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 Insider Trading in

 Continuous Time

 Kerry Back

 Washington University in St. Louis

 The continuous-time version ofKyle's (1985) model
 of asset pricing with asymmetric information is

 studied. It is shown that there is a unique equilib-

 rium pricing rule within a certain class. This pric-

 ing rule is obtained in closed form for general

 distributions of the asset value. A particular exam-

 ple is a lognormal distrzbution,for which the equi-
 librium price process is a geometric Brownian

 motion. General trading strategies are allowed. In

 equilibrium, the informed agent, who is risk neu-
 tral, has many optima, but he does not correlate

 his trades locally with the noise trades nor does
 he submit discrete orders.

 In the Kyle (1985) model of asset pricing with asym-
 metric information, traders submit order quantities to
 risk-neutral market makers, who set prices competi-
 tively and buy or sell for their own accounts to clear
 the market. Excluding market makers, traders are of
 two types: informed or noise traders. There is a single
 risk-neutral informed trader, who rationally antici-
 pates the effect of his orders on the price. The pres-

 ence of noise traders makes it impossible for the unin-
 formed to exactly invert the price and infer the
 informed trader's signal. Thus, markets are semi-
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 The Review of Financial Studies/ v 5 n 3 1992

 strong, but not strong form efficient. This model has been widely used
 in the study of market microstructure.

 The purpose of this article is to formalize and extend the contin-
 uous-time version of the Kyle model. As is the case with other models,

 the continuous-time version of this model is more tractable in some
 ways than the discrete-time version. For example, I will solve in closed

 form for the equilibrium pricing rule of market makers, for a general
 distribution of the asset value. A particular example is a lognormal
 distribution, for which the equilibrium price process is a geometric
 Brownian motion. In contrast, the discrete-time version has been

 solved only when the asset value is elliptically distributed [Foster and
 Viswanathan (1990)].

 An important aspect of the continuous-time model is that the
 informed trader can infer the flow of noise trades without directly
 observing them, simply by monitoring prices continuously. In con-

 trast, in a model with a finite number of trading opportunities, it
 would be advantageous for the informed trader to be able to observe
 contemporaneous noise trades before submitting his own orders.
 Rochet and Vila (1991) study a one-shot model in which the informed
 trader can do this. Their results differ from what one obtains in the
 one-shot Kyle model, in which conditioning on noise trades is not

 allowed. For asset value distributions with bounded support, Rochet
 and Vila show there is a unique equilibrium. This equilibrium satisfies

 a "no expected trade theorem" conditional on the total order, the
 market makers' expectation of the informed order is always zero in
 equilibrium. In the Kyle model, uniqueness has been established

 only within the linear class and for elliptical distributions, and, in
 contrast to the no-expected-trade theorem, the expected informed
 order is proportional to the total order in equilibrium. The contin-
 uous-time model studied here, while it is a limit of the discrete-time
 Kyle model [see Kyle (1985, sec. 5)], also seems to have some of the
 flavor of the Rochet-Vila model. This applies to both the assumptions
 and conclusions. This suggests that the many-period versions of the
 two models may be very similar. This seems very reasonable. Rochet
 and Vila interpret conditioning on noise trades as representing limit
 orders, and limit orders should be less important when there are
 many trading opportunities.

 To make it clear that there is no advantage in continuous time to
 observing the noise trades directly, I will give the informed agent the
 option of correlating his trades locally with the noise trades. For

 example, denoting the noise trades at time t by dZ, and the informed
 trader's order by dXi, we could have dX, = - dZ,. This can be inter-
 preted as the informed trader being on the floor of the exchange and
 accepting orders as they arrive, instead of letting them go to the
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 Insider Trading in Continuous Time

 specialist.1 I will show that it is strictly suboptimal to correlate locally
 with the noise trades. To do so would require submitting orders that
 are too large (of order v'dt) relative to the optimal order size for the
 informed trader.

 The main results of the article are as follows. There is an equilib-
 rium in which the pricing rule of market makers (i) is a smooth,

 strictly monotone function of the cumulative order, (ii) satisfies a
 certain finite-variance condition, and (iii) is such that the Bellman
 equation characterizes the informed trader's optima. This equilib-
 rium, which will be obtained in closed form, is the unique equilib-
 rium satisfying (i)-(iii).2

 The key observation underlying the result that there is a unique
 equilibrium in the class considered is that in any such equilibrium
 the informed trader's expectation of the price change would be zero
 if he were to refrain from trading. More generally, noise trades alone
 will not create predictable shifts in the location or slope of the resid-

 ual supply curve faced by the informed trader. In other words, any
 equilibrium pricing rule in the class considered must have a certain

 unbiasedness property. Restricting attention to linear equilibriums
 in discrete-time models imposes this unbiasedness property exoge-
 nously, but such equilibriums will not exist for general distributions
 of the asset value. However, general distributions can be handled in

 continuous time. This can be attributed to the fact that pricing is
 locally linear. One can also view this distinction between discrete-

 and continuous-time markets in terms of what Kyle calls the "tight-
 ness" of the market. In discrete time, the marginal cost of the asset
 exceeds its price, because the supply curve is upward sloping. So at
 any point in time a finite optimum can exist even if the price is
 expected to increase later as a result of noise trades (i.e., even if the
 pricing rule is "biased"). In contrast, in continuous time, the informed
 trader can act as a perfectly discriminating monopsonist, moving con-
 tinuously up or down the residual supply curve (i.e., the market is
 infinitely tight). Hence, he could exploit predictable shifts in the
 supplv curve.

 We have to make some assumption about execution in this case. If by being on the floor, the
 informed trader can buy at the specialist's bid and sell at the ask, then it would probably be optimal
 to be on the floor. This is tantamount to letting the informed trader act as a market maker. Black
 (1990) discusses the value of being able to act as a market maker for an informed trader (even a
 trader who is informed only about his own past trades). Because prices are revised continuously
 in this model, there is no real bid or ask. However, the model is such that if dX, = - dZ,, then
 transactions occur at "the midpoint of the spread," in a certain sense. Under this assumption,
 correlating locally with the noise trades is suboptimal.

