8 are met, Proposition 2 guarantees that an equilibrium exists and that the price function is

continuous. Furthermore, since S̃I and Z̃ are continuously distributed on intervals, Proposition 3 guarantees that this
equilibrium is unique.

There are two ways to derive the price function. The first is to use the implicit characterization technique used in
Proposition 1. The second is to verify that Assumption 9 on uninformed investor beliefs is met and then use the explicit
characterization from Corollary 1. I use the second method here.

By inspection of equation (A.17), the uninformed pdf is in the form in Assumption 9 with

kU = 1

VH −VL
(A.18)

bU (sU )= log

⎛⎝∫ s(sU )
s(sU )

exp{x}
1+exp{x} fZ̃

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)dx∫ s(sU )
s(sU )

1
1+exp{x} fZ̃

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)dx

⎞⎠ (A.19)

gU (kU bU (sU ))=VLkU bU (sU )+log(1+exp{(VH −VL)kU bU (sU )}) (A.20)

dHU (v)=

⎧⎪⎨⎪⎩
1 v=VL

1 v=VH

0 v /∈{VL,VH },
or, equivalently, HU (v)=

⎧⎪⎨⎪⎩
0 v<VL

1 VL ≤v<VH

2 VH ≥v.

(A.21)

The support of the function gU is GU =R, as it is clear by inspection that the function is defined on the entire real line.
Hence, kU bU (Support(̃SU ))⊆GU =R, as required.

The price can now be derived by writing down explicit expressions for each investor’s demand function and then
clearing the market. Lemma 1 delivers the informed investor’s demand function once his/her price reaction function is
characterized. Recalling the expression for the function gI from equation (3.4), the derivative follows immediately

g′
I (kI sI )=VL +(VH −VL)

exp{(VH −VL)kI sI }
1+exp{(VH −VL)kI sI } .

Hence, his/her price reaction function, which is the inverse of g′
I , is

GI (p)= (g′
I )−1(p)= 1

VH −VL
log

(
p−VL

VH −p

)
,

and according to Lemma 1 his/her demand function is

XI (sI ,p)= τI

VH −VL

(
sI −log

(
p−VL

VH −p

))
.

Similarly, since the uninformed investor’s conditional beliefs are binomial but with log-odds bU (sU ) as given in
equation (A.16), his/her optimal demand is linear in bU (sU )

XU (sU ,p)= τU

VH −VL

(
bU (sU )−log

(
p−VL

VH −p

))
.
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The market-clearing condition requires that in equilibrium

XI (sI ,P(sU ))+XU (sU ,P(sU ))=z+z

⇒ τI

VH −VL

(
sI −log

(
P(sU )−VL

VH −P(sU )

))

+ τU

VH −VL

(
bU (sU )−log

(
P(sU )−VL

VH −P(sU )

))
=z+z,

and some simple algebra delivers the explicit expression for the price

P(sU )=VL +(VH −VL)
exp

{
τI

τI +τU
sU + τU

τI +τU
bU (sU )− VH −VL

τI +τU
z
}

1+exp
{

τI
τI +τU

sU + τU
τI +τU

bU (sU )− VH −VL
τI +τU

z
} .

‖
Proof (Example 2). Here I derive the equilibrium in the case of general pay-offs and additive signals with normally
distributed errors, S̃I = Ṽ + ε̃I . Suppose further that the supply shock is normally distributed, Z̃ ∼N(0,σ 2

Z ). Before deriving
the equilibrium, I will verify that Assumptions 3—8 are met and therefore from Propositions 2 and 3 an equilibrium exists
and is unique. I will also show that Assumption 9 is met and derive the explicit price function from Corollary 1.

Assumption 3 was verified in Section 3 in the text. Assumption 4 on the openness of GI holds since it was shown in the
text that GI =R. Checking Assumption 5, which requires that the uninformed investor’s conditional mgf converge on an
open set, necessitates computing his/her conditional beliefs. Note that because the supply shock is distributed N(0,σ 2

Z ),

the variable S̃U is equal to the sum of the true pay-off plus a normally distributed error with variance σ 2
U ≡σ 2

I +
(

σ 2
I

τI

)2

σ 2
Z .

Hence, the conditional density of Ṽ given S̃U =sU can be derived using steps that are analogous to those used to derive
the informed investor beliefs in the text:

dFṼ |̃SU
(v|sU )=

exp

{
sU
σ 2

U
v− 1

2
v2

σ 2
U

}
dFṼ (v)

∫
V exp

{
sU
σ 2

U
x− 1

2
x2

σ 2
U

}
dFṼ (x)

=exp

{
sU

σ 2
U

v−log

(∫
V

exp

{
sU

σ 2
U

x− 1

2

x2

σ 2
U

}
dFṼ (x)

)}
exp

{
− 1

2

v2

σ 2
U

}
dFṼ (v). (A.22)

This density is in the exponential family form with

kU = 1

σ 2
U

bU (sU )=sU

gU (kU sU )= log

(∫
V

exp

{
sU

σ 2
U

x− 1

2

x2

σ 2
U

}
dFṼ (x)

)

dHU (v)=exp

{
− 1

2

v2

σ 2
U

}
dFṼ (v), or, equivalently, HU (v)=

∫ v

0
exp

{
− 1

2

x2

σ 2
U

}
dFṼ (x).

The support of gU is GU =R. As in the case of the function gI above, note that the −x2 term in the exponential in the
integral implies that the integral that defines gU converges for any kU sU ∈R. The support of S̃U is R due to the normally
distributed error. Hence, kU ×Support(̃SU )⊆GU , as required. Using steps analogous to those in the proof of Lemma A6,
it can be shown that

MṼ |̃SU
(u|sU )=exp{gU (u+kU sU )−gU (kU sU )},

and, therefore, Assumption 5 is met because gU is defined on the entire real line.
Assumption 6, which restricts the supports of random variables, is met since GI =R means that kIS− 1

τI
Z− 1

τI
z⊆GI ,

for all choices of supports or parameter values. Assumption 7 on the log concavity of fZ̃ is met because the supply shock
is normally distributed. Finally, to verify Assumption 8 on the continuity of the uninformed’s conditional distribution
consider the expression in equation (A.22). Clearly the numerator is continuous in sU , and since the integral in the
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denominator is proportional to the mgf of the distribution
exp

{
− 1

2
v2

σ2
U

}
dFṼ (v)

∫
V exp

{
− 1

2
x2

σ2
U

}
dFṼ (x)

, evaluated at sU
σ 2

U
, it is also continuous in

sU .
Given that Assumptions 1–8 are met, Proposition 2 implies that an equilibrium price function exists and is continuous

in sU . Since the supports S =R and Z =R are intervals, Proposition 3 also implies that this price function is unique.
It remains to characterize the price function. Since the uninformed investor’s beliefs are in the exponential family form
from Assumption 9, Corollary 1 guarantees an explicit price function, which I now derive.

The informed investor demand function follows from Lemma 1 after determining his/her price reaction function. GI

is the inverse of the derivative of gI :

g′
I (kI sI )=

∫
V xexp

{
kI sI x− 1

2
x2

σ 2
I

}
dFṼ (x)

∫
V exp

{
kI sI x− 1

2
x2

σ 2
I

}
dFṼ (x)

,

where kI =1/σ 2
I , and hence his/her demand function is

XI (sI ,p)=τI (kI sI −GI (p))=τI

(
sI

σ 2
I

−GI (p)

)
.

Given his/her exponential family beliefs, the uninformed investor’s demand is similar to that of the informed investor.
His/Her price reaction function GU = (g′

U )−1 is the inverse of

g′
U (kU sU )=

∫
V xexp

{
kU sU x− 1

2
x2

σ 2
U

}
dFṼ (x)

∫
V exp

{
kU sU x− 1

2
x2

σ 2
U

}
dFṼ (x)

,

so that his/her demand function is

XU (sU ,p)=τU

(
sU

σ 2
U

−GU (p)

)
.

