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Insider Trading in
Continuous Time

Kerry Back
Washington University in St. Louis

The continuous-time version of Kyle’s (1985) model
of asset pricing with asymmetric information is
studied. It is shown that there is a unique equilib-
rium pricing rule within a certain class. This pric-
ing rule is obtained in closed form for general
distributions of the asset value. A particular exam-
Dleis alognormal distribution, for which the equi-
librium price process is a geometric Brownian
motion. General trading strategies are allowed. In
equilibrium, the informed agent, who is risk neu-
tral, bas many optima, but be does not correlate
bis trades locally with the noise trades nor does
be submit discrete orders.

In the Kyle (1985) model of asset pricing with asym-
metric information, traders submit order quantities to
risk-neutral market makers, who set prices competi-
tively and buy or sell for their own accounts to clear
the market. Excluding market makers, traders are of
two types: informed or noise traders. There is a single
risk-neutral informed trader, who rationally antici-
pates the effect of his orders on the price. The pres-
ence of noise traders makes it impossible for the unin-
formed to exactly invert the price and infer the
informed trader’s signal. Thus, markets are semi-
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strong, but not strong form efficient. This model has been widely used
in the study of market microstructure.

The purpose of this article is to formalize and extend the contin-
uous-time version of the Kyle model. As is the case with other models,
the continuous-time version of this model is more tractable in some
ways than the discrete-time version. For example, I will solve in closed
form for the equilibrium pricing rule of market makers, for a general
distribution of the asset value. A particular example is a lognormal
distribution, for which the equilibrium price process is a geometric
Brownian motion. In contrast, the discrete-time version has been
solved only when the asset value is elliptically distributed [Foster and
Viswanathan (1990)].

An important aspect of the continuous-time model is that the
informed trader can infer the flow of noise trades without directly
observing them, simply by monitoring prices continuously. In con-
trast, in a model with a finite number of trading opportunities, it
would be advantageous for the informed trader to be able to observe
contemporaneous noise trades before submitting his own orders.
Rochet and Vila (1991) study a one-shot model in which the informed
trader can do this. Their results differ from what one obtains in the
one-shot Kyle model, in which conditioning on noise trades is not
allowed. For asset value distributions with bounded support, Rochet
and Vila show there is a unique equilibrium. This equilibrium satisfies
a “no expected trade theorem”—conditional on the total order, the
market makers’ expectation of the informed order is always zero in
equilibrium. In the Kyle model, uniqueness has been established
only within the linear class and for elliptical distributions, and, in
contrast to the no-expected-trade theorem, the expected informed
order is proportional to the total order in equilibrium. The contin-
uous-time model studied here, while it is a limit of the discrete-time
Kyle model [see Kyle (1985, sec. 5)], also seems to have some of the
flavor of the Rochet-Vila model. This applies to both the assumptions
and conclusions. This suggests that the many-period versions of the
two models may be very similar. This seems very reasonable. Rochet
and Vila interpret conditioning on noise trades as representing limit
orders, and limit orders should be less important when there are
many trading opportunities.

To make it clear that there is no advantage in continuous time to
observing the noise trades directly, I will give the informed agent the
option of correlating his trades locally with the noise trades. For
example, denoting the noise trades at time ¢ by dZ, and the informed
trader’s order by dX,, we could have dX, = —dZ,. This can be inter-
preted as the informed trader being on the floor of the exchange and
accepting orders as they arrive, instead of letting them go to the
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Insider Trading in Continuous Time

specialist.! I will show that it is strictly suboptimal to correlate locally
with the noise trades. To do so would require submitting orders that
are too large (of order \/d?) relative to the optimal order size for the
informed trader.

The main results of the article are as follows. There is an equilib-
rium in which the pricing rule of market makers (i) is a smooth,
strictly monotone function of the cumulative order, (ii) satisfies a
certain finite-variance condition, and (iii) is such that the Bellman
equation characterizes the informed trader’s optima. This equilib-
rium, which will be obtained in closed form, is the unique equilib-
rium satisfying (i)—(iii).2

The key observation underlying the result that there is a unique
equilibrium in the class considered is that in any such equilibrium
the informed trader’s expectation of the price change would be zero
if he were to refrain from trading. More generally, noise trades alone
will not create predictable shifts in the location or slope of the resid-
ual supply curve faced by the informed trader. In other words, any
equilibrium pricing rule in the class considered must have a certain
unbiasedness property. Restricting attention to linear equilibriums
in discrete-time models imposes this unbiasedness property exoge-
nously, but such equilibriums will not exist for general distributions
of the asset value. However, general distributions can be handled in
continuous time. This can be attributed to the fact that pricing is
locally linear. One can also view this distinction between discrete-
and continuous-time markets in terms of what Kyle calls the “tight-
ness’’ of the market. In discrete time, the marginal cost of the asset
exceeds its price, because the supply curve is upward sloping. So at
any point in time a finite optimum can exist even if the price is
expected to increase later as a result of noise trades (i.e., even if the
pricing rule is “biased”). In contrast, in continuous time, the informed
trader can act as a perfectly discriminating monopsonist, moving con-
tinuously up or down the residual supply curve (i.e., the market is
infinitely tight). Hence, he could exploit predictable shifts in the
supply curve.

' We have to make some assumption about execution in this case. If by being on the floor, the
informed trader can buy at the specialist’s bid and sell at the ask, then it would probably be optimal
to be on the floor. This is tantamount to letting the informed trader act as a market maker. Black
(1990) discusses the value of being able to act as a market maker for an informed trader (even a
trader who is informed only about his own past trades). Because prices are revised continuously
in this model, there is no real bid or ask. However, the model is such that if dX, = —dZ, then
transactions occur at “the midpoint of the spread,” in a certain sense. Under this assumption,
correlating locally with the noise trades is suboptimal.