 2Jarrow (1990) considers a closely related model and shows by means of examples that market
 manipulation (arbitrage) will generally be possible when the price depends on the history of a
 large trader's orders, rather than just on the cumulative order. This suggests that it may not be
 restrictive to only consider pricing rules that depend on the cumulative order. However, even if
 this is the case, there still could be equilibriums in which this dependence is not smooth and
 strictly monotone or (ii) or (iii) are not satisfied.
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 The unbiasedness property is a generalization of Kyle's (1985, pp.
 1328-1329) result that the slope of the residual supply curve (the
 reciprocal of what Kyle defines as market depth) cannot vary in a
 deterministic fashion. In the normal distribution model, it is a con-
 stant. More generally, it is a martingale.

 The unbiasedness property of the pricing rule implies that the order
 process must appear to market makers to be a martingale-buy and
 sell orders are equally likely to arrive (this is also true in the linear
 equilibrium of Kyle's discrete-time model). A simplifying aspect of
 continuous time is that continuous martingales are completely char-
 acterized by their local variances. The local variance of the total (net)
 order process is the same as the local variance of the noise trades,
 because the informed trades are of smaller order (dt as compared to
 dt)b. This implies that the market makers view the total order process
 as having the same distribution as the noise trades alone. For example,
 the cumulative informed and noise trades over the trading period [0,
 1], which we will denote by X1 and Z1, respectively, are joint normal

 with zero means, and the beta of Z1 on X1 is - 2. Hence, X1 + Z1 and
 Z1 have the same distribution. The total order process is not equal in
 distribution to the noise trades in Kyle's discrete-time model, because
 the total order has a larger variance at each time. However, in the
 linear equilibrium of the normal-distribution model with many trad-
 ing periods, the distributions of the total and noise trades are approx-
 imately equal, because, as Kyle shows, the discrete-time equilibriums
 converge to the continuous-time equilibrium.

 The model is presented in Section 1. The analysis is contained in
 Section 2, and a brief conclusion can be found in Section 3.

 1. The Model

 There is to be a public release of information at a known date that
 will affect the value of an asset. The announcement date is called
 date 1 and the present date is called date 0. Trading of this asset and
 a risk-free asset is assumed to occur continuously during the interval
 [0, 1]. The risk-free rate is taken to be zero. The information is already
 possessed by a single insider. The information is represented as a
 signal P. We will interpret v as the price at which the asset will trade
 after the release of information. Alternatively, because of the risk
 neutrality, one can interpret D as being merely an unbiased signal of
 this price. The distribution function of D is denoted by F. Assume the
 support of F is an interval, possibly the whole real line or a half line,
 and that Fis continuous on this interval. Therefore, F-1 is well defined
 on the interval (0, 1). Assume the second moment f v2 dF is
 finite.
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 Insider Trading in Continuous Time

 In addition to the insider, there are liquidity traders who have

 random, price-inelastic demands, and market makers who are risk
 neutral. All orders are market orders and are observed by all market
 makers.3 Denote by Zt the cumulative orders of liquidity traders
 through time t. The process Z is assumed to be a Brownian motion
 independent of v, which has mean zero and variance a2 (per unit of

 time). Let Xt denote the cumulative orders of the informed trader,
 and set Y= X + Z.

 Market makers only observe the process Y, so they cannot distin-
 guish between informed and uninformed trades. We will study equi-
 libriums having the property that the price at any time tdepends only

 on cumulative orders Y, and not on the history of orders. Therefore,
 we assume

 Pt = H(Yt, t), (1)

 for some function H. Assume H is twice-continuously differentiable
 in y, continuous in t E [0, 1], continuously differentiable in tE (0, 1),
 and satisfies EH(Z1, 1)2 < oo, and H(, t) is strictly monotone for
 each t. Here and throughout the article unless conditioning on
 particular information is explicitly indicated-the symbol E denotes
 expectation taken over Z and v.

 The monotonicity of H implies that the insider can invert H to

 compute Yt at each time t. Hence, before he submits his order at time
 t, he can be assumed to know {Z,j 0 ' s < t}. Because Zis continuous,
 this is equivalent to knowing {Z, I ' s < t}. Let F {IYtI0 < t ' 1}
 denote the usual augmentation [see, e.g., Dothan (1990, def. 10.1)]
 of the increasing family of a-fields generated by the stochastic process
 (, where - v and (t Zt (Vt > 0). We will require the informed
 trader's strategy X to be adapted to F, which means that the informed
 trader knows v at time 0 and observes (infers) Zt at each time t.

 To motivate the formulation of the budget constraint of the informed
 trader, it is useful to consider a discrete-time model (t = 1,..., T). Let
 W denote the agent's wealth and B the investment in the risk-free
 asset, so W= B + PX. In the competitive model, one usually thinks

 of the price changing from Pt-1 to Pt, generating the capital gain
 Xt-1(Pt - Pt1), and portfolio rebalancing then occurring subject to
 the intertemporal budget constraint

 Bt + PtXt= Bt-1 + PtXt-

 Thus, the change in wealth is

 wt - Wt_ = Xt_ (Pt- Pt-,)

 3 As will be explained, the informed trader will be allowed to condition his orders on the contem-
 poraneous liquidity orders. Conditioning on liquidity orders is similar to conditioning on price,
 so this model also has the flavor of a limit order model.
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 Here we think of the agent submitting a market order Xt - Xt, and
 then the price changing from Pt-1 to P. The order is executed at the
 price Pt. Execution of the order causes the investment in the risk-
 free asset to change by

 Bt- Bt1 =-Pt(X-Xt-1)

 so the change in wealth is

 Bt-BBt- + PtXt - Pt_-Xt = -Pt(Xt- Xt-) + PtXt- Pt-A-l
 = x_1(Pt - Pt-1). (2)