The market-clearing condition requires that in equilibrium

XI (sI ,P(sU ))+XU (sU ,P(sU ))=z+z

⇒τI

(
sI

σ 2
I

−GI (P(sU ))

)
+τU

(
sU

σ 2
U

−GU (P(sU ))

)
=z+z

⇒τI

(
1

σ 2
I

(
sI − σ 2

I

τI
z

)
−GI (P(sU ))

)
+τU

(
sU

σ 2
U

−GU (P(sU ))

)
−z=0

⇒
(

τI

σ 2
I

+ τU

σ 2
U

)
sU −z=τI GI (P(sU ))+τU GU (P(sU )),

where the final line uses sU =sI − σ 2
I

τI
z. Finally, let G(p)≡τI GI (p)+τU GU (p) be the aggregate price reaction function

and apply to both sides to deliver

P(sU )=G−1

[(
τI

σ 2
I

+ τU

σ 2
U

)
sU −z

]
.

‖

A.4. Proofs of results in Section 5

Proof (Proposition 4). Given that P(sU ) is increasing in sU , it follows that uninformed demand is increasing in the
equilibrium price if and only if the total derivative of XU (sU ,P(sU )) with respect to sU is positive. To see this, recall that
the uninformed investor demand function expressed purely as a function of p relates to the demand function expressed
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as a function of sU and p as XU (p)=XU (P−1(p),p). Differentiating the equilibrium demand XU (sU ,P(sU )) totally with
respect to sU gives

d

dsU
XU (sU ,P(sU ))= ∂XU

∂sU
+ ∂XU

∂p

∂P

∂sU
.

Recall that the demand function is linear in the log-odds

XU (sU ,p)=τU

(
1

VH −VL
log

(
fṼ |̃SU

(VH |sU )

fṼ |̃SU
(VL |sU )

)
− 1

VH −VL
log

(
p−VL

VH −p

))
.

Hence, the derivative of the equilibrium demand is

d

dsU
XU (sU ,P(sU ))= τU

VH −VL

∂

∂sU
log

(
fṼ |̃SU

(VH |sU )

fṼ |̃SU
(VL |sU )

)
− τU

(VH −P(sU ))(P(sU )−VL)

∂P

∂sU

= τU

VH −VL

∂

∂sU
log

(
fṼ |̃SU

(VH |sU )

fṼ |̃SU
(VL |sU )

)
− τU

(VH −VL)2(1−π̂ (sU ))π̂ (sU )

∂P

∂sU
,

where π̂ (sU )= exp
{

τI
τI +τU

sU + τU
τI +τU

bU (sU )− VH −VL
τI +τU

z
}

1+exp
{

τI
τI +τU

sU + τU
τI +τU

bU (sU )− VH −VL
τI +τU

z
} is the ‘risk-neutral probability’ that appears in the price function in

equation (4.2). Differentiating the price function from equation (4.2) gives the partial derivative

∂P

∂sU
= (VH −VL)π̂ (sU )(1−π̂ (sU ))

(
τI

τI +τU
+ τU

τI +τU

∂

∂sU
log

(
fṼ |̃SU

(VH |sU )

fṼ |̃SU
(VL |sU )

))
,

so that the previous expression can be simplified to

d

dsU
XU (sU ,P(sU ))= τU

VH −VL

τI

τI +τU

(
∂

∂sU
log

(
fṼ |̃SU

(VH |sU )

fṼ |̃SU
(VL |sU )

)
−1

)
.

The sign of this expression depends on whether the derivative of the uninformed investor’s log-odds is greater or less
than 1.

The derivative of the log-odds is

∂

∂sU
log

(
fṼ |̃SU

(VH |sU )

fṼ |̃SU
(VL |sU )

)
=

∂
∂sU

fṼ |̃SU
(VH |sU )

fṼ |̃SU
(VH |sU )(1−fṼ |̃SU

(VH |sU ))
,

and therefore signing ∂
∂sU

log

(
fṼ |̃SU

(VH |sU )

fṼ |̃SU
(VL |sU )

)
−1 is equivalent to signing

∂

∂sU
fṼ |̃SU

(VH |sU )−fṼ |̃SU
(VH |sU )(1−fṼ |̃SU

(VH |sU )).

From the derivation for Example 1 in Appendix A.3 the uninformed investor’s conditional pdf is

fṼ |̃SU
(v|sU )=

∫ s(sU )

s(sU )

exp{x v−VL
VH −VL

}
1+exp{x}

τI
VH −VL

fZ̃

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)

f̃SU
(sU )

dx, (A.23)

and, therefore, the derivative is

∂

∂sU
fṼ |̃SU

(VH |sU )

=∫ s(sU )
s(sU )

exp{x}
1+exp{x}

f̃SI
(x) τI

VH −VL
∂

∂sU
f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU ) dx

−∫ s(sU )
s(sU )

exp{x}
1+exp{x}

f̃SI
(x) τI

VH −VL
f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU ) dx
∂

∂sU
f̃SU

(sU )

f̃SU
(sU )

+ exp{x}
1+exp{x}

τI
VH −VL

f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)

f̃SU
(sU )

∣∣∣∣s(sU )

x=s(sU )

=∫ s(sU )
s(sU )

exp{x}
1+exp{x}

f̃SI
(x) τI

VH −VL

[
− ∂

∂x f̃Z

(
τI

VH −VL
(sU −x)

)]
f̃SU

(sU ) dx (A.24)

−∫ s(sU )
s(sU )

exp{x}
1+exp{x} f̃SI |̃SU

(x|sU )dx
∂

∂sU
f̃SU

(sU )

f̃SU
(sU ) + exp{x}

1+exp{x} f̃SI |̃SU
(x|sU )

∣∣∣∣s(sU )

x=s(sU )
,
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where the first equality pulls the derivative inside the integral from equation (A.23), and the second equality uses the

fact that ∂
∂sU

fZ̃

(
τI

VH −VL
(sU −x)

)
=− ∂

∂x fZ̃

(
τI

VH −VL
(sU −x)

)
to rewrite the expression in the first integral and the fact that

f̃SI |̃SU
(x|sU )=

τI
VH −VL

f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)

f̃SU
(sU ) to simplify the other two terms.

Perform integration by parts on the first integral in equation (A.24)

∫ s(sU )
s(sU )

exp{x}
1+exp{x}

f̃SI
(x) τI

VH −VL

[
− ∂

∂x f̃Z

(
τI

VH −VL
(sU −x)

)]
f̃SU

(sU ) dx

=∫ s(sU )
s(sU )

∂
∂x

[
exp{x}

1+exp{x} f̃SI
(x)

] τI
VH −VL

f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU ) dx

− exp{x}
1+exp{x}

f̃SI
(x) τI

VH −VL
f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU )

∣∣∣∣s(sU )

x=s(sU )

=∫ s(sU )
s(sU )

exp{x}
1+exp{x}

1
1+exp{x} f̃SI |̃SU

(x|sU )dx+∫ sI
sI

exp{x}
1+exp{x}

f ′̃
SI

(x)

f̃SI
(x) f̃SI |̃SU

(x|sU )dx (A.25)

− exp{x}
1+exp{x} f̃SI |̃SU

(x|sU )

∣∣∣∣s(sU )

x=s(sU )
.

