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Disagreement and Learning: Dynamic Patterns
of Trade

SNEHAL BANERJEE and ILAN KREMER∗

ABSTRACT

The empirical evidence on investor disagreement and trading volume is difficult to
reconcile in standard rational expectations models. We develop a dynamic model in
which investors disagree about the interpretation of public information. We obtain
a closed-form linear equilibrium that allows us to study which restrictions on the
disagreement process yield empirically observed volume and return dynamics. We
show that when investors have infrequent but major disagreements, there is positive
autocorrelation in volume and positive correlation between volume and volatility.
We also derive novel empirical predictions that relate the degree and frequency of
disagreement to volume and volatility dynamics.

THE EMPIRICAL LITERATURE on trading volume has documented a number of
regularities that cannot be easily explained by standard rational expecta-
tions (RE hereafter) models in which investors share common priors and in-
terpret information in the same way. A summary of earlier results can be
found in Karpoff (1987) and Gallant, Rossi, and Tauchen (1992). More recently,
Kandel and Pearson (1995) document significant abnormal trading volume
around earnings announcements, even when the announcement returns are
close to zero. They also find that analyst forecasts often diverge or flip around
earnings announcements, which they argue is inconsistent with models in
which analysts agree on the interpretation of public information. Chae (2005)
further documents that abnormal volume before an earnings announcement is
low, but spikes on the announcement date and decreases slowly over the next
few days. While noisy RE models can generate similar patterns using specific
stochastic endowment or noise trading processes, such explanations are com-
pletely driven by these exogenous and unobservable processes and hence do
not provide many insights. This has led many to view trading volume to be the
key ingredient missing from our theoretical models. For example, in a recent
talk Cochrane (2007) suggested that the “Next Revolution” in asset pricing will
consist of models that can explain empirically observed levels and patterns of
trading volume.

In this paper, we take a step in this direction and develop a dynamic model
of trade. Building on the differences of opinion (DO hereafter) literature, we

∗Northwestern University and Stanford University, respectively. We thank Anat Admati, Peter
DeMarzo, Mike Fishman, Eugene Kandel, Doron Levit, Pedro Saffi, Jiang Wang, and seminar par-
ticipants at Stanford, the London Business School doctoral conference, and the American Finance
Association (2006) Meetings for useful comments.

1269



1270 The Journal of Finance R©

consider a setup where agents disagree about the interpretation of public in-
formation. In contrast to RE models in which investors share common priors
and disagree due to asymmetric information, investors in DO models have het-
erogeneous priors and interpret information differently. Hence, investors may
“agree to disagree” even if they have the same information.1 Our goal is to
provide a simple and intuitive characterization of the volume process in such
a model. We show that since investors’ relative trading positions reflect the
extent to which they disagree, trading volume largely reflects revisions to the
level of disagreement. We also show that the equilibrium price corresponds to
the average valuation across investors. Based on these results, we develop sev-
eral implications that relate patterns in trading volume and return volatility
to investor disagreement. This is useful in generating additional empirical pre-
dictions that potentially distinguish our model from other DO and RE models.
While some of the model’s predictions are consistent with existing empirical
evidence, other predictions that relate the dynamics of volume and volatility to
the level and frequency of disagreement are unique to this model.

In particular, we show that when investors have large but infrequent dis-
agreements, volume exhibits positive autocorrelation and is clustered around
these large disagreements. When the degree of disagreement is time varying,
return volatility and volume are also positively correlated over time. These
relationships among disagreement, volume, and return volatility seem natu-
ral: investors agree on the interpretation of information most of the time, and
periods of high disagreement are often associated with high volume and high
volatility.

Next, we extend the analysis to an infinite horizon model in order to an-
alytically derive sharper and cleaner empirical predictions. Again, investors
disagree about the interpretation of public signals, but now we can allow for
periodic jumps in disagreement. We show that a large jump in volume is associ-
ated with high return volatility, high volume autocorrelation, and high expected
returns. We also show that when return volatility is high, abnormal volume and
volume autocorrelation are positively related, but when return volatility is low,
they are negatively related. Moreover, volume autocorrelation is nonmonotonic
in the frequency of jumps: autocorrelation is low when jumps in disagreement
are very frequent or when they are very rare, but is higher otherwise. Finally,
if investors bear aggregate risk by holding the asset, we show that expected
returns are increasing in the average level of disagreement, the size of jumps
in disagreement, and the frequency of these jumps. The preliminary empirical
analysis that we perform suggests that the evidence is consistent with these
predictions.

An implication of the fact that trade represents changes in the level of dis-
agreement is that volume consists of two pieces: a convergence term and an
idiosyncratic term. When agents agree on the interpretation of the current
public signal but disagree on the interpretation of prior public information,

1These include Harrison and Kreps (1978), Harris and Raviv (1993), Kandel and Pearson (1995),
Scheinkman and Xiong (2003), Basak (2004), and Cao and Ou-Yang (2009).
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Bayesian updating leads their beliefs to converge; we call the corresponding
volume “belief-convergence” trade. In contrast, when agents agree on the prior
information but disagree on the interpretation of the current signal, the as-
sociated volume is called “idiosyncratic” trade. Note that in RE models, since
investors have common priors and agree on the interpretation of the public
signals, there is no trade of either type.

The positive autocorrelation in volume is due to belief-convergence trade.
Large disagreement in the current period leads to idiosyncratic trade in the
current period and belief-convergence trade in future periods. Moreover, if a
period of large disagreement is followed by periods of low disagreement, future
belief-convergence trades are relatively more important than future idiosyn-
cratic trades. Volume spikes up when disagreement is large, but investors’ be-
liefs converge and volume falls gradually over the next few periods. As a result,
volume clusters around periods of high disagreement, and exhibits positive au-
tocorrelation. Furthermore, when investors have more extreme interpretations
(and so disagree more), price reactions to public signals are likely to be larger.
Hence, periods of major disagreement are periods of higher volume and also
of higher absolute price changes. This leads to positive time-series correlation
between volatility and volume.

Standard RE models cannot generate these patterns easily. First, RE models
are unable to generate public disagreement among investors. Even in noisy
RE models, if investor disagreement is made public, beliefs would converge
immediately and there would be no trade. This implies that RE models can-
not reconcile the empirical evidence that analyst earnings forecasts, despite
being public, exhibit significant dispersion, and that this dispersion is related
to trading volume and return dynamics. Second, trading volume is difficult to
generate in RE models. The “No-Trade Theorem” and its variants (e.g., Milgrom
and Stokey (1982)) rule out trade when investors share common priors, even
in the presence of asymmetric information. Noisy RE equilibrium models over-
come this result by introducing noise traders or aggregate liquidity shocks.2

However, as He and Wang (1995) show, public information leads to trade in
RE models only in the presence of private information, and usually leads to
a convergence of beliefs. Moreover, in contrast to what is observed empiri-
cally, they show that trade gradually increases before a public announcement,
peaks at the announcement date, and then remains low thereafter. Finally, as
Kandel and Pearson (1995) argue, it is difficult to generate large amounts of
information-based trading without accompanying price changes in RE models.

