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1 Introduction

The empirical evidence on the effects of investors’ dispersion of beliefs on asset prices and their
dynamics is vast and mixed. For example, several works find a negative relation between belief
dispersion and a stock mean return (Diether, Malloy, and Scherbina| (2002), |Chen, Hong, and
Stein| (2002), |Goetzmann and Massa (2005), Park (2005), Berkman, Dimitrov, Jain, Koch, and
Tice (2009), [Yu| (2011))). Others argue that the negative relation is only valid for stocks with
certain characteristics (e.g., small, illiquid, worst-rated or short sale constrained) and in fact,
find either a positive or no significant relation (Qu, Starks, and Yan| (2003)), |Doukas, Kim,
and Pantzalis (2006)), |Avramov, Chordia, Jostova, and Philipov| (2009)). Existing theoretical
works (discussed below), on the other hand, do not provide satisfactory answers for these mixed

results.

In this paper, we develop a tractable model of belief dispersion which is able to qualita-
tively match many of the empirical regularities in a stock price, its mean return, volatility,
and trading volume. Towards that, we develop a dynamic general equilibrium model popu-
lated by a continuum of constant relative risk aversion (CRRA) investors who differ in their
(dogmatic or Bayesian) beliefs and consume at a single consumption date. There are two key
differences between our model and existing works, which typically employ two investors and
a continuum of consumption dates. First, rather than considering the overall effects of belief
heterogeneity, we isolate the effects of belief dispersion from the effects of other moments and
conduct comparative statics analysis with respect to belief dispersion only, resulting in sharp
results. Second, because of a continuum of investors in our model, no investor dominates the
economy in relatively extreme states, leading to a non-vanishing belief dispersion, and hence
to simple uniform behavior for economic quantities. Moreover, dynamic models with hetero-
geneous beliefs are generally hard to solve for long-lived assets beyond logarithmic preferences
(e.g., [Detemple and Murthy (1994)), |Zapatero| (1998), Basak| (2005)), nevertheless our model

delivers fully closed-form expressions for quantities of interest ]

In our analysis, we summarize the wide range of investors’ beliefs by two sufficient measures,
the average bias and dispersion in beliefs, and demonstrate that equilibrium quantities are
driven by these two key endogenous variables. We take the average bias to be the bias of
the representative investor whereby how much an investor’s belief contributes to the average

bias depends on her wealth and risk attitude. Investors whose beliefs get supported by actual

"'We explicitly obtain all quantities of interest in closed-form in all the economic settings considered in the
paper, with the exception of trading volume in the multiple-stocks setting of Section @



cash-flow news become relatively wealthier through their investment in the stock, and therefore
contribute more to the average bias. This leads to fluctuations in the average bias so that
following good (bad) cash-flow news, the view on the stock becomes relatively more optimistic
(pessimistic). On the other hand, consistently with empirical studies, we construct our belief
dispersion measure as the cross-sectional standard deviation of investors’ disagreement which
also enables us to reveal its dual role. First, we uncover a novel role of belief dispersion in
that it amplifies the average bias so that the same good (bad) news leads to more optimism
(pessimism) when dispersion is higher. Second, we show that belief dispersion indicates how

much the average bias fluctuates, and therefore measures the extra uncertainty investors face.

Turning to our model implications, we first find that in the presence of belief dispersion the
stock price is convex in cash-flow news, indicating that the stock price is more sensitive to news
in relatively good states. It also implies that the increase in the stock price following good
news is more than the decrease following bad news, as supported by empirical evidence (Basu
(1997), Xu| (2007)). Convexity arises because, the better the cash-flow news, the higher the
extra boost for the stock price coming from elevated optimism. Consequently, the stock price
increases with belief dispersion when the view on the stock is relatively optimistic, and decreases
otherwise, also consistent with empirical evidence (Yu| (2011))). Our model also implies that
the stock price may increase and its mean return may decrease in investors’ risk aversion in
relatively bad states. This is because in a more risk averse economy investors have less exposure
to the stock which limits the wealth transfers to pessimistic investors in bad times, leading to a

relatively optimistic view on the stock, hence to a higher stock price and a lower mean return.

We next examine the widely-studied relation between belief dispersion and a stock mean
return. Since dispersion represents the extra uncertainty investors face, risk averse investors
demand a higher return to hold the stock when dispersion is higher. However, dispersion also
amplifies optimism and pushes up the stock price further following good news leading to a
lower mean return in those states. When the view on the stock is relatively optimistic, the
second effect dominates and we find a negative dispersion-mean return relation. As discussed
earlier, empirical evidence on this relation is mixed, with some studies finding a negative while
others finding a positive or no significant relation. Our model generates both possibilities and
demonstrates that this relation is negative when the view on the stock is relatively optimistic,
and positive otherwise. Diether, Malloy, and Scherbina; (2002)) provide supporting evidence to
our finding by documenting an optimistic bias in their study overall, and by also showing that
the negative effect of dispersion becomes stronger for more optimistic stocks. A similar evidence

is also provided by [Yul (2011)).



We further find that the stock volatility increases monotonically in belief dispersion, consis-
tent with empirical evidence (Ajinkya and Gift| (1985), Anderson, Ghysels, and Juergens (2005),
Banerjee| (2011)). This is because the average bias in beliefs fluctuates more, and hence so does
the stock price, when belief dispersion is higher. In addition to belief dispersion, the investors’
Bayesian learning process also increases the fluctuations in the average bias, and hence leads
to a higher stock volatility. This occurs because all investors become relatively more optimistic
(pessimistic) following good (bad) news due to belief updating. Our closed-form stock volatility
expression allows us to disentangle the respective effects of belief dispersion and Bayesian learn-
ing, and yields a novel testable implication that Bayesian learning induces less stock volatility
when belief dispersion is higher. Moreover, we find that the stock trading volume is also in-
creasing in belief dispersion, consistently with empirical evidence (Ajinkya, Atiase, and Gift
(1991)), Bessembinder, Chan, and Seguin, (1996), |Goetzmann and Massa (2005)). This finding
is intuitive since when dispersion is higher, investors with relatively different beliefs, who also
have relatively higher trading demands, are more dominant. We also find a positive relation
between the stock volatility and trading volume due to the positive effect of dispersion on both

quantities, also supported empirically (Gallant, Rossi, and Tauchen| (1992), Banerjee| (2011))).

We further demonstrate that most of our results discussed above do not necessarily obtain
in an otherwise identical economy to ours but populated by two rather than a continuum of
investors. In particular, we show that in this economy, the stock price is no longer convex in
cash-flow news across all states of the world, and a higher belief dispersion can actually lead to a
lower stock volatility and trading volume in some states of the world. This happens because in
this economy, unlike in our model, belief heterogeneity effectively vanishes in relatively extreme
states, since the pessimistic investor eventually controls almost all the wealth in the economy
in very bad states, and the optimistic investor in very good states. The transition from the
states in which belief heterogeneity is prevalent to the relatively extreme states in which belief
heterogeneity vanishes generates irregular behavior for economic quantities across states of the
world. Finally, we generalize our main model with a single stock to one with multiple stocks, on
which investors have different beliefs. We demonstrate that all our main results and underlying
economic mechanisms still go through in this more elaborate economy. We also provide an
extension of our main model with a single stock payoff and a consumption date to feature
multiple stock payoffs and consumption dates (Internet Appendix ID), where we demonstrate
that our main insights remain valid, though the equilibrium characterization becomes more

complex.
Our methodological contribution and the tractability of our model is in large part due to
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a continuum of investor types having a Gaussian distribution. This assumption follows from

the recent works by (Cvitani¢ and Malamud| (2011)) and |Atmaz| (2014)). (Cvitani¢ and Malamud|

focus on the survival and portfolio impact of irrational investors and do not characterize the
investor belief heterogeneity, and consequently express the equilibrium quantities, in terms of
average bias and dispersion in beliefs as we do, while does, but employs logarithmic

preferences and focuses on short interest.

The literature on heterogeneous beliefs in financial markets is vast. One strand of this lit-
erature examines the relation between belief dispersion and stock mean return and typically
finds this relation to be positive (Abel (1989), Anderson, Ghysels, and Juergens| (2005), David|
(2008)), Banerjee and Kremer| (2010)). On the other hand, |Chen, Hong, and Stein| (2002) and

Johnson| (2004) establish a negative relation by imposing short selling constraints for certain

type of investors and considering levered firms, respectively. |[Buraschi, Trojani, and Vedolin

(2013)) develop a credit risk model and show that an increasing heterogeneity of beliefs has

a negative (positive) effect on the mean return for firms with low (high) leverage. However,
this result does not hold for unlevered firms. Differently from these works, we show that the
dispersion-mean return relation is negative when the view on the stock is relatively optimistic
and positive otherwise. Moreover, in this literature, shows that belief heterogene-
ity leads to a non-monotonic relation between the mean return and investors’ risk aversion.
We compliment by providing the additional insight that the relation between the mean
return and risk aversion depends on the level of the optimism/pessimism on the stock, and is

non-monotonic only when the view is relatively pessimistic, but it is monotonic otherwise.

Another strand in the literature examines the impact of belief heterogeneity on stock volatil-

ity and typically finds a positive effect (Scheinkman and Xiong (2003), Buraschi and Jiltsov]|
(2006), [Li (2007), David| (2008), Dumas, Kurshev, and Uppal (2009)), Banerjee and Kremer|
(2010), |Andrei, Carlin, and Hasler| (2015))). Yet another strand in this literature employs be-

lief dispersion models to explain empirical regularities in trading volume. Early works include
Harris and Raviv| (1993) and Kandel and Pearson| (1995). This strand also includes works that
find a positive relation between belief dispersion and trading volume, as in our work
(1989)), Shalen| (1993)), Cao and Ou-Yang (2008), Banerjee and Kremer (2010)). Even though

our paper differs from each one of these works in several aspects, one common difference is that

none of them generate the stock price convexity as in our model ]

20ther works studying the effects of heterogeneous beliefs in financial markets include [Basak| (2000}, 2005)),
Kogan, Ross, Wang, and Westerfield| (2006), Jouini and Napp| (2007), [Yan| (2008), [Xiong and Yan (2010),
Zapatero| (1998]). Additionally, more general works study the effects of heterogeneous beliefs in the presence
of other investor heterogeneities, including [Cvitanié¢, Jouini, Malamud, and Napp| (2012), Bhamra and Uppal

4



Finally, this paper is also related to the literature on parameter uncertainty and Bayesian
learning. In this literature, Veronesi (1999)) and Lewellen and Shanken| (2002) show that learn-
ing leads to stock price overreaction, time-varying expected returns and higher volatility. In
particular, Veronesi| shows that the stock price overreaction leads to a convex stock price.E|
Timmermann (1993, 1996), Barsky and De Long| (1993), |Brennan and Xia| (2001), |[Pastor and
Veronesi (2003) show that learning increases volatility and generates predictability for stock
returns. However, differently from our work, all these works employ homogeneous investors se-
tups, and therefore are not suitable for studying the effects of belief dispersion. The works that
study the effects of parameter uncertainty and Bayesian learning with heterogeneous beliefs
include Nakov and Nuno| (2015) and (Collin-Dufresne, Johannes, and Lochstoer| (2017). These
works show that the learning bias among young and old investors leads to booms and busts
in stock prices, long-run return predictability and variations in price-dividend ratios. These
results are primarily driven by the standard mechanism of Bayesian updating in the presence
of parameter uncertainty, which is also present in our analysis with Bayesian learning, where
investors become optimistic (pessimistic) after a sequence of positive (negative) shocks. How-
ever, these works employ discrete-time settings and rely on numerical solutions for their results,

in contrast to our continuous-time setting leading to analytical results.

Section [2| presents the main model, Section [3| analyzes the average bias and dispersion in
beliefs, and Section [4| provides our results on the stock price, its dynamics and trading volume.
Section [0 presents two-investor economy, Section [6] the multi-stock economy, and Section [7] our
main model with Bayesian learning. Section [§] concludes. Appendix [A] contains the proofs of
the main model, Appendix [B] discusses the parameter values employed in Figures. Internet
Appendix [TA] contains the proofs of the two-investor economy, [[B] the proofs of the multi-stock
economy, [[C] the proofs of the main model with Bayesian learning, [[D] provides an extension of

our analysis that features multiple stock payoffs and consumption dates.

(2014) (risk aversion and time preference), |Chabakauri| (2015) (risk aversion and various portfolio constraints),
Chabakauri and Han| (2015) (risk aversion and non-pledgeable labor income), [Detemple and Murthy| (1997)
(short-selling and borrowing constraints), |Gallmeyer and Hollifield| (2008)) (short-selling constraints), |Osambela
(2015) (funding constraint).

3In [Veronesi| (1999) the stock price convexity arises due to parameter uncertainty and the learning process,
whereas in our model the convexity follows from the stochastic average bias in beliefs and obtains even when
there is no parameter uncertainty and learning. Relatedly, [ Xu/ (2007) develops a model in which the stock price
is a convex function of the public signal. However, in his model no-short-sales constraints are needed to obtain
this result.



2 Economy with Dispersion in Beliefs

We consider a simple and tractable pure-exchange security market economy with a finite horizon
evolving in continuous time. The economy is assumed to be large as it is populated by a
continuum of investors with heterogeneous beliefs and standard CRRA preferences. In the
general specification of our model, investors optimally learn over time in a Bayesian fashion.
However, to highlight that our results are not driven by parameter uncertainty and learning,
we first consider the economy when all investors have dogmatic beliefs. The richer case when
investors update their beliefs over time is relegated to Section [7| where we show that all our
results hold in this more complex economy. Moreover, to demonstrate our main economic
mechanism and results as clearly as possible, we first consider economies with a single risky
stock. The generalization to the more elaborate economy with multiple stocks is undertaken in

Section [6] where we again show that all our main predictions remain valid.