Now, differentiate
∂

∂sU
f̃SU

(sU )

f̃SU
(sU )

∂
∂sU

f̃SU
(sU )

f̃SU
(sU )

=
∂

∂sU

∫ s(sU )
s(sU ) f̃SI

(x) τI
VH −VL

fZ̃

(
τI

VH −VL
(sU −x)

)
dx

f̃SU
(sU )

=
∫ s(sU )

s(sU )

f̃SI
(x) τI

VH −VL
∂

∂sU
f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU ) dx+ f̃SI
(x) τI

VH −VL
f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU )

∣∣∣∣s(sU )

x=s(sU )

=∫ s(sU )
s(sU )

f̃SI
(x) τI

VH −VL

[
− ∂

∂x f̃Z

(
τI

VH −VL
(sU −x)

)]
f̃SU

(sU ) dx+ f̃SI
(x) τI

VH −VL
f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU )

∣∣∣∣s(sU )

x=s(sU )

=∫ s(sU )
s(sU )

f ′̃
SI

(x) τI
VH −VL

f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU ) dx

=∫ s(sU )
s(sU )

f ′̃
SI

(x)

f̃SI
(x)

f̃SI
(x) τI

VH −VL
f̃Z

(
τI

VH −VL
(sU −x)

)
f̃SU

(sU ) dx

=∫ s(sU )
s(sU )

f ′̃
SI

(x)

f̃SI
(x) f̃SI |̃SU

(x|sU )dx, (A.26)

where the third equality again uses ∂
∂sU

fZ̃

(
τI

VH −VL
(sU −x)

)
=− ∂

∂x fZ̃

(
τI

VH −VL
(sU −x)

)
, the fourth equality performs

integration by parts on the integral which produces a boundary term that cancels the existing boundary term, the next-
to-last equality multiplies and divides by f̃SI

(x) in the integral, and the final line simplifies using the expression for
f̃SI |̃SU

(x|sU ).
Substituting equation (A.25) and (A.26) into equation (A.24) gives

∂

∂sU
fṼ |̃SU

(VH |sU )

=∫ s(sU )
s(sU )

exp{x}
1+exp{x}

1
1+exp{x} f̃SI |̃SU

(x|sU )dx+∫ s(sU )
s(sU )

exp{x}
1+exp{x}

f ′̃
SI

(x)

f̃SI
(x) f̃SI |̃SU

(x|sU )dx

−∫ s(sU )
s(sU )

exp{x}
1+exp{x} f̃SI |̃SU

(x|sU )dx
∫ s(sU )

s(sU )

f ′̃
SI

(x)

f̃SI
(x) f̃SI |̃SU

(x|sU )dx
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Putting everything together, the goal is to sign

∂

∂sU
fṼ |̃SU

(VH |sU )−fṼ |̃SU
(VH |sU )(1−fṼ |̃SU

(VH |sU ))

=∫ s(sU )
s(sU )

exp{x}
1+exp{x}

1
1+exp{x} f̃SI |̃SU

(x|sU )dx+∫ s(sU )
s(sU )

exp{x}
1+exp{x}

f ′̃
SI

(x)

f̃SI
(x) f̃SI |̃SU

(x|sU )dx

−∫ s(sU )
s(sU )

exp{x}
1+exp{x} f̃SI |̃SU

(x|sU )dx
∫ s(sU )

s(sU )

f ′̃
SI

(x)

f̃SI
(x) f̃SI |̃SU

(x|sU )dx

−∫ s(sU )
s(sU )

exp{x}
1+exp{x} f̃SI |̃SU

(x|sU )dx
∫ s(sU )

s(sU )
1

1+exp{x} f̃SI |̃SU
(x|sU )dx

=Cov

(
exp{̃SI }

1+exp{̃SI } ,
1

1+exp{̃SI }

∣∣∣∣̃SU =sU

)
+Cov

(
exp{̃SI }

1+exp{̃SI } ,
f ′̃
SI

(̃SI )

f̃SI
(̃SI )

∣∣∣∣̃SU =sU

)
, (A.27)

where the first equality plugs in for ∂
∂sU

fṼ |̃SU
(VH |sU ) and fṼ |̃SU

(VH |sU )(1−fṼ |̃SU
(VH |sU )), and the second equality

rearranges terms and uses the definition of covariance.
To derive a sufficient condition for downward-sloping demand, note that the first covariance term can be written

Cov

(
exp{̃SI }

1+exp{̃SI } ,
1

1+exp{̃SI }

∣∣∣∣̃SU =sU

)
=Cov

(
exp{̃SI }

1+exp{̃SI } ,1− exp{̃SI }
1+exp{̃SI }

∣∣∣∣̃SU =sU

)

=−Cov

(
exp{̃SI }

1+exp{̃SI } ,
exp{̃SI }

1+exp{̃SI }

∣∣∣∣̃SU =sU

)
,

so that equation (A.27) is

∂

∂sU
fṼ |̃SU

(VH |sU )−fṼ |̃SU
(VH |sU )(1−fṼ |̃SU

(VH |sU ))

=Cov

(
exp{̃SI }

1+exp{̃SI } ,
f ′̃
SI

(̃SI )

f̃SI
(̃SI )

− exp{̃SI }
1+exp{̃SI }

∣∣∣∣̃SU =sU

)
.

If
f ′̃
SI

(̃SI )

f̃SI
(̃SI )

− exp{̃SI }
1+exp{̃SI } is a decreasing function of S̃I , then this covariance will be unambiguously negative, regardless

of the value of sU . Under the assumption that f̃SI
(x) is twice continuously differentiable, this is true if and only if the

derivative is non-positive

∂

∂x

f ′̃
SI

(x)

f̃SI
(x)

− exp{x}
1+exp{x}

1

1+exp{x} ≤0, (A.28)

as stated in the Proposition.
I will now prove the converse result. Suppose that there exists a non-empty, bounded open interval (a,b) on which27

∂

∂x

f ′̃
SI

(x)

f̃SI
(x)

− exp{x}
1+exp{x}

1

1+exp{x} >0.

Choose any supply shock distribution fZ̃ with support [Z,Z] satisfying VH −VL
τI

(Z −Z)<b−a. Without loss of generality,

suppose that the support is centered at zero and can thus be written [−Z,Z] for some Z >0. If it were not, one could always
shift it by some constant and absorb the constant into the fixed component of supply. Hence, the previous condition on
the support can be written 2 VH −VL

τI
Z <b−a.

27. The assumption that the interval is bounded is without loss of generality. If the inequality holds on an unbounded
interval, then one can simply restrict attention to some bounded subinterval for the construction that follows.
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Let δ= b−a
2 − VH −VL

τI
Z >0. Conditional on S̃U =sU , the support of S̃I is [sU − VH −VL

τI
Z,sU + VH −VL

τI
Z]. Hence, for

sU ∈( a+b
2 −δ, a+b

2 +δ
)
, the support of S̃I is entirely contained in (a,b) because for such sU ,[

sU − VH −VL

τI
Z,sU + VH −VL

τI
Z

]
⊆

(
a+b

2
−δ− VH −VL

τI
Z,

a+b

2
+δ+ VH −VL

τI
Z

)
= (a,b),

where the set inclusion follows from taking the union of all of the supports as sU ranges over
( a+b

2 −δ, a+b
2 +δ

)
, and the

equality follows after substituting in for δ.
This implies that for sU ∈( a+b

2 −δ, a+b
2 +δ

)
the support of S̃I is contained in the set in which

∂

∂x

f ′̃
SI

(x)

f̃SI
(x)

− exp{x}
1+exp{x}

1

1+exp{x} >0.

It follows that for such sU ,

Cov

(
exp{̃SI }

1+exp{̃SI }
,

f ′̃
SI

(̃SI )

f̃SI
(̃SI )

− exp{̃SI }
1+exp{̃SI }

∣∣∣∣̃SU =sU

)
>0,

and, therefore, that uninformed demand is upward sloping at prices p∈ (P( a+b
2 −δ),P( a+b

2 +δ)). ‖
Proof (Proposition 5). To save space, define the following function

B(sU )= τI

τI +τU
sU + τU

τI +τU
bU (sU ),

which is a risk-tolerance-weighted average of sU and the uninformed investor’s log-odds bU (sU ).
Under the uniform boundedness assumption there exist 0<κ ≤κ <1 such that

κ ≤b′
U (sU )≤κ. (A.29)

Furthermore, this condition implies that bU and B are strictly increasing functions and hence have strictly increasing
inverses, both of which will be used below.