Of course, as mentioned before, the RE framework is flexible with respect to
the aggregate noise process. For example, one can generate serial correlation
in volume by assuming serial correlation in the aggregate supply shocks, or
can generate trade without price changes by forcing aggregate supply shocks
to perfectly offset aggregate information shocks. However, this is unappealing

2Models that generate volume using asymmetric information and aggregate noise shocks include
Grossman and Stiglitz (1980), Pfleiderer (1984), Kyle (1985), Admati and Pfleiderer (1988), Brown
and Jennings (1989), Grundy and McNichols (1989), Wang (1994), and He and Wang (1995).
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in terms of providing insight into what generates these patterns, since the
noise process is assumed to be unexplained and exogenous. In contrast to such
RE models, we remain agnostic about the disagreement process. The volume
dynamics in our model follow from the Bayesian learning process that investors
use in updating their beliefs.

The rest of the paper is organized as follows. Section I surveys some of
the related literature. Section II describes the basic framework for the finite
horizon model, discusses the assumptions, and characterizes the equilibrium.
Section III derives the expression for volume, and analyzes both the autocorre-
lation in volume and the relationship between volume and returns in the finite
horizon model. Section IV presents the results for the infinite horizon model
and derives the empirical predictions of the model. Section V concludes. Unless
noted otherwise, proofs are in the Appendix at the end of the article.

I. Related Literature

A number of papers study volume dynamics in heterogeneous information
settings. For instance, He and Wang (1995) develop a dynamic model of trading
volume with private and public information that leads to interesting patterns in
trading volume. Kim and Verrecchia (1991) show that in a setup with heteroge-
neous private information, volume is proportional to the absolute price change
and to the prior dispersion in precision. Kim and Verrecchia (1994) present a
setup in which informed investors receive private signals at the same time the
public signal is announced (which they interpret as information processing),
and show that this can lead to higher disagreement in announcement periods.
While these models all have interesting predictions about returns and volume
around public announcements, they are unable to generate a number of em-
pirically observed patterns in volume dynamics. In particular, in these models
there is no trading volume due to a public announcement unless investors also
have private information, and there is no trade without an associated change
in price.

Morris (1995) presents an excellent overview on the role and limitations of the
common prior assumption in economics, and makes a strong case for models in
which agents have heterogeneous priors and differences of opinion. Moreover,
as Brav and Heaton (2002) point out, models in which investors exhibit “ratio-
nal structural uncertainty” and differences of opinion are often observationally
and mathematically equivalent to models in which investors exhibit behavioral
biases. This may increase the appeal of DO models since their predictions are
robust to alternative interpretations of the underlying assumptions about un-
observable investor behavior.3 With a few notable exceptions (e.g., Harris and
Raviv (1993), Morris (1994), Kandel and Pearson (1995)), however, the DO lit-
erature has focused primarily on pricing implications of heterogeneous priors
(e.g., Harrison and Kreps (1978), Scheinkman and Xiong (2003), and Basak
(2004)). Varian (1989) studies the role of differences of opinion on prices and
volume in a static model, and shows that higher disagreement leads to higher

3We thank the referee for suggesting this argument.
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volume. Harris and Raviv (1993) is one of the earlier papers to study the effect
of differences of opinion on volume, but they assume investors are risk neutral.
This leads to a binary, or “all or nothing,” trading pattern in which optimistic
investors hold all of the asset and pessimistic investors hold none. Moreover,
trade only occurs when agents’ beliefs flip—more specifically, agents trade ex-
actly when their beliefs about the value of the asset cross each other and hence
the agents agree. In contrast, our model generates trade when there is change
in the level of disagreement.

Like ours, other papers have explored the effect of risk aversion on trading
volume in DO models (e.g., Mayshar (1983) and Kandel and Pearson (1995)).
Kandel and Pearson (1995) empirically document the relationship between
volume, disagreement, and return volatility around public announcements.
Among others, Bamber, Barron, and Stober (1997) extend this empirical analy-
sis by decomposing trading volume around earnings announcements into com-
ponents that are explained by dispersion in prior beliefs, changes in dispersion,
and belief jumbling, even after controlling for the announcement-period price
change. As Kandel and Pearson (1995) suggest, this evidence is inconsistent
with standard models of rational expectations. Instead, they propose a model
in which investors disagree on the interpretation of public signals, which leads
in turn to trade. However, since investors in their model are myopic, they can-
not study the dynamics of returns and volume around announcements. For
instance, as we show in the Internet Appendix, when investors are myopic,
there is no serial correlation in volume.4

In a recent paper, Cao and Ou-Yang (2009) also examine trading in a DO
model. Apart from technical differences in modeling, the main difference lies in
the different goals of the two papers. The focus of their paper is on trade across
asset classes (equities and options), while our focus is on patterns in volume for
a single asset. Moreover, while they allow for disagreement about the precision
of public signals, this forces them to assume that investor disagreement about
the mean of the public signal is deterministic. A result of this assumption is
that trading volume in their model is linear in absolute contemporaneous price
changes. In contrast, the relationship between volume and prices in our model
is more subtle since the first is driven by differences in interpretation while
the second is driven by the average interpretation. In particular, this implies
that our model allows for trade even in the absence of price changes—an effect
that has been empirically documented (e.g., Kandel and Pearson (1995)).

In Banerjee, Kaniel, and Kremer (2009), we develop an alternative DO model
in which investors disagree on the fundamentals but learn about the beliefs
of others by conditioning on prices. We show that unlike RE models, DO mod-
els with disagreement about higher-order beliefs can generate predictability
in prices. While appropriate to study the effects of higher-order beliefs on the
predictability of returns, the model in that paper is not well suited to study
volume and disagreement dynamics. In particular, the model is restricted to
three periods and disagreement about fundamentals does not change over time
but rather is driven by private information. As a result, unlike the current

4The Internet Appendix is available at http://www.afajof.org/supplements.asp.
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model, the model in Banerjee, Kaniel, and Kremer (2009) is unable to generate
interesting volume or volatility dynamics or to link such dynamics to the dis-
agreement process. We view the models in these two papers as complementary
approaches to understanding the effect of differences in opinions on different
aspects of financial markets.