2.1 Securities Market

There is a single source of risk in the economy which is represented by a Brownian motion w
defined on the true probability measure P. Available for trading are two securities, a risky stock

and a riskless bond. The stock price S is posited to have dynamics
dSt = St [,Lbstdt + Ustdwt] s (].)

where the stock mean return pg and volatility og are to be endogenously determined in equi-
librium. The stock is in positive net supply of one unit and is a claim to the payoff D, paid at
some horizon T, and so St = Dp. This payoff Dy is the horizon value of the process D; with
dynamics

th = Dt [Mdt + O—d(JJt] 5 (2)

where Dy = 1, and p and o are constant, and represent the true mean growth rate of the
expected payoff and the uncertainty about the payoff, respectively. The process D; represents
the arrival of news about Dr, and hence we refer to it as the cash-flow news. Moreover, this
cash-flow news process can be mapped into the analyst forecasts about the long-term earnings
growth rates, as we discuss in Appendix B. The bond is in zero net supply and pays a riskless

interest rate r, which is set to 0 without loss of generality]

4Since in this setting consumption can occur only at time T (i.e., no intermediate consumption), the interest
rate can be taken exogenously. Our normalization of zero interest rate is for expositional simplicity and it is
commonly employed in models with no intermediate consumption, see, for example, |[Pdstor and Veronesi| (2012)



2.2 Investors’ Beliefs

There is a continuum of investors who commonly observe the same cash-flow news process D
, but have different beliefs about its dynamics. The investors are indexed by their type 6,
where a 6-type investor agrees with others on the stock payoff uncertainty o but believes that
the mean growth rate of the expected payoft is p + 6 instead of p. This allows us to interpret a
O-type investor as an investor with a bias of 6 in her beliefs. Consequently, a positive (negative)
bias for an investor implies that she is relatively optimistic (pessimistic) compared to an investor

with true beliefs. Under the #-type investor’s beliefs, the cash-flow news process has dynamics

where w () is her perceived Brownian motion with respect to her own probability measure P?,
and is given by w; (6) = wy; — 0t/o. Similarly, the risky stock price dynamics as perceived by

the O-type investor follows
dSt = St [MSt (9) dt + agtdwt (9)] i (3)

which together with the dynamics yields the following consistency relation between the
perceived and true stock mean returns for the f-type investor

pse (0) = pse + 05t§~ (4)

The investor type space is denoted by © and it is taken to be the whole real line R to
incorporate all possible beliefs including the extreme ones and to avoid having arbitrary bounds
for investor biases. We assume a Gaussian distribution with mean m and standard deviation
¥ for the relative frequency of investors over the type space ©. A higher m (9) implies that
initially there are more investors with relatively optimistic (large) biases. This specification
conveniently nests the benchmark homogeneous beliefs economy with no bias when m = 0
and v — 0. Moreover, this assumption ensures that the investor population has a finite (unit)
measure and admits much tractability, and can be justified on the grounds of the typical investor

distribution observed in well-known surveys.ﬂ We further assume that all investors are initially

for a recent reference.

5See, for example, the Livingston survey and the survey of professional forecasters conducted by the Philadel-
phia Federal Reserve. Generally, the observed distributions are roughly symmetric, single-peaked and assign less
and less people to the tails, resembling a Binomial distribution for a limited sample. For a large economy, these
properties can conveniently be captured by our Gaussian distribution assumption, which also follows from the
recent works by (Cvitani¢ and Malamud| (2011)) and |Atmaz{ (2014) in dynamic settings as discussed in Introduc-
tion. [Soderlind| (2009) also invokes this assumption but in a single-period static model, and obtains implications
that are different from ours, since ours are much driven by the dynamic interactions between economic quantities
as we demonstrate in the ensuing analysis.



endowed with an equal fraction of stock shares. Since a group of investors with the same beliefs
and endowments are identical in every aspect, we represent them by a single investor with
the same belief and whose initial endowment of stock shares is equal to the relative frequency
of that group. This simplifies the analysis and provides the following initial wealth for each

distinct #-type investor
1 _1(omm)?

e 2 9 R 5
V202 (5)

where Sy is the (endogenous) initial stock price.

Wo (9) — So

2.3 Investors’ Preferences and Optimization

Each distinct #-type investor chooses an admissible portfolio strategy ¢ (@), the fraction of
wealth invested in the stock, so as to maximize her CRRA preferences over the horizon value

of her portfolio Wr (6)
Wy (6)
l—x

]EH

], v >0, (6)

where E? denotes the expectation under the f-type investor’s subjective beliefs P, and the

financial wealth of the 6-type investor W, (6) follows

In this setting investors’ preferences are over the horizon value of their wealth/consumption
rather than intermediate consumption, which would otherwise endogenize the interest rate in
equilibrium. As the previous literature highlights, the presence of belief heterogeneity may
have important effects on the interest rate in the economy (e.g., Detemple and Murthy| (1994)),
David (2008)). However, in this paper, our focus is not on the interest rate, but on the marginal
effects of belief dispersion on risky stocks, and as we demonstrate in Section 6.2, we can still

calibrate our model and quantify these effects even though the interest rate is exogenous.

3 Equilibrium in the Presence of Belief Dispersion

To explore the implications of belief dispersion on the stock price and its dynamics, we first
need a reasonable measure of it. In this Section, we define belief dispersion in a canonical way,
to be the standard deviation of investors’ biases in beliefs. Using the cross-sectional standard

deviation of investors’ disagreement as belief dispersion is also consistent with the commonly



employed belief dispersion measures in empirical studiesf] However, for this, we first need to
determine the average bias in beliefs from which the investors’ biases deviate. The average bias
is defined to be the bias of the representative investor in the economy. We then summarize
the wide range of investors’ beliefs in our economy by these two variables, the average bias
and dispersion in beliefs, and determine their values in the ensuing equilibrium. As we also
demonstrate in Section , the equilibrium quantities are driven by these two key (endogenous)
variables, in addition to those in a homogeneous beliefs economy. Moreover, specifying the
belief dispersion this way enables us to isolate its effects from the effects of other moments and

conduct comparative statics analysis with respect to it only.

Equilibrium in our economy is defined in a standard way. The economy is said to be
in equilibrium if equilibrium portfolios and asset prices are such that (i) all investors choose
their optimal portfolio strategies, and (ii) stock and bond markets clear. We will often make
comparisons with equilibrium in a benchmark economy where all investors have unbiased beliefs.

We refer to this homogeneous beliefs economy as the economy with no belief dispersion.

Definition 1 (Average bias and dispersion in beliefs). The time-t average bias in beliefs,
my, is defined as the implied bias of the corresponding representative investor in the economy.
Moreover, expressing the average bias in beliefs as the weighted average of the individual

investors’ biases

my = / 0, (6) b, (8)
S)

with the weights h (§) > 0 are such that [ h (6) d§ = 1, we define the dispersion in beliefs,

v, as the standard deviation of investors’ biases
o = / (0 — ma)? hy (0) do. ()
e

The extent to which an investor’s belief is represented in the economy depends on her wealth
and risk attitude. In our dynamic economy, the investors whose beliefs are supported by the
actual cash-flow news become relatively wealthier. This increases the impact of their beliefs in

the determination of equilibrium prices. Our definition of the average bias in beliefs captures

6See, for example, Diether, Malloy, and Scherbinal (2002), Johnson! (2004), Boehme, Danielsen, and Sorescu
(2006)), [Sadka and Scherbinal (2007)), /Avramov, Chordia, Jostova, and Philipov| (2009) who employ the standard
deviation of levels in analysts’ earnings forecasts, normalized by the absolute value of the mean forecast. |An-
derson, Ghysels, and Juergens| (2005), [Moeller, Schlingemann, and Stulz| (2007)), |Yu/(2011)) employ the standard
deviation of (long-term) growth rates in analysts’ earnings forecasts as the measure of belief dispersion. Since
we define ours as the standard deviation of investors’ biases, our belief dispersion measure is similar to those
used in the latter works. As |Moeller, Schlingemann, and Stulz| (2007)) argue, there are several advantages of
using the standard deviation of growth rates rather than of levels as a measure of belief dispersion, since the
timing of the forecasts affect levels but not growth rates, and since growth rates are easily comparable across
firms whereas normalization introduces noise for the levels.
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this mechanism by equating it to the bias of the representative investor who assigns more weight
to an investor whose belief has more impact on the equilibrium prices. Finding the average bias
this way is similar to representing heterogeneous beliefs in an economy by a consensus belief as

in [Rubinstein| (1976), and more recently in [Jouini and Napp]| (2007)[]

The average bias in beliefs, by construction, implies that when it is positive the (average)
view on the stock is optimistic, and when negative pessimistic. The weights, h; (@), are such that
the weighted average of individual investors’ biases is the bias of the representative investor. We
also discuss alternative weights, average bias and dispersion measures in Remark[l] Importantly,
it is these weights that allow us to define belief dispersion in an intuitive way. Proposition
presents the average bias and dispersion along with the corresponding unique weights in our

economy in closed form.

Proposition 1. The time-t average bias m; and dispersion v; in beliefs are given by

1 v} v?o?
m :m—i—(lnD —<m+ - = 2>t)—t, V2= 10
t t 2 20 70_2 t 0_2+ %Ugt ( )

where their initial values m and v are related to the initial mean m and standard deviation v

of investor types as

5 1 f)/~ 72 fy~ 72 2 72~
_ 1__)2’ 2_(_2__2) \/<_2__2> 22 11
m m—l—( fyv? v Tl + 50"~ 570 —I—]va (11)

The weights hy (0) are uniquely identified to be given by

() = — L (12)
he(f) = ——¢ 2 % 12
' \/2mv?

where my, vy are as in (|10)).

Consequently, a higher belief dispersion vy leads to a higher average bias m; for relatively good

cash-flow news Dy > exp (m + - %02) t, and to a lower average bias otherwise.

We see that the average bias in beliefs is stochastic and depends on the cash-flow news
Dﬁ When there is good news, the relatively optimistic investors’ beliefs get supported, and

"The main idea, as elaborately discussed in Jouini and Napp| (2007), is to summarize the heterogeneous
beliefs in the economy by a single consensus belief so that when the consensus investor has that consensus
belief and is endowed with the aggregate consumption in the economy, the resulting equilibrium is as in the
heterogeneous-investors economy. In a model with intertemporal consumption and finitely-many agents having
CRRA preferences, |[Jouini and Napp| show that when investors’ preferences are not logarithmic, the consensus
belief is not necessarily well-defined since the process which aggregates investors’ beliefs is not a martingale, and
hence not a proper belief process. Differently from their analysis, as we demonstrate in the proof of Proposition
in Appendix [A] it turns out this issue does not arise in our setting and we obtain a well-defined consensus
belief process for all risk aversion values due to the investors’ preferences being over horizon wealth.

8For notational convenience, we denote the initial values of the average bias and dispersion in beliefs by m
and v instead of mg and vy, respectively. We note that the average bias can also be represented in terms of the

10



through their investment in the stock they get relatively wealthier. This in turn increases their
weight in equilibrium and consequently makes the view on the stock more optimistic. The

analogous mechanism makes the view on the stock more pessimistic following bad newsﬂ

As highlighted in Proposition [I} a higher belief dispersion leads to a higher average bias for
relatively good cash-flow news and to a lower average bias otherwise. This is notable since it
reveals that the extent of optimism/pessimism depends crucially on the level of belief dispersion
v¢. In particular, dispersion amplifies the effects of cash-flow news on the average bias, and
hence the same level of good (bad) news leads to more optimism (pessimism) when dispersion
is higher. We illustrate this feature in Figure [ where we plot the weights h, () for different
levels of dispersion in relatively bad (panel (a)) and good (panel (b)) cash-flow news states.
The average bias is given by the point on the xr—axis where the respective plot centers. We
see that higher dispersion plots are flatter and center at a point further away from the origin,
which shows that investors with relatively large biases are indeed assigned higher weights and
optimism /pessimism is amplified under higher dispersion. Investors’ attitude towards risk, ~,
influences the average bias too. In a more risk averse economy, investors hold relatively less stock
which limits the wealth transfers to the investors whose beliefs are supported. Consequently,
this reduces the sensitivity of the average bias to cash-flow news, leading to less optimism

(pessimism) for the same level of good (bad) news.

In the presence of heterogeneity in beliefs, the belief dispersion has a dual role. Besides
amplifying the current average bias in beliefs m;, the current belief dispersion v; also drives
the extent to which average bias fluctuates next instant, and hence represents the riskiness
of average bias. Indeed, it can be shown from that the dynamics of average bias is
dms = pedt + o pedw;, where the diffusion term is o,,; = v?/yo. As for the dynamics of
belief dispersion itself, as highlights, the dispersion is at its highest level initially and then
decreases over time deterministically as investors with extreme beliefs tend to receive less and
less weight over time due to their diminishing wealth and impact in equilibrium. We discuss

the limiting behavior of dispersion in detail in Remark [3] of Section

Equation indicates that the time-t weights h; (6), which can be thought of as the time-¢

“effective” relative frequency of investors, have a convenient Gaussian form with mean m; and

initial values by m; = o (cfm + %vzwt> / (02 + %v%).
9The wealth transfers among investors is the main underlying mechanism in dynamic heterogeneous-beliefs
models. We add to this literature by demonstrating in our subsequent analysis that these wealth transfers affect

economic quantities also through the average bias and dispersion in beliefs, which are relatively easier to observe
in the data.
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Figure 1: Investors’ weights. These panels plot the weights h; (6) for each distinct #-type investor
for different levels of current belief dispersion v;. The belief dispersion is v; = 3.23% in solid blue and
3.61% in dashed green lines. The vertical dotted black lines correspond to the benchmark economy
with no belief dispersion. The cash-flow news is relatively bad D; = 1.22 in panel (a), and good
D; = 2.50 in panel (b). The baseline parameter values follow from Table [1| of Appendix [B| which
are based on matching the model implied belief dispersion moments to the corresponding summary
statistics in [Yu| (2011): m = 0, © = 3.39%, u = 14.23%, 0 = 8.25%, v =2, t = 4.37 and T = 10.

standard deviation v; as also illustrated in Figure [l This feature allows us to characterize
the wide range of investor heterogeneity in our economy by the average bias and dispersion in

beliefs since they are the first two (thus sufficient) central moments of Gaussian weights.