2 Jarrow (1990) considers a closely related model and shows by means of examples that market
manipulation (arbitrage) will generally be possible when the price depends on the history of a
large trader’s orders, rather than just on the cumulative order. This suggests that it may not be
restrictive to only consider pricing rules that depend on the cumulative order. However, even if
this is the case, there still could be equilibriums in which this dependence is not smooth and
strictly monotone or (ii) or (iii) are not satisfied.
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The unbiasedness property is a generalization of Kyle’s (1985, pp.
1328-1329) result that the slope of the residual supply curve (the
reciprocal of what Kyle defines as market depth) cannot vary in a
deterministic fashion. In the normal distribution model, it is a con-
stant. More generally, it is a martingale.

The unbiasedness property of the pricing rule implies that the order
process must appear to market makers to be a martingale—buy and
sell orders are equally likely to arrive (this is also true in the linear
equilibrium of Kyle’s discrete-time model). A simplifying aspect of
continuous time is that continuous martingales are completely char-
acterized by their local variances. The local variance of the total (net)
order process is the same as the local variance of the noise trades,
because the informed trades are of smaller order (dtas compared to
\/d?). This implies that the market makers view the total order process
as having the same distribution as the noise trades alone. For example,
the cumulative informed and noise trades over the trading period [0,
1], which we will denote by X, and Z,, respectively, are joint normal
with zero means, and the beta of Z, on X, is — 3. Hence, X; + Z, and
Z, have the same distribution. The total order process is not equal in
distribution to the noise trades in Kyle’s discrete-time model, because
the total order has a larger variance at each time. However, in the
linear equilibrium of the normal-distribution model with many trad-
ing periods, the distributions of the total and noise trades are approx-
imately equal, because, as Kyle shows, the discrete-time equilibriums
converge to the continuous-time equilibrium.

The model is presented in Section 1. The analysis is contained in
Section 2, and a brief conclusion can be found in Section 3.

. The Model

There is to be a public release of information at a known date that
will affect the value of an asset. The announcement date is called
date 1 and the present date is called date 0. Trading of this asset and
a risk-free asset is assumed to occur continuously during the interval
[0, 1]. The risk-free rate is taken to be zero. The information is already
possessed by a single insider. The information is represented as a
signal 7. We will interpret # as the price at which the asset will trade
after the release of information. Alternatively, because of the risk
neutrality, one can interpret 7 as being merely an unbiased signal of
this price. The distribution function of 7 is denoted by F. Assume the
support of F is an interval, possibly the whole real line or a half line,
and that Fis continuous on this interval. Therefore, F~! is well defined
on the interval (0, 1). Assume the second moment [®, v? dF is
finite.
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Insider Trading in Continuous Time

In addition to the insider, there are liquidity traders who have
random, price-inelastic demands, and market makers who are risk
neutral. All orders are market orders and are observed by all market
makers.> Denote by Z, the cumulative orders of liquidity traders
through time z The process Z is assumed to be a Brownian motion
independent of 7, which has mean zero and variance ¢* (per unit of
time). Let X, denote the cumulative orders of the informed trader,
andset Y=X+ Z

Market makers only observe the process ¥, so they cannot distin-
guish between informed and uninformed trades. We will study equi-
libriums having the property that the price at any time ¢depends only
on cumulative orders Y, and not on the history of orders. Therefore,
we assume

P1=H(Yn t), (1)

for some function H. Assume H is twice-continuously differentiable
in y, continuous in ¢ € [0, 1], continuously differentiable in z€ (0, 1),
and satisfies EH(Z,, 1)* < oo, and H(-, ©) is strictly monotone for
each z Here and throughout the article—unless conditioning on
particular information is explicitly indicated—the symbol E denotes
expectation taken over Z and 7.

The monotonicity of H implies that the insider can invert H to
compute Y, at each time # Hence, before he submits his order at time
t, he can be assumed to know {Z,|0 < s < t}. Because Z is continuous,
this is equivalent to knowing {Z,|0 < s < #}. LetF = {F,|0 = t = 1}
denote the usual augmentation [see, e.g., Dothan (1990, def. 10.1)]
of the increasing family of ¢-fields generated by the stochastic process
£, where &£, = Dand £, = Z,(Vt > 0). We will require the informed
trader’s strategy X to be adapted to F, which means that the informed
trader knows # at time 0 and observes (infers) Z, at each time ¢

To motivate the formulation of the budget constraint of the informed
trader, it is useful to consider a discrete-time model (¢ = 1,...,T). Let
W denote the agent’s wealth and B the investment in the risk-free
asset, so W= B + PX. In the competitive model, one usually thinks
of the price changing from P, ;, to P, generating the capital gain
X, (P, — P,_,), and portfolio rebalancing then occurring subject to
the intertemporal budget constraint

B,+ PX,= B,_, + PX,_,.
Thus, the change in wealth is

W,— W, =X_,(P,— P_,).

3 As will be explained, the informed trader will be allowed to condition his orders on the contem-
poraneous liquidity orders. Conditioning on liquidity orders is similar to conditioning on price,
so this model also has the flavor of a limit order model.
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Here we think of the agent submitting a market order X, — X, , and
then the price changing from P,_; to P, The order is executed at the
price P, Execution of the order causes the investment in the risk-
free asset to change by

B,— B, = —P(X,— X)),
so the change in wealth is

B—B_,t+PX—P X = _Pt(Xt - X—-l) + PX, — P, X, ,
= Xt—l(Pt - P-l)- (2)

The upshot is that the formula for wealth dynamics is the same in
the market-order model as in the usual model. Notice that it does
not matter whether the agent views his market order as causing the
change in price. The budget constraint does not depend on whether
the agent acts as a monopsonist or as a perfect competitor.