Since the distributions are assumed symmetric, the functions sU and bU (sU )= log

(
fṼ |̃SU

(VH |sU )

1−fṼ |̃SU
(VH |sU )

)
cross once, and

this crossing is at sU =0. A crossing point must satisfy

sU = log

(
fṼ |̃SU

(VH |sU )

1−fṼ |̃SU
(VH |sU )

)

⇐⇒ fṼ |̃SU
(VH |sU )=exp{sU }

(
1−fṼ |̃SU

(VH |sU )
)

⇐⇒
∫ s(sU )

s(sU )

exp{x}−exp{sU }
1+exp{x} fZ̃

(
τI

VH −VL
(sU −x)

)
f̃SI

(x)dx=0,

where the second line rearranges the first, and the third line plugs in for the conditional pdf and rearranges. At sU =0, the
left-hand side of the most recent line is∫ VH −VL

τI
Z

VH −VL
τI

Z

exp{x}−1

1+exp{x} fZ̃

(
τI

VH −VL
(−x)

)
f̃SI

(x)dx,

which is equal to zero because exp{x}−1
1+exp{x} is an odd function, the product fZ̃

(
τI

VH −VL
(−x)

)
f̃SI

(x) is symmetric about zero by

assumption, and the support [ VH −VL
τI

Z,
VH −VL

τI
Z] is also centered around zero owing to symmetry. Combining the fact that

bU is strictly increasing, the equality of sU and bU (sU ) at sU =0, and the fact that B′(sU )= τI
τI +τU

+ τU
τI +τU

b′(sU )>b′(sU )
it follows that

B(sU )<bU (sU )<0 for sU <0

0<bU (sU )<B(sU ) for sU >0.
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I will now use the above results to show that in a neighbourhood of p=0, ∂
∂p E[Ṽ |P=p]<1 and for sufficiently

extreme p, ∂
∂p E[Ṽ |P=p]>1, which will establish the claim in the Proposition. Note that

E[Ṽ |P=p]=E[Ṽ |̃SU =P−1(p)],
because P(sU ) is simply a monotone transformation of sU .28

Hence,

E[Ṽ |P=p]=VL +(VH −VL)
exp{bU (P−1(p))}

1+exp{bU (P−1(p))} ,

and differentiating with respect to p gives

∂

∂p
E[Ṽ |P=p]= (VH −VL)

exp{bU (P−1(p))}[
1+exp{bU (P−1(p))}]2

b′
U (P−1(p))

∂P−1

∂p

=
exp

{
bU

(
B−1

(
log

(
p−VL
VH −p

)))}
[
1+exp

{
bU

(
B−1

(
log

(
p−VL
VH −p

)))}]2
b′

U

[
B−1

(
log

(
p−VL

VH −p

))]

×(B−1)′
[

log

(
p−VL

VH −p

)]
(VH −VL)2

(VH −p)(p−VL)
,

where the second line inverts the price function from equation (4.2), P−1(p)=B−1
(

log
(

p−VL
VH −p

))
and differentiates.

The inverse function theorem implies that

(B−1)′
[

log

(
p−VL

VH −p

)]
= 1

B′
[
B−1

(
log

(
p−VL
VH −p

))] ,

so that the previous line can be written

∂

∂p
E[Ṽ |P=p]=

exp
{

bU

(
B−1

(
log

(
p−VL
VH −p

)))}
[
1+exp

{
bU

(
B−1

(
log

(
p−VL
VH −p

)))}]2

b′
U

[
B−1

(
log

(
p−VL
VH −p

))]
B′

[
B−1

(
log

(
p−VL
VH −p

))] (VH −VL)2

(VH −p)(p−VL)
.

28. Using the transformation of random variables formula, the conditional density of S̃I given P=p is

f̃SI |P(sI |p)=
f̃SI

(sI )fZ̃
(

τI
VH −VL

(P−1(p)−sI )
)

∂P−1(p)
∂p∫ ∞

−∞ f̃SI
(x)fZ̃

(
τI

VH −VL
(P−1(p)−x)

)
∂P−1(p)

∂p dx

=
f̃SI

(sI )fZ̃
(

τI
VH −VL

(P−1(p)−sI )
)

∫ ∞
−∞ f̃SI

(x)fZ̃
(

τI
VH −VL

(P−1(p)−x)
)

dx

= f̃SI |̃SU
(sI |P−1(p)),

where the second equality cancels the Jacobian term ∂P−1(p)
∂p from the fraction and the final equality follows from

equation (A.14). Multiplying by fṼ |̃SI
(v|sI ) and integrating over sI delivers fṼ |P(v|p)= fṼ |̃SU

(v|P−1(p)).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/82/3/868/1577193 by U

niversite and EPFL Lausanne user on 12 M
arch 2020



[12:32 12/6/2015 rdv012.tex] RESTUD: The Review of Economic Studies Page: 911 868–921

BREON-DRISH EXISTENCE AND UNIQUENESS NOISY RE 911

Prices exhibit reversals at p= VH +VL
2 because

∂

∂p
E
[
Ṽ |P=p

]∣∣∣∣
p= VH +VL

2

= exp
{
bU (B−1 (0))

}[
1+exp

{
bU (B−1 (0))

}]2

b′
U

[
B−1 (0)

]
B′(B−1 (0)

) (VH −VL)2

(VH − VH +VL
2 )( VH +VL

2 −VL)

= 1

4

b′
U

[
B−1 (0)

]
B′(B−1 (0)

) (VH −VL)2

1
4 (VH −VL)2

= b′
U

[
B−1 (0)

]
B′(B−1 (0)

)
<1, (A.30)

where the second equality uses the fact that bU (B−1 (0))=bU (0)=0, and the inequality follows from the fact that the
bounds in equation (A.29) imply that for any x∈R,

b′
U (x)

B′(x)
= b′

U (x)
τI

τI +τU
+ τU

τI +τU
b′

U (x)
∈
[

κ
τI

τI +τU
+ τU

τI +τU
κ

,
κ

τI
τI +τU

+ τU
τI +τU

κ

]
⊂ (0,1). (A.31)

By continuity, the inequality in equation (A.30) also holds for p near VH +VL
2 , which establishes the first claim in the

Proposition.
Now, without loss of generality, consider p>

VH +VL
2 (the case in which p<

VH +VL
2 is symmetric). For p>

VH +VL
2

one has p−VL
VH −p >1 so that log

(
p−VL
VH −p

)
>0. Hence,

∂

∂p
E[Ṽ |P=p]= exp

{
bU

(
B−1

(
log

(
p−VL
VH −p

)))}
[
1+exp

{
bU

(
B−1

(
log

(
p−VL
VH −p

)))}]2

b′
U

[
B−1

(
log

(
p−VL
VH −p

))]
B′

[
B−1

(
log

(
p−VL
VH −p

))] (VH −VL )2

(VH −p)(p−VL )

>
exp

{
bU

(
B−1

(
log

(
p−VL
VH −p

)))}
[
1+exp

{
bU

(
B−1

(
log

(
p−VL
VH −p

)))}]2
κ

τI
τI +τU

+ τU
τI +τU

κ

(VH −VL )2

(VH −p)(p−VL )

= exp
{

bU

(
B−1

(
log

(
p−VL
VH −p

)))}
1+exp

{
bU

(
B−1

(
log

(
p−VL
VH −p

)))} 1

1+exp
{

bU

(
B−1

(
log

(
p−VL
VH −p

)))}
× κ

τI
τI +τU

+ τU
τI +τU

κ

(VH −VL )2

(VH −p)(p−VL )

> 1
2

1

1+exp
{

bU

(
B−1

(
log

(
p−VL
VH −p

)))} κ
τI

τI +τU
+ τU

τI +τU
κ

(VH −VL )2

(VH −p)(p−VL ) , (A.32)

where the first line simply writes out the expression for ∂
∂p E[Ṽ |P=p], the second line uses equation (A.31) to bound

b′
U (x)

B′(x) from below, the third line splits the first fraction in the expression into a product, and the final line uses the fact that

bU (B−1
(

log
(

p−VL
VH −p

))
)>bU (0)>0 for p>

VH +VL
2 to bound the first term by 1/2.

To continue, I will bound bU

(
B−1

(
log

(
p−VL
VH −p

)))
, which appears in the denominator in equation (A.32), from above.