Remark 1 (Alternative average bias and dispersion in beliefs measures). In a dynamic
economy such as ours, to characterize the equilibrium quantities in terms of the moments of
belief heterogeneity the stochastic impact of investors’ beliefs and wealth ought to be taken into
account. To capture the larger impact of wealthier investors on equilibrium prices, one may
alternatively define the average bias in beliefs as in but using the wealth-share distribution
W (0) /S as the weights. This definition does not require the construction of the representative
investor and yields alternative average bias and dispersion in beliefs measures denoted by m;
and oy, respectively, which can be shown to be given by

/ oV o ( ——) 2(T—1), ﬁf—/(e—m pWeld) p 1 t+(1_1)UT, (13)

o St g g

where m,, v; are as in H As the expressions in highlight, our average bias and
dispersion in beliefs coincide with their respective wealth-share weighted counterparts when the

preferences are logarithmic (v = 1) and also at the horizon T'. For non-logarithmic preferences,

10 Above expressions are derived in the proof of Proposition [5|in Appendix
12



at any point in time, the wealth-share weighted average bias m; differs from the average bias m;,
but only by a constant. This constant arises since the distinct #-type investor with the highest
wealth is not the same investor whose bias has the highest impact on equilibrium quantities
when v # 1. However, since the difference between the two average bias measures is a constant,
we obtain similar results and predictions if, instead of m; and v;, we use the wealth-share

weighted average bias and dispersion measures as in (13]).

4 Stock Price, Its Dynamics and Trading Volume

In this Section, we investigate how the stock price, its mean return, volatility and trading
volume are affected by the average bias and dispersion in beliefs. In particular, we demonstrate
that in the presence of belief dispersion, the stock price is convex in cash-flow news. A higher
belief dispersion gives rise to a higher stock price and a lower mean return when the view on
the stock is relatively optimistic, and vice versa when pessimistic. We further show that a
higher belief dispersion leads to a higher stock volatility and trading volume. These findings

are consistent with empirical evidence.

4.1 Equilibrium Stock Price

Proposition 2. In the economy with belief dispersion, the equilibrium stock price is given by
S, = gtemt(T—t)—%(Zv—l)vf(T—t)Q7 (14)
where the average bias my and dispersion vy in beliefs are as in Proposition[1], and the equilibrium
stock price in the benchmark economy with no belief dispersion is given by S; = Dte(“_WZ)(T_t).
Consequently, in the presence of belief dispersion,
i) The stock price is convex in cash-flow news D;.
i) The stock price is increasing in belief dispersion v, when my > m+(1/27) (2y — 1) v} (T —t),
and 1s decreasing otherwise.
iii) The stock price is decreasing in investors’ risk aversion 7y, as in the benchmark economy
for relatively good cash-flow news. However, the stock price is increasing in investors’ risk

aversion for relatively bad cash-flow news and low levels of risk aversion.

The stock price in the benchmark economy is driven by cash-flow news D,, whereby good

news (higher D;) leads to a higher stock price since investors increase their expectations of the
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Figure 2: Stock price convexity and effects of belief dispersion. This figure plots the equilib-
rium stock price Sy against cash-flow news for different levels of current belief dispersion v;. The dotted
line corresponds to the equilibrium stock price in the benchmark economy with no belief dispersion.
The baseline parameter values are as in Figure

stock payoff Dp. The equilibrium stock price in the presence of belief dispersion has a simple
structure, and is additionally driven by the average bias m; and dispersion v; in beliefs. The
role of the average bias in beliefs is to increase the stock price further following good news, and
conversely decrease following bad news. This is because, as discussed in Section [3 following
good cash-flow news the view on the stock becomes relatively more optimistic which then leads
to a further increase in the expectation of the stock payoff, and consequently in the stock price,
and vice versa following bad news. Figure |2 plots the equilibrium stock price against cash-flow

news for different levels of belief dispersion, illustrating above points.

Figure[2]also illustrates the extra boost in the stock price due to increased optimism following
good news. The notable implication here is the convex stock price-news relation as opposed to
the linear one in the benchmark economy (Property . The convexity implies that the increase
in the stock price following good news is more than the decrease following bad news (all else
fixed), which is also supported empirically (Basu/ (1997)), Xu (2007)). It also implies that the
stock price is more sensitive to news (good or bad) in relatively good states. |Conrad, Cornell,
and Landsman| (2002) document that bad news decreases the stock price more in good states
which is also in line with our finding. As mentioned in the Introduction, a similar convexity
property is obtained by |Veronesi (1999), but due to parameter uncertainty in a model with

homogeneous agents.

Turning to the role of belief dispersion v;, we see that its influence on the stock price
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Figure 3: Effects of risk aversion on stock price. These figures plot the equilibrium stock price
S; against relative risk aversion coefficient  for different levels of standard deviation of investor types
v. The dotted lines correspond to the equilibrium stock price in the benchmark economy with no
belief dispersion. The cash-flow news is relatively bad D; = 1.22 in panel (a) and good D; = 2.50 in
panel (b). The baseline parameter values are as in Figure B

enters via two channels: directly (v? term) and indirectly (via average bias in beliefs my).
The direct effect always decreases the stock price for plausible levels of risk aversion (v > 1/2)
since dispersion represents the riskiness of the average bias (as discussed in Section . The
indirect effect, due to dispersion amplifying the average bias (Section , increases the stock
price further following relatively good news and decreases it further following relatively bad
news. Since both effects have a negative impact following bad news, the stock price always
decreases in relatively bad states due to dispersion. On the other hand, for sufficiently good
cash-flow news, the indirect effect of dispersion dominates and the stock price increases. These

are also illustrated in Figure [2|

Consequently, a notable implication here is that the stock price increases in belief dispersion
when the view on the stock is relatively optimistic, and decreases otherwise (Property . A
higher belief dispersion leading to a higher stock price is often found to be somewhat surprising
since, instead of requiring a premium for the extra uncertainty due to belief dispersion, investors
appear to pay a premium for it. Our model reconciles with this seemingly counterintuitive

finding by demonstrating that a higher dispersion may lead to a higher stock price when the

1We note that unlike earlier Figures, these plots are not for different levels of current belief dispersion v; but
for different levels of standard deviation of investor types o, since v; depends on  and therefore cannot be fixed
across different levels of relative risk aversion.
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stock price is driven by sufficiently optimistic beliefs. This is supported by the stock price
evidence in |Yu (2011)). [Yu provides evidence that a higher belief dispersion increases growth
stock (low book-to-market) prices more than value stock prices, and associates growth stocks
with optimism motivated by the findings of Lakonishok, Shleifer, and Vishny| (1994), |La Porta
(1996). He also finds weak evidence that value stock prices in fact decrease under higher

dispersion.

Figure [3| presents the effects of risk aversion on the equilibrium stock price and highlights
that in the presence of belief dispersion the stock price may actually increase in investors’ risk
aversion 7 (Property . In the benchmark economy, the stock price always decreases in
investors’ risk aversion. This is intuitive since in a more risk averse economy, investors demand
a higher return to hold the risky stock and so push down its price. In the presence of belief
dispersion, risk aversion has an additional stochastic impact on the stock price through the
average bias in beliefs. As discussed in Section [3| a higher risk aversion makes the average
bias less sensitive to news since it reduces the magnitude of wealth transfers among investors.
Therefore, the same level of bad news generates less pessimism, which leads to a relatively
higher stock price in a more risk averse economy. For a range of low risk aversion values this
additional impact overrides the benchmark behavior resulting with the stock price actually
being increasing in investors’ risk aversion. On the other hand, for relatively good news, both
the increased risk aversion and the accompanying reduced optimism induce investors to demand
a higher return, which leads to the stock price being monotonically decreasing in investors’ risk

aversion as in the benchmark economy.

4.2 Equilibrium Mean Return

In our economy, the mean return perceived by each 6-type investor, ug (6), is different than the
(observed) true mean return, g, with the relation between them being given by . To make
our results comparable to empirical studies, in this Section we present our results in terms of
the true mean return (as observed in the data), henceforth, simply referred to as the mean

return. Proposition [3| reports the equilibrium mean return and its properties.

Proposition 3. In the economy with belief dispersion, the equilibrium mean return is given by

2

b = Tis (1+§%<T—t>)2—mt (1+25@-0), (15)

where the average bias my and dispersion vy in beliefs are as in Proposition[], and the equilibrium

mean return in the benchmark economy with no belief dispersion is given by fig, = y0o>.
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Figure 4: Effects of belief dispersion on mean return. This figure plots the equilibrium mean
return pg: against cash-flow news for different levels of current belief dispersion v;. The dotted line
corresponds to the equilibrium mean return in the benchmark economy with no belief dispersion. The
baseline parameter values are as in Figure .

Consequently, in the presence of belief dispersion,
i) The mean return is decreasing in belief dispersion v, when my > v? (M + 202 (T —t))
X (202 —v2)7Y, and is increasing otherwise.
i1) The mean return is increasing in investors’ risk aversion 7y, as in the benchmark economy

for relatively good cash-flow news. However, the mean return is decreasing in investors’

risk aversion for relatively bad cash-flow news and low levels of risk aversion.

The presence of belief dispersion makes the equilibrium mean return stochastic (a constant
in benchmark economy) and strictly decreasing in the average bias in beliefs th This is
because, the higher the average bias, the higher the stock price (Section , and therefore,
the stock receives more negative subsequent news on average when the view on it is relatively

optimistic, which in turn leads to a lower mean returnH

Figure [4 plots the equilibrium mean return against cash-flow news for different levels of
belief dispersion and illustrates that a higher belief dispersion v; leads to a lower mean return

when the view on the stock is sufficiently optimistic, and to a higher mean return otherwise

12Tt may appear somewhat unusual to have the mean return expression involve a term with the belief
dispersion raised to the fourth power. This occurs because the equilibrium mean return is equal to the market
price of risk times the stock volatility, as alternatively expressed in , and both these quantities involve
the squared dispersion term v?. A similar term also arises in our richer economy with Bayesian learning as
illustrates.

13The stock receiving more negative subsequent news on average when the view on it is relatively optimistic
is due to the fact that the true data generating process, the cash-flow news, has constant parameters, which
imply that the consecutive ratios (D;/D;_p) and (Dy4p/Dy) are ii.d. lognormal.
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(Property . The intuition for this is similar to that for the stock price: dispersion represents
additional risk for investors (Section [3)), and therefore investors demand a higher return to
hold the stock when dispersion is higher. However, we know that dispersion also amplifies the
average bias in beliefs (Section [3), which in turn leads to a lower mean return when the view on
the stock is optimistic and to a higher mean return when pessimistic. When there is sufficiently
optimistic view on the stock, the latter effect dominates and produces the negative relation

between belief dispersion and mean return.

As discussed in the Introduction, the empirical evidence on the relation between belief
dispersion and mean return is vast and mixed, and existing theoretical works explain only one
side of this relation. Our model generates both the negative and positive effects and implies that
the documented negative relation must be due to the optimistic bias and it should be stronger,
the higher the optimism. Diether, Malloy, and Scherbina (2002)) provide supporting evidence for
our implications by finding an optimistic bias in their study overall, and by also showing that
the negative effect of dispersion is indeed stronger for more optimistic stocks. Similar evidence
is also provided by [Yu| (2011) who documents that high dispersion stocks earn lower returns
than low dispersion ones and this effect is more pronounced for growth (low book-to-market)
stocks which tend to represent overly optimistic stocks (see, for example, Lakonishok, Shleifer,

and Vishny| (1994)), La Porta; (1996) and [Skinner and Sloan| (2002)).

Property highlights an interesting feature that the equilibrium mean return may de-
crease in investors’ risk aversion for relatively bad news states over a range of risk aversion
values. Analogous to the intuition given for the stock price (Section , this result is again
due to bad news leading to less pessimism in more risk averse economies. We again note that
for relatively good news, the mean return monotonically increases in investors’ risk aversion as
in the benchmark economy. This is because both the increased risk aversion and the accompa-
nying reduced optimism induce investors to demand a higher return. A similar non-monotonic
relation between the mean return and risk aversion is demonstrated by David| (2008)). Our result
compliments David[s by providing the additional insight that the relation between the mean
return and risk aversion depends on the level of the optimism/pessimism on the stock, and is

non-monotonic only when the view is relatively pessimistic, but it is monotonic otherwise.

4.3 Stock Volatility and Trading Volume

In our economy, investors manifest their differing beliefs by taking diverse stock positions,

which in turn generate trade and wealth transfers among investors. As discussed in Section [3]
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these wealth transfers make the average bias in beliefs stochastic, which then leads to extra
uncertainty for investors. In this Section, we demonstrate how this extra uncertainty and

investors’ trading motives give rise to higher stock volatility and trading volume.

Proposition 4. In the economy with belief dispersion, the equilibrium stock volatility is given

by
2

_ Uy
= +— (T —1), 16
Ost = 08t ~o ( ) ( )
where the dispersion in beliefs vy is as in Proposition |1, and the equilibrium stock volatility in

the benchmark economy with no belief dispersion is given by Gg; = 0.

Consequently, in the presence of belief dispersion, the stock wvolatility is increasing in belief

dispersion vy.

The key implication of Proposition 4] is that the stock volatility increases monotonically
in belief dispersion v;. This is because, the higher the dispersion, the average bias in beliefs
fluctuates more and hence so does the stock price (Section , and this additional fluctuation
in the stock price across news states increases the stock volatility. Figure [5| illustrates this
feature by plotting the equilibrium stock volatility against belief dispersion. This result is also
consistent with the empirical evidence (Ajinkya and Gift| (1985), Anderson, Ghysels, and Juer-
gens (2005) and Banerjee (2011))). As we discuss in the Introduction, several other theoretical
works find that a higher investor belief heterogeneity leads to a higher stock volatility (e.g.,
Scheinkman and Xiong (2003), Buraschi and Jiltsov| (2006), Li (2007)), |[David| (2008), Dumas,
Kurshev, and Uppal (2009), |Banerjee and Kremer| (2010), |Andrei, Carlin, and Hasler| (2015)).
Our contribution here is to express the stock volatility and obtain this result in terms of be-
lief dispersion itself (rather than overall belief heterogeneity), which is not straightforward to

obtain in two-investor economies as we show in Section [B

We now explore the aggregate trading activity in our economy. Towards this, we first
express each f-type investor’s portfolio holdings in terms of the number of shares held in the
stock, ¥ (0) = ¢ () W (0) /S, with dynamics dipy (0) = pye (0) dt + oy (0) dwy, where py, (0)
and oy, (0) are the drift and volatility of #-type investor’s portfolio process 1 (6), respectively.
Following recent works in continuous-time settings (e.g., Xiong and Yan| (2010)), Longstaff and
Wang] (2012)), we consider a trading volume measure V' that sums over the absolute value of

investors’ portfolio volatilities,

V=g [ low @) as (17)
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Figure 5: Effects of belief dispersion on stock volatility. This figure plots the equilibrium stock
volatility og; against current belief dispersion v;. The dotted line corresponds to the equilibrium stock
volatility in the benchmark economy with no belief dispersion. The baseline parameter values are as

in Figure .

where the adjustment 1/2 is to prevent double summation of the shares traded across investors@

Proposition [5| reports the equilibrium trading volume measure in closed form and its properties.