II. Finite Horizon Model

We examine a finite horizon model with final period T. There are two in-
vestors (or two types of investors with equal population weights) indexed by
i ∈ {1, 2}. Agents maximize CARA utility over final-period payoff, where we set
agents’ risk aversion to one for notational simplicity:

u(WT ) = −e−WT . (1)

Agents trade two assets: a risky asset, whose final payoff D is normally dis-
tributed, and a risk-free asset, which pays one unit at time T with certainty.
The risky asset is assumed to be in zero net supply. This assumption simpli-
fies the analysis. If we were to instead assume constant aggregate supply of
the risky asset, this would decrease the price by a deterministic risk premium
term but would not affect the dynamics of volume. Also, volume dynamics in
our model are not driven by aggregate noisy supply shocks, as they are in noisy
RE models.5 Instead, dynamic trading patterns in our model follow from the
evolution of beliefs and disagreement.

Before observing any signals, the investors have prior beliefs about the final
payoff D of the risky asset. These priors are given by

D = F + d, where d ∼ N(0, δ) and F ∼ N(vi,0, ρ0), (2)

where F is the component of the final payoff about which investors obtain
signals, while d is the residual uncertainty that is not resolved until the last
date.6 In Section IV, we develop an infinite horizon version of the model where
investors receive dividends in every period (similar to D) and learn about the
mean dividend (i.e., F) over time.

For simplicity, we assume that investors have homogeneous, and correct,
beliefs about the residual payoff d.7 Moreover, to highlight the effect of differ-
ences in interpretation of public signals, we assume that the investors share a
common prior expectation given by vi,0 = v j,0 = 0.8

5For instance, by assuming persistence in the aggregate supply shocks, one can generate serial
correlation in volume and correlation between volume and absolute price changes in an RE model.

6He and Wang (1995) use a similar payoff structure in their RE model, and show that without
residual uncertainty (i.e., δ = 0), there is no trade unless investors receive private information.

7Since investors do not receive any information about d, their beliefs about it do not change over
time and hence do not affect the dynamic of volume significantly.

8In the proofs, we also allow for investors to have different prior expectations, where the differ-
ence is normally distributed:

vi,0 − v j,0 ∼ N (0, σ0) .
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At each date 0 < t < T , agents observe a public signal st and may disagree
about its interpretation. In particular, investor i believes that st is given by

st = F + εt where εt ∼ N(ei,t, qt), (3)

where ei,t denotes investor i’s interpretation of the public signal at date t. If
agent i has a higher ei,t, then he has a more negative view of the same signal.
We assume that the ei,t ’s are normally distributed with zero mean and are
independent of any other random variables:

ei,t ∼ N (0, λt) . (4)

As a result, there is uncertainty about what the interpretation of future signals
will be. At time t, each agent observes both ei,t ’s and so there is no asymmetry
of information.

The above specification implies that each investor believes that the other
investor is wrong and so ignores the other investor’s interpretation. This as-
sumption is made primarily for tractability, but also allows us to develop the
intuition for a setup with pure differences of opinion. In the real world, in-
vestors are likely to agree on certain things and disagree about others. Stan-
dard asymmetric information RE models focus on aspects of the world that
investors agree about and thus learn about from each other. Our goal (like
other models of differences of opinion) is to highlight aspects of the world that
investors still disagree about after they have learned all they can from each
other.9 Moreover, while these types of beliefs can be motivated by behavioral
biases or bounded rationality, they need not be. As Morris (1995) and others
point out, relaxing the common prior assumption does not imply or require
irrationality. The fact that sophisticated rational investors (and economists)
often publicly disagree is evidence of this.

While we allow investors to disagree on the mean of the public signal, we
assume that they agree on the precision of the public signal, although this is
allowed to vary over time. A natural question to ask is whether this restriction
can be relaxed. We are unable to allow for both heterogeneous precision and
stochastic disagreement about the mean of the public signal in a tractable
manner. One possible way to allow for heterogeneous precision while keeping
the model solvable would be to make the interpretations ei,t of each investor
deterministic.10 Volume and return dynamics would then be driven by these
exogenous, deterministic specifications.

This allows us to consider both the case in which investors begin with heterogeneous priors about
valuations (for nonzero σ 0), and the case in which investors have common priors (when σ0 = 0).
However, the results of our model are driven by differences in interpretation of the public signals
and not by differences in prior beliefs. We therefore focus on the simpler case in the body of the
paper.

9We would like to thank the referee for this characterization.
10This would make the average valuation a weighted average of the valuations of each investor,

where the weights would depend on the precision and the risk aversion of each investor (e.g., Kim
and Verrecchia (1991)).
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The variability in the distribution of εt over time captures the notion that all
the public signals need not be from the same source. For example, the signal in
a given period, st, might be an earnings announcement, while the signal in the
next period, st+1, might be an analyst report, and so on. As mentioned above,
the key assumption is that agents are allowed to have different interpretations
of the same signal. While an earnings announcement of 10 cents is good news
for one agent, it might be bad news for another. Agents are also allowed to have
different interpretations across signals—a given agent might react positively
to the earnings announcement, but negatively to the analyst report. Hence, we
allow for the flexibility to model signals from different sources, with different
precision, without further complicating the notation.

The generality of the model allows us to consider a wide range of disagree-
ment patterns. Since agents disagree on the meaning of public information, it is
not necessary that beliefs converge in the long run. To keep the model tractable
and the intuition clear, we do not complicate investors’ learning problem by
explicitly allowing them to change their interpretation after learning from the
others’ interpretation or from past signals. However, since the model allows
for time variation in investor beliefs about the precision of the public signals
(i.e., qt), it could implicitly capture such a phenomenon. By allowing for time
variation in λt, we can model periods of uncertainty and large disagreement
(high λt) and periods of similar interpretation and learning (low λt).

As a result of the different interpretations, investors hold different poste-
rior beliefs about the distribution of F. In particular, we denote investor i’s
conditional beliefs at date t about F as

vi,t = Ei,t[F] and ρt = vart[F]. (5)

Since their information sets are symmetric, agents disagree regarding the mean
of F but agree that the variance is given by ρt. Finally, we use the notation X̄t =
1
2 (X1,t + X2,t) to denote the average across investors of any random variable
Xi, and the notation �Xi,t = Xi,t − X̄t to denote the deviation of investor i in
variable X from the mean.

A. The Two-Period Case

We show that the equilibrium of the model has a simple, recursive form. In
particular, we show that prices in each period are given by the investors’ aver-
age valuation (i.e., Pt = v̄t), and the optimal demand of each investor is driven
by his valuation vi,t. To clarify the intuition for the model before presenting
the main result, we explicitly derive the equilibrium for the special case where
T = 2. We solve the model using backward induction. At date 1, the optimal
demand and price are given by

xi,1 = vi,1 − P1

ρ1 + δ
and P1 = v̄1.