Extending this to continuous time, it is clear that we should use
the Merton (1969) and Harrison and Pliska (1981) formula for the
wealth dynamics of the informed trader. The only deviation from the
Harrison-Pliska model that we will make here is that we will allow
only a subset of the trading strategies that Harrison and Pliska allow.
The motivation is that we want to think of the stochastic differential
dX(#) of the order process as the market order. Formulas involving
stochastic differentials are meaningful only in integrated form, and
stochastic integrals can be defined with X as an integrator only if X
is a semimartingale. So we will require the order strategy X to be a
semimartingale and define the wealth dynamics by

dw, = X,_ dP,. 3)

Here, and throughout the article, the symbol X, denotes the left limit
limg, X,. The use of the left limit is an obvious extension of (2). Given
the smoothness assumptions on H, the process P, = H(Y, t) will also
be a semimartingale [by Itd’s formula; see Dellacherie and Meyer
(1982, VIII1.25)). Moreover, the left-continuous process X,_ is pre-
dictable and locally bounded, so the stochastic integral [ X, dP, exists.
Harrison and Pliska allow as a trading strategy [i.e., as an integrand
in (3)]any predictable process for which the stochastic integral exists.
Thus, the class of strategies allowed here is a subclass of the class
allowed by Harrison and Pliska.

The requirement that X be a semimartingale means that it is right
continuous, the left limits X,_ exist, and it can be written as X = D
— § + M, where D and S are positive, increasing, right-continuous

4+ Another point worthy of note is that being able to anticipate the price change before submitting
a market order does not necessarily lead to arbitrage, because the capital gain X, ,(P, — P,_,) is
still calculated on the basis of X,_,, which is the position held before the price change.
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processes and M is a local martingale.> The right-continuity is a nor-
malization, which means that we are taking X, to include any jump
AX, = X, — X, made at time . Jumps can be interpreted as discrete
orders. We do not expect to see any discrete orders in equilibrium,
because they can be identified as coming from the informed trader.
Pricing rules of the form (1) respond to discrete orders in exactly the
same way as if they had been submitted in infinitesimal pieces. Given
this pricing, we will see that discrete orders are indeed suboptimal.®
When M = 0, as will be true in equilibrium, the process X= D — §
is naturally interpreted as the difference of purchases and sales.

We are allowing for the possibility that there will be a jump in the
price at time 1 after the announcement is made. Including the capital
gain from such a jump, the formula (3) implies the final wealth of
the informed trader is

W,= (3 — P)X, + f X,_ dP,. 4)
[0,1}

Here we are, without loss of generality, taking W, = 0. It is necessary
to explicitly include the endpoints in the region of integration, because
of the possibility of jumps.”

The technical importance of the assumption that X is a semimar-
tingale is that it allows us to integrate by parts to reformulate the
wealth equation (4). This yields a formula that is a direct general-
ization of Kyle’s. Specifically, (4) is equivalent to

W, = (¢ — P) dX, — [P, X],, 5)
©1
where [P, X]is the “optional quadratic variation” process [Dellacherie
and Meyer (1982, VIII.18)]. The differential of this process corre-
sponds to what one usually writes as dPdX.® The formula (5) is the
one we will use in the remainder of the article.

° One is free to assume M is a martingale, because a martingale is a special case of a local martingale.

¢ Three points are worthy of note here. First, our equilibrium concept will not constrain off-equilib-
rium beliefs, so we are free to specify beliefs and hence prices following discrete orders in any
way we desire. Second, we are not claiming that (1) is the only possible rational pricing rule that
will discourage discrete orders. Third, there are pricing rules that will encourage discrete orders,
which in fact will lead to arbitrage. For example, suppose the price change AP in response to a
discrete order AX is of the form AP/P = \AX, for a constant A. To see how this can be manipulated,
suppose A = .01, the true value is $20, and the price is $10. Selling 10 shares will cause the price
to be reduced to $9 and generate $90 in revenue. Immediately buying 100/9 shares will move the
price back to $10 and cost $1000/9. The net cost of this pair of trades is $190/9. However, the net
trade is +10/9 shares, each of which is worth $20. Thus, the net profit is $10/9. This can be repeated
indefinitely, leading to infinite profits.

7 Without loss of generality, we take the intitial position X, to be zero. We also adopt the convention
that P,_ equals the unconditional expectation of .

8 See Dothan (1990, especially chap. 5) for the definition of this process and for an explanation of
this point.
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To see the connection between (5) and Kyle’s formula, suppose
first that X has differentiable paths. This will be true in equilibrium.
In this case, [P, X] = 0. Moreover, P will also be continuous, by virtue
of (1) and the continuity of H. Hence, (5) specializes to

LA =f (# = P) dx,, ©

which is Kyle’s formula. This can be interpreted as the value of the
final position (#X,) less the cost of acquiring it (f} P,dX,). This for-
mula for the cost of acquiring the position is analogous to the usual
formula for the cost of a perfectly discriminating monopsonist. Kyle
motivates it by stating that, since the market order is executed at the
post-order price, the cost of the order is (P, + dP,) dX, Kyle notes
that, by the usual rules for multiplication of stochastic differentials,
dP dX is zero when X is differentiable, which yields (6) as the formula
for final wealth. More generally, it seems that we should interpret the
cost of a market order as (P_ + dP,) dX, (i.e.,as P,_dX, + d[P, X],).
This definition agrees with (5).
We will show that, in equilibrium,

dp, = H,(Y, 1) d¥,,

where the subscript denotes the partial derivative. Thus, price changes
are locally proportional to order sizes. The transaction price P,_ +
dP, therefore depends on the size and magnitude of the order 4y,
and is centered on P,_. If the informed traders’ order exactly offsets
the noise trades (i.e., if dX, = —dZ,) then dP, will be zero, so the
transaction price will be P,_, the “midpoint of the spread.” In this
sense, the informed trader and noise traders receive equally good
execution.