Proposition 5. In the economy with belief dispersion, the equilibrium trading volume measure

s given by
I C.ONRA R\ 6. RV SR\ W VA o\ WY C. VA ST R
X202 |\ 2 2 2 2 2 2 2 2 )

where the dispersion in beliefs v, is as in Proposition and ¢ (.) is the probability density

function of the standard normal random variable, and X is a (positive) deterministic process

1 1
X2 = 723—4 [—vf + (1 - ;)vr}} .

Consequently, in the presence of belief dispersion, the trading volume measure is increasing in

given by

belief dispersion vy and is positively related to the stock volatility og;.

With belief dispersion, investors take diverse stock positions following cash-flow news, which
in turn generate non-trivial trading activity. Naturally, the aggregate trading activity in the
stock, which is captured by our trading volume measure V| increases as the belief dispersion

increases. This is because, when dispersion is higher, investors with relatively different beliefs

14 Ag is well recognized, employing the standard definition of trading volume, % f@ |y (0)| df in a continuous-
time setting is problematic since the local variation of the driving uncertainty, Brownian motion w, and hence an
investor’s portfolio, is unbounded. The measure V defined in does not suffer from this issue and indicates
the unexpected trading volume by not taking into account of expected changes in investors’ portfolio processes.
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Figure 6: Effects of belief dispersion on trading volume measure. These figures plot the
equilibrium trading volume measure V; against current belief dispersion v; in panel (a) and against
stock volatility og; in panel (b) for different relative risk aversion coefficients . The baseline parameter
values are as in Figure .

have more weight and higher trading demand, which increase the stock trading volume. Figure
[6a] illustrates this feature by depicting the equilibrium trading volume measure against belief
dispersion. This result is well-supported by empirical evidence (Ajinkya, Atiase, and Gift
(1991)), Bessembinder, Chan, and Seguin (1996) and Goetzmann and Massa (2005)). Figure
[6D] plots the equilibrium trading volume measure against stock volatility and illustrates the
positive relation between these two economic quantities. This positive relation is intuitive since
a higher dispersion leads to both a higher stock volatility and a higher trading volume measure.
This result is also supported by empirical evidence; for example, |Gallant, Rossi, and Tauchen
(1992) document a positive correlation between the conditional stock volatility and trading
volume, and more recently, Banerjee (2011) shows that stocks in high trading volume quintiles

tend to have higher return variances.

Remark 2 (Multiple stock payoffs and consumption dates). To highlight our main
insights as clearly as possible in a tractable setting, we model the stock as a claim to a single
payoff. We provide an extension of our analysis that features additional stock payoffs and
consumption dates in Internet Appendix ID. We first consider an economy with two stock
payoffs and consumption dates in which investors have logarithmic preferences. We demonstrate
that the equilibrium average bias and dispersion in beliefs are the same as in our main model
for logarithmic preferences (Proposition 1). This is because in both economies investors have
different beliefs about the cash-flow news process, and hence the introduction of additional stock
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payoffs does not alter investors’ beliefs. Consequently, the underlying economic mechanism
revealed in Section 3 is also present in this setting, where the belief dispersion amplifies the
average bias so that the same level of good (bad) news leads to more optimism (pessimism)
when dispersion is higher. The stock price in this extended economy simply becomes the sum of
the values of each payoff, but with a deterministic adjustment term for the longer-term payoff
which accounts for the drop in the stock price due to the interim payoff. Since each value
term is as in our main model, the stock price inherits our earlier key properties of the stock
price being convex in cash-flow news and being increasing in belief dispersion when the view
on the stock is relatively optimistic, and decreasing otherwise (Proposition 2). Although we
determine the stock price dynamics of mean return and volatility in closed form, we are unable
to analytically obtain their comparative statics for all periods (elaborated on in Appendix ID).
Investigating these numerically, however, reveals that the stock mean return is decreasing in
belief dispersion when the view on the stock is relatively optimistic, and increasing otherwise,
and the stock volatility is increasing in belief dispersion, as in our main model (Propositions

3-4).

We then extend the setting further and add a third stock payoff and consumption date. We
show that the average bias and dispersion in beliefs are identical to those in our main model, and
the stock price is again the sum of the values of each payoff, but with more complex deterministic
adjustment terms for the longer-term payoffs accounting additionally for the second drop in the
stock price. Therefore, all the properties discussed for the economy with two stock payoffs
and consumption dates remain valid in this setting. The extended setting with multiple stock
payoffs and consumption dates, however, is less tractable as we are only able to solve it with
logarithmic preferences. For CRRA preferences, we are not able to determine the average bias
and dispersion in beliefs explicitly due to the inability to obtain the investors’ weights explicitly,
as we elaborate on in Appendix ID. Nevertheless, our main economic mechanisms at play and

results remain valid in the multiple stock payoff settings that we analyze.

5 Comparisons with Two-Investor Economy

So far, we have investigated an economy with a continuum of investors having heterogeneous
beliefs. In this Section, we consider an otherwise identical two-investor economy with hetero-
geneous beliefs and a single consumption date. The related work of [Kogan, Ross, Wang, and

Westerfield (2006) employs such a setup. We solve for the equilibrium stock price, its dynamics
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and trading volume and demonstrate that most of our earlier results do not necessarily obtain
in this setting. In this regard, we first show that in the two-investor economy it does not appear
to be possible to neither write the average bias in terms of belief dispersion nor express the
equilibrium quantities in terms of these two quantities as we do in Sections 3 and 4, respec-
tively. We also show that, in contrast to our main model’s implications, the stock price is no
longer convex in cash-flow news across all states of the world, and a higher belief dispersion has

ambiguous effects on the stock volatility and trading volume.

Now we consider a variant of our economy in Section [2| in which there are two investors
instead of a continuum of them. The other features remain the same. In particular, the
securities market is as in Section 2.I] and the investors’ beliefs are as in Section 2.2l That
is, under the 6,-type investor’s beliefs, n = 1,2, the cash-flow news process has dynamics
dD; = (u+ 6,,) Dydt + 0 Dydw,,, where w,, is her perceived Brownian motion with respect to her
own probability measure P, and is given by w,; = w, — 0,t/0. We again index each 6,-type
investor by her bias 6,,, with the type space now becoming © = {#;,6,} rather than © = R
as in our main model. Without loss of generality we assume 0; < 65, hence we interpret the
first investor as the relatively pessimistic investor with a bias 8, and the second investor as the
relatively optimistic investor with a bias ;. We assume that investors are initially endowed
with equal shares of the stock, 119 = 199 = 0.5. Investors’ preferences are as in Section [2.3]
however for tractability we take the investors’ relative risk aversion coefficient v to be a positive
integer, as is usually assumed in this literature (e.g., Yan (2008)), Dumas, Kurshev, and Uppal

(2009), |[Dumas, Lewis, and Osambela (2017)).

We again proceed by first constructing the average bias and dispersion in beliefs following
Definition [1| in our main modelE That is, the time-t average bias in beliefs, m,, is the implied
bias of the corresponding representative investor, expressed as the weighted average of the

individual investors’ biases

2
M= Ol (19)
n=1

with the weights h,;, > 0 satisfying 22:1 h,: = 1, and the dispersion in beliefs, v;, is the

15Qther, alternative dispersion measures employed in the literature for two-investor economies include the
simple difference in (possibly stochastic) biases (62 — 1) (e.g., Basak| (2005)), Dumas, Kurshev, and Uppal
(2009), Xiong and Yan! (2010)) and the relative likelihood ratio process (n2:/m1+) (e.g., [David| (2008)), Bhamra,
and Uppal (2014)). However, both of these measures capture the overall effects of belief heterogeneity rather
than decomposing its effects due to average bias and dispersion in beliefs, as we do. Moreover, these dispersion
measures are hard to generalize when there are more than two investors in the economy, since one still needs to
find a suitable, economically justified, functional form for the dispersion measure which takes all the differences
in biases, or likelihood ratios, as inputs and delivers a single dispersion measure.
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standard deviation of investors’ biases

Ei 0, —mt Bt (20)

We then determine the ensuing equilibrium weights, average bias and belief dispersion, and
solve for the equilibrium stock price, its dynamics and the trading volume measure in this
economy. Proposition |§| reports these quantitiesm Kogan, Ross, Wang, and Westerfield (2006])
study the stock price and dynamics in a similar setting with a focus on the long-run survival
and price impact of investors with biases. Our analysis here complements theirs by providing

closed-form expressions for the stock price, its dynamics and the trading volume measure.

Proposition 6. In the two-investor economy with heterogeneous beliefs, the time-t average bias

and investors’ corresponding equilibrium weights are given by

v o(EA =k %Yy
Gire’ <7 s Ty T )( ) k —k
my = E bk — — <—‘91 + 7 ’}/ 62) , (21)
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hlt - Z bk 0] ~—; 0 B — th - 1 - hlta (22)

and the dispersion in beliefs by (20]) with f substituted in, where Gy, s as in . The

equilibrium stock price, mean return and volatility are given by

.
Sy =1V, Y gt (F AT, (23)
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16For clarity, throughout this section, we use the same notation for equilibrium quantities as in our main
model.
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The equilibrium trading volume measure is given by

2

1 W,
Vi= 5 Z Stt ‘antO'Wn/St + U¢nt| ) (29)

n=1

where the investors’ wealth-share W,, /S, the portfolio strategies ¢,, as well as their correspond-

ing diffusion terms, ow, s, and og4,, are provided in the Internet Appendiz @ forn =1,2.

Proposition [0 reveals that in the two-investor economy, the average bias in beliefs and belief
dispersion have more complex structures as compared to their counterparts in our main
model.ﬂ In particular, it does not appear to be possible to write the average bias in terms of
dispersion and obtain its amplification effect as we do in Proposition[ll Moreover, in this setting
the distribution of investors’ equilibrium weights, h,;, do not have the convenient Gaussian form
as in our main model. Therefore, we cannot characterize the investor belief heterogeneity, and
consequently express the equilibrium quantities, in terms of the first two central moments, the
average bias and dispersion in beliefs. Instead, the expressions for the equilibrium stock price
and its dynamics are now more involved and are in terms of various weighted-average quantities,
Gt and py ., which are not straightforward to interpret economically. This is in contrast to our
main model presented in Section [d] where the corresponding equilibrium quantities are in terms
of easily interpretable moments, the average bias and dispersion in beliefs, which also enable us
to isolate the effects of dispersion and conduct comparative statics with respect to dispersion

only.

We now look at the effects of belief dispersion in the two-investor economy. To illustrate
these, Figure [7| plots the equilibrium quantities against cash-flow news in this economy with
one investor optimistic and the other pessimistic, as well as presenting the corresponding plots
for single-investor economies. Figure reveals that the stock price is no longer convex in

cash-flow news across all states as opposed to that in our model (discussed in Section {4.1)).

170One apparent difference in the expressions of Proposition |§| from the corresponding ones in our main model
of Propositions is that the two-investor economy quantities are driven by the stochastic likelihood ratios
¢ and 79 (through ), capturing belief heterogeneity. In our main model, investors’ likelihood ratios do
not appear in equilibrium quantities because summing (integrating) across all the investors in the equilibrium
market clearing condition yields a compact exponential function that embeds investors’ likelihood ratios. As we
demonstrate in the proof of Proposition 1 in Appendix [A] this compact function is related to the average bias
and dispersion and allows us to express the equilibrium quantities in terms of these moments. Furthermore, in
this two-investor economy as well as in our main model, the likelihood ratio processes 1 turns out to be path-
independent primarily because of the cash-flow news process having constant coefficients in its dynamics
which in turn leads to path-independent stock price and dynamics. This is in contrast to a setting with more
complex cash-flow news process dynamics which may lead to path-dependent likelihood ratio processes (e.g.,
Basak] (2000))), and hence path-dependent stock price and dynamics.
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Figure 7: Effects of belief dispersion in the two-investor economy. These figures plot the
equilibrium stock price S; in panel (a), the mean return pg; in panel (b), the stock volatility in panel
(c), and the trading volume measure in panel (d) against cash-flow news in an otherwise identical two-
investor economy with an optimistic and a pessimistic investor. The dotted black lines in panels (a)
and (b) correspond to the stock price S? and mean return pf, in an economy with a single pessimistic
investor with a bias in beliefs —3.39%. The dashed black lines in panels (a) and (b) correspond to
the stock price Sf and mean return u%, in an economy with a single optimistic investor with a bias
in beliefs 3.39%. The dotted black lines in panels (c) and (d) correspond to the stock volatility and
trading volume measure in an economy with a single investor. The dashed green lines in panels (¢) and
(d) correspond to the stock volatility and trading volume measure in an economy with a one standard
deviation higher belief dispersion than the average. The other applicable parameter values are as in

Figure E
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Likewise, Figure [7D] illustrates that the mean return does not always decrease in cash-flow
news, but in fact may even increase in moderate states. These different implications in the two-
investor economy occur because belief heterogeneity effectively vanishes in relatively extreme
states (as also elaborated on in Remark [3 below). The pessimistic (optimistic) investor controls
almost all the wealth in the economy in very bad (good) news states, leading to equilibrium
behavior similar to that in single pessimistic (optimistic) investor economies in those states. The
transition from the moderate states in which belief heterogeneity is still prevalent to relatively
extreme states leads to the irregular behavior in the plots. In contrast in our main model
with a continuum of investors having all possible beliefs, investor heterogeneity does not vary
across states of the world (since belief dispersion v; is deterministic) and does not vanish in
relatively extreme states, leading to simple uniform economic behavior. For example, following
very good news, a relatively pessimistic investor would lose much wealth both in our model
and in the two-investor economy. However, since there are numerous optimistic investors in our
main model, the wealth transfer does not accumulate to one type of optimistic investor and

make her dominate the economy, but rather shared among relatively optimistic investors.