 The upshot is that the formula for wealth dynamics is the same in
 the market-order model as in the usual model. Notice that it does
 not matter whether the agent views his market order as causing the
 change in price. The budget constraint does not depend on whether

 the agent acts as a monopsonist or as a perfect competitor.4
 Extending this to continuous time, it is clear that we should use

 the Merton (1969) and Harrison and Pliska (1981) formula for the
 wealth dynamics of the informed trader. The only deviation from the
 Harrison-Pliska model that we will make here is that we will allow
 only a subset of the trading strategies that Harrison and Pliska allow.
 The motivation is that we want to think of the stochastic differential
 dX(t) of the order process as the market order. Formulas involving
 stochastic differentials are meaningful only in integrated form, and
 stochastic integrals can be defined with X as an integrator only if X
 is a semimartingale. So we will require the order strategy X to be a
 semimartingale and define the wealth dynamics by

 dWt= Xt- dPt. (3)

 Here, and throughout the article, the symbol Xt- denotes the left limit
 limsTt X. The use of the left limit is an obvious extension of (2). Given
 the smoothness assumptions on H, the process Pt = H(Yt, t) will also
 be a semimartingale [by Ito's formula; see Dellacherie and Meyer
 (1982, VIII.25)]. Moreover, the left-continuous process Xt- is pre-
 dictable and locally bounded, so the stochastic integral f Xt- dPt exists.
 Harrison and Pliska allow as a trading strategy [i.e., as an integrand
 in (3)] any predictable process for which the stochastic integral exists.
 Thus, the class of strategies allowed here is a subclass of the class
 allowed by Harrison and Pliska.

 The requirement that X be a semimartingale means that it is right

 continuous, the left limits Xt- exist, and it can be written as X = D
 - S + M, where D and S are positive, increasing, right-continuous

 4 Another point worthy of note is that being able to anticipate the price change before submitting
 a market order does not necessarily lead to arbitrage, because the capital gain X,-,(P, - P,-1) is
 still calculated on the basis of X,-1, which is the position held before the price change.
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 processes and M is a local martingale.5 The right-continuity is a nor-

 malization, which means that we are taking Xt to include any jump
 AXt Xt - Xt made at time t. Jumps can be interpreted as discrete
 orders. We do not expect to see any discrete orders in equilibrium,
 because they can be identified as coming from the informed trader.
 Pricing rules of the form (1) respond to discrete orders in exactly the
 same way as if they had been submitted in infinitesimal pieces. Given
 this pricing, we will see that discrete orders are indeed suboptimal.6
 When M = 0, as will be true in equilibrium, the process X = D - S
 is naturally interpreted as the difference of purchases and sales.

 We are allowing for the possibility that there will be a jump in the
 price at time 1 after the announcement is made. Including the capital
 gain from such a jump, the formula (3) implies the final wealth of
 the informed trader is

 W = (v-Pi)Xi + Xt- dPt. (4)
 [,1]

 Here we are, without loss of generality, taking WO = 0. It is necessary
 to explicitly include the endpoints in the region of integration, because
 of the possibility of jumps.7

 The technical importance of the assumption that X is a semimar-
 tingale is that it allows us to integrate by parts to reformulate the
 wealth equation (4). This yields a formula that is a direct general-
 ization of Kyle's. Specifically, (4) is equivalent to

 Wi = (i -Pt-) dXt - [P, X]1, (5)

 where [P, X] is the "optional quadratic variation" process [Dellacherie
 and Meyer (1982, VIII.18)]. The differential of this process corre-
 sponds to what one usually writes as dPdX.8 The formula (5) is the
 one we will use in the remainder of the article.

 5 One is free to assume Mis a martingale, because a martingale is a special case of a local martingale.

 6 Three points are worthy of note here. First, our equilibrium concept will not constrain off-equilib-
 rium beliefs, so we are free to specify beliefs and hence prices following discrete orders in any
 way we desire. Second, we are not claiming that (1) is the only possible rational pricing rule that
 will discourage discrete orders. Third, there are pricing rules that will encourage discrete orders,
 which in fact will lead to arbitrage. For example, suppose the price change AP in response to a
 discrete order AXis of the form AP/P = XAX, for a constant X. To see how this can be manipulated,
 suppose X = .01, the true value is $20, and the price is $10. Selling 10 shares will cause the price
 to be reduced to $9 and generate $90 in revenue. Immediately buying 100/9 shares will move the
 price back to $10 and cost $1000/9. The net cost of this pair of trades is $190/9. However, the net
 trade is + 10/9 shares, each of which is worth $20. Thus, the net profit is $10/9. This can be repeated
 indefinitely, leading to infinite profits.

 7 Without loss of generality, we take the intitial position X0 to be zero. We also adopt the convention
 that P0_ equals the unconditional expectation of D.

 8 See Dothan (1990, especially chap. 5) for the definition of this process and for an explanation of
 this point.
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 To see the connection between (5) and Kyle's formula, suppose
 first that X has differentiable paths. This will be true in equilibrium.
 In this case, [P, X] 0. Moreover, P will also be continuous, by virtue

 of (1) and the continuity of H. Hence, (5) specializes to

 Wi =f ( - P) dXt, (6)

 which is Kyle's formula. This can be interpreted as the value of the

 final position (DX1) less the cost of acquiring it (f1 Pt dXt). This for-
 mula for the cost of acquiring the position is analogous to the usual
 formula for the cost of a perfectly discriminating monopsonist. Kyle
 motivates it by stating that, since the market order is executed at the

 post-order price, the cost of the order is (Pt + dPt) dXt. Kyle notes
 that, by the usual rules for multiplication of stochastic differentials,
 dP dXis zero when X is differentiable, which yields (6) as the formula

 for final wealth. More generally, it seems that we should interpret the

 cost of a market order as (Pt- + dPt) dXt (i.e., as Pt- dXt + d[P, X]t).
 This definition agrees with (5).

 We will show that, in equilibrium,

 dPt = Hy(Yt, t) dYt,

 where the subscript denotes the partial derivative. Thus, price changes

 are locally proportional to order sizes. The transaction price Pt- +
 dPt therefore depends on the size and magnitude of the order dYt
 and is centered on P,_ If the informed traders' order exactly offsets
 the noise trades (i.e., if dXt = - dZt) then dPt will be zero, so the
 transaction price will be Pt-, the "midpoint of the spread." In this
 sense, the informed trader and noise traders receive equally good
 execution.