A technical problem is that, as in competitive models [see Harrison
and Kreps (1979)], we must exclude doubling strategies by the
informed trader, or else the model will be degenerate. A doubling
strategy in this model is to repeatedly double the following bet until
itis won: buy the asset in the hope that noise traders will subsequently
buy it and drive the price up. It is sufficient to require that

1
E f H(X,_ + Z,, H?dt < oo, @)
0

The constraint (7) is related to the integrability condition used to rule
out doubling strategies in the competitive model [see Duffie and
Huang (1985) or Dybvig and Huang (1988)].

The role played by the constraint (7) is to guarantee that the process
[5 P._ dZ, is a martingale. To understand this, it is useful to consider
a model with discrete trades, like Glosten and Milgrom (1985). In
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that model, market makers make money from noise traders because
of the bid-ask spread. This is compensation for their expected losses
to informed traders. The only reason noise traders lose money on
average is that they are always trading on the wrong side of the spread.
The requirement here that [¢ P,_ dZ be a martingale means that noise
traders would not lose money on average if they could always trade
at the midpoint of the spread.’ This is obviously a feature we want
the model to have.

We will implement (7) by imposing separate constraints on the
pricing rule H and order strategy X. As with the other constraints
imposed on H, this one will not be binding in equilibrium, but it
does limit the scope of the uniqueness of equilibrium result. All the
assumptions on H are captured in the following definition: let H
denote the class of continuous functions H : R x [0, 1] - R that are
twice-continuously differentiable in y and continuously differentiable
in ton R x (0, 1) and for which H(-, #) is strictly monotone for each
t€[0, 1] and

1
EH(Z,,1)? < c© and Ef H(Z,, t)*>dt < co. (8)
0

A pricing rule is an element of H. Let X denote the class of semi-
martingales X adapted to F such that

1
(VHEH) E f H(X, + Z,, i) dt < oo, ©)
0

A trading strategy is an element of X. The continuity of each H€ H
implies that (9) leaves the density function of X, + Z,onanybounded
set completely unrestricted (the distribution can even have mass
points). A sufficient condition for X to satisfy (9) is that the ratio of
the density function of X,_ + Z, to the density function of Z, be
bounded uniformly in ¢ on (—o0, —n) U (#, c0), for some .
Given a trading strategy X, a pricing rule is rational if it satisfies

H(Y, H = E[Z’ I (Ys)sst]' (10)

Given a pricing rule H, a trading strategy is optimal if it maximizes

E{ (5 — P.) dX,— [P, X]l} (11)
[0,1

® Of course, they cannot in general trade at the midpoint of the spread. In accordance with the
definition of insider profits, the losses of noise traders are defined as [, (P- — 9) dZ, + [P, Z],.
Given (7), the expected losses are E{[P, Z],}. The variable [P, Z], is interpreted as the sum over
time of the “‘bid-ask spread costs” dP, dZ,. It will be positive. By It&’s formula, [P, Z], = ¢* [} H,(Y,-,
?) dt, and the partial derivative H, is strictly positive by assumption.
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on X, An equilibrium is a pair (H, X) such that H is a rational pricing
rule, given X, and X is an optimal trading strategy, given H. If (H, X)
is an equilibrium for any trading strategy X, then H is an equilibrium
pricing rule.

Equilibrium

The purpose of this section is to explain and prove the following
theorems. Recall that F denotes the distribution function of 7. Let V
denote the support of ¥ excluding the endpoints, if there are any (the
endpoints have zero probability because of the continuity of F). Let
N denote the normal (0, ¢?) distribution function.

Theorem 1. Define

H(y, ) = Eb(y + Z, — Z), (12)
where b= F~1o N. For each v € V, define
“(v) — Z,
=1-29 f a-9 > ds; (13)

then (H, X) is an equilibrium.

Theorem 2. The pricing rule (12) is the unique equilibrium pricing
rule H for which there exists a nonnegative, smooth function J(v, y,
t)on VxR X [0, 1] satisfying the Bellman equation

max {], +/,0+ %azjw + (v — H)a} =
GeR
on VxR x (1)), (14)

and boundary condition
Jw, 1D >Jo b (v),)=0 [VveV, Vy=#hr'(v)], (15
where h(-) = H(-, 1).

Theorem 3. Let (H, X) be an equilibrium. Suppose H is such that
there exists a smooth solution J to the Bellman equation (14) and
boundary condition (15). Then

dpP,= H,(Y, ?) dv, (16)

and the process Y is distributed as a Brownian motion with zero drift
and variance ¢, given the market makers’ information (i.e., on the
Sfiltration generated by Y). The process H(Z,, t) is a martingale given
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the informed trader’s information (i.e., on the filtration F). If F bas
a density function and EH,(Z,, 1) < o, then the process H,(Z, t) is
a martingale given the informed trader’s information, and the pro-
cess H,(Y, t) is a martingale given the market makers’ information.

Before explaining the Bellman equation and boundary condition,
we will consider two examples.

Example 1. Assume #is normally distributed with mean a and variance
¢ Set h(y) = FU(N(p)). Since F(b(y)) = N*((h(y) — a)/¢) and
N(y) = N*(y/0), where N* denotes the standard normal distribution
function, the definition F(h(y)) = N(y) implies h(y) = a + ¢y/o.
Thus, H(y, ) = a + Ay, V(y, ), where A = ¢/o. From Theorem 3,
we see that dP, = \ dY,, and Yis viewed as a Brownian motion by the
market makers. Thus, P is a Brownian motion given the market mak-
ers’ information, or equivalently, given public information (the fil-
tration generated by P). This is the equilibrium pricing rule described
by Kyle. The insider’s strategy in Theorem 1 is

_ b -y, _ 5-P
1—¢ M1 — 2

dx, ar,

which is also as in Kyle.