The belief heterogeneity effectively vanishing in relatively extreme states also leads to
nonuniform behavior for the stock volatility and trading volume in the two-investor economy.
In particular, Figure 7/ reveals that a higher belief dispersion increases the stock volatility only
for moderate news states in which neither investor dominates the economy. However, for rela-
tively extreme states the stock volatility actually decreases with higher belief dispersion, as the
effective investor heterogeneity vanishes and the single-investor benchmark economy prevails.
Similarly, Figure [7d reveals that the trading volume measure may actually decrease with higher
belief dispersion in the two-investor economy, in contrast to our uniformly increasing trading

volume belief dispersion result "]

In sum, by keeping investor heterogeneity the same across states, our main model is able
to generate intuitive, simple and uniform results, which are not immediately possible in the
two-investor economy, as Figure [7] illustrates. We note that the discussion above is not specific
to a two-investor economy, i.e., © = {f1,05}. Our conclusions would be equally valid in a
more general model with finitely-many investors, i.e., © = {6y, ...,0x} where N can be a large
number. This is because in this more general model also there is necessarily a lower bound

and an upper bound for investors’ biases, say # = min {fy,...,0y} and 0 = max{f,,...,0y}.

18While we have identified these implications, perhaps it is helpful to highlight that there could well be
quantities other than the ones we focus on (e.g., stock price dynamics and trading volume) that one of two
settings (a continuum of investors vs two investors) generates implications that are better supported by the
empirical evidence. We leave that for future research.
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Hence belief heterogeneity would again vanish in relatively extreme states because now the
most pessimistic f-type investor would eventually control almost all the wealth in the economy
in very bad states, and the most optimistic 6-type investor in very good states. This would
again lead to equilibrium behavior similar to that in single-investor economies in those extreme

states, implying the irregular behavior depicted in the plots.

Remark 3 (Survival across states and over time). As the above discussion highlights, in
the two-investor economy only one type of investor survives in extreme states of the world where
survival is defined as an investor’s wealth ratio (e.g., Wy;/Ws;) not vanishing in the limit, or
equivalently in our analysis an investor’s equilibrium weight (e.g., h1;) not vanishing. Formally,
as shown in the proof of Proposition [6]in Internet Appendix[[A] we obtain the following limiting
behavior of equilibrium weights h,; in and belief dispersion v;:

as Dt — 0 hlt — ]_7 Ve — O, (30)
as D; — 00 hi — 0, vy — 0. (31)

The two-investor economy collapses to a single-investor economy in the limit of extreme states
(Dy — 0 or D; — o0) as the belief dispersion vanishes. This is in sharp contrast to our main

model with a continuum of investors for which belief dispersion never vanishes
as Dy — 0 or Dy — o0 v, = vo(o® +0%t/y) 7?2 >0, (32)

because belief dispersion in does not depend on the cash-flow news D; — this is also
illustrated in Figure [1| depicting that changes in D, only shifts the equilibrium weight schedule
h: (f) without scaling it. The reason for this behavior is that our model has a continuum of
investors who have all possible beliefs, that is, the type space is unbounded, i.e., ©® = R. Hence
even in the extreme states, the wealth transfer does not accumulate to one type of investor
and make her dominate the economy, but rather is shared among investors, leading to a non-

vanishing belief dispersion across all states "]

Even though our main model and the two-investor economy yield different implications for
survival across states, they imply the same behavior for survival over time. In particular, both
models imply that in the long run as 7' — oo, only the investor with a bias closest to (y — 1) ¢
survives, a finding consistent with earlier works in similar settings (e.g., Kogan, Ross, Wang,

and Westerfield (2006), (Cvitani¢ and Malamud| (2011))). In particular, in our two-investor

19That being said, our model can be reached in the limit of a finitely-many-investor setting by letting § — —oo,
f — 00, N — 00, along with a suitable relative frequency of investors which tends to a Gaussian distribution in
the limit. Of course, in the limiting case there are an uncountable number of investors (a continuum) as in our
model rather than finitely-many investors, which again leads to a non-vanishing belief dispersion.
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economy we obtain (Internet Appendix

hir — 1, vp — 0 if Gt > (v —1)02
as T — o0 - . 2 ( ) (33)

hir =0,  vp —0 if At < (y—1)02

Only in the knife-edge case when both investors’ biases are equally distanced from (y — 1) o2
both investors survive, that is when (0; + 6) /2 = (v — 1) 62, as also demonstrated by Kogan,
Ross, Wang, and Westerfield (2006)). In our main model with a continuum of investors with
all possible beliefs this knife-edge case does not arise since an investor with a bias of (y — 1) o2

always exists and becomes the only surviving investor in the long-run, implying
as T — oo vp — 0. (34)

It is also important to note that even though investor heterogeneity disappears in the long-
run, it may take a very long time to do so. For example, in our main model using the belief
dispersion equation in , it can be shown that the half-life of dispersion at time ¢ is 3yo?/v?.
Using the parameter values as in Figure [}, this half-life expression would indicate that it takes
837.5 years for a belief dispersion of 3.20% to decrease to 0.40% (halving 3 times) and it takes
another 2552.3 years from 0.40% to halve and become 0.20%, consistent with [Yan (2008).

6 Multiple Stocks Economy

Our results so far have been presented in the context of a single-stock economy to highlight
our insights as clearly as possible. However, given that the documented empirical evidence is
primarily based on cross-sectional studies, in this Section, we generalize our main model to
feature multiple stocks, on which investors have dispersed beliefs. We demonstrate that all
our main results and underlying economic mechanisms still go through in this more elaborate

economy.

The multi-stock economy we consider here is the simplest and the most straightforward
extension of our single-stock setting of Section , also admitting much tractability.[f_al In this
setting, there are instead NN risky stocks and N sources of risk, generated by a standard N-

dimensional Brownian motion w = (wy,...,wy_1,w)" defined on the true probability measure

20Solving multi-stock pure-exchange economies is typically a daunting task, but there has been some re-
cent successes in the literature (e.g., |Cochrane, Longstaff, and Santa-Clara (2007)), [Martin| (2013)), |Chabakauri
(2013)). Introducing belief dispersion on individual stock payoffs in these settings would add even more com-
plexity. One recent work accomplishing tractability in a related two-country international finance setting is
Dumas, Lewis, and Osambelal (2017).
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P. Each stock price S,,, n =1,..., N, is posited to have dynamics dS,; = Syt [fts,,:dt + 05,1 dw],
where the stock mean return pg, and the N-dimensional stock volatility vector og, are to be
determined in equilibrium. The stocks are in positive net supply of one unit and are claims
to the payoffs D,r, paid at some horizon T. For n = 1,..., N — 1, these payoffs D, are the

horizon value of the cash-flow news processes with dynamics
ant = Dnt [ﬂ’ndt + Undwnt ‘l' wat] ) (35)

where p,, 0,, 0 are constants, and represent the true mean growth rate of the expected payoff
and the uncertainty about the payoff due to w,, w, respectively. To maintain tractability, the
cash-flow news for the last (residual) stock N is chosen so that the aggregate cash-flow news
D= 27]1\[21 D,, has the dynamics as in our single-stock setting. In this setting, we focus on
the price and dynamics of the first NV — 1 stocks, which includes all I dispersed stocks, and not
the N*" stock whose payoff has been left unspecified and theoretically can be negative

There is a continuum of investors who commonly observe all cash-flow news processes D,,
, but have different beliefs about the dynamics of the first I/ < N of them. We refer
to the first I stocks as dispersed stocks, and the ones that investors agree on as the non-
dispersed stocks. The investors are again indexed by their type 6, where a 6-type investor
is now associated with an I-dimensional bias vector § = (6y,...,0;)" with its i"* element
representing the investor’s bias on the mean growth rate of stock ¢ expected payoff. Hence,

under the #-type investor’s beliefs, the cash-flow news processes have dynamics

dDit = Dit [(/,LZ + 01) dt + O'Z'dwit (0) + det] s fori = 1, Ce ,[, (36)
dDny = Dy [pindt + opdwy + odwy] forn=1+1,...,N—1, (37)
where w; (0), i = 1,...,1, are her perceived Brownian motions with respect to her own proba-

bility measure PY, and is given by wy (0) = wi; — 0it/o; @

The investor type space, denoted by ©, is taken to be the whole I-dimensional Euclidean
space R’ to incorporate all possible beliefs on the dispersed stocks. Accordingly, we now assume
a multivariate Gaussian distribution with an I-dimensional mean vector m = (1, ...,m;)" and
a diagonal variance matrix 9% = diag (0%, ...,0%) whose main diagonal entries starting in the

upper left corner are %,...,0% and the entries outside the main diagonal are all zero, for the

2! Modeling individual and aggregate cash-flow news as geometric Brownian motions is somewhat in the spirit
of Brennan and Xial (2001). To prevent the N** stock payoff potentially taking on negative values, one could
consider a setup with cash-flow news processes having stochastic volatilities as in [Menzly, Santos, and Veronesi
(2004)), |[Longstaff and Piazzesi (2004)), but this would much complicate our analysis and is beyond the scope of
our goal in this section.

22The dynamics of the N*" stock could be derived from (36)-([37) and (2) using the identity D; = DO

n=1 D"t'
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relative frequency of investors over the type space @H As before, we assume that all investors
are initially equally endowed in all the stocks, implying that the initial total wealth of the group

of investors having the bias vector 6, denoted as the distinct #-type investor, as

I 2
1 _l(gz mz)
Wy (8) = Wy (64,...,0;) = S, e ® U
0 (0) o (61 r) oi|:|1 o

where Sy is the (endogenous) initial aggregate stock price Sy = 25:1 Sno- In this setting, each
distinct f-type investor chooses an admissible N-dimensional portfolio strategy (investment in
each stock) so as to maximize her CRRA preferences over the horizon value of her portfolio

Wr (0) as in @ subject to the corresponding budget constraint.

We proceed by first constructing the average bias and dispersion in beliefs for dispersed
stocks following Definition [1] in our main model. The time-t average bias in beliefs, m;;, on
stock © = 1,..., I is the implied bias of the corresponding representative investor, expressed as

the weighted average of the individual investors’ biases

— / 0,1y (0) do, (39)

where the weights h; (f) > 0 are such that [, h, (6) df = 1, while the dispersion in beliefs, v,

is the standard deviation of investors’ biases

vE = /(0Z —my)*he (0) d6. (39)
S}

Proposition [7] reports the average bias and dispersion in beliefs, along with the corresponding

equilibrium stock prices, mean returns and volatilities in this economy in closed form.

Proposition 7. The time-t average bias m; and dispersion v in beliefs of dispersed stock

1=1,...,1, are given by

D, 1 1 v2 v
u=mi+ (InN +1 —( - ——.2>t>——“, R o S 40
Mt m—l—(n —i—nDt m; + ;i — [ 50 o v 4 o (40)

where their initial values m; and v; are related to the mean m; and standard deviation v; of

mwestor types as

N 1 Yo Yo 72 N2, V2.
m; =m +< 5 v; v; 2111 2TO'Z + 21)1 2TO'Z + Tvzoz (41)

Moreover, the equilibrium stock price, mean return and volatility of dispersed stocki=1,... 1,

23This simplifying assumption is the most straightforward natural extension of our main model and ensures
that the investor population again has a finite (unit) measure. While admitting much tractability, it however
rules out potential correlations across biases on individual stocks.
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are given by

S, = gAtemit(Tft)f%(2771)11%(Tft)2+vi2t(Tft)2
K3 T

, (42)

2 2

V- V- 2
Hsit = 'Hsz‘t — Mt (1 + th (T - t)) ) 08t = \/E%J + 0-12<<1 + _Zt2 (T - t)) - 1) 7(43)

o Vi
while the corresponding quantities for non-dispersed stocks n =1+ 1,..., N — 1, are given by
Snt = Dnte(“n_’YUQ)(T_t)v Hs,t = 7027 0S,t =V o? + 0—7%’ <44)

where the equilibrium stock price, mean return and volatility in the benchmark economy with no

belief dispersion are given by

git = Dit6<m7’yg2)(T7t), ﬁSit = ’70’2, Esit =1/ o? + 0'22. (45)

Consequently, in the presence of belief dispersion, for a dispersed stockt=1,...,1,

i) A higher belief dispersion vy leads to a higher average bias my for relatively good cash-flow

news Dy > (Dy/N) exp(m; + p; — p — 302)t, and to a lower average bias otherwise.

it) The stock price is convez in its cash-flow news Dj.

ii) The stock price is increasing in belief dispersion vy when my > m; — (1/2y)v3 (T —t),

and is decreasing otherwise.

. . o L : - -1
iv) The mean return is decreasing in belief dispersion vy when my > vim,; (204 —vZ)" , and

1s increasing otherwise.

v) The stock volatility is increasing in belief dispersion vy.

The average bias and dispersion in beliefs for dispersed stocks are multivariate versions
of the single-stock case, but now adjusted to incorporate individual stock-specific quantities, p;,
o;, m;, U;. The fluctuations in the average bias are due to the (relative) cash-flow news D;;/D;,
which are driven only by the Brownian motion w; that investors’ beliefs differ on. Consequently,
the underlying economic mechanisms revealed in Section [3| for our main model are also present
in this setting with multiple stocks. In particular, for an individual dispersed stock, the belief
dispersion amplifies its average bias and the effective investor belief heterogeneity on it does
not vanish in relatively extreme states. Similarly, the equilibrium stock price, mean return and
volatility f for dispersed stocks are multi-stock versions of the corresponding single-
stock economy quantities with similar structures, but now incorporating individual stock specific

average bias m; and belief dispersion viﬁ

24These is a slight difference in the exact appearance of the belief dispersion in these equilibrium expressions
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Since the underlying economic mechanisms and the structures of the economic quantities in
this setting are as in our main model, all the implications for a dispersed stock’s average bias,
its price, mean return and volatility, are also as before, as highlighted in the properties
of Proposition [} One difference from the single-stock case is that we are unable to obtain the
equilibrium trading volume measure in this multiple stock setting. This is because there is
a convoluted interaction of investors’ views on dispersed stocks which prevents us identifying
investors’ portfolio reaction to changes in cash-flow news, which is required to compute the
trading volume. Nevertheless, to see whether or not our model supports the documented em-

pirical evidence on trading volume, in the subsequent analysis we use our single-stock economy

trading volume measure of Section .