 A technical problem is that, as in competitive models [see Harrison
 and Kreps (1979)], we must exclude doubling strategies by the
 informed trader, or else the model will be degenerate. A doubling
 strategy in this model is to repeatedly double the following bet until
 it is won: buy the asset in the hope that noise traders will subsequently
 buy it and drive the price up. It is sufficient to require that

 EJ H(Xt- + Zt, t)2dt < o?. (7)

 The constraint (7) is related to the integrability condition used to rule
 out doubling strategies in the competitive model [see Duffie and
 Huang (1985) or Dybvig and Huang (1988)].

 The role played by the constraint (7) is to guarantee that the process

 f P,_ dZ, is a martingale. To understand this, it is useful to consider
 a model with discrete trades, like Glosten and Milgrom (1985). In
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 that model, market makers make money from noise traders because
 of the bid-ask spread. This is compensation for their expected losses
 to informed traders. The only reason noise traders lose money on
 average is that they are always trading on the wrong side of the spread.

 The requirement here that ft P,_ dZ, be a martingale means that noise
 traders would not lose money on average if they could always trade
 at the midpoint of the spread.9 This is obviously a feature we want

 the model to have.
 We will implement (7) by imposing separate constraints on the

 pricing rule H and order strategy X. As with the other constraints
 imposed on H, this one will not be binding in equilibrium, but it
 does limit the scope of the uniqueness of equilibrium result. All the
 assumptions on H are captured in the following definition: let X

 denote the class of continuous functions H: R x [0, 1] -- R that are
 twice-continuously differentiable in y and continuously differentiable

 in ton R x (0, 1) and for which H(Q, t) is strictly monotone for each
 t E [0, 1] and

 EH(Z1, 1)2 < oo and EJ H(Zt, t)2dt < oo. (8)

 A pricing rule is an element of N. Let X denote the class of semi-

 martingales X adapted to F such that

 (VH EcN) E H(Xt + Zt, t)2dt< oo. (9)

 A trading strategy is an element of X. The continuity of each HE N

 implies that (9) leaves the density function of Xt- + Zt on any bounded
 set completely unrestricted (the distribution can even have mass
 points). A sufficient condition for X to satisfy (9) is that the ratio of

 the density function of Xt- + Zt to the density function of Zt be
 bounded uniformly in ton (-oo, -n) U (n, oo), for some n.

 Given a trading strategy X, a pricing rule is rational if it satisfies

 H( Yt, t) = E[v b ( Y,),,t]. (10)

 Given a pricing rule H, a trading strategy is optimal if it maximizes

 E { ( -Pt-) dXt - [P, X], (11)

 9 Of course, they cannot in general trade at the midpoint of the spread. In accordance with the

 definition of insider profits, the losses of noise traders are defined as f[OlJ (P,_ - v) dZ, + [P, Z]j.
 Given (7), the expected losses are E{[P, Z]1}. The variable [P, Z], is interpreted as the sum over
 time of the "bid-ask spread costs" dP, dZ,. It will be positive. By Ito's formula, [P, Z]1 = i2 fS Hy( Yt,
 t) dt, and the partial derivative Hy is strictly positive by assumption.
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 on X. An equilibrium is a pair (H, X) such that H is a rational pricing
 rule, given X, and Xis an optimal trading strategy, given H. If (H, X)
 is an equilibrium for any trading strategy X, then H is an equilibrium
 pricing rule.

 2. Equilibrium

 The purpose of this section is to explain and prove the following
 theorems. Recall that F denotes the distribution function of v. Let V

 denote the support of v excluding the endpoints, if there are any (the
 endpoints have zero probability because of the continuity of F). Let
 N denote the normal (0, (72) distribution function.

 Theorem 1. Define

 H(y, t) = Eh(y + Z1- Z), (12)

 where h = F-' o N. For each v E V define

 xt= (1 - t) F h1(v)- ds; (13)

 then (H, X) is an equilibrium.

 Theorem 2. The pricing rule (12) is the unique equilibrium pricing
 rule Hfor which there exists a nonnegative, smooth function J(v, y,

 t) on V x N x [0, 1] satisfying the Bellman equation

 max + Jy 0 + 1 a2Jyy + (v - H) = 0
 OE91 ~~2

 on V x N x (0, 1), (14)

 and boundary condition

 J(v, y, 1) > J(v, h-1(v), 1) = 0 [vE V, Vy # h-(v)], (15)

 where h( H(, 1).

 Theorem 3. Let (H, X) be an equilibrium. Suppose H is such that
 there exists a smooth solution J to the Bellman equation (14) and
 boundary condition (15). Then

 dPt = Hy( Yt, t) dYt, (16)

 and the process Yis distributed as a Brownian motion with zero drift
 and variance U2 given the market makers' information (i.e., on the

 filtration generated by Y). The process H(Z, t) is a martingale given
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 the informed trader's information (i.e., on the filtration F). If F has
 a density function and EHY(ZJ, 1) < oo, then the process HY(Zt, t) is
 a martingale given the informed trader's information, and the pro-

 cess HY(Y, t) is a martingale given the market makers' information.

 Before explaining the Bellman equation and boundary condition,
 we will consider two examples.

 Example 1. Assume v is normally distributed with mean a and variance
 02. Set h(y) = F-'(N(y)). Since F(h(y)) = N*((h(y) - a)/+) and
 N(y) = N*(y/o.), where N* denotes the standard normal distribution
 function, the definition F(h(y)) = N(y) implies h(y) = a + ky/f.
 Thus, H(y, t) = a + Xy, V(y, t), where X A /o-. From Theorem 3,

 we see that dPt = X dYt, and Yis viewed as a Brownian motion by the
 market makers. Thus, P is a Brownian motion given the market mak-
 ers' information, or equivalently, given public information (the fil-
 tration generated by P). This is the equilibrium pricing rule described
 by Kyle. The insider's strategy in Theorem 1 is

 dX= h-1()-Yt dt = ' dt
 i -t X( - t)

 which is also as in Kyle.