Example 2. Assume log § is normally distributed with mean « and
variance ¢?. Set h(y) = F'(N(»)). Now we have F(h(y)) =
N*((log h(y) — a)/¢), so b(y) = exp(a + Ny), where as before A =
¢/o. Thus, H(y, t) = exp(a + Ay + ¢*(1 — ©)/2). If the insider were
to place a discrete order AX,, then the jump in price would be AP, =
P,_(exp(AAX,) — 1). However, in equilibrium, there are no discrete
orders and no martingale component in the insider’s strategy. We
have H,(Y, ©) = AP, so from Theorem 3,

d_P,=>\dYt'
p

t

Because Y is a Brownian motion given the market makers’ informa-
tion, Pis a geometric Brownian motion. Notice that X is the sensitivity
of the price to orders measured in dollar terms (i.e., as P, dY,). Accord-
ing to Kyle’s definition, 1/AP, is the market depth, but it would also
be reasonable to interpret 1/A as the depth. The price-response coef-
ficient H,(Y,, t) = AP, is a martingale given the market makers’ infor-
mation. If the informed trader refrains from trading (unbeknownst to
the market makers, of course), then the price-response coefficient
will evolve as the martingale AH(Z,, #). It may be interesting to com-
pare the equilibrium pricing rule here to the example of arbitrage in
note 6.
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Now we turn to the Bellman equation and boundary condition. The
meaning of the term “smooth” in this article for a function Jon V X
R x [0, 1] will be that, Vv € V, J(v, -) and J,(v, -) are continuous on
R x (0, 1], and J,, (v, ) and J,(v, +) are continuous on R X (0, 1).
The subscripts here and in (14) denote partial derivatives. The argu-
ments of Jand H have been omitted in (14) for convenience.

The formulation of the Bellman equation is based on an assumption
that the order rate 8, = dX,/dt exists, but it is also useful in general.
When the order rate exists, the objective function (11) specializes to

Ef [0 — H(Y,, D19, dt.

Given the path independence of the pricing rule, it is natural to use
7 and Y, as the state variables for the informed trader’s optimization
problem. The dynamics of ¥ when the order rate exists are given by

day,=0,dt + dz,.
Hence, by Itd’s formula,

dj(, Y, 0 =[J(3 Y, ) + (3, Y, D6, + 30,(D, Y, )] dt
+ (3, Y, 1 dz,.

The Bellman equation is the statement that the instantaneous profit
[0 — H(Y, D1, dt

is exactly offset by the expected change in J when an “optimal” policy
is followed, and the instantaneous profit is not sufficient to offset the
expected change in J when a “suboptimal’” policy is followed. The
terms ‘“‘optimal” and “suboptimal” are used here only to indicate
whether the maximum in (14) is attained. We are not claiming at this
point that an optimal trading strategy as defined in the previous sec-
tion necessarily attains the maximum in (14). Nor are we claiming
that the actual value function solves (14) and (15). We are simply
viewing (14) and (15) as a functional equation to be solved for some
function J.

The boundary condition (15) is a little unusual in that one might
expect J to be identically zero at time 1. The interpretation of (15)
is that J is defined by continuity at time 1, and the remaining value
J(3, Y, ) at times ¢ close to 1 is near zero if and only if Y, is close to
b (D) (i.e., P,is close to D).

The outline of the proofs is as follows. With Lemma 1, I will con-
struct a solution of the Bellman equation and boundary condition for
a class of pricing rules that includes (12). In Lemma 2, I will char-
acterize the optima for the informed trader given a pricing rule in
this class. It is essentially a “verification theorem,” showing that the
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optima are characterized by the Bellman equation. In Lemma 3, I
characterize the distribution of Y, given the strategy (13) for the
informed trader. It follows from Lemmas 2 and 3 that (13) is an optimal
strategy, when pricing is based on (12). Theorem 1 is then proven
by showing that the function H defined in (12) belongs to H and is
rational.

Lemma 1 shows that, for the pricing rule (12), there is a solution
to the Bellman equation and boundary condition. For the uniqueness
part of Theorem 2 and in Theorem 3, we assume there is a solution
to the Bellman equation and boundary condition. Under this assump-
tion, Lemma 4 shows that the price would be a martingale if the
informed agent refrained from trading, and Lemma 5 shows that the
order process must be a martingale in equilibrium. Theorems 2 and
3 follow directly.

The key to understanding the Bellman equation is to observe that
the maximand is linear in the choice variable §. Because the choice
variable is unconstrained (i.e., one can buy or sell at arbitrary rates),
there can be a finite maximum only if its coefficient is zero. Setting
this coefficient equal to zero, and then setting the sum of the remain-
ing terms equal to zero, gives the following:

J(v,y, D=H(, t) — v
VM, y,DeVvx R x(0,1D, 17

J(v, 3 0 +36%,(,y, D=0 [V(1,5DeVXxRx(0,1)]. (18)

These relations follow directly from (14) only for ¢ € (0, 1), but we
can include the endpoint £ =1 in (17) because of the continuity of
Jyand H. If J is nonnegative and smooth and satisfies (18), then