7 Economy with Bayesian Learning

So far, we have studied an economy where investors have dogmatic beliefs, which not only
simplified the analysis, but also demonstrated that our results are not driven by investors’
learning. In this Section, we consider a setting with parameter uncertainty and more rational
behavior for investors who optimally update their beliefs in a Bayesian fashion over time as
more data becomes available. This setting is also tractable. We again obtain fully-closed form
solutions for all quantities of interest, and show that all our results remain valid in this richer,
incomplete information economy. This specification also enables us disentangle the effects of
belief dispersion and parameter uncertainty on stock volatility, and establish the result that the

investors’ Bayesian learning induces less stock volatility when belief dispersion is higher.

To incorporate Bayesian learning in our main model, we make the following modification to
investors’ beliefs in Section 2.2l The investors are again indexed by their type 6, but instead
of believing the mean growth rate of the expected payoff is u + 6 at all times 0 < ¢t < T,
now the f-type investor at time 0 believes that the mean growth rate of the expected payoft

is normally distributed with mean p + 6 and variance s?, N (u+ 6, s%). This allows us to

as compared to the corresponding single-stock economy quantities. This is because in this setting investors
only disagree on the dynamics of some of the stocks and the average bias on each dispersed stock 4 is driven
only by the stock-specific single Brownian motion w; rather than the Brownian motion w that determines the
aggregate payoff. Hence, there is no additional risk arising from the covariance between the average bias and the
aggregate payoff since the Brownian motions w; and w are independent. This, in particular, leads to a simpler
mean return expression , which in terms of factors In D; and In (D;/D;) for i = 1,...,I, can be expressed
as pig,¢dt = yCovy [dIn Dy, d (Sit/Sit)] — 2]1:1 (mj¢/03) Covy [dIn (Dji/Dy), d (Sit/Sit)]. However, these small
differences turn out to be economically immaterial for our implications of belief dispersion as the properties
of Proposition [7| highlight. This is because the main driving force behind our results is the fact that the
belief dispersion enters into and amplifies the average bias, which is still present in this multiple-stocks setting.
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interpret a f-type investor as an investor with an initial bias of # in her beliefs. The identical
prior variance s? for all investors ensures that our results are not driven by heterogeneity in
confidence of their estimates. The normal prior and the Bayesian updating rule imply that the
time-t posterior distribution of p, conditional on the information set F; = {D, : 0 < s < t}, is
also normally distributed, N (u + @\t, s?), where the time-¢ bias of f-type investor 0, (difference
between her mean estimate and the true p) and the type-independent mean squared error s,
which represents the level of parameter uncertainty, are reported in Proposition [§ Therefore,

under the f-type investor’s beliefs, the posterior cash-flow news process has dynamics
dD; = Dy[(1n + 6,)dt + odw, (9)],

where w () is her perceived Brownian motion with respect to her own probability measure P?,
and is given by dw; (0) = dw; — (6, /o)dt. We note that this specification conveniently nests the

earlier dogmatic beliefs economy when s = 0.

We proceed by first constructing the average bias and dispersion in beliefs following Defini-
tion[T)in Section[3] The time-t average bias in beliefs, my, is the implied bias of the corresponding

representative investor, expressed as the weighted average of the individual investors’ biases

my = / 0,1y (0) dO, (46)

with the weights h, (6) > 0 are such that [ h (0) dd = 1, while the dispersion in beliefs, vy, is

the standard deviation of investors’ biases

v = / (6, — my)2hy (0) d6. (47)
(C)

Proposition [8] reports the average bias and dispersion in beliefs along with the corresponding

unique weights in this economy with belief dispersion and parameter uncertainty in closed form.

Proposition 8. The time-t average bias m; and dispersion vy in beliefs are given by

1 1 1 2 g2 2 2 2
my = m-+ (lnDt— (m+u - —02>t><—02+32>—20—t28—2, vt? = vio S_tz’ (48)
2 ¥ 0% v S 02—|—<%02+32>t5

where the investors’ time-t parameter uncertainty s, is given by

2 2

S A 49
%t T 52 + s2t’ (49)

and the initial values m and v are related to the initial mean m and standard deviation v of
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mwvestor types as

1 2 2 2 2
m=m+ (1 - —)#T, V2= (1@2 ~ 2 2+32T)>+\/<1@2 T 2+52T)> +%@2 (02+52T).

~ 2" T oT 2" T aT
(50)
The weights hy (0) are uniquely identified to be given by
1 1 (B=m)® 2
he (9) = R (51)

where my, vy and s; are as in f and the time-t bias of 0-type investor @\t s given by

~ g2 52
b, = L0+ Lw,. 52
tT g2 ot (52)
Consequently, in the presence of belief dispersion and parameter uncertainty, for economies with

the same initial average bias m and dispersion v,

i) The average bias in beliefs is increasing in parameter uncertainty s, when

D; > exp ((m + - %02) t), and 1s decreasing otherwise.

ii) The dispersion in beliefs is decreasing in parameter uncertainty ;.

The average bias and dispersion in beliefs are generalizations of the earlier dogmatic
beliefs case and are now additionally driven by parameter uncertainty stﬁ We see that, sim-
ilarly to the effect of dispersion, a higher parameter uncertainty leads to a relatively more
optimistic (pessimistic) view on the stock following good (bad) news (Property , and this
then amplifies the volatility of the average bias relative to the dogmatic beliefs case. However,
the underlying mechanisms of belief dispersion and parameter uncertainty are notably differ-
ent. In the case of dispersion, the view on the stock becomes more optimistic following good
news, because the optimistic investors, whose beliefs are supported, become wealthier and this
increases their impact on the average bias in beliefs. In the case of parameter uncertainty, the
view on the stock becomes more optimistic following good news, because all Bayesian investors
increase their estimates of the mean growth rate of the expected payoff ;. Proposition [8] also
reveals that a higher parameter uncertainty leads to a lower dispersion in beliefs (Property .
This is intuitive because investors’ estimates of u is a weighted average of their prior and the
data (cash-flow news). The higher the parameter uncertainty, the more weight investors place

on the data, which in turn reduces the differences in their estimates and the belief dispersion.

We remark that in this Section, we consider the effects of parameter uncertainty s, only for

economies with the same initial average bias m and dispersion v, as highlighted in Proposition

Z5Note that when s? = 0, the ratio s?/s? = 1 for all ¢, and the expressions in Proposition |§] collapse down to
the dogmatic beliefs economy expressions in Proposition E
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Bl This way, economies only differ in their initial level of parameter uncertainty s and our
results are not driven by the indirect effects through the initial average bias and dispersion@
Proposition [9 reports the equilibrium stock price, its dynamics and the trading volume measure

in this economy with belief dispersion and parameter uncertainty in closed form.

Proposition 9. In the economy with belief dispersion and parameter uncertainty, the equilib-

rium stock price, mean return and volatility are given by

2 2
_ de—t)—%(Qw—l)(%vQ-i—sQ)%Z—%(T—t)2

St — Ste 9 (53)
_ 1 [1 5, o\ vis? ? L [1 5, o\ vis?

s = T (1 (54) 5 (= 0) (155 (S0t) 5 -0) 00
_ Ll , 2)'”::232

o5 = Tot (S +) G (T, (55)

where the average bias my, dispersion vy in beliefs and parameter uncertainty s; are as in
Proposition @ and the equilibrium stock price Sy, mean return Jig,, and stock volatility T, in
the benchmark economy with no belief dispersion are as in Propositions 34, respectively.

The equilibrium trading volume measure is given by
O U sk [(Xt+ \/X3+4> ¢(Xt X,?+4) (Xt \/Xt2+4) ¢<Xt+ Xt2+4)
= LT VT _ (v T et

X202 52 |\ 2 2 2 2

2 2

2 2 . (56)

where ¢ (.) is the probability density function of the standard normal random variable, and X

is a (positive) deterministic process given by

2 4 4
yor |1 ,s 1
x2=2° {—vf—f + (1 - —>v%] . (57)
Up L7 St Y

Consequently, in the presence of belief dispersion and parameter uncertainty, in addition to the
properties in Propositions[3HJ], for economies with the same initial average bias m and dispersion
v, the stock wvolatility is increasing in parameter uncertainty s; but this effect is decreasing in

belief dispersion vy.

Proposition [9] confirms that our earlier implications for the stock price, its dynamics and
the trading volume remain valid with Bayesian learning. However, these equilibrium quantities
are now also driven by the parameter uncertainty s;. More notably, the additional effect
due to the parameter uncertainty now makes the stock price even more volatile as compared
with the dogmatic beliefs case. This is because a higher parameter uncertainty makes the

average bias more volatile, which leads to a higher stock price following relatively good news,

26This is established by letting the initial indirect effect of parameter uncertainty fall on the mean  and
standard deviation v of investor types using the monotonic relations between m and m, and v and v in .
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and to a lower stock price otherwise, compared to the dogmatic beliefs case. Therefore, in
this economy, the stock volatility is not only increasing in belief dispersion as in our earlier
analysis, but also in parameter uncertainty. Importantly, our stock volatility expression in (55
allows us to disentangle the effects of belief dispersion from those of parameter uncertainty
and yields a novel testable implication that the parameter uncertainty (and the subsequent
Bayesian learning) induces less stock volatility when belief dispersion is higherE] This is because
fluctuations in the average bias, and hence in the stock price, due to parameter uncertainty is
lower when dispersion is higher. In the literature, both channels are shown to generate higher
stock volatility. By disentangling these effects, our result may help future works to measure the

relative contributions of parameter uncertainty and belief dispersion in stock volatility better.

8 Conclusion

In this paper, we have developed a dynamic model of belief dispersion which qualitatively
matches many of the empirical regularities in a stock price, its mean return, volatility, and
trading volume. In our analysis, we have determined two sufficient measures, the average bias
and dispersion in beliefs, to summarize the wide range of investors’ beliefs and have demon-
strated that the equilibrium quantities are driven by these two key variables. Our model is

tractable and delivers exact closed-form expressions for quantities of interest.

We have found that the stock price increases in cash-flow news in a convex manner. We
have also shown that the stock price increases and its mean return decreases in belief dispersion
when the view on the stock is optimistic, and vice versa when pessimistic. We have found that
the presence of belief dispersion leads to a higher stock volatility, trading volume, and a positive
relation between these two quantities. We have disentangled the effects of belief dispersion and
learning on stock volatility, and found that the effects of learning is reduced when dispersion
is higher. Furthermore, we have demonstrated how otherwise identical two-investor economies
with heterogeneous beliefs and a single consumption date do not necessarily generate most of

our main results, particularly convexity.

In models such as ours where investors have preferences only over horizon wealth, the
discount factor is determined by the anticipation of future consumption. In contrast, in a

model with continuous consumption the discount factor is determined by market clearing in

2"The parameter uncertainty channel is shut down by setting s> = 0 in , which implies s?/s% = 1, and
yields os; = Ts¢ + (v7 /o) (T —t). Similarly, the belief dispersion channel is shut down by setting v? = 0 in
(55), which implies v? /v? = s} /s*, and yields o, = Gg; + (s7/0) (T —t).
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the current consumption good. In such a model it is not immediately clear that all our results
would obtain. For example, when preferences in that setting are logarithmic there are no asset
pricing effects for the stock (e.g., Detemple and Murthy| (1997), |Atmaz (2014))), therefore the
model would not explain the empirical regularities observed in the stock market. On the other
hand, considering more general power preferences with intertemporal consumption leads to
the issue of the representative investor’s belief not being well-defined since the process that
aggregates investors’ beliefs is not a martingale, and hence not a proper belief process (see,
Jouini and Napp (2007)). Therefore, in that setting we may not obtain the average bias, then
back out the investors’ equilibrium weights, and define the belief dispersion as we do in our
model. Our setting turns out to not suffer from this issue and yields a well-defined belief
process for the representative investor for all risk aversion values due to her preferences being
over horizon wealth. We leave the analysis with continuous consumption for future research.
In the Internet Appendix ID we make some progress in that direction by extending our main

model with a single consumption date to one with multiple consumption dates.
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A Appendix: Proofs of Main Model

Proof of Proposition [I. We proceed by first solving each 6-type investor’s problem, and
determining the equilibrium horizon prices and investors’ Lagrange multipliers, which are used
in the representative investor construction to infer her implied bias and to hence define the
average bias in beliefs, m;. We next identify the unique weights h; (#) which along with the
average bias allow us to determine the belief dispersion, ;.