This follows immediately from the assumptions of exponential utility and nor-
mally distributed payoffs. The price reflects the average valuation, and the
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optimal demand of each agent reflects the difference between his valuation
and the average valuation. Based on this, we conclude that at date 0, investor
i’s optimal demand solves the following problem:

xi,0 = arg max
x

Ei,0[− exp{−x(P1 − P0) − xi,1(F + d − P1)}]
= arg max

x
Ei,0[− exp{−x(P1 − P0)}Ei,1[exp{−xi,1(F + d − P1)}]]

= arg max
x

Ei,0

[
− exp

{
−x (P1 − P0) − 1

2(ρ1 + δ)
(vi,1 − P1)2

}]
.

The second equality follows from the law of iterated expectations, and the
third equality follows from substituting the optimal demand at date 1 and
taking expectations with respect to the investor’s information set at date 1. As
a result, the expected utility at date 0 depends on the price gain P1 − P0 and
the conditional expected utility at date 1. At date 0, the investor forms beliefs
about the value F and next period’s price using Bayes’s Rule. We denote these
beliefs by(

P1

vi,1

)
∼ N

((
Ei,0[P1]

vi,0

)
,

(
η0 πρ0

πρ0 πρ0

))
, where π = 1/q1

1/ρ0 + 1/q1
.

As a result, the solution to the above problem can be shown to have the following
form:

xi,0 = ω
Ei,0[P1 − P0]

η0
+ (1 − ω)

vi,0 − P0

πρ0
, where

ω = (ρ1 + δ)η0

(ρ1 + δ)η0 + πρ0(η0 − πρ0)
.

The optimal demand is a weighted average of two components: a speculative
component given by Ei,0[P1−P0]

η0
that depends on the investor’s beliefs about next

period’s price, and a fundamental component given by vi,0−P0
πρ0

that depends on
the investor’s beliefs about the final payoff F. Since we know that the price at
date 1 is the average valuation (i.e., P1 = v̄1), investor i’s conditional expectation
of the price is given by

Ei,0[P1] = (1 − π )v̄0 + πvi,0.

In particular, note that a disagreement about the valuation between investors
translates into a disagreement about next period’s price. Substituting these be-
liefs into the optimal demand and aggregating across all investors, the market
clearing condition implies that the price at date 0 is the average valuation of
the asset, that is, P0 = v̄0. Moreover, this implies that the speculative compo-
nent of demand Ei,0[P1 − P0] is a multiple of the fundamental component (note
that Ei,0[P1 − P0] = π (vi,0 − P0)) and so investor i’s optimal demand is driven
by his beliefs about the fundamental value vi,0:

xi,0 = φ0(vi,0 − P0).

We show that this generalizes to the case of T > 2 in the following subsection.
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B. The General Case

As in the two-period case, each investor uses Bayes’s Rule to update his
beliefs about F using his own interpretation of the public signal. In particular,
investor i’s beliefs about F at date t + 1 are given by

F ∼ N(vi,t+1, ρt+1), (6)

where

vi
t+1 = (1 − πt)vt + πt(st+1 − ei,t+1) and ρt+1 = ρt(1 − πt), with

πt = 1/qt+1

1/ρt + 1/qt+1
. (7)

Given these beliefs, we show in the Appendix that we can characterize the
equilibrium as follows:

LEMMA 1: For all t and all investors i, in equilibrium:

1. Prices reflect average beliefs, that is, Pt = v̄t for all t,
2. The optimal demand of investor i is of the form xit = φt(vi,t − Pt) = φt�vi,t,

and
3. The expected utility of investor i is of the form EUi,t ∝ exp{− 1

2Kt
(vi,t − Pt)2},

where, Kt and φt are recursively defined in the Appendix.

In each period, investors solve a multiple-period dynamic optimization prob-
lem. The optimal demand at date t depends not only on the investor’s beliefs
about the final payoff, but also on his beliefs about the price gains at each in-
termediate period. Given our assumptions about the conditional independence
of shocks to information and interpretations, this demand takes a very simple
functional form. In fact, as in the two-period example from the last section,
the optimal demand at date t can be expressed as a weighted average of two
components:

xi,t = ωt
Ei,t[Pt+1 − Pt]

ηt
+ (1 − ωt)

Ei,t[F − Pt]
πtρt

, where

ωt = Kt+1ηt

Kt+1ηt + (πtρt)(ηt − πtρt)
. (8)

The first part, Ei,t[Pt+1−Pt]
ηt

, is the speculative component of demand since it de-

pends on beliefs about next period’s price Pt+1. The second part, Ei,t[F−Pt]
πtρt

, rep-
resents a fundamental motive for trade as it depends on beliefs about the final
payoff. Since the price gain Pt+1 − Pt can be expressed as

Pt+1 − Pt = (1 − πt)v̄t + πt(st+1 − ēt+1) − Pt (9)

= (1 − πt)v̄t + πt(F + εt+1 − ēt+1) − Pt, (10)
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and since future interpretations (ei,t+1’s) and signal noise (εt+1’s) are indepen-
dent of current information, beliefs about Pt+1 − Pt are a linear function of
Ei,t[F − Pt]. In particular, we show in the Appendix that

Ei,t[Pt+1 − Pt] = πt Ei,t[F − Pt], (11)

and consequently the optimal demand at date t is linear in vi,t − Pt. Market
clearing implies that the date t price is given by the average valuation (v̄t),
and substituting these into the objective function gives us the quadratic form
for the objective function. Finally, we show in the Appendix that if there is no
residual uncertainty (i.e., δ = 0), the speculative component of trade is zero and
investors trade as if they are myopic.

COROLLARY 1: If there is no residual uncertainty (i.e., δ = 0) or there is no
disagreement (i.e., λt = 0 for all t), then the optimal demand is the myopic one,
that is,

xi,t = 1
ρt

(vi,t − Pt). (12)

In either of these cases, the optimal demand in each period reduces to that
of myopic investors. As we show in the Appendix, in these cases there is also
no serial correlation in volume.