J, 3 ) =EJ(v,y+ Z, — Z, )]
V() € VX R, VO<t<s=1] (19)

where we are taking the expectation over Z, regarding v as a constant
(see Karatzas and Shreve [1987, theorem 4.3.6, exercise 3.8 (ii)]). The
evident interpretation of (19) is that the maximum value attainable
at time ¢ can actually be attained by not trading at all until some later
time s (at which time we will have Y, =Y, + Z, — Z,) and then trading
optimally from time s on. While all of this is very conjectural at this
point, because we have not yet established a connection between the
Bellman equation and the value function, it does motivate the con-
struction in Lemma 1. In this lemma, we try to calculate the value by
waiting until the “last instant” and then trading. The profit from this
limit strategy is calculated by moving up or down the residual supply
curve at time 1 to the point p = v.
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Lemma 1. Let b be a strictly monotone function that satisfies E| h(Z,)|
< 0o. Suppose the pricing rule is

H(y, t) = Eb(y + Z, — Z)). (20)
Define
p7(0)
(v, ») =f (v = b(x)) dx, 21
and '
J, 0 =E[jlv,y+ Z — Z)), (22)

where we are taking the expectation over Z, regarding v as a con-
stant. Assume J(v, 0, 0) < oo (Vv € V). Then ] is a smooth solution of
(14) and (15).

Proof. See the Appendix. u

Now we will show that any solution of the Bellman equation and
boundary condition is necessarily the value function for the informed
trader’s optimization problem. This yields a characterization of the
informed trader’s optima.

Lemma 2. Let H be an arbitrary pricing rule. Suppose a nonnegative,
smooth solution ] of (14) and (15) exists. Then for any trading strategy
X, the expected profit (11) is no larger than EJ(D, O, 0). Any trading
strategy X = D — S + M which bas continuous patbs, for which M =
0, and which implies H(Y,, 1) = ¥ almost surely (a.s.), gives an
expected profit equal to EJ(D, O, 0) and is therefore an optimal strat-
egy. If X is any trading strategy that includes discrete orders, or bas
a nonzero local martingale part, or does not imply H(Y,, 1) =¥ a.s,,
then the expected profit from X is strictly less than EJ(7, 0, 0).

Proof. See the Appendix. u

So the necessary and sufficient conditions for optimality, when the
Bellman equation and boundary condition can be solved, are that
there be no discrete orders (which impose too much price pressure),
no local correlation with the noise trades (again, because this involves
trades that are too large'®) and no jump in the price following the
announcement. If the market has not fully incorporated the infor-
mation prior to the announcement [i.e., if P, = H(Y;, 1) # #], then

19 Similarly, it is suboptimal to include a martingale component that is uncorrelated with the noise
trades. The arguments are exactly the same when this type of strategy is allowed. It is the infinite-
variation property of continuous-time martingales that leads to nonzero “bid-ask spread costs”
dP dX and renders them undesirable.
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it is clear that profitable trades were forgone by the informed trader,
which is inconsistent with equilibrium.

The key remaining step in demonstrating the optimality of the
trading strategy (13) is to show that there will be no market response
to the announcement when the strategy is followed. This is implied
by the following result, which is also instrumental for demonstrating
the rationality of (12).

Lemma 3. Assume the informed trader follows the strategy (13), where
b is defined in Theorem 1. Then, on the filtration F, the process Y is
a Brownian bridge with instantaneous variance o2, terminating at
b~ 1(D). On the filtration generated by Y, the process Y is a Brownian
motion with zero drift and instantaneous variance o>.

Proof. Note that
_bh®) -7 - X
1—1

dx, dr. (23)

Thus, the sum of the informed and noise trades is
_bhi(D) - Y,

ay,
d 1—1

dt+ dz,.
It follows that, on F, Y is a Brownian bridge, with variance o2, begin-
ning at 0 and ending at »~(?) [Karatzas and Shreve (1987, p. 358))].
The finite-dimensional distributions of a Brownian bridge are the
same as a Brownian motion conditional on the terminal value being
known [Karatzas and Shreve (1987, problem 5.6.11)]. The terminal
value here is the random variable 4 () = N-'(F(9)), which is nor-
mally distributed with mean zero and variance ¢? and is independent
of Z. Hence, the finite-dimensional distributions of ¥, unconditional
on ¥ or Z, are the finite-dimensional distributions of a Brownian
motion. ]

Proof of Theorem 1. To demonstrate the rationality of the pricing rule
(12), given the trading strategy (13), we will explicitly indicate the
conditional expectation at time ¢ given the market makers’ informa-
tion (the filtration generated by Y) by E#[-]and the conditional expec-
tation given the informed trader’s information (the filtration F) by
E'[-]. We can write the definition (12) as

H(y, f) = E[H(Z,, D|Z,= ],

where H(-, 1) = F7*(N(-)). Lemma 3 shows that the distribution of
Z with respect to the informed trader’s information is the same as the
distribution of Y with respect to the market makers’ information.
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Hence,
H(y, ) = EMH(Y, D|Y, = y] = EM[H(Y;, D|(Y).</],

where (Y,),<,denotes any history with ¥, = y. We are using the Markov
property of a Brownian motion here. Lemma 3 also establishes that
H(Y,, 1) = # a.s. Making this substitution, the above reduces to the
definition of rationality.

It remains only to verify the regularity conditions used in Lemma
1 and in the definitions of H and X. The fact that X € X follows from
the fact that the unconditional distribution of X, + Z, is the same as
that of Z,. The smoothness and strict monotonicity of H follow directly
from the definition (12) [for the smoothness, see Karatzas and Shreve
(1987, problem 4.3.1)]. The process H(Z, t) is a martingale and H(Z,,
1) has the same distribution as & by the definition of ». Hence,

EH(Z, ©)? < EH(Z,, 1)? = E* < oo,

which implies that H € H. This in turn implies the assumption on b
used in Lemma 1. L

The first step in proving Theorems 2 and 3 is to derive the unbi-
asedness property mentioned in the introduction (i.e., to show that
the informed trader’s expected price change is zero when he does
not trade). This property is consistent with the interpretation we gave
for (19), because the existence of a predictable component to the
price change during an interval ¢, s] when the informed trader did
not trade would render it strictly optimal to trade during that interval.
The unbiasedness property leads directly to the result that price
changes are locally proportional to order sizes in equilibrium (i.e.,
dH = H,dy).