Recall that the inverse function theorem implies that

∂

∂x
bU (B−1 (x))= b′

U

[
B−1 (x)

]
B′(B−1 (x)

) ,

Hence, since B−1(0)=bU (0)=0, one can write bU (B−1 (x)) as the following integral, and use the bounds on b′
U to bound it

bU (B−1 (x))=
∫ x

0

∂

∂y
bU (B−1 (y))dy

=
∫ x

0

b′
U

[
B−1 (y)

]
B′(B−1 (y)

) dy

<

∫ x

0

κ
τI

τI +τU
+ τU

τI +τU
κ

dy

= κ
τI

τI +τU
+ τU

τI +τU
κ

x,

where the inequality follows from equation (A.31).
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Continuing from equation (A.32), this inequality implies

∂

∂p
E[Ṽ |P=p]> 1

2

κ
τI

τI +τU
+ τU

τI +τU
κ

1

1+exp

{
κ

τI
τI +τU

+ τU
τI +τU

κ
log

(
p−VL
VH −p

)} (VH −VL)2

(VH −p)(p−VL)

= 1

2

κ
τI

τI +τU
+ τU

τI +τU
κ

1

(VH −p)
κ

τI
τI +τU

+ τU
τI +τU

κ +(p−VL)
κ

τI
τI +τU

+ τU
τI +τU

κ

(VH −VL)2

p−VL

×(VH −p)
κ

τI
τI +τU

+ τU
τI +τU

κ
−1

As p→VH , the (VH −p)
κ

τI
τI +τU

+ τU
τI +τU

κ
−1

term becomes arbitrarily large because κ
τI

τI +τU
+ τU

τI +τU
κ
−1<0, while the

remaining terms remain bounded away from zero. Hence, for all p sufficiently large, ∂
∂p E[Ṽ |P=p]>1, which establishes

the second claim in the Proposition. ‖
Proof (Proposition 6). The fact that the covariance is a bilinear operator allows one to pull constants out of the covariance

Cov
(

Ṽ −P(̃SU ),
(
E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

)
=Cov

(
Ṽ −P(̃SU ),

(
E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

)
Using the law of total covariance the covariance in the previous line can be written

Cov
(

Ṽ −P(̃SU ),
(
E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

)
=Cov

(
E[Ṽ −P(̃SU )|̃SU ],E[(E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

∣∣∣∣̃SU ]
)

+E

[
Cov

(
Ṽ −P(̃SU ),

(
E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2 |̃SU

)]
. (A.33)

Recall that S̃I is the log-odds of the informed investor, hence his/her conditional probability of the ‘up’ state is

πI (̃SI )= exp{̃SI }
1+exp{̃SI } . Hence, the conditional expected values are

E[Ṽ |̃SI ]=VL +(VH −VL)πI (̃SI )

E[Ṽ |̃SU ]=VL +(VH −VL)E[πI (̃SI )|̃SU ]
so that the second term in equation (A.33) is

E

[(
E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

∣∣∣∣̃SU

]
= (VH −VL)2

E

[(
πI (̃SI )−E[πI (̃SI )|̃SU ])2

∣∣∣∣̃SU

]
= (VH −VL)2 Var(πI (̃SI )|̃SU ). (A.34)

Furthermore, the first term in equation (A.33) is

Cov

(
Ṽ −P(̃SU ),

(
E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

∣∣∣∣̃SU

)

=Cov

(
Ṽ −E[Ṽ |̃SU ],(E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

∣∣∣∣̃SU

)

=E

[(
Ṽ −E[Ṽ |̃SU ])(E[Ṽ |̃SI ]−E[Ṽ |̃SU ])2

∣∣∣∣̃SU

]

=E

[(
E[Ṽ |̃SI ]−E[Ṽ |̃SU ])3

∣∣∣∣̃SU

]

= (VH −VL)3
E

[(
πI (̃SI )−E[πI (̃SI )|̃SU ])3

∣∣∣∣̃SU

]
. (A.35)

where the first equality follows because P(̃SU ) and E[Ṽ |̃SU ] are both S̃U -measurable, and hence do not affect the value
of the conditional covariance, the second equality follows from the definition of covariance, the third line from the law
of iterated expectations, and the final line from the expressions above for the conditional expectation of Ṽ .

Substituting eqs. (A.34) and (A.35) into equation (A.33) delivers the expression in the Proposition. ‖
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A.5. Proofs of results in Section 6

Proof (Lemma 5). In a generalized linear equilibrium, (̃Si,P(L(̃S,Z̃))) is informationally equivalent to (̃Si,L(̃S,Z̃)). Hence,
informed investor i’s conditional beliefs are given by equation (6.1). Maximizing utility using the expression for the mgf
of an exponential family distribution as in LemmaA6, it is straightforward to show that given (̃SI ,L(̃S,Z̃))= (si,�) investor
i’s demand function is given by

Xi(si,�,p)=τi

(
L̂i(si,�)−Gi(p;a)

)
=τi (ki1(a)si +ki2(a)bi(�;a)−Gi(p;a)),

where his/her price reaction function, Gi(p;a)= (g′
i)

−1(·;a), exists because g′′
i >0.

In equilibrium, the market-clearing condition must hold

N∑
i=1

τi (ki1(a)si +ki2(a)bi(�;a)−Gi(P;a))+XU (�,P)−z−z=0,

which can be rearranged to obtain

N∑
i=1

τiki1(a)si −z−
N∑

i=1

τiGi(P;a)−z=−XU (�,P)−
N∑

i=1

τiki2(a)bi(�;a).

Define v(�;a)=∑N
i=1τiki2(a)bi(�;a), and the weighted price reaction function G(P;a)=∑N

i=1τiGi(P;a). Using the fact
that �=L(s,z)=∑N

i=1 aisi −z one obtains

N∑
i=1

τiki1(a)si −z=G(P;a)−XU (L(s,z),P)−v(L(s,z);a)+z.

For this to be consistent with the generalized linear equilibrium, it must be the case that the coefficients ai in the statistic
L(·) equal τiki1(a) for all i. ‖
Proof (Proposition 7). From the proof of Lemma 5, the informed investor demand in a generalized linear equilibrium is

Xi(si,�,p)=τi
(
ki1(a∗)si +ki2(a∗)bi(�;a∗)−Gi(p;a∗)

)
where a∗ = (a∗

1,...,a
∗
N ) are the equilibrium coefficients pinned down in Lemma 5.

Similarly, given L(̃S,Z̃))=�, the uninformed investor’s demand, as a function of � and the numerical value of the
price, p, is characterized by ∫

V
(v−p)exp

{
− 1

τU
XU (�,p)v

}
dFṼ |̃L(v|�).

In equilibrium, the market-clearing condition must hold

N∑
i=1

τi
(
ki1(a∗)si +ki2(a∗)bi(�;a∗)−Gi(P;a∗)

)+XU (�,P)−z−z=0,

and under the assumption that the price information equations hold we can substitute τiki1(a∗)=a∗
i

N∑
i=1

a∗
i si −z+v(L(s,z);a∗)−G(P;a∗)−z=−XU (L(s,z),P).

Substituting this expression for XU (·) into the integral that characterizes uninformed investor demand produces an
equation that defines the price function implicitly∫

V
(v−P)exp

{
1

τU

[
N∑

i=1

a∗
i si −z+v(L(s,z);a∗)−G(P;a)−z

]
v

}
dFṼ |̃L(v|L(s,z)). (A.36)

Hence, as long as a solution a∗ to the price information exists and the function defined in equation (A.36) exists and is
monotone (and hence one-to-one) it defines an equilibrium price P. ‖
Proof (Corollary 2). The proof proceeds similarly to that of Proposition 7 and could alternately be derived as a special
case, therefore, I omit most details.
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In a generalized linear equilibrium, informed investor i’s demand functions are given by the expressions in the proof
of Lemma 5. Similarly, the uninformed investor’s demand is

XU (�,p)=τU

(
L̂U (�)−GU (p;a∗)

)
=τU

(
kU2(a∗)bU (�;a∗)−GU (p;a∗)

)
,

where GU (p;a∗)= (g′
U )−1(·;a∗) is his/her price reaction function.