III. Volume

Our main focus in this paper is on volume and its properties. We define
the signed trade of investor i between dates t and t + 1 as the change in the
investor’s position in the risky asset during that period, that is, xi,t+1 − xi,t.
Given our characterization of the equilibrium in Lemma 1, we know that the
price at date t is the average valuation of investors (i.e., Pt = v̄t) and investor
i’s optimal demand is given by

xi,t = φt(vi,t − Pt) = φt�vi,t. (13)

In particular, investor i’s holdings depend on the difference between his valu-
ation and the other investors’ valuation. This is intuitive, since if investor 1 is
more optimistic than investor 2 (i.e., �v1,t > 0), then investor 1 is long in the
risky asset while investor 2 is short in the risky asset. As a result, investor i’s
signed trade depends on the difference in current valuations and the difference
in future interpretations:

xi,t+1 − xi,t = φt+1�vi,t+1 − φt�vi,t. (14)

Since the volume in this economy is given by the absolute value of the signed
trade, we have the following result.

PROPOSITION 1: The volume at time t + 1 is linear in the difference in prior
beliefs and the difference in interpretation of new information, and is given by
the expression
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Volt+1 ≡ |xi,t+1 − xi,t| =

∣∣∣∣∣∣∣∣ (φt+1(1 − πt) − φt)�vi,t︸ ︷︷ ︸
belief convergence term

− φt+1πt�ei,t+1︸ ︷︷ ︸
idiosyncratic term

∣∣∣∣∣∣∣∣ . (15)

Moreover, if λt = λ and qt = q, then φt+1(1 − πt) − φt ≤ 0.

Volume is driven by two factors: the difference in prior beliefs about the
value �vt and the difference in the shocks to interpretation �et+1. The first
term is what we refer to as the belief-convergence, or learning, term, while the
second piece is referred to as the idiosyncratic term. The intuition behind these
two terms is as follows. Suppose there is little difference in beliefs before the
current period t, that is, the �v’s and �e’s have been small. Further, suppose
there is a large shock to the differences in interpretation (high �et). Investors
update their beliefs using Bayes’s Rule and this leads to a large difference in
beliefs today (high �vt). The volume between periods t − 1 and t is being driven
primarily by the idiosyncratic term φtπt−1�et. In the next period, t + 1 , suppose
further that the shock to interpretations is small (small �et+1). Agents interpret
the public signal similarly, and the Bayesian updating leads to a convergence
of beliefs. In some sense, there is little uncertainty about the interpretation of
the public signal, and both agents learn about the final value of the asset.11

This learning leads to a convergence in positions and the resulting volume
between periods t to t + 1 is driven by (φt+1(1 − πt) − φt)�vt. Hence, we call it
the learning, or belief-convergence, term.

More directly, consider the following. In the event that �et+1 = 0, agents in-
terpret the new information identically. The agents learn the same thing about
the final payoff, and this leads to a convergence in beliefs about the final payoff.
As their beliefs get closer to each other, the agents decrease their prior holdings
(in absolute value). While hard to prove analytically, one can verify numerically
that φt+1(1 − πt) − φt ≤ 0 under quite general conditions. This change in posi-
tions leads to volume over time. As we discuss in the next subsection, this is
also the source of the autocorrelation in volume. In contrast, if �vt = 0 (e.g.,
there have been no disagreements in the past), then the only source of volume is
�et+1. Agents will change their positions if they interpret the new information
differently and hence update about the final payoff differently. As expected,
−φt+1πt ≤ 0, since a higher et+1 implies a more pessimistic interpretation. The
larger the difference in interpretations, the larger the consequent difference
in valuation and the larger the positions taken by the agents. Finally, since
the et+1’s are independent over time, the idiosyncratic term cannot be directly
responsible for the autocorrelation in volume.

11When agents have similar interpretations about the public signal, and updating leads to a
convergence in beliefs, we say that the agents “learn” about the final value of the asset. However,
it might be the case that they are equally wrong in the interpretation of the signal, and therefore
learn incorrectly.
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A. Autocorrelation in Volume

Turning attention to the autocorrelation in volume, recall that volume is
given by the expression

Volt+1 = |(φt+1(1 − πt) − φt)�vi,t − φt+1πt�ei,t+1|, (16)

where (φt+1(1 − πt) − φt) ≤ 0. As discussed above, the only source of autocor-
relation in volume is the (φt+1(1 − πt) − φt)�vt terms, since the �et+1 terms
are serially independent. For high positive autocorrelation, one would need
the �vt terms to be positively autocorrelated, and large in comparison to the
�et+1 terms. Intuitively, high volume today is indicative of a large difference
of interpretation today. If the shocks to the difference in interpretation (�e)
are small in the future, this implies more convergence, and consequently more
belief-convergence trade, in the future.

Note that the (φt+1(1 − πt) − φt)�vt terms are autocorrelated since the �vt

terms are autocorrelated. If there is a large initial realization of �et followed
by a series of small realizations of �et+1, then we should observe positive
autocorrelation in volume. We can generate the above pattern with occasional
large jumps in λt (high realizations of �et+1) followed by long periods of low λt

(low realizations of �et+1). When agents disagree occasionally but agree most
of the time, volume exhibits positive autocorrelation.

PROPOSITION 2: Expected volume is given by

E[Volt+1] = E[|xi,t+1 − xi,t|] =
√

2
π

var[xi,t+1 − xi,t] (17)

and the serial correlation in volume is given by

corr[Volt+2, Volt+1] = �(cov(xi,t+2 − xi,t+1, xi,t+1 − xi,t)), (18)

where �(·) is a function, symmetric around zero, defined in the Appendix.

In closed form, the expression for autocorrelation is difficult to analyze.
Hence, we numerically examine the effect of the parameters on expected volume
and volume autocorrelation and present the results through a set of graphs.
Specifically, we examine two different effects: (1) raising a parameter in the
first period while keeping it fixed in subsequent periods, and (2) raising the
level of the parameter in all periods. In the case of the variance of the signal
(q), the overall level has a larger impact on the autocorrelation of volume. In
the case of the dispersion of beliefs (λ), however, temporary shocks play a more
important role. Hence, a pattern of large occasional disagreements followed
by periods of learning leads to higher volume autocorrelation. We present the
results in Figures 1 and 2. The base values for the model parameters in the
numerical exercise are as follows: T = 12, ρ0 = 1, qt = 0.1, and λt = 1. We use
a log-scale for the x-axis to show the effect of large variation in the dependent
variable. When looking at our results one should keep in mind that daily auto-
correlation in volume is estimated to be around 0.3 to 0.4 (e.g., Llorente et al.
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Figure 1. This figure gives expected volume and serial correlation in volume as a func-
tion of changes in the overall level of qt and jumps in q1 only. Other model parameters are
set to the following: ρ0 = 1, qt = 0.1, λt = 1, δ = 1. Note that the x-axis is in log scale.

(2002)). Results regarding the level of volume are harder to compare since in
our model there is zero net supply.