Dynamic market completeness implies a unique state price density process £ under the true
measure P, such that the time-¢ value of a payoff X7 at time T is given by E, [(7 X 7] /&, where
& /& represents the stochastic discount factor. Accordingly, the dynamic budget constraint

of each f-type investor under P can be restated as

E, [& Wi (0)] = &W, (6) . (A.1)

We also rewrite each 6-type investor’s expected utility function @ under P as

E |17 (6) w] , (A.2)

I—x

where 07 (0) is the Radon-Nikodym derivative of the subjective measure P? with respect to PP,
nr(0) = —— = err2 T (A.3)

Maximizing each (distinct) 6-type investor’s expected objective function (A.2]) subject to (A.1)

evaluated at time ¢t = 0 leads to the optimal horizon wealth of each 6-type as

o= (52) =

where the Lagrange multiplier y (6) solves (A.1]) evaluated at time t = 0

_1 117N &Sy iemm?
R

We next determine the time-7" equilibrium state price density {r. Substituting (A.4]) into
_1 1 1
the market clearing condition [, Wy () d§ = Dy yields £,.7 [oy (6)" 7 nr (6)7 df = Dy, which

(A.5)

after rearranging we obtain the time-7T" equilibrium state price density
&r = Dy M7, (A.6)

where the auxiliary process M and the likelihood ratio process n () are given by

_ MO _ I TR Y
= [ (M) @, 5(0) =B lgr (6)] = . (A7)

Al



As we show below, y(@)fi is (scaled) Gaussian over the type space © for some mean a,,
variance 32 and a constant K:
L 1 _1G-a0?
y(0) " =K e > A . (A.8)
/2132

Substituting 7, (0) in (A.7)) along with (A.8) into the definition of M in (A.7)) yields

1 1 (0—a0)? 112 103,197

Mt:K/ e ? B e 2 atdQZK&e AT S (A.9)
R 27Tﬁ§ ﬁo

where the last equality follows by completing the square and integrating, and the processes «

S

6
oWt

2=
2=
[V

and [, with their initial values oy = a, and §y = f3,, respectively, defined as

oo, + 2w, 8262
=0—J " — l= A.10
M= ip2t =0y 152 (A.10)
We now verify y (9)_% is as in (A.8]). Substituting (A.6]) into (A.5|) gives
_1 1 1\ &oSo _1e-m)?
0 v:<IE[ evD”M“]) e A1l
y( ) nT( ) T T \/W ( )

where My is equal to (A.9) evaluated at time 7. From Lemma at the end of this appendix,
evaluated at t = 0, the expectation in (A.11)) is equal to

"Dy My 1 peee\T 1 (o)
E |:77T (0)"/ DT MT :| = £OSOK \/2—7_(_—626 B2 \/ﬁe 52a 7

(A.12)
where the constant A? is given by A? = (02 + %BgT) / <<72 + %BgT) Substituting (A.12)) into
(A.11)) and manipulating terms yields (A.8]) with

- 1 Voo v 2 N\
0= 1— =) BT S Tz o2} 4 L2 (Al
Qo =M + ( 7) BT, B, (2U 577 + 50— 570 + rakid (A.13)

We note that when = 1 the constants a, and 32 coincide with m and 9?, respectively.

We now construct the representative investor in our dynamically complete market economy
to infer her implied bias in beliefs. The representative investor solves
Wr ()17
U(Dp;A) = max/ A (@) nr () We(0) "
© 1 —x
for some strictly positive weights A (0) for each #-type investor, where the collection of weights

is denoted by A = {A(0)},.o- The first order conditions of (A.14)) yield

Wr(6) (A(O)nT <o>)i
Wr(0)  \AO)nr©))

where A (0) and nr (0) denote the O-type investor’s weight and the Radon-Nikodym derivative,

o, st / Wy (0)d0 = Dy, (A.14)
©
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respectively. Imposing f@ Wr (0) dd = Dr yields the equilibrium horizon wealth allocations as

U0
Jo N (O) nr (0)]7 dO
Substituting (A.15)) into (A.14]) gives the representative investor’s utility function as

Jo N (@) nr (0)] [ (0) r (9)]1%Y do D;—v

Dr. (A.15)

T B g

Wr (6)

U(Dr;A) = - — =, (A.16)
(Joh@nr@©)7a0) ~ 170
which after rearranging becomes
005 = ([ e an) P (A.17)

We next identify, from the second welfare theorem, the weights as A (0) = 1/y (0) where y (0)
is the 6-type investor’s Lagrange multiplier given by . By substituting these weights into
we observe that the parenthesis term as My in . We define the martingale Z as
the conditional expectation of M7 under the true measure

—1
2= B [M] = M7 (%)7 , (A.18)
t

where the last equality above follows from Lemma at the end of this appendix by taking
a = 0 and b = . Since equilibrium is unique up to a constant, without loss of generality we set
the constant K = (f87/ 50)%_1 in so that when substituted into we obtain Z, = 1.
Applying [t6’s Lemma to gives the dynamics of Z as

dZt (67
— = —duw;. A.19
7, o Wi ( )
Therefore, we obtain the representative investor’s utility function as
Dy
U(Dr;A) = Zry r (A.20)
-7

and identify Zr as being the Radon-Nikodym derivative of the representative investor’s sub-
jective belief P# with respect to the true belief P, that is dP®/dP = Z P Moreover, (A.19)

implies that oy is the time-t (stochastic) bias of the representative investor, and so is the time-¢

28 Alternatively, we can derive the representative investor’s utility function in by applying It6’s Lemma
to M, using to obtain the dynamics dM; /M, = —%(1 —1/v) (B%/0?) dt + (a/o) dw;. Since the drift
term is deterministic, we may write M, as M, = K"Y;Z; where Y is a deterministic process and Z is a
martingale process with dynamics as in with initial values Yy = Zp = 1. The solution to Y is given by

Y = (B:/B,)""" . Setting the constant as above K = (BT/BO)(I/A’)*1 yields the representative investor’s utility

function as in (A.20).
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average bias in beliefs, as denoted by my,

oa, + 12w 5 (0)7
0%+ 5Bt Jou (6) 7 m. (6)" db

Substituting ow; by In D; — (,u — 502) t yields the expression stated in .

From the last equality in (A.21)) we identify the unique weights h; () such that the weighted-

average of investors’ biases equals to the average bias in beliefs as
_1 1 2
y(0) " me (6) 1 s
1 - € toy
f@y 777t 9);d9 \/271-5t2
where the last equality follows from substituting 7, (f) into and (| into and

rearranging where «; and [; are as in ((A.10)).

he (0) = (A.22)

Finally, to determine the belief dispersion, we use the definition in @ with the average bias

in beliefs (A.21)) and weights (A.22) substituted in to obtain

1 _1(0-my)?
UQ:/ 0 —m)*h 9d9:/ 0 —m,)* e 2 B do = 32 A.23
h 6( t)" Py (0) @( t)m B; (A.23)

By equating the initial values a, and 5% to m and v* in ([A.13]) we obtain the (squared) dispersion

and the weights as in and .

The condition for the property that a higher belief dispersion leads to a higher average bias
follows from the positivity of the partial derivative of with respect to vy

0 1
— InD; — - = 2— A.24
(%tmt (n ¢ (m+u 50 )t) o > 0. ( )

Rearranging the term in the bracket gives the desired condition D; > exp (m + - %(72) t. [

Proof of Proposition 2. By no arbitrage, the stock price in our economy is given by
1

Sy = EEt &rDr] . (A.25)

To determine the stock price, we first compute the equilibrium state price density at time ¢ by
using the fact that it is a martingale, & = E,; [{r]. The equilibrium state price density at time

T is as in the proof of Proposition , given by ({A.6). Hence,

-1 1,252 (p_
& =E, [D;’YM’TY} — Dt—’YMtW (U_T> e—v(ﬂ—%ﬁ)(T—t)e—’ymt(T—t)e27 ’vé (T t)’ (A.26)
Ut

where the last equality follows from Lemma by taking a = —v and b = v and using the

equalities m; = oy and v; = [5; to express the equation in terms of model parameters.

Next, we substitute (A-6) into (A-25) and obtain the expectation E, [&7Dy] = E, [Dy 7 M7].
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Again employing Lemma [AT] with @ = 1 — v and b = 7, we obtain

71 1 (1—7)202 2 (17—
E, [D;:’YM%} _ Dtlf’YMtW <U_T) e(l—’y)(u—%ﬂ)(T—t)e(lfv)mt(Tft)€2( ) U%( t)_ (A.27)

Vg

Substituting (A.26]) and (A.27)) into (A.25) and manipulating yields the stock price expression

in Proposition . To determine the benchmark economy stock price, we set m = v = 0,
which yields m; = v; = 0. Substituting into gives the benchmark stock price.

Property (ii)| that the stock price is convex in cash-flow news follows once we substitute ({10))
into the stock price equation and differentiate with respect to D;.

The condition for property that the stock price is increasing in belief dispersion follows
from the partial derivative of with respect to v;. This property holds when

0 1 0
—my > —(2v—1)(T —1t) a—vtvf

A28
vy 27y ( )
Taking the partial derivative of m; and v? using the expression while taking account of the

dependency on v and m, yields

0 2 5
o, = = — 5 — 2 =9 A2
o my . (my —m), o v; Uy, (A.29)

which after substituting into and rearranging gives the desired condition.

Finally, property that the stock price is increasing in investors’ risk aversion for relatively
bad cash-flow states and low values of « follows from the partial derivative of with respect
to . This property holds when

0 9 1, 1 J
3fymt > 0"+ {2721% + (1 27) (87”)} (T —1). (A.30)

In this regard, using , we first compute 9v? /0y and dm/dv, and to simplify notation denote
them by C' and D, respectively

. 152 22 2 (22 _ x42 7~2 2
c=2y - 0—2—102 +<2U 2T0><2 TU)+TUU, (A.31)
oy 2 T 2 N\ s
(%02 — ;—Ta?> + L %02
0 1 1
D=_—m = —v'T+ (1 — —) CT. (A.32)
Oy g g
Using the expressions in , we then obtain the required partial derivatives as
9 v; 1 C 9 5 v [(C vt
a_,.ymt = ’lﬁ |:D - (; - ;) (mt - m):| s a_’}/vt = Qﬁ ﬁ + 0_272 . (A33)
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Substituting (A.33]) into (A.30|) and rearranging yields the condition as

1 o\' v? v? 1 cC vt
mt<m+<§—§) {D_U_?O- — |:2—’y2+(1—g) (ﬁ—f—dz_’y?)?}t] (T—t)} (A34)

For any time ¢, the right hand side of ({A.34]) is constant while its left hand side is the average

bias in beliefs, which is a normally distributed random variable, hence for sufficiently low levels

of my ((A.34) always holds. O
Proof of Proposition |3 Applying [t6’s Lemma to the stock price yields

dS; UtZ my 1 Ut2 1 Ut2
Wor _ T ) — —(T — )| dt —2 (T —1)|d A.35
o=t L= loa o] [or 2@ -] an a3)
where rearranging its drift term gives the equilibrium mean return as
1 v? ? 1 v}
pse =70’ (H——Z(T—t)) —m (H——Z(T—t))- (4.36)
vo vo

The benchmark economy mean return is obtained by setting m; = v, = 0 in (A.36]), which
along with (A.36) gives (L5).

The condition for property that the mean return is decreasing in belief dispersion follows

from the partial derivative of with respect to v;. This property holds when

0 v2\ 0 [v? o [ v? v2 0
g =290 (L) (L) g, () - T, <0, A.37
It (v%) vy (U%) " 90, <U%) V2 Jvy e ( )
Substituting the partial derivatives ({A.29) into (A.37)) and using the equality
1 2 2
o+ —L(T—t)= oL, (A.38)
Yo Ut

and rearranging gives the desired condition.

Finally, property that the mean return is decreasing in investors’ risk aversion for rela-
tively bad cash-flow news and low levels of risk aversion follows from the partial derivative of

(15) with respect to . This property holds when

0 o [V} 2 5 [V} 0 v? v: [0
e 20 [ L) - 0 () <o A.39
ot ( Cg) T o) T ™ (459
Substituting the partial derivatives ([A.33) into (A.39) and using (A.38)) yields
0 o [V} 2 5 [V} v? v} 1 C
8_7/%% =0 (@ + 2’)/0' g — My E— @ﬁ D — ; — ﬁ (mt — m) , <A40)

where we have defined F as

d vi 1 v? 1L1lv (C vt
= L= (T-t)+ ——=2 | = T—1t).
Oy v2 y ( )+702 v2 02+0272 ( )
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Rearranging ({A.40) yields the condition as

L1 C fvi[D (1 C 3 2
bt _ %Y - B Yt 4 === m —UQU—t—Z’yo'ZU—tE . (AA41)
2 2 4 2 2 2 2 4 2
UT ’Y*U v UT v ’y v v 'UT UT

We note that, for any time ¢, the right hand side of (A.41) is a constant while its left hand

side is the average bias in beliefs, which is a normally distributed random variable, hence for

sufficiently low levels of m; (A.41]) always holds. O

Proof of Proposition [, The volatility of the stock is given by the diffusion term of the
dynamics . The benchmark stock volatility readily is obtained by setting v; = 0 in the
diffusion term of . The property that the stock volatility is increasing in belief dispersion
is immediate from . O

Proof of Proposition To compute the trading volume measure V', we proceed by first
determining the dynamics of each #-type investor’s equilibrium wealth-share, W (6) /S and
portfolio, ¢ (6), the fraction of wealth invested in the stock. Then, applying the product rule
to ¥ (0) = ¢ (0) (W (0)/S), we obtain the dynamics of ¢ (6). Finally, using the definition in
we obtain the trading volume measure V for the stock in closed form.

To compute each investor’s wealth share, we first consider her time-t wealth satisfying (A.1])

G (0) = B laWr (0] = == R [ @) DM (A

where the second equality follows by substituting (A.4), (A.6) and (A.8]). We also employed
the equalities a, = m, 2 = v? (see, proof of Proposition [1)) to express (A.42) in terms of model

parameters. Using Lemma with ay = my, 2 = v? substituted in, we have

L o1y q -1 1 1 L o-m?\ 7! 1 -1 ("*[mt*(ljgvt (r-0])
E |: 6 ~ D . M N :| = S K_ < e 2 .2 ) R — w2 A2 :
t 77T( ) T T &Sy \/W QWU?A%

(A.43)

where A? is as defined in (A.60) with 87 = v7, and m; and v; are as in (10). Substituting (A.43)
into (A.42)) and rearranging gives the wealth-share of each #-type investor as
1,2 2
Y (o o ey
:(0) = e’ VAL : (A.44)

St \/2mui A2

We note that the time-t wealth-share distribution is Gaussian with mean and variance as

reported in of Remark [I] We then apply It6’s lemma to (A.44)) to obtain the dynamics

Wi (0) W (0) Utz
d =...dt
Sy + Sy you?