Imposing market clearing and rearranging the resulting expression produces the expressions in the text. Since the
price reaction functions are strictly increasing in p, so are their inverses, and therefore G−1 is also strictly increasing.
Hence, as long as it exists the candidate price function will be monotone in L∗ as required. ‖

A.6. Equilibrium derivation in N >1 cases of Examples 1 and 2

Proof (Example 1). Here I maintain the binomial distribution for the pay-off Ṽ , but for tractability, I place more structure
on the informed investor’s signal. Suppose that agents have a prior distribution over the log-odds W̃ ≡ log π̃

1−π̃
given by

a so-called “tilted normal” distribution29

fW̃ (w)= 1+exp{w}
1+exp{μW }φ

(
w

∣∣∣∣μW − 1

2
σ 2

W ,σ 2
W

)
.

Each informed investor receives a signal S̃i =W̃ + ε̃i, where ε̃i ∼N(0,σ 2
i ) is independently distributed. For simplicity,

τU =0, so that there is no uninformed investor, though there is no essential difficulty in including him/her by allowing
some of the σ 2

i to tend to ∞. The supply shock Z̃ is distributed N(0,σ 2
Z ).

As there is no uninformed investor, if one can place the informed investor beliefs in the exponential family form
of Assumption 10, Corollary 2 will deliver an explicit expression for the price. The derivation of the conditional pdf
of Ṽ given S̃i and L̃ is straightforward but computationally intensive. Let L(s,z)≡∑N

j=1 ajsj −z and compute the joint

distribution of (W̃ ,S̃i,L(̃S,Z̃)) :

fW̃ ,̃Si ,̃L
(w,si,�)

= fW̃ (w)f̃Si ,̃L|W̃ (si,�|w)

= 1+exp{w}
1+exp{μW }φ

(
w

∣∣∣∣μW − σ 2
W

2
,σ 2

W

)
φ

(
si,�

∣∣∣∣
(

w(∑N
j=1 aj

)
v

)
,

(
σ 2

i aiσ
2
i

aiσ
2
i

∑N
j=1 a2

j σ
2
j +σ 2

Z

))

= 1+exp{w}
1+exp{μW }

×φ

⎛⎜⎜⎝w,si,�

∣∣∣∣
⎛⎜⎜⎝

μW − σ2
W
2

μW − σ2
W
2(∑N

j=1 aj

)(
μW − σ2

W
2

)
⎞⎟⎟⎠,

⎛⎜⎝ σ 2
W σ 2

W

(∑N
j=1 aj

)
σ 2

W

σ 2
W σ 2

W +σ 2
i

(∑N
j=1 aj

)
σ 2

W +aiσ
2
i(∑N

j=1 aj

)
σ 2

W

(∑N
j=1 aj

)
σ 2

W +aiσ
2
i

(∑N
j=1 aj

)2
σ 2

W +∑N
j=1 a2

j σ 2
j +σ 2

Z

⎞⎟⎠
⎞⎟⎠,

where the last equality follows from well-known results on the products of normal densities.

29. Using standard transformation of random variables formulae, it is straightforward to show that
this is equivalent to assuming that the probability π̃ is distributed unconditionally according to fπ̃ (x)=

1
1+exp{μW }

1
x(1−x)2 φ

(
log

(
x

1−x

)
|μW − 1

2 σ 2
W ,σ 2

W

)
I{x∈[0,1]}. The tilted normal prior on W̃ may seem somewhat contrived

at first glance, but it leads to simple, intuitive conditional distributions for Ṽ . It is straightforward to show by integrating that
Ṽ is unconditionally binomially distributed with success probability exp{μW }

1+exp{μW } , so μW =0 corresponds to an unconditional
distribution that places probability 1/2 on each state.
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To determine the conditional density fW̃ |̃Si ,̃L
, I will use the fact that fW̃ |̃Si ,̃L

must be proportional to the joint density
fW̃ ,̃Si ,̃L

derived above, where the constant of proportionality will in general depend on si and �.

fW̃ |̃Si ,̃L
(w|si,�)∝ fW̃ ,̃Si ,̃L

(w,si,�)

∝ (1+exp{w}) φ
(
w,si,�

∣∣·)
φ
(
si,�

∣∣·) (A.37)

where the second line uses the expression from the joint density from the previous displayed equation and divides by a
function, φ(si,�|·), that depends only on si and �, and hence does not affect the proportionality.

While (W̃ ,S̃i,L̃) are not jointly normally distributed, the ratio of the two normal density functions in equation (A.37)
coincides with the ratio that would occur when using Bayes’ rule to update beliefs about the first element of a jointly
normal random vector with the given means and covariance matrix. Hence, the expression in equation (A.37) can be
written

(1+exp{w})φ
(

w

∣∣∣∣μ̂i(si,�;a)− 1

2
V̂i(a),V̂i(a)

)
,

where

μ̂i(si,�;a)=αi1(a)si +αi2(a)�+αi3(a)μW

V̂i(a)= σ 2
W σ 2

i

(∑N
j=1 a2

j σ 2
j +σ 2

Z −a2
i σ 2

i

)
(σ 2

W +σ 2
i )

[∑N
j=1 a2

j σ 2
j +σ 2

Z −a2
i σ 2

i

]
+σ 2

W σ 2
i

((∑N
j=1 aj

)
−ai

)2 ,

with

αi1(a)= σ 2
W

(∑N
j=1 a2

j σ 2
j +σ 2

Z −ai

(∑N
j=1 aj

)
σ 2

i

)
(σ 2

W +σ 2
i )

[∑N
j=1 a2

j σ 2
j +σ 2

Z −a2
i σ 2

i

]
+σ 2

W σ 2
i

((∑N
j=1 aj

)
−ai

)2

αi2(a)= σ 2
W σ 2

i

((∑N
j=1 aj

)
−ai

)
(σ 2

W +σ 2
i )

[∑N
j=1 a2

j σ 2
j +σ 2

Z −a2
i σ 2

i

]
+σ 2

W σ 2
i

((∑N
j=1 aj

)
−ai

)2

αi3(a)= σ 2
i

(∑N
j=1 a2

j σ 2
j +σ 2

Z −a2
i σ 2

i

)
(σ 2

W +σ 2
i )

[∑N
j=1 a2

j σ 2
j +σ 2

Z −a2
i σ 2

i

]
+σ 2

W σ 2
i

((∑N
j=1 aj

)
−ai

)2 .

Since fW̃ |̃Si ,̃L
(w|si,�)∝ (1+exp{w})φ

(
w

∣∣∣∣μ̂i(si,�)− 1
2 V̂i(a),V̂i(a)

)
, it follows from integrating that the normalizing

constant must be 1/
[
1+exp{μ̂i(si,�;a)}]. The conditional density is, therefore,

fW̃ |̃Si ,̃L
(w|si,�)= 1+exp{w}

1+exp{μ̂i(si,�;a)}φ

(
w

∣∣∣∣μ̂i(si,�)− 1

2
V̂i(a),V̂i(a)

)
.