For the variance of the public signal, q, the two effects are in the same
direction. The top panel of Figure 1 shows that increasing the overall variance
marginally decreases the expected volume and the volume autocorrelation. A
higher overall variance for the public signals leads the agents to put less weight
on them while updating, and this leads to smaller changes in beliefs and lower
expected volume. The bottom panel shows that raising the variance of the first
signal to q1 lowers volume and autocorrelation. A high value of q1 means that
the public signal in the first period is noisier. The public signal in the second
period is relatively less noisy, and updating on this new information leads to
volume and price changes between the two periods.

Figure 2 shows the effects of an overall change in the degree of disagreement
versus a temporary shock to disagreement. The top panel shows that increas-
ing the variance of the differences of opinion (increasing λt) leads to higher
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Figure 2. This figure gives expected volume and serial correlation in volume as a func-
tion of changes in the overall level of λt and jumps in period λ1 only. Other model param-
eters are set to the following: ρ0 = 1, qt = 0.1, and λt = 1, δ = 1. Note that the x-axis is in log
scale.

autocorrelation in volume. However, expected volume is nonmonotonic in λt.
This is because higher levels of overall disagreement (higher λt) also imply
higher differences in future interpretation, which leads to higher uncertainty
and less aggressive trading. As a result, expected volume is increasing in λt

for low and high values of λt, but is decreasing for some intermediate levels
of λt. Again, changing the overall level of λt has a small effect on autocorrela-
tion while raising the overall level of disagreement contributes to the expected
volume to some extent.

The bottom panel of Figure 2 captures the effect of large initial disagreements
followed by periods of relative agreement and learning. As we suggested earlier,
large initial disagreement about the interpretation of the signal (due to high
λ1) leads to a divergence of opinions. This leads agents to hold more extreme
positions. In the following periods, agents have more similar interpretations
(relatively low λt), and hence they learn from the public signals. This leads to a
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Figure 3. This figure shows the time-series dynamics of expected volume and volume
autocorrelation after an initial jump in λ1. Other model parameters are set to the following:
ρ0 = 1, qt = 0.1, λt = 1, and δ = 1.

convergence in beliefs and in turn to the observed exponential decay in volume.
Also, note that the effect of high λ1 on volume autocorrelation has the largest
magnitude as compared to the effects of the other parameters.

It is difficult to interpret the time-series properties of volume since it is
nonstationary. However, we confirm our intuition about the decay in volume
and autocorrelation graphically in Figure 3. The time series of expected vol-
ume and volume autocorrelation are plotted for different initial levels of dis-
agreement (λ1). The effect of large disagreement in the initial period is quite
persistent, leading to high expected volume and correlation over a number of
periods.

The numerical examples suggest that, indeed, a pattern of occasional large
disagreements followed by learning is an important feature in generating pos-
itive correlation in volume. Furthermore, higher overall levels of precision of
the public signal lead to higher levels and correlations in volume. In Section IV,
we are able to present similar results more formally in an infinite hori-
zon model. In particular, we show that larger disagreement shocks lead to
higher volume and higher autocorrelation in volume. We also show that
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while the level of volume increases in the frequency of disagreement shocks,
autocorrelation in volume is lower for extremely frequent and extremely rare
shocks than it is for an intermediate frequency of shocks.

B. Volume and Volatility

Next, we look at the correlation between volume and returns, or equivalently,
price changes. Price changes in our model are given by

Pt+1 − Pt = v̄t+1 − v̄t = πt(st+1 − ēt+1 − v̄t). (19)

As one would expect from a symmetric setup, there is no correlation between
(signed) returns and volume, that is,

cov(Volt+1, Pt+1 − Pt) = cov(|xi,t+1 − xi,t|, Pt+1 − Pt) = 0. (20)

This is because price changes are driven by the sequence of public signals {st}
and aggregate interpretations {ēt} whereas volume is driven by differences in
interpretation {�et}, which are independent of the st and ēt. One could intro-
duce a positive correlation between returns and volume either by introducing
a component of trading driven by asymmetric information (as in standard RE
models), or by introducing trading frictions (e.g., costly short selling) that in-
troduce an asymmetry more directly. However, in order to keep the model
tractable, we do not extend the model along these dimensions. Rather, we focus
on the more robust feature of the data, namely, the correlation between volume
and absolute returns.

Our analysis suggests another reason why occasional large disagreements
followed by periods of relative agreement may be important characteristics of
belief dynamics. Not only does this pattern generate higher levels of volume
autocorrelation, but it also is an important factor in generating the positive cor-
relation between volume and absolute returns that is empirically documented.
This is because expected absolute returns depend on the variance in price
changes:

E[|Pt+1 − Pt|] =
√

2
π

var(Pt+1 − Pt) where

var(Pt+1 − Pt) = π2
t (var(st+1) + var(v̄t) + var(ēt+1)). (21)

In particular, the volatility in price changes between dates t and t + 1 depends
on the variance of the average interpretation at date t + 1 (i.e., var(ēt+1)). Recall
that the expected volume depends on the variance of xi,t+1 − xi,t, which in turn
depends on the variance of the differences in interpretation (i.e., var(�et+1)).
Both var(ēt+1) and var(�et+1) are given by λt+1/2, which implies that periods
in which disagreement is high will have higher expected volume and higher
absolute price changes. Intuitively, periods of higher disagreement lead not
only to more trade, but also to higher price volatility. This implies that time-
series variation in the disagreement process (i.e., in λt+1) leads to time-series
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correlation between price volatility and volume, despite the fact that within
periods the two are uncorrelated.

IV. Infinite Horizon Model and Empirical Predictions

In this section, we develop a variant of our model that is better suited to gen-
erate empirical predictions. A limitation of the finite horizon model described
in Section II is that the equilibrium is not stationary and there is a strong time
trend. This trend makes it difficult to derive some of the comparative statics
results analytically. In this section, we generate predictions based on an infi-
nite horizon model in which investors are assumed to be myopic. This behavior
can be justified using a specific overlapping generations model, but is made pri-
marily for tractability. In particular, it allows us to ignore hedging demands,
and so we are able to derive the equilibrium in closed form and also provide
analytic proofs. Still, as we show, this simple setup captures the essence of the
fully dynamic model from the earlier section. Volume has the same form as
before, which suggests that predictions derived in this setup are also valid in
the less tractable model from Section II.