 Example 2. Assume log v is normally distributed with mean a and

 variance 02. Set h(y) = F-1(N(y)). Now we have F(h(y)) =

 N*((log h(y) - a)/1), so h(y) = exp(a + Xy), where as before X =
 0/cr. Thus, H(y, t) = exp(a + Xy + 42(1 - t)/2). If the insider were
 to place a discrete order AXt, then the jump in price would be APt =
 Pt,(exp(XAXt) - 1). However, in equilibrium, there are no discrete
 orders and no martingale component in the insider's strategy. We

 have HY(Yt, t) = XPt, so from Theorem 3,

 dPt XdY,.
 Pt

 Because Y is a Brownian motion given the market makers' informa-
 tion, P is a geometric Brownian motion. Notice that X is the sensitivity
 of the price to orders measured in dollar terms (i.e., as Pt dYt). Accord-
 ing to Kyle's definition, 1/XPt is the market depth, but it would also
 be reasonable to interpret 1/X as the depth. The price-response coef-

 ficient HY(Yt, t) = XPt is a martingale given the market makers' infor-
 mation. If the informed trader refrains from trading (unbeknownst to
 the market makers, of course), then the price-response coefficient
 will evolve as the martingale XH(Zt, t). It may be interesting to com-
 pare the equilibrium pricing rule here to the example of arbitrage in
 note 6.
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 Now we turn to the Bellman equation and boundary condition. The
 meaning of the term "smooth" in this article for a function Jon V x

 R x [0, 1] will be that, VvE V,J(v, ) andJ,(v, ) are continuous on
 R x (0, 1], and J,,(v, ) and Jt(v, ) are continuous on R x (0, 1).
 The subscripts here and in (14) denote partial derivatives. The argu-

 ments of Jand H have been omitted in (14) for convenience.
 The formulation of the Bellman equation is based on an assumption

 that the order rate Ot dXt/dt exists, but it is also useful in general.
 When the order rate exists, the objective function (11) specializes to

 E X[V - H(Yt, t)]Ot dt.

 Given the path independence of the pricing rule, it is natural to use
 v and Yt as the state variables for the informed trader's optimization
 problem. The dynamics of Ywhen the order rate exists are given by

 dYt = Ot dt + dZt.

 Hence, by Ito's formula,

 dJ(v, Yt, t) = [Jt(v, Yt, t) + jy(i5 Yt, t)0t + 12jv v (vn Yt, t)] dt
 + ( - Yt, t) dZt.

 The Bellman equation is the statement that the instantaneous profit

 [v- H(Yt, t)]Ot dt

 is exactly offset by the expected change in J when an "optimal" policy

 is followed, and the instantaneous profit is not sufficient to offset the
 expected change in J when a "suboptimal" policy is followed. The
 terms "optimal" and "suboptimal" are used here only to indicate
 whether the maximum in (14) is attained. We are not claiming at this
 point that an optimal trading strategy as defined in the previous sec-
 tion necessarily attains the maximum in (14). Nor are we claiming
 that the actual value function solves (14) and (15). We are simply
 viewing (14) and (15) as a functional equation to be solved for some
 function j

 The boundary condition (15) is a little unusual in that one might
 expect J to be identically zero at time 1. The interpretation of (15)
 is that J is defined by continuity at time 1, and the remaining value

 J(v, Yt, t) at times t close to 1 is near zero if and only if Yt is close to
 br1(v) (i.e., Pt is close to v) .

 The outline of the proofs is as follows. With Lemma 1, I will con-
 struct a solution of the Bellman equation and boundary condition for
 a class of pricing rules that includes (12). In Lemma 2, I will char-
 acterize the optima for the informed trader given a pricing rule in
 this class. It is essentially a "verification theorem," showing that the
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 optima are characterized by the Bellman equation. In Lemma 3, I
 characterize the distribution of Y, given the strategy (13) for the
 informed trader. It follows from Lemmas 2 and 3 that (13) is an optimal
 strategy, when pricing is based on (12). Theorem 1 is then proven
 by showing that the function H defined in (12) belongs to X and is
 rational.

 Lemma 1 shows that, for the pricing rule (12), there is a solution
 to the Bellman equation and boundary condition. For the uniqueness
 part of Theorem 2 and in Theorem 3, we assume there is a solution
 to the Bellman equation and boundary condition. Under this assump-
 tion, Lemma 4 shows that the price would be a martingale if the
 informed agent refrained from trading, and Lemma 5 shows that the
 order process must be a martingale in equilibrium. Theorems 2 and
 3 follow directly.

 The key to understanding the Bellman equation is to observe that
 the maximand is linear in the choice variable 0. Because the choice

 variable is unconstrained (i.e., one can buy or sell at arbitrary rates),
 there can be a finite maximum only if its coefficient is zero. Setting
 this coefficient equal to zero, and then setting the sum of the remain-
 ing terms equal to zero, gives the following:

 J,(v, y, t) = H(y, t) - v

 (V (V, y, t) E V x R x (O, 1]) (17)

 Jt(v, y, t) + 1T2J YY(v, y, t) = 0 [V(v,y, t)E Vx R x (O,1)]. (18)

 These relations follow directly from (14) only for t E (0, 1), but we
 can include the endpoint t = 1 in (17) because of the continuity of

 Jy and H. If J is nonnegative and smooth and satisfies (18), then

 J(v, y, t) = E[J(v, y + Z, - Zt, S)]
 [V(V, y) EV X , VO < t < S-1], (19)

 where we are taking the expectation over Z, regarding v as a constant
 (see Karatzas and Shreve [1987, theorem 4.3.6, exercise 3.8 (ii)]). The
 evident interpretation of (19) is that the maximum value attainable
 at time t can actually be attained by not trading at all until some later
 time s (at which time we will have Y1 = Yt + Z, - Z) and then trading
 optimally from time s on. While all of this is very conjectural at this
 point, because we have not yet established a connection between the
 Bellman equation and the value function, it does motivate the con-
 struction in Lemma 1. In this lemma, we try to calculate the value by
 waiting until the "last instant" and then trading. The profit from this
 limit strategy is calculated by moving up or down the residual supply
 curve at time 1 to the point p = v.
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 Lemma 1. Let h be a strictly monotone function thatsatisfies El h(Z1) I
 < oo. Suppose the pricing rule is