Lemma 4. Let H be an arbitrary pricing rule. Assume there exists a
smooth solution J to (14) and (15). Then the process H(Z, t) is a
martingale on the filtration F. If X = D — S + M is any trading
strategy that bas continuous paths and for which M = 0, then, for
all t,

H(Y, ) = H(0,0) + f' H(Y, s) dY.. 24

Proof The martingale property follows from the martingale property
of J[i.e., (19)], after differentiating (19) and using (17). The technical
details will be supplied in the Appendix.

Assuming H(Z, ©) is a martingale, H must satisfy the partial differ-
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ential equation

H, + 30*°H,,= 0

on R x (0, 1) [Karatzas and Shreve (1987, p. 254)]. Now applying
Itd’s formula to H(Y,, #) and making this substitution yield (24). We
have used here the fact that the quadratic variation process of Y is
the same as that of Z, namely o2t =

Lemma 5. Let (H, X) be an equilibrium. Assume there exists a smooth
solution J to (14) and (15). Then, on the filtration it generates, the
Dprocess Y must be a Brownian motion with zero drift and variance o>

Proof. The formula (24) implies

! 1
Y,=Y,+ | ——— dH(Y, s).
=Y, foHy(Y) (¥, 9

Because H(Y, #) is a martingale on the filtration generated by Yand
H, (Y, ©) is strictly positive, with continuous paths, the process Ymust
be a local martingale on this filtration. The quadratic variation process
of Yis o%t. Any continuous local martingale with this quadratic vari-
ation process is a Brownian motion, by Lévy’s theorem [Karatzas and
Shreve (1987, theorem 3.16)]. n

Proof of Theorem 2. We have shown in Lemma 1 that there exists a
solution to the Bellman equation and boundary condition when the
equilibrium pricing rule (12) is used. For the uniqueness, suppose
H is any equilibrium pricing rule for which there exists a solution to
the Bellman equation and boundary condition. The martingale prop-
erty of H(Z,, ) established in Lemma 4 implies that H(y, ©) = E[b(y
+ Z, — Z)], where b(-) = H(-, 1). We have from Lemma 2 that, in
equilibrium, »(Y,) = ¥ as., so Y¥; = b71(D) a.s. Hence, for any scalar
a, the probability, given the market makers’ information at time O,
that Y, < ais F(h(a)). According to Lemma 5, the distribution func-
tion of Y;, given the market makers’ information at time 0, is N.
Therefore N= Fo b, implying h= F~'o N. ]

Proof of Theorem 3. Lemmas 4 and 5 contain everything except for
the price-response coefficient being a martingale. The process H(Y,,
) being a martingale on the filtration generated by Y is equivalent
to the process H,(Z, t) being a martingale on F, given the equality
of the distributions of Yand Z on these respective filtrations. These
martingale properties follow from the martingale property of H(Z,
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1), written as
H(y, ) =EH(y + Z, — Z, 1). (25)

All we need to do is to differentiate both sides with respect to ,
differentiating under the expectation operator on the right-hand side.
The proof that this interchange of differentiation and expectation is
possible is deferred to the Appendix. ]

3. Conclusion

The key aspect of the continuous-time model is that the informed trader
can move continuously up or down the residual supply curve. This flex-
ibility on the part of the insider, combined with risk neutrality, helps to
pin down the equilibrium beliefs of market makers. In equilibrium, the
insider has many optima, because there is no expected cost in moving
up and then back down the supply curve, or vice versa, or simply delaying
trading. This reflects the infinite tightness of the market and the fact that
noise trades do not shift the residual supply curve in predictable ways.
The uniqueness of equilibrium and the multiplicity of optima in equi-
librium is analogous to the competitive model. In a competitive equi-
librium with a risk-neutral agent and a fixed risk-free rate, expected
returns on all assets are uniquely determined, but any portfolio is optimal
for the risk-neutral agent. The situation is very different when agents are
risk averse. It is important to determine to what extent the results of this
article are robust to risk aversion.

The model was solved in this article without recourse to the filtering
technology used by Kyle. This permitted the analysis of general asset
value distributions. The solution method is extended in Back (1992a)
to study the effect of asymmetric information in options markets and in
Back (1992b) to study the effect of time-varying noise trading. Hopefully,
it will also prove useful for extending the model in other ways.

Appendix

Proof of Lemma 1

We will fix a v € V and omit writing it as an argument of j and J.
Obviously, J(-, 1) = j(-) is continuous, nonnegative, and satisfies the
boundary condition (15). The function J is twice continuously dif-
ferentiable in y and continuously differentiable in ton ® x (0, 1)
and satisfies (18) by Karatzas and Shreve (1987, p. 254). We want to
show that the derivative of the right-hand side of (22) can be taken
under the expectation operator. This is true if for each y, there exists
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an € > 0 such that the family of random variables
LY +2Z =21 1y =yl <&

is uniformly integrable. We have j,(y, ) = b(y, ) — v. Because b is
monotone, |b(y’ + Z, — Z,)| is no larger than the maximum of | h(y
—e+ Z, — Z)| and |h(y + € + Z, — Z)|. For (almost) any y € R,
each of these random variables is integrable, because

Eb(y £ e+ Z, — Z) = E[B(Z)|Z,= y * ¢ < o0,

Hence, the maximum is integrable, and, consequently, the above
family of random variables is uniformly integrable. Taking the deriv-
ative under the expectation operator yields

]y(y, H = E[jy(y + Z, — Z,)] = E[b(y + Z, — Z,)] - v
=H(y,» — v (A1)

This holds for all (v, 3, ) € VX ® x (0, 1). Continuity of Jand J, at
t =1 follows from the martingale properties (19) and (A1), using
Karatzas and Shreve (1987, problem 4.3.2). ]

Proof of Lemma 2

We will work with the stochastic processes X, Z, and J(, Y, ) on
the filtration F. We will omit writing the random variable 7 as an
argument of J.