The basic setup of the infinite horizon model is based on our earlier finite
horizon setup. In this model, there are two assets: a risk-free asset that pays a
gross return of R > 1, and a risky asset that pays dividends Dt+1 at time t + 1.
The distribution of dividends is given by

Dt+1 = Ft+1 + dt+1, where dt+1 ∼ N(0, δ), (22)

and the mean dividend process Ft+1 is unobservable and given by

Ft+1 = αFt + ft+1 where ft+1 ∼ N(0, θ ). (23)

As before, there are two investors indexed by i ∈ 1, 2. Investors maximize utility
over next period’s wealth:

xi,t = arg max
x

Ei,t[− exp{−x(Pt+1 + Dt+1 − RPt)}]. (24)

The rest of the model setup is similar to that of the finite horizon model. In
addition to the dividend process Dt, investors also observe a public signal st

about the mean dividend process

st = Ft + εt where εt ∼ N(ei,t, q) and ei,t ∼ N(0, λt). (25)

The degree of disagreement is given by λt. We assume that agents generally
agree on the interpretation but periodically have disagreements:

λ1 = λτ+1 = λ2τ+1 = . . . λ∗ and λs = 0 for all other s. (26)

This allows us to derive predictions not just about the level of the disagreement
shock (i.e., λ∗), but also about the frequency of disagreement shocks (i.e., 1/τ ).12

12We can easily allow for investors to disagree on average—in fact, the proofs in the Appendix
correspond to the general case of λs = λ.
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To maintain notational consistency, we denote investor i’s beliefs about Ft+1

at time t by

Ft+1 ∼ N(vi,t, ρt). (27)

The evolution of this belief process is analogous to that in the finite horizon
model, and is given by

vi,t+1 = α[πv,tvi,t + πd,t Dt+1 + πs,t(st+1 − ei,t+1)] and ρt+1 = α2ρtπv,t + θ, (28)

where πd,t and πs,t are the projection coefficients for Dt+1 and st+1, and πv,t =
1 − πd,t − πs,t. Note that persistence in the mean dividend process (i.e., α > 0)
is important in this infinite horizon version of the model, since we assume that
investors are myopic. If α = 0, the mean dividend process would be independent
over time and current public signals would be uninformative about future
dividends; as a result, investors’ interpretations of the public signals would
have no effect on volume dynamics.

The stationary linear equilibrium in this model is characterized by the fol-
lowing lemma:

LEMMA 2: In the stationary linear equilibrium, investor i’s optimal demand
and price at date t are given by

xi,t = φt�vi,t and Pt = 1
R − α

v̄t, (29)

where φt is described in the Appendix.

This stationary linear equilibrium is similar to the equilibrium of the finite
horizon economy described in Lemma 1. In particular, prices are linear in the
average belief about mean dividend growth, and investor i’s position depends
on the disagreement between the two investors. Signed trade in this model also
has a familiar form:

xi,t+1 − xi,t = (απvφt+1 − φt)�vi,t︸ ︷︷ ︸
belief-convergence term

− απsφt+1�ei,t+1︸ ︷︷ ︸
idiosyncratic term

. (30)

As in the finite horizon model, volume depends on two factors. The belief-
convergence term is driven by prior differences in beliefs while the idiosyncratic
term is due to different interpretations of the current period’s public signal. As
before, serial correlation in volume will be determined by the relative size of
the learning component. From the proof of Lemma 2 we know that φt = φ when
there is no disagreement jump in period t + 1, and is smaller when there is
a jump. In periods in which there are no disagreements (i.e., λt+1 = 0), the
idiosyncratic term is also zero and volume is driven by the learning term as
beliefs converge. Formally, when λt+1 = 0, we know that

απvφt+1 − φt < 0
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and so volume is due to a convergence of beliefs. However, when there is a
shock in disagreement, �ei,t+1 is not zero and both the idiosyncratic and the
learning components of trade drive volume.

Based on the above characterization of the equilibrium, we derive the follow-
ing predictions of the model based on the level and frequency of disagreement
shocks.

PROPOSITION 3: Suppose there is a jump in disagreement at date t + 1, that is,
λt+1 = λ∗. Then:

• The return volatility at date t + 1 is increasing in the size of the disagree-
ment shock λ∗. Furthermore, if λ∗ is large enough (as described in the Ap-
pendix), then expected volume at date t + 1 and autocovariance in volume
between dates t + 1 and t + 2 are increasing in λt+1. Otherwise, expected
volume and autocovariance in volume are decreasing in λt+1.

• Price volatility and expected volume increase in the frequency of disagree-
ment shocks, that is, the average over the τ periods of price volatility and
expected volume decreases with τ . When the disagreement shock λ∗ is large
enough, then volume autocorrelation is nonmonotonic in the frequency of
disagreement shocks. In particular, the average volume autocorrelation over
τ periods is first increasing and then decreasing in τ .

• Suppose the aggregate supply of the risky asset is given by Q > 0. Then the
expected return on the asset E(Rt+1) is increasing in the magnitude of the
disagreement shock λ∗. Moreover, if there is a jump in disagreement every
τ periods, then expected returns increase in the frequency of disagreement
shocks.

The intuition for these results is as follows. The larger the disagreement
shock λ∗ at date t + 1, the higher the price uncertainty at date t + 1, and as a
result the higher the price volatility. The relationship between disagreement
and volume characteristics is more complicated as there are two potentially
offsetting effects of a jump in disagreement. Intuitively, a large jump in dis-
agreement leads to volume in the current period and volume in future periods.
However, the anticipation of a large jump in disagreement in the next period
leads investors to hold smaller positions in the current period because of higher
future uncertainty. Specifically, the first effect of a higher λt+1 is larger idiosyn-
cratic trade at date t + 1, and so higher convergence trade at date t + 2. The
second effect of a higher λt+1 is due to investors taking less aggressive posi-
tions at date t (i.e., lower φt) because of higher future uncertainty. When λt+1

is not too large (i.e., when απvφ − φt > 0), the effect of a lower φt is to reduce
the convergence component of volume. But when λt+1 is large enough (i.e., if
απvφ − φt ≤ 0), increasing λt+1 decreases φt, which increases the convergence
component of volume and so expected volume and autocorrelation in volume
both increase with λt+1. This relationship between the jump in disagreement,
λ∗, and the level and autocorrelation in volume confirms our intuition from the
plots in the bottom panel of Figure 2.



Disagreement and Learning 1289

Moreover, note that for a given level of the disagreement shock λ∗, increasing
the frequency of shocks (i.e., decreasing τ ) increases the average price volatil-
ity and expected volume over these τ periods. When the disagreement shock is
large (i.e., απvφt+1 − φt ≤ 0), extremely frequent disagreement shocks actually
lead to a decrease in volume autocorrelation since the idiosyncratic compo-
nent of volume dominates the learning component. Figure 4 shows an instance
of these results when the steady-state disagreement level is not zero. Again,
increasing τ decreases price volatility (as measured by absolute returns), ex-
pected volume, and serial correlation in volume. However, since the underlying
disagreement shock is large, when disagreement shocks are extremely fre-
quent (e.g., τ = 2, 3), volume autocorrelation is lower than when they are less
frequent. This confirms our intuition from the finite horizon model in which we
argue that large, relatively infrequent disagreements lead to high autocorrela-
tion in volume.