 H(y, t) = Eh(y + Z1 - Zt). (20)

 Define

 rh-l V

 (V, Y) = (v - h(x)) dx, (21)

 and

 J(v, y, t) = E[](v, y + Z1 - Zt)], (22)

 where we are taking the expectation over Z, regarding v as a con-

 stant. Assume J(v, , 0) < oo (Vv E V). ThenJ is a smooth solution of

 (14) and (15).

 Proof See the Appendix. n

 Now we will show that any solution of the Bellman equation and

 boundary condition is necessarily the value function for the informed
 trader's optimization problem. This yields a characterization of the
 informed trader's optima.

 Lemma 2. LetH be an arbitrarypricing rule. Suppose a nonnegative,

 smoothsolutionJof (14) and (15) exists. Thenforany tradingstrategy
 X, the expectedprofit (11) is no larger than EJ(i, 0, 0). Any trading
 strategy X D - S + M which has continuous paths, for which M
 0, and which implies H(Y1, 1) = v- almost surely (a.s.), gives an
 expected profit equal to EJ(v, 0, 0) and is therefore an optimal strat-
 egy. If X is any trading strategy that includes discrete orders, or has
 a nonzero local martingale part, or does not imply H(Y1, 1) = v- a.s.,

 then the expectedprofitfrom X is strictly less than EJ(v, 0, 0).

 Proof. See the Appendix. n

 So the necessary and sufficient conditions for optimality, when the

 Bellman equation and boundary condition can be solved, are that
 there be no discrete orders (which impose too much price pressure),
 no local correlation with the noise trades (again, because this involves
 trades that are too large10) and no jump in the price following the
 announcement. If the market has not fully incorporated the infor-

 mation prior to the announcement [i.e., if P1 H(Y1, 1) =# v], then

 10 Similarly, it is suboptimal to include a martingale component that is uncorrelated with the noise
 trades. The arguments are exactly the same when this type of strategy is allowed. It is the infinite-
 variation property of continuous-time martingales that leads to nonzero "bid-ask spread costs"
 dPdX and renders them undesirable.
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 it is clear that profitable trades were forgone by the informed trader,
 which is inconsistent with equilibrium.

 The key remaining step in demonstrating the optimality of the
 trading strategy (13) is to show that there will be no market response
 to the announcement when the strategy is followed. This is implied
 by the following result, which is also instrumental for demonstrating
 the rationality of (12).

 Lemma 3. Assume the informed traderfollows the strategy (13), where
 h is defined in Theorem 1. Then, on the filtration F, the process Y is
 a Brownian bridge with instantaneous variance U2 , terminating at

 h- 1 (v). On the filtration generated by Y, the process Y is a Brownian
 motion with zero drift and instantaneous variance v.2.

 Proof. Note that

 _h1'(i3) -t -
 dX =.- dt. (23)

 1-t

 Thus, the sum of the informed and noise trades is

 Y h-(-)- dt + dZ.
 t 1 - t

 It follows that, on F, Yis a Brownian bridge, with variance 0-2, begin-

 ning at 0 and ending at h-'(i) [Karatzas and Shreve (1987, p. 358)].
 The finite-dimensional distributions of a Brownian bridge are the

 same as a Brownian motion conditional on the terminal value being
 known [Karatzas and Shreve (1987, problem 5.6.11)]. The terminal
 value here is the random variable h-1(V) N-1(F(vi)), which is nor-
 mally distributed with mean zero and variance 0-2 and is independent
 of Z. Hence, the finite-dimensional distributions of Y, unconditional
 on v or Z, are the finite-dimensional distributions of a Brownian
 motion. U

 Proof of Theorem 1. To demonstrate the rationality of the pricing rule

 (12), given the trading strategy (13), we will explicitly indicate the
 conditional expectation at time t given the market makers' informa-

 tion (the filtration generated by Y) by EM[ ] and the conditional expec-
 tation given the informed trader's information (the filtration F) by
 E'[-]. We can write the definition (12) as

 H(y, t) = E'[H(Z1, 1) I Zt = y],

 where H(-, 1) = F-p(N(.)). Lemma 3 shows that the distribution of
 Zwith respect to the informed trader's information is the same as the
 distribution of Y with respect to the market makers' information.
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 Hence,

 H(y, t) = EM[H(Y1, 1) 1 Yt = y] = EM[H(Y1, 1) 1 (Y),t],

 where (YI),st denotes any history with Yt = y. We are using the Markov
 property of a Brownian motion here. Lemma 3 also establishes that

 H(Y1, 1) = v a.s. Making this substitution, the above reduces to the
 definition of rationality.

 It remains only to verify the regularity conditions used in Lemma
 1 and in the definitions of 91 and X. The fact that X E X follows from

 the fact that the unconditional distribution of Xt + Zt is the same as
 that of Zt. The smoothness and strict monotonicity of H follow directly
 from the definition (12) [for the smoothness, see Karatzas and Shreve

 (1987, problem 4.3.1)]. The process H(Zt, t) is a martingale and H(Z1,
 1) has the same distribution as v by the definition of h. Hence,

 EH(Zt, t)2 ' EH(Z1, 1)2 = Ei2 < 00,

 which implies that H E N. This in turn implies the assumption on h
 used in Lemma 1. X

 The first step in proving Theorems 2 and 3 is to derive the unbi-
 asedness property mentioned in the introduction (i.e., to show that
 the informed trader's expected price change is zero when he does
 not trade). This property is consistent with the interpretation we gave
 for (19), because the existence of a predictable component to the
 price change during an interval [t, s] when the informed trader did
 not trade would render it strictly optimal to trade during that interval.