Itd’s formula [Dellacherie and Meyer (1982, p. 335)] states that

J(¥, 1) = J(%-, 0) + S(Y.—, B ady, + f J(Y., D dt
] 0

[0,1
+ %f jyy(Y_, t) d[YC, YC],
+ 2 AJY, D = D J(Y._, DAY,

o=r=1 o=r=1
By construction, ¥,_ = 0. We have
(Y5, Y], = [X, X, + 2[X°, Z], + [Z, Z],
=[X5, X, + 2[X5, Z], + ot (V).
Also, AY = AX. Therefore, substituting (17) and (18) yields
J(%, 1) =Jj(0,0) + (P, — ) dy,

[0, 1}

1 1
+5 f (Yoo, D d[X¢, X4,
0
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+ f Jn(Yee, D d[Xe, Z),
+ 2 AKY, D - X (P — DAX.

Substituting dX + dZ = dY, subtracting [P, X], from both sides, and
rearranging terms a bit give

(5_ Pt—) dXt_ [P7 X]l _1(07 O)

[0.1]

=—J(x, D + f (P — D) dz,
+ % f J,(Yo, D d[X, X€,

+ f 1 L, (Y, D d[X, 7],
+ 2 AJY, D — D (P — 0)AX,— [P, X],. (A2)

0=t=1 0=:=1

We want to show that the expectation of the left-hand side is non-
positive and that this expectation equals zero iff X = 0, AX = 0, and
P, = {as. When A X = 0, then the martingale M is continuous and
hence equal to X°. Thus, the conditions AX = 0 and X° = 0 are
collectively equivalent to X being continuous and having no martin-
gale part. This will complete the proof.

We need to evaluate the right-hand side. Recall that

(P, X], = [P, X, + 2, APAX,

0=t=1

By It0’s formula, the continuous local martingale part of P is
[ H(Y,_, © dY:. Using (17), we obtain

[P, X, = f H(Y,_, ) d[Y, X,
= f T, (Yo, D d[Xe, X, + f LY, D d[X¢, 2],

Using (17) again, we have
(P_ — DAX, + APAX,= (P, — DAX, =] (Y, DAX,
Therefore, substituting for [P, X], in the right-hand side of (A2), it
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simplifies to
—J(r;, 1) + f (P- — D) dz, — %f J(Yie, ) d[ X5, X9,
+ 2 A, — 2 (Y, DAX, (a3)

0=t=<1 0o=t=<1
The lemma follows from the following facts, which will be estab-
lished:

—J(Y,, 1) < 0 with equality iff P, =,  (A4)
1
Ef (P_— D) dz,=0, (A5)
0

1
_%fo J(Yee, B d[X¢, X), = 0 with equality iff X* =0,  (A6)

> Ay,  — J(Y, DAX] < 0 with equality iff AX = 0. (A7)
0=r=<1
Condition (A4) is just the boundary condition (15). Condition (A5)
follows from the fact that we have ruled out “‘doubling strategies.”
It follows from (17) and the monotonicity of H that J,, > 0. The
measure d[X¢, X¢]is positive unless X¢ = 0. This implies (A6). Finally,
J,» > 0 (convexity) implies (A7) L]

Proof of Lemma 4
We can rewrite (19) as

Jwy ) =E[J(v,y+ Z, — Z,1)]
(V(v, 9, ) eV xR x (0, 1], (A8)

where the expectation is taken over Z, vbeing regarded as a constant.
We need to differentiate the right-hand side of (A8) with respect to
yunder the expectation operator. The proof that this can be done is
exactly the same as in the proof of Lemma 1. Differentiation yields

Lo, 90 =EJ(v,y+ Z, — Z)] Vv, y, DeVx R x (0,1).
In view of (17), this implies
H(y, ) = EH(y + Z, — Z, 1)] (V(p ) eR x [0, 1]).

We have included the endpoint ¢ = 0 here because both sides are
continuous at £= 0. [To see the continuity of the right-hand side, use
Lebesgue’s convergence theorem and (8), writing the integral as
Ib(2)p(y, z, 6*(1 — 1)) dz, where p(u, -, ¢) denotes the normal
distribution function with mean p and variance ¢.] This implies that
the process H(Z, t) is a martingale on the filtration F. ]
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Proof of Theorem 3
Denote H(-, 1) by »(+). We have from Theorem 2 that b= F~o N.
Hence,

n(y)
fb(»)’

where » denotes the normal (0, ¢?) density function, and the assump-
tion of the theorem implies the random variable

n(Z,)
f(N(Z))

hy(y) =

is integrable. It follows that

E[ n(y + 2, - 2) ]= E[ n(z,)
fly+ 2, = z)] " Fb(z)

for almost all y € R. For any € and any |y’ — y| < ¢ the random
variable

Z,=y|<o0

y

n(y + 2z, — 2)
Sy + 2, - 2))
is dominated a.s. by the larger of the four random variables
nyxe+ Z, — Z)
fb(yte+ 2z, —2))
This follows from the monotonicity of ». Therefore, the random vari-
ables (A9) for |’ — y| < € are uniformly integrable. This implies

that we can interchange differentiation and expectation in (25) as
desired. ]

b(y + 2, - 2) = (A9)
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