Integrating against fṼ |W̃ delivers the conditional pdf of Ṽ

fṼ |̃Si ,̃L
(v|si,�)=

∫ ∞

−∞
fṼ |W̃ (v|x)fW̃ |̃Si ,̃L

(x|si,�)dx

=exp

{
v−VL

VH −VL
μ̂i(si,�;a)−log

(
1+exp{μ̂i(si,�;a)})}I{v∈{VL,VH }},

which is a binomial distribution with log-odds ratio

μ̂i(si,�;a)=αi1(a)si +αi2(a)�+αi3(a)μW

that is linear in the private signal, the linear statistic, and the prior mean.
To place the pdf in the form from Assumption 10, define ki1(a)= 1

VH −VL
αi1(a), ki2(a)= 1

VH −VL
αi2(a), and ki3(a)=

1
VH −VL

αi3(a), bi(�;a)=� and write

fṼ |̃Si ,̃L
(v|si,�)=exp

{
(v−VL)(ki1(a)si +ki2(a)�+ki3(a)μW )

−log(1+exp{(VH −VL)(ki1(a)si +ki2(a)�+ki3(a)μW )})
}

I{v∈{VL,VH }}

=exp

{
L̂i(si,�)v−VL

(
L̂i(si,�)+ki3(a)μW

)

−log
(

1+exp
{

(VH −VL )
(

L̂i(si,�)+ki3(a)μW

)})
+vki3(a)μW

}
I{v∈{VL,VH }} (A.38)

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/82/3/868/1577193 by U

niversite and EPFL Lausanne user on 12 M
arch 2020



[12:32 12/6/2015 rdv012.tex] RESTUD: The Review of Economic Studies Page: 916 868–921

916 REVIEW OF ECONOMIC STUDIES

where the first line uses the expression for μ̂i(·) and cancels the resulting VH −VL terms from the αij’s, and the second
line writes L̂i(si,�)=ki1(a)si +ki2(a)� and rearranges.

This is in the desired form with ki1(a),ki2(a), and bi(�,a) as given above, and

gi(L̂;a)=VL

(
L̂i(si,�)+ki3(a)μW

)
+log

(
1+exp

{
(VH −VL)

(
L̂i(si,�)+ki3(a)μW

)})
dHi(v;a)=

{
exp{vki3(a)μW } v∈{VL,VH }
0 v /∈{VL,VH } or, equivalently,

Hi(v;a)=

⎧⎪⎨⎪⎩
0 v<VL

exp{VLki3(a)μW } VL ≤v<VH

exp{VLki3(a)μW }+exp{VH ki3(a)μW } VH ≥v.

With the conditional distribution in the desired form, it remains to demonstrate existence of a solution to the price
information equations and then characterize the price function. Given the expression for ki1(a), the price information
equations are

ai = τi

VH −VL

σ 2
W

σ 2
W +σ 2

i

∑N
j=1 a2

j σ
2
j +σ 2

Z −ai

(∑N
j=1 aj

)
σ 2

i[∑N
j=1 a2

j σ
2
j +σ 2

Z −a2
i σ

2
i

]
+ σ 2

W σ 2
i

σ 2
W +σ 2

i

((∑N
j=1 aj

)
−ai

)2
, i∈{1,...,N}. (A.39)

The following Lemma demonstrates the existence of a solution to this system of equations.

Lemma A15. There exists a solution a∗ = (a∗
1,...,a

∗
N ) to the price-information equations in equation (A.39). The solution

satisfies

0<a∗
i <

τi

VH −VL

σ 2
W

σ 2
W +σ 2

i

, i∈{1,...,N}.

Proof The proof closely follows that of Lemma 3.1 in Hellwig (1980). I begin by showing that any solution must satisfy
the given inequality. Let a be any solution and let I0 ={i :ai ≤0} be the set of investors for which the lower inequality is
violated. Suppose that this set is non-empty. Then since I0 is finite, there exists some i0 ∈ I0 such that for all k ∈ I0, one has
ai0 σ

2
i0

≥akσ
2
k . Therefore, the numerator of the fraction involving the a’s in the price-information equation corresponding

to i0 satisfies

N∑
j=1

a2
j σ

2
j +σ 2

Z −ai

⎛⎝ N∑
j=1

aj

⎞⎠σ 2
i >

N∑
j=1

a2
j σ

2
j −ai

⎛⎝ N∑
j=1

aj

⎞⎠σ 2
i

≥
∑
k∈I

a2
kσ

2
k −ai

(∑
k∈I

ak

)
σ 2

i

=
∑
k∈I

ak(akσ
2
k −aiσ

2
i )

≥0.

Therefore, the numerator and the denominator of the price-information equation for i0 are strictly positive, which implies
ai0 >0. This contradicts i0 ∈ I0. It follows that ai >0 for all i∈{1,...,N}. Therefore, returning to equation (A.39), it is

immediate that ai <
τi

VH −VL

σ 2
W

σ 2
W +σ 2

i
since the previous result implies ai

(∑N
j=1 aj

)
>a2

i , which means that the numerator

in the fraction in equation (A.39) is strictly less than the denominator.
To complete the proof, I will use Brouwer’s fixed point theorem to demonstrate the existence of a solution to

equation (A.39). Let the set Y =∏N
i=1

[
0,

τi
VH −VL

σ 2
W

σ 2
W +σ 2

i

]
be the product of the intervals within which any solution must

lie. Define a function T0 :Y →R
N by

(T0[a])i = τi
VH −VL

σ 2
W

σ 2
W +σ 2

i

∑N
j=1 a2

j σ 2
j +σ 2

Z −ai

(∑N
j=1 aj

)
σ 2

i[∑N
j=1 a2

j σ 2
j +σ 2

Z −a2
i σ 2

i

]
+ σ2

W σ2
i

σ2
W +σ2

i

((∑N
j=1 aj

)
−ai

)2
i∈{1,...,N},
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and define a function T1 :Y →Y , to which I will apply Brouwer’s theorem, by

(T1[a])i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if (T0[a])i <0

(T0[a])i if 0≤ (T0[a])i ≤τi
σ 2

W
σ 2

W +σ 2
i

τi
VH −VL

σ 2
W

σ 2
W +σ 2

i
if (T0[a])i >τi

σ 2
W

σ 2
W +σ 2

i
.

The set Y is the product of compact sets and is, therefore, itself compact, and by construction the function T1 is
continuous and maps Y into itself. By Brouwer’s theorem, T1 has a fixed point in Y . It remains to verify that the fixed point

lies in the interior of Y . Suppose that a∗
i =0 for some i. Then, (T0[a∗])i = τi

VH −VL

σ 2
W

σ 2
W +σ 2

i
, which implies a∗

i = (T1[a∗])i =
τi

VH −VL

σ 2
W

σ 2
W +σ 2

i
, which contradicts a∗

i =0. It follows that a∗
i >0 for all i. This in turn implies that (T0[a∗])i <

τi
VH −VL

σ 2
W

σ 2
W +σ 2

i
,

which means (T1[a∗])i <
τi

VH −VL

σ 2
W

σ 2
W +σ 2

i
. Therefore, a∗

i satisfies 0<a∗
i = (T1[a∗])i <

τi
VH −VL

σ 2
W

σ 2
W +σ 2

i
. ‖

To complete the derivation of the equilibrium price function, one requires the investors’ demand functions. The price
reaction function Gi is the inverse of

g′
i(L̂i;a)=VL +(VH −VL)

exp
{

(VH −VL)
(

L̂i(si,�)+ki3(a)μW

)}
1+exp

{
(VH −VL)

(
L̂i(si,�)+ki3(a)μW

)} ,

Hence,

Gi(p;a)= 1

VH −VL
log

(
p−VL

VH −p

)
−ki3(a)μW .

Therefore, the demand function of investor i is

Xi(si,�,p)=τi

(
ki1(a)si +ki2(a)�+ki3(a)μW − 1

VH −VL
log

(
p−VL

VH −p

))
.

Let τ =∑N
i=1τi be the aggregate risk tolerance. The market-clearing condition requires that when the demand

functions are evaluated at an equilibrium price P(·),
N∑

i=1

τi

(
ki1(a)si +ki2(a)�+ki3(a)μW − 1

VH −VL
log

(
P(·)−VL

VH −P(·)
))

=z+z

⇒
N∑

i=1

τiki1(a)si −z+�

N∑
i=1

τiki2(a)+μW

N∑
i=1

τiki3(a)−z= τ

VH −VL
log

(
P(·)−VL

VH −P(·)
)

⇒P(·)=VL +(VH −VL)
exp

{
VH −VL

τ

[∑N
i=1 τiki1(a)si−z+�

∑N
i=1 τiki2(a)+μW

∑N
i=1 τiki3(a)−z

]}
1+exp

{
VH −VL

τ

[∑N
i=1 τiki1(a)si−z+�

∑N
i=1 τiki2(a)+μW

∑N
i=1 τiki3(a)−z

]} ,

where the second line pulls the summation inside the parentheses, and the final line rearranges to solve for P(·).
Since the solution a∗ to the price-information equations satisfies τiki1(a∗)=a∗

i , one can substitute to write the price
function explicitly in terms of the equilibrium statistic L∗

P(·)=VL +(VH −VL)
exp

{
VH −VL

τ

[
L∗(s,z)

(
1+∑N

i=1τiki2(a∗)
)
+μW

∑N
i=1τiki3(a∗)−z

]}
1+exp

{
VH −VL

τ

[
L∗(s,z)

(
1+∑N

i=1τiki2(a∗)
)
+μW

∑N
i=1τiki3(a∗)−z

]} .