 The unbiasedness property leads directly to the result that price
 changes are locally proportional to order sizes in equilibrium (i.e.,

 dH= HydY).

 Lemma 4. Let H be an arbitrary pricing rule. Assume there exists a

 smooth solution J to (14) and (15). Then the process H(Zt, t) is a
 martingale on the filtration F. If X = D - S + M is any trading
 strategy that has continuous paths and for which M 0, then, for
 all t,

 H(Yt, t) = H(0, 0) + Hy(Y, s) dY,. (24)

 Proof The martingale property follows from the martingale property

 of J[i.e., (19)], after differentiating (19) and using (17). The technical
 details will be supplied in the Appendix.

 Assuming H(Zt, t) is a martingale, H must satisfy the partial differ-
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 ential equation

 Ht + 2c2Hy 0

 on R x (0, 1) [Karatzas and Shreve (1987, p. 254)]. Now applying
 Ito's formula to H(Yt, t) and making this substitution yield (24). We
 have used here the fact that the quadratic variation process of Y is

 the same as that of Z, namely o-2t. n

 Lemma 5. Let (H, X) be an equilibrium. Assume there exists a smooth

 solution J to (14) and (15). Then, on the filtration it generates, the
 process Ymust be a Brownian motion with zero drift and variance 2o

 Proof. The formula (24) implies

 tOJ ( Hy( Y, s) dH(Y, s)

 Because H(Yt, t) is a martingale on the filtration generated by Yand
 HY( Y,, t) is strictly positive, with continuous paths, the process Ymust
 be a local martingale on this filtration. The quadratic variation process
 of Yis o-2t. Any continuous local martingale with this quadratic vari-
 ation process is a Brownian motion, by Levy's theorem [Karatzas and
 Shreve (1987, theorem 3.16)]. U

 Proof of Theorem 2. We have shown in Lemma 1 that there exists a
 solution to the Bellman equation and boundary condition when the
 equilibrium pricing rule (12) is used. For the uniqueness, suppose
 His any equilibrium pricing rule for which there exists a solution to
 the Bellman equation and boundary condition. The martingale prop-

 erty of H(Zt, t) established in Lemma 4 implies that H(y, t) = E[h(y
 + Z1 - Zt)], where h(-) = H(, 1). We have from Lemma 2 that, in
 equilibrium, h(Y1) = v a.s., so Y1 = h-1 (v) a.s. Hence, for any scalar
 a, the probability, given the market makers' information at time 0,
 that Y1 ' a is F(h(a)). According to Lemma 5, the distribution func-
 tion of Y1, given the market makers' information at time 0, is N.
 Therefore N = F o h, implying h = F-1 o N. n

 Proof of Theorem 3. Lemmas 4 and 5 contain everything except for

 the price-response coefficient being a martingale. The process H(Yt,
 t) being a martingale on the filtration generated by Y is equivalent

 to the process HY(Zt, t) being a martingale on F, given the equality
 of the distributions of Yand Z on these respective filtrations. These

 martingale properties follow from the martingale property of H(Zt,
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 t), written as

 H(y, t) = EH(y + Z1 - Zt, 1). (25)

 All we need to do is to differentiate both sides with respect to y,
 differentiating under the expectation operator on the right-hand side.
 The proof that this interchange of differentiation and expectation is
 possible is deferred to the Appendix. U

 3. Conclusion

 The key aspect of the continuous-time model is that the informed trader
 can move continuously up or down the residual supply curve. This flex-
 ibility on the part of the insider, combined with risk neutrality, helps to

 pin down the equilibrium beliefs of market makers. In equilibrium, the
 insider has many optima, because there is no expected cost in moving

 up and then back down the supply curve, or vice versa, or simply delaying
 trading. This reflects the infinite tightness of the market and the fact that
 noise trades do not shift the residual supply curve in predictable ways.
 The uniqueness of equilibrium and the multiplicity of optima in equi-
 librium is analogous to the competitive model. In a competitive equi-
 librium with a risk-neutral agent and a fixed risk-free rate, expected
 returns on all assets are uniquely determined, but any portfolio is optimal

 for the risk-neutral agent. The situation is very different when agents are
 risk averse. It is important to determine to what extent the results of this
 article are robust to risk aversion.

 The model was solved in this article without recourse to the filtering
 technology used by Kyle. This permitted the analysis of general asset
 value distributions. The solution method is extended in Back (1992a)
 to study the effect of asymmetric information in options markets and in

 Back (1992b) to study the effect of time-varying noise trading. Hopefully,
 it will also prove useful for extending the model in other ways.

 Appendix

 Proof of Lemma 1

 We will fix a v E V and omit writing it as an argument of j and J.
 Obviously, J(, 1) = j(]) is continuous, nonnegative, and satisfies the
 boundary condition (15). The function J is twice continuously dif-
 ferentiable in y and continuously differentiable in t on R x (0, 1)
 and satisfies (18) by Karatzas and Shreve (1987, p. 254). We want to
 show that the derivative of the right-hand side of (22) can be taken
 under the expectation operator. This is true if for each y, there exists
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 an e > 0 such that the family of random variables

 {[ j(y + Z1 - Zt) 1I IY' - Yj < 4}

 is uniformly integrable. We have jy(y, t) = h(y, t) - v. Because h is
 monotone, I h(y' + Z1 -Z) I is no larger than the maximum of I h(y
 - c + Z1 - Z) I and I h(y + E + Z1 - Z) I. For (almost) any yE ,
 each of these random variables is integrable, because

 Eh(y? c + Z1 - Z) = E[h(Zl) I Zt = Y ? c] < .

 Hence, the maximum is integrable, and, consequently, the above

 family of random variables is uniformly integrable. Taking the deriv-
 ative under the expectation operator yields

 Jy(y, t) = E[jy(y + Z1 - Zt)] = E[h(y + Z1 - Zt)]-

 = H(y, t) - v. (Al)

 This holds for all (v, y, t) E V x J x (0, 1). Continuity of JandJy at
 t = 1 follows from the martingale properties (19) and (Al), using
 Karatzas and Shreve (1987, problem 4.3.2).