(0 — 170, duwy. (A.45)

To obtain each -type investor’s optimal portfolio ¢ (f) as a fraction of wealth invested in

AT



the stock, we match the volatility term in (A.45) with the corresponding one in
Wi () Wi ( )

t

d—g— St —5— <¢t( ) - 1) ospdwy,

which is obtained by using and . This yields investors’ equilibrium portfolios as

2

¢ (0) =1+ —= (0 —my). (A.46)

702

We then apply the product rule to ¢ (8) = ¢ (0) (W (0) /S) using ) and (A.46) to obtain

the portfolio dynamics in terms of number of shares invested in the stock 1 (6)

W, (0) Ut2

diby (0) = ... dt +

which after substituting (A.46) yields the portfolio volatility of each #-type investor oy, () as

oyt () = W;Y)) vgit [;)5”2 ((9 _@tmt)z - 1) + 0y <9 _@tmtﬂ . (A.47)

We now compute our trading volume measure , obtained by summing the absolute value

of investors’ portfolio volatilities. To find this absolute value, we need to identify the types for
whom the portfolio volatility is negative at time ¢. From , this occurs when the square
bracket term is negative which is a quadratic in types 6. Therefore at time-t, the types for
whom the portfolio volatility oy (6) is negative lies between two critical types 6.1 and 6.5 for
which oy (6c1) = oyt (Be2) = 0. Solving the quadratic equation yields the critical types as

1 1 1 1
01 = 1y + 0y <——Xt — X2+ 4) : B2 = Ty + 0y <——Xt + -V X+ 4) , (A48)

2 2 2 2

where X; = v0?0;/v3. From definition (17)), the trading volume measure is

V== / oy (6) |d6 ==~ { / "o (6)d6— /0 962% (6)do+ /9 o (e)de}:— /9 962% (6)do, (A.49)

cl c2 cl

where the last equality follows from the fact [, oy (0) df = 0. Substituting (A.44)) and (A.47)

into (A.49)) yields
2 Oc2 2 0 — 77 2 0 1 _1(0-my)?
Vi=-— UZ/ - < ~mt> ~1 +vt< ~mt> e T df.
You; Jo,, | VO Uy (o \/27r17;52

Changing the variable of integration to z = 9;}—’:“ and using the facts that

/ (22 =1) \/12_e%z2dz =—z2¢(2) +C, and /z\/12_65'22dz =—¢(2)+C
m I

where ¢ (.) is the standard normal density function and C'is a constant, we obtain the trading

A8



volume measure as

v2 [ vd [(Bo—m B 00— v2 [ vd [(B,—m B 0.4 —m
V= t~2|: T2( 2- t>_|_vt:|¢( 2- t)_ t~2|: T2( 1- t>+vt:|¢( 1 t) (A.50)
Yovy YO (0 V¢ Yovy YO (0 V¢
Finally, substituting (A.48)) into (A.50) and rearranging gives (|18]).

The condition for property that the trading volume measure is increasing in belief dispersion

follows from the partial derivative of with respect to vy, or equivalently v2. To compute

this partial derivative we rewrite compactly as

Vi = i [ s (lX_2U_TZ ) +Z7 ¢ (lX—QU—TZ;L)] , (A.51)
20 Ut Ut

where we defined the positive deterministic processes

o2 12\ ? o2 v? o2 v2\? o2 v?
ZFr = — L) (X244 + ——2L 7 = L) (XE+4)— ——2L
t \/(X?U%) ( t+ )+Xtv%’ t \/(X2 2 ( + ) XtU%7

with 0 < Z; < Z;, and

0 0 o [o?v?
gt g =9~ [t A.52
o2t g2t ov? <Xt U%) (A.52)
Substituting
0 1 X702 1 X202 1X21) o [(1X}v?
01Kt} o X, (1K) D (LX)
v 20 v} 20 v} v} o \20 vy
9 lﬁﬁp — 1X§UT 7t 1X2”TZ+ g lX_tQﬁZJr
o2\ 202 2! 202 02 o2 v? o2 \202 027t )7
with
O (1XPG,\ L[N\ 0Z 0 (Xt
o2\ 202 2" 2 |\ o2 v/ Ov? Lovt\ o2 0? )]’

i lX_fQﬁZJr — 1 XQUT 8Z++Z+i XQUT
o2 \2 02 v2 " 2 v ) Ov? Lo\ o202 )]’

into the partial derivative of (A.51]) with respect to v?, and using (A.52)) and the equality

o? v\’
Z+Z;_4<X%t) ’
T

yields the required partial derivative

%) 1 0 [o* v} o’ v 0 (XEv2 1 X202
—V, = —|o—— [t Z_——t— ot 7T TZ
v 20 { 2 (Xt v%) b X? 02 o2 (02 v} ¢ 202 27"

2,2 2,2 2,2 2
s [_Qi <0_v_t> 72200 <X_v_g)} s <1X_U_Tz+) (A53)

t
20 ov? \ X, v2 X? 02 0v% \ o2 v} 2 02 v
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However, (A.53) is always positive because

d [ X?vi 9 (%}
d S G 2
on? ( vtz) <0 an ov? (Xt v%) >0,

which implies that the first square bracket term in (A.53)) is positive, and if the second square
bracket terms is also positive then it is easy to see that (A.53|) is positive. However, if the

second square bracket term is negative then we use the inequality
y D (Y gt 0 (XPEY | 0 (o) oot 0 (XPng
ov? \ X, v2 X202 002 \ o2 v ov? \ X, vd X202 002 \ o 2

and the fact that ) ,
1 X7v 1X; V2
o<¢(——; —§Zj> <¢< Lz ) (A.54)

2 02 v; 2 02 0

to show that the first line in ((A.53)) dominates the second line, and therefore (A.53|) is positive.

Y

Property that the trading volume measure is positively related to the stock volatility follows
from the fact that an increase in belief dispersion leads to both a higher trading volume measure

and a stock volatility. O]

Lemma A1l. Let the processes M, o and 3 be defined as in (A.9)—(A.10). Then for all numbers

a and b we have

vot (A ()]
B [DpMy] = DaMb(%T) ploteya-o, 5 (=20
t

X {1 b (1 - _%ﬂ E e%{1*%(1*%”71(2“%%*“2”2)”’” (A.55)

bl

; _b(q_ Bt
provided 1 5 ( Bf) > 0.

Proof of Lemma By (A.9), we have

2 o2
My = M, (%) RGNS (A.56)
t

and (A.10]) gives

o Bt

W ((A)T — wt)2 . <A57>

ao wr W%—- > O[? /872“ Qi BT ( —w ) +
t

TR AT S
BT \g e ) T mm e
Substituting (A.57) into (A.56|) and using the lognormality of Dr, we obtain

2
¢

E, [D§M}] = Dperls —a><Tth(/;T) 43 (-%)g

bat ,BT 1 bﬂ% 2
j—I—aU (wT—th)-‘rng,y - (wr—wt)
e

(A.58)
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Since conditional on time-t information wy — w; ~ N (0,7 — t), we have

bay B2 b2 2 2\7—3 B2\ 7" [ vay B2 2
e(%%—i—aa)(wqw—wt)—&—%%g;(wT—wt) _ |:1 B 9( _ &):| 2 6% 1_% 1—% %%-ﬂla (T—1)

E

Y

v 57

which after substituting into (A.58|) and rearranging gives (|A.55]). O]

Lemma A2. Let the processes 1 (60) and M be as in (A.7)) and (A.9), respectively. Then

1 1 _

R X l(G_O‘QO)Q -1 1 1 (9—[at—(1—j)2ﬁt2(T_t)])2
B, [ (6)° D} M7 | = &Sk e & S 5743 ,
t 77T( ) T T gt t m W
(A.59)
where the positive deterministic process A2 is given by
1 1\ B2
A? = = (1 — —) 5—5 (A.60)
gl v/ B
Proof of Lemma Using (A.3)) and the lognormality of Dy, we have
0 2 1 602 0
s
Therefore, the required expectation becomes
1 _ 0 (—lg2)p_ 1 6% l—y+-25
E, [ (0)7 Dy M7 | = ¢ )T T [DT Mg 1} : (A.61)

Lettinga=1— v+ %2 and b =y — 1 in Lemma yields

b |6 (r=1) _y-1ef (8 1
 [or ] = o L (B e 2 (5 )

Ay \ Br
e 073 (st S g (st o) (A.62

where the deterministic positive process A? as in (A.60]). Substituting the equality

2] 6 1
o ﬁ(u—gof?)tw(%—‘;j:)

Dtvd = e’w ¢ 9
and (A.62) into (A.61)) and rearranging leads to

11 1 1 11 ﬁT(%l)l 1 o\ (g
B, [nT ()" Dy "Mz~ ] = DM <_) (1= (1=30%)(T=1)

A \ B
2 2
16248 ﬂ_@) _L*l‘i(l_ﬁlL)
xe 2w2Te (55 83)e 2 87 67 A7
ﬁ(l—l)(l— +L)&(T—t) li(l— 40 ) o2(T—t)
N AN AT A P A A T (A.63)
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We then substitute

Y

-1 82
&S, =E, [D;—WMJ’Z} _ Dtl—WMtW (g_T) 6(1—‘1)(M—%az)(T—t)e(l—v)at(T—t)6%(177)202@(717’5)
t

and the equalities

B2 1 1 B2 7
-2 = 0. ad (1-) Shron-i-a

along with (A.9)) into (A.63)) to obtain

-1
L pley -l -1 1 *%(9_30)2 1
E, [nT(Q)vDT M } — 65,K e 2 R

V2B AR

2
1 1o 1of 12028 (r—) 162 oo 29
22 2 25 g Den(T—1) 2T (T g T O G

2 2 2 2
_y=tep 1 B oy e (10 0 YyoZ (1 42) L1 ({_~y 0 N 2(p_
27 (10 5 (1-r+35) % (1 A7) 2 (19425 ) o2 (1)

We note that the last two rows in the above equation is equal to

(o (1= o]
e_ B7 A7

N|=

Y

and so we obtain ([A.59)). O
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B Appendix: Parameter Values

In this Appendix, we determine the parameter values employed in our Figures by matching the
model implied belief dispersion moments to the corresponding summary statistics in |Yu (2011)),
who reports for a typical stock, a time-average dispersion value of 3.23%, a standard deviation
of 0.38%, minimum of 2.70% and maximum of 4.42% for the sample period of 1981-2005° We
take our stock as the typical stock with an average belief dispersion, and match its implied
time-average and minimum dispersion values to the corresponding reported ones for the typical
stock, 3.23% and 2.70% respectivelym Towards this, we begin by deriving the time-average
squared dispersion, denoted by ©?, in terms of its initial dispersion v and the quantity vo?/T

in closed-form as

1 T 1 T 1)20.2 70.2 ,U2
02 = — 2dt:—/ —dt=—-In 1+ —— B.1
v T/o (oA T) o4 %/vzt T n + 702/T ) ( )

and match it to the reported squared average dispersion, ©? = (3.23%)2. We then rearrange
the dispersion equation in to obtain an expression for the minimum dispersion vy, again
in terms of v an yo?/T as

1 1 1

- ==+ —= B.2
vy 02 * vo?/T (B2)

Matching vy = 2.70% in (B.2) and substituting it into (B.1]) and numerically solving the non-
linear equation with one unknown yields the relation yo?/T = 0.00136285. Next, we set the
relative risk aversion coefficient of investors as v = 2 and the horizon T' = 10 years, and
substitute these into the previous relation to back out o = 8.25% 1 The standard deviation
of investor types, 0, is then obtained by first backing out the initial dispersion v from (B.2))
and then using the relation between v and v , yielding v = 3.39%. To plot the effects

of higher belief dispersion from its average value, the standard deviation of investor types is

29We use the summary statistics in [Yu (2011)) because the dispersion measure he constructs for the typical
stock is the value-weighted average of individual stock dispersion levels reported in the I/B/E/S summary
database, which in turn is constructed as the standard deviation of analyst forecasts about the long-term
earnings growth rates. This construction is closest to our dispersion measure as also discussed in footnote [f] in
Section

30For simplicity, we obtain the time-average dispersion by taking the square root of the time-average squared
dispersion, (1/T") fOT vZdt rather than the time-average dispersion (1/7) fOT vedt, which differs from the former
due to Jensen’s inequality. However, the quantitative differences between these two measures are insignificant
in our calibration since the reported belief dispersion is only a few percentage points in the data. On the other
hand, using the minimum rather than the maximum dispersion value for calibration ensures that the dispersion
values in our model remain within the corresponding reported range in |Yu/ (2011) which is not guaranteed for
the alternative choice of maximum dispersion.

31Other works in this literature use similar relative risk aversion coefficient values in their calibration, including
Buraschi, Trojani, and Vedolin| (2013) (v = 2), and [Dumas, Kurshev, and Uppal| (2009)), |[Dumas, Lewis, and
Osambela| (2017) (v = 3). Our choice of the horizon value T' = 10 is chosen so that we obtain plausible decay
rate for the belief dispersion in our model.
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Name Symbol Value

Mean of investor types m 0
Standard deviation of investor types 0] 3.39%
Mean growth rate of the expected payoff 14.23%
Uncertainty about the payoff o 8.25%
Investors’ relative risk aversion coefficient -~ 2
Horizon T 10
Current time t 4.37

Table 1: Parameter values. This table reports the parameter values used in our main model. The
derivation of these values is presented in the text.

set so that the time-average dispersion v is one standard deviation higher than its average
value, 3.23% + 0.38% = 3.61%, yielding the value 3.94% for the standard deviation of investor
types. The mean of investor types m is taken to be 0 to give equal initial weights to optimistic
and pessimistic views on them. We set the true mean growth rate of the expected payoff as
the reported average forecast of the long-term earnings-per-share growth rate of 14.23% in [Yu
(2011)@ In addition to the model parameters above, we also choose the current time ¢ to
evaluate the effects of belief dispersion in our model so that at that time the belief dispersion is
equal to its time-average value, v; = v = 3.23%. Backing out ¢ from the dispersion expression
in yields ¢ = 4.37, which is roughly the mid-point given the horizon value 7" = 10 in our
calibration as often used in other works (e.g., |[Pastor and Veronesi (2012))). This procedure
yields the parameter values in Table ﬂ We would like to highlight that the behavior of
our equilibrium quantities as depicted in our Figures is typical and does not vary much with

alternative plausible values of parameters.

32Even though the value for ;4 may appear large, our plots do not vary much for smaller alternative values
for u since our key quantities, the average bias and dispersion of beliefs are insensitive to it.

33The parameter values for the multiple stocks economy of Section |§| can be determined in a similar fashion.
For instance, one can set stock 1 as the typical stock with an average belief dispersion, and stock 2 as an
otherwise identical stock but with a (one standard deviation) higher dispersion, as discussed above.
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