Defining k2 as the aggregate (risk-tolerance-weighted) responsiveness to public information

k2(a∗)≡
N∑

i=1

τiki2(a∗),

and k3 as the aggregate responsiveness to prior information

k3(a∗)≡
N∑

i=1

τiki3(a∗),

the price function is in the form of the general expression in Proposition 7

P(L∗(s,z))=VL +(VH −VL)
exp

{
VH −VL

τ
[L∗(s,z)(1+k2(a∗))+μW k3(a∗)−z]

}
1+exp

{
VH −VL

τ
[L∗(s,z)(1+k2(a∗))+μW k3(a∗)−z]

} .

Clearly this function is well defined and increasing for any L∗ ∈R, as required. ‖
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Proof (Example 2). Each informed investor receives an additive signal S̃i = Ṽ + ε̃i, where ε̃i ∼N(0,σ 2
i ) are independently

distributed. The supply shock is distributed Z̃ ∼N(0,σ 2
Z ). For simplicity, there are no uninformed investors, though they

can be easily accommodated by allowing some of the σ 2
i to tend to ∞.

To begin the derivation of equilibrium, I place the investors’ beliefs in the exponential family form from
Assumption 10. Let L(s,z)≡∑N

j=1 ajsj −z. The joint distribution of (Ṽ ,S̃i,L(̃S,Z̃)) is

dFṼ ,̃Si ,̃L
(v,si,�)

=dFṼ (v)f̃Si ,̃L|Ṽ (si,�|v)dsid�

=dFṼ (v)φ

(
si,�

∣∣∣∣
(

v(∑N
j=1 aj

)
v

)
,Ci(a)

)
dsid�

=dFṼ (v)
1

2π
√|Ci|

×exp

{
− 1

2

(
si

�

)′
C−1

i

(
si

�

)
+

(
1∑N

j=1 aj

)′
C−1

i

(
si

�

)
v− 1

2

(
1∑N

j=1 aj

)′
C−1

i

(
1∑N

j=1 aj

)
v2

}
dsid�,

where Ci(a)=
(

σ 2
i aiσ

2
i

aiσ
2
i

∑n
j=1 a2

j σ
2
j +σ 2

Z

)
.

To determine the conditional density of Ṽ given S̃i =si and L(̃S,Z̃)=�, I will use the fact that dFṼ |̃Si ,̃L
must be

proportional to the joint distribution dFṼ ,̃Si ,̃L
derived above, where the constant of proportionality will depend on si

and �.

dFṼ |̃Si ,̃L
(v|si,�)∝dFṼ ,̃Si ,̃L

(v,si,�)

∝dFṼ (v)exp

{(
1∑N

j=1 aj

)′
C−1

i

(
si

�

)
v− 1

2

(
1∑N

j=1 aj

)′
C−1

i

(
1∑N

j=1 aj

)
v2

}
. (A.40)

Integrating this expression with respect to v gives the constant of proportionality as[∫
V

exp

{(
1∑N

j=1 aj

)′
C−1

i

(
si

�

)
x− 1

2

(
1∑N

j=1 aj

)′
C−1

i

(
1∑N

j=1 aj

)
x2

}
dFṼ (x)

]−1

.

After computing the inverse of Ci :

C−1
i (a)=

⎛⎜⎜⎝
∑N

j=1 a2
j σ 2

j +σ 2
Z

σ 2
i

[(∑N
j=1 a2

j σ 2
j

)
+σ 2

Z −a2
i σ 2

i

] −ai(∑N
j=1 a2

j σ 2
j

)
+σ 2

Z −a2
i σ 2

i−ai(∑N
j=1 a2

j σ 2
j

)
+σ 2

Z −a2
i σ 2

i

1(∑N
j=1 a2

j σ 2
j

)
+σ 2

Z −a2
i σ 2

i

⎞⎟⎟⎠,

and substituting, it follows after some tedious algebra that the density is in the desired form, with

ki1(a)= 1

σ 2
i

∑N
j=1 a2

j σ
2
j +σ 2

Z −aiσ
2
i

∑N
j=1 aj(∑N

j=1 a2
j σ

2
j

)
+σ 2

Z −a2
i σ

2
i

ki2(a)=
∑N

j=1 aj −ai(∑N
j=1 a2

j σ
2
j

)
+σ 2

Z −a2
i σ

2
i

bi(�,a)=�

and

gi(L̂i;a)= log

(∫
V

exp

{
L̂ix− 1

2

(
1∑N

j=1 aj

)′
C−1

i

(
1∑N

j=1 aj

)
x2

}
dFṼ (x)

)

dHi(v;a)=exp

{
− 1

2

(
1∑N

j=1 aj

)′
C−1

i

(
1∑N

j=1 aj

)
t2

}
dFṼ (v),

or, equivalently,

Hi(v;a)=
∫ v

0
exp

{
− 1

2

(
1∑N

j=1 aj

)′
C−1

i

(
1∑N

j=1 aj

)
x2

}
dFṼ (x).

With the beliefs in hand, the following Lemma establishes existence of a solution to the price-information equations.
The proof is almost identical to that of Lemma A15 above, so I omit it.
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Lemma A16. There exists a solution a∗ to the price information equations

a∗
i = τi

σ 2
i

∑N
j=1(a∗

j )2σ 2
j +σ 2

Z −a∗
i σ

2
i

∑N
j=1 a∗

j∑N
j=1(a∗

j )2σ 2
j +σ 2

Z −(a∗
i )2σ 2

i

, i∈{1,...,N}.

The solution satisfies

0<a∗
i <

τi

σ 2
i

, i∈{1,...,N}.

To complete the derivation of equilibrium, one requires the price reaction functions. They are not available in closed
form without additional assumptions on FṼ but are characterized as the inverses of g′

i

g′
i(L̂;a)=

∫
V

xexp

{
L̂ix− 1

2

(
1∑N

j=1 aj

)′
C−1

i

(
1∑N

j=1 aj

)
x2

}
dFṼ (x)

∫
V

exp

{
L̂ix− 1

2

(
1∑N

j=1 aj

)′
C−1

i

(
1∑N

j=1 aj

)
x2

}
dFṼ (x)

,

and the aggregate price reaction function G(p;a)=∑N
i=1τiGi(p;a) is the risk-tolerance-weighted average of the individual

functions.
Corollary 2 implies that with a∗ defined by the price information equations, the price function, if it exists, must be

given by

P(·)=G−1

⎛⎝⎡⎣1+
N∑

i=1

τi

(∑N
j=1 a∗

j −a∗
i

)
∑N

j=1(a∗
j )2σ 2

j +σ 2
Z −(a∗

i )2σ 2
i

⎤⎦L∗(s,z)−z;a∗
⎞⎠.

To guarantee that such a price function in fact exists, it suffices to show that G−1(·;a∗) is monotone and maps the
entire real line onto (V ,V ). This guarantees that an equilibrium price will be well defined for any realization of L∗. Because
investor beliefs are of the exponential family form, an argument identical to that used in Lemma A10 implies that each g′

i
(which is monotone) maps the entire real line onto the set (V ,V ). Hence, the inverses Gi = (g′

i)
−1 are monotone functions

that map (V ,V ) onto R so that G=∑N
i=1τi(g′

i)
−1 must also also be monotone and map (V ,V ) onto R. Inverting once

again, G−1 is monotone and maps R onto (V ,V ) as required. ‖
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