 Proof of Lemma 2

 We will work with the stochastic processes X, Z, and J(v, Yt, t) on
 the filtration F. We will omit writing the random variable v as an
 argument of J.

 Ito's formula [Dellacherie and Meyer (1982, p. 335)] states that

 J(Y1, 1) = J(YO_, 0) + JT yY t) dYt + JJt( Yt, t) dt

 + J J (Y_ t) d[YC, Yc]t

 + iAJ(Yt, t) - : j (Yt, t) AY.t

 By construction, YO = 0. We have

 [yc, Yc]t = [XI, Xc]t + 2[XC, Z]t + [Z, Z]t

 = [XI, XC]t + 2[XC, Z]t + o2t (V t).

 Also, A Y AX. Therefore, substituting (17) and (18) yields

 J(Y, 1) =J(O, 0) + (Pt- ) dYt

 +1 jyy Yt-, t) d[Xc, Xc]t 2 J04
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 + Jyy(Yt_ t) d[XC, Z]t

 + AJ(Yt, t) - (Pt_ - v)AXt.
 0O<tv 1 o0<t? 1

 Substituting dX + dZ = dY, subtracting [P, X]1 from both sides, and
 rearranging terms a bit give

 (v - Pt-) dXt - [P, X]1 - J(O, 0)

 =-J(Y1, 1) + (Pt_ - ) dZt

 + 2 JYy(Yt_ t) d[Xc, Xc]t
 2 J0

 + J yyYt-, t) d[XC, Z]t

 + A AJ(Yt, t) - : (Pt - v)AX, - [P, X]1. (A2)
 0O<t<1 0< t<1

 We want to show that the expectation of the left-hand side is non-

 positive and that this expectation equals zero iff Xc 0, AX 0, and
 P1 = v a.s. When A X 0, then the martingale M is continuous and
 hence equal to Xc. Thus, the conditions AX 0 and Xc = 0 are
 collectively equivalent to X being continuous and having no martin-

 gale part. This will complete the proof.

 We need to evaluate the right-hand side. Recall that

 [P, X]1 [PC, XC]j + z APtAXt.

 By Ito's formula, the continuous local martingale part of P is

 f HYjYt-, t) dYtc. Using (17), we obtain

 [pc xc]1 = J HY(Y, t) d[YC, Xc]t

 = J Jyy(Yt-, t) d[XC, Xc]t + i Jyy(Yt-, t) d[Xc, Z]t.

 Using (17) again, we have

 (Pt_ - M)AXt + APtAXt = (Pt - )AXt = Jy(Yt t)AXt.

 Therefore, substituting for [P, X]1 in the right-hand side of (A2), it
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 simplifies to

 -J(Y1 1) + (Pt - v dZt Jyy(Yt_, t) d[XC, XC]t
 0 ~~~~2

 + A AJ(Yt, t) - : J (Yt, t) AX. (A3)
 O1<t1<l 0 O?tl1

 The lemma follows from the following facts, which will be estab-
 lished:

 -J(Y1, 1) ? 0 with equality iff P1 = v, (A4)

 Ef (Pt- - ) dZs= 0, (A5)

 2 JYY(Yt- t) d[Xc, XC], 0 0 with equality iff Xc 0, (A6)

 : [AJ(Yt, t) - Jy(Yt, t)AXt] 0 with equality iff AX 0. (A7)
 O?tl1

 Condition (A4) is just the boundary condition (15). Condition (A5)
 follows from the fact that we have ruled out "doubling strategies."

 It follows from (17) and the monotonicity of H that Jyy > 0. The
 measure d[XC, Xc] is positive unless Xc 0. This implies (A6). Finally,

 Jyy > 0 (convexity) implies (A7) a

 Proof of Lemma 4

 We can rewrite (19) as

 J(v, y, t) = E[J(v, y + Z1 - Zt, 1)]
 (V(v,y, t) EV x R x (0, 1]), (A8)

 where the expectation is taken over Z, v being regarded as a constant.

 We need to differentiate the right-hand side of (A8) with respect to
 y under the expectation operator. The proof that this can be done is
 exactly the same as in the proof of Lemma 1. Differentiation yields

 Jy(v, y, t) = E[Jy(v, y + Z1 - Zt)] (V(V, y, t) E V x R x (0, 1]).

 In view of (17), this implies

 H(y, t) = E[H(y + Z1 - Zt, 1)] (V(y, t) E R X [0, 1]).

 We have included the endpoint t = 0 here because both sides are

 continuous at t = 0. [To see the continuity of the right-hand side, use
 Lebesgue's convergence theorem and (8), writing the integral as
 h(z)p(y, Z, -2(1 - t)) dz, where p(,, *, 4) denotes the normal
 distribution function with mean ,u and variance 0.] This implies that
 the process H(Zt, t) is a martingale on the filtration F. a
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 Proof of Theorem 3

 Denote H(, 1) by h(Q). We have from Theorem 2 that h = F-1 o N.
 Hence,

 hy(y) = f by__

 where n denotes the normal (0, a-2) density function, and the assump-
 tion of the theorem implies the random variable

 n(Z1)

 f(h(Z1))

 is integrable. It follows that

 E n (y + Z1-Z) E1 (F Z) n (= Y < ooZ
 [f(h(y + Z1 Zt))- J Lf(h(Z1))

 for almost all y E R. For any e and any IY' - yl < c, the random
 variable

 lb (y, + Zl _Zt) n((y' + Z - Zt)) (A9)
 y ~~~f(h(y' ? Z1 - Zt)) (9

 is dominated a.s. by the larger of the four random variables

 n(y ? c + Z1- Z)

 f(h(y + ZZ1-t))

 This follows from the monotonicity of h. Therefore, the random vari-

 ables (A9) for ly' -y < e are uniformly integrable. This implies
 that we can interchange differentiation and expectation in (25) as
 desired. e
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