As our primary focus in the paper is on the relationship between disagree-
ment and volume and return dynamics, we have assumed that the aggregate
supply of the risky asset is zero. If the aggregate supply of the asset is a posi-
tive constant Q instead, then the expected return of the model in steady-state
equilibrium is given by

E(Rt+1) = vari,t[Pt+1 + Dt+1 − RPt]Q, (31)

where vari,t[Pt+1 + Dt+1 − RPt] is the variance of payoffs conditional on the
investors’ time t information. Note that since the investors have symmetric
information sets, the conditional variance is the same across both investors.
From the proof of Lemma 2, we know that the conditional variance vari,t[Pt+1 +
Dt+1 − RPt] is linear in the disagreement λt+1 at date t + 1. This is because a
higher level of disagreement at date t + 1 implies that for investors at date t,
the payoff is more uncertain. This immediately implies the comparative statics
results in Proposition 3.

In particular, this model suggests that expected returns increase with the
level of disagreement. Note that this is in contrast to other DO models (e.g.,
Miller (1977)), which predict a negative relationship between the two. The
reason for the positive relationship in our model is that a higher level of dis-
agreement in the future leads to more uncertainty in payoffs today, and this
increase in risk leads investors to require a higher expected return. Moreover,
the relationship between expected returns and disagreement is empirically
unclear. While some papers claim to document a negative relationship (e.g.,
Diether, Malloy, and Scherbina (2002) and Hong and Stein (2003)), others find
a positive relationship between the two (e.g., Qu, Starks, and Yan (2004) and
Banerjee (2010)). Also, Ball and Kothari (1991) document a spike in abnormal
returns on the date of the announcement, which is consistent with the predic-
tions of our model. The positive relationship between disagreement, volume,
and expected returns is also consistent with the high-volume return premium
documented by Gervais, Kaniel, and Mingelgrin (2001).
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Figure 4. This figure depicts the effect of increasing the frequency of the disagree-
ment shock on average volume, autocorrelation in volume, and average absolute price
change.

A. Empirical Predictions about Volume, Volatility, and Returns

The results developed in the previous section can be used to generate a num-
ber of empirically testable predictions. Since disagreement across investors is
a latent variable, we need to construct a proxy for it. In our model, when there
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is a large jump in disagreement and a corresponding large jump in volume,
volume and disagreement are positively correlated. This implies that, based on
Proposition 3, we have the following empirical prediction.

PREDICTION 1: When abnormal volume is high, volume autocorrelation, volatil-
ity, and mean returns increase with abnormal volume.

We present a preliminary test of this prediction. We use the daily turnover of
a stock (traded volume scaled by market value of equity) as our measure of vol-
ume. For each stock in CRSP from 1980 onwards, we calculate abnormal daily
turnover relative to the mean turnover for the month, scaled by the standard
deviation of the turnover for that year. We then sort these firms into 10 bins
based on their scaled abnormal volume. We report the mean autocorrelation
in volume, the mean volatility in returns, and the mean returns over the next
10 days for each bin across all firms in Figure 5. The evidence is consistent with
our predictions. When the abnormal volume is high, volume autocorrelation,
return volatility, and mean returns are all increasing in volume.

Another prediction of the model follows from the fact that in our model, return
volatility is always increasing in disagreement. Hence, on average, condition-
ing on whether we have high or low return volatility should allow us to distin-
guish between high and low disagreement. As a result, we expect to find the
following.

PREDICTION 2: When return volatility is high, autocorrelation in volume is
increasing in volume. When return volatility is low, volume autocorrelation is
decreasing in volume.

Figure 6 shows preliminary evidence consistent with this prediction. Specif-
ically, using our sample of CRSP firms, we sort observations into deciles based
on return volatility and plot the relationship between volume autocorrelation
across abnormal volume bins for the lowest and highest decile of return volatil-
ity. As predicted, for the decile of observations with high volatility, autocorrela-
tion in volume is increasing in abnormal volume. In contrast, for the low volatil-
ity decile, autocorrelation appears to decrease with abnormal volume. This is
consistent with the predictions in Proposition 3 since low return volatility im-
plies low disagreement (low λ), and this implies in turn that autocorrelation in
volume is decreasing in disagreement.

The results of Proposition 3 can also be used to design event-based empir-
ical tests of the model. In particular, these predictions can be used to study
volume and return characteristics around information events such as earnings
announcements, which are likely to be associated with large jumps in dis-
agreement. For instance, if investors exhibit more disagreement on earnings
announcement days relative to other days, Proposition 3 suggests we should
observe the following:

PREDICTION 3: Days with earnings announcements are associated with higher
levels of volume and volatility and are followed by higher volume autocorrelation
compared to days without earnings announcements.
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Figure 5. This figure presents the empirical distribution of normalized abnormal vol-
ume sorted into deciles and the corresponding levels of autocorrelation in volume, re-
turn volatility, and mean returns across these deciles.

Some empirical evidence is consistent with these results. For instance, Atiase
and Bamber (1994) show that volume around earnings announcements is
increasing in the level of predisclosure analyst forecast dispersion. Chae (2005)
documents that volume jumps on an earnings announcement and then gradu-
ally decays over the next few days, and Ball and Kothari (1991) document that
return volatility spikes on the date of an earnings announcement, but decays
rapidly afterwards. However, our model’s predictions can be made finer, since
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Figure 6. This figure depicts the empirical distribution of autocorrelation in volume
conditional on abnormal volume for low return volatility and high return volatility
deciles.

they relate the size of the disagreement shock to these return and volume char-
acteristics, and can potentially be used to identify which events lead to more
disagreement among investors, and which lead to less. Moreover, Proposition
3 provides novel predictions relating return and volume characteristics with
the frequency of disagreement that have not been tested to the best of our
knowledge.
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V. Conclusions

We develop a dynamic differences of opinion model to analyze the relation-
ship between disagreement and trading volume around public announcements.
We show that infrequent but major disagreements among agents lead to pat-
terns in volume and returns that are empirically observed. In particular, such
disagreements lead to volume clustering, even when there is no persistence
in fundamentals, and to time-series correlation between volume and volatility.
We also develop new predictions that relate the size and frequency of disagree-
ment shocks, volume autocorrelation, and return volatility, and find that the
preliminary empirical evidence is consistent with these predictions.

The differences of opinion framework is an interesting and promising alter-
native to the standard asymmetric information models. The view that agents
may “agree to disagree” not only seems plausible, but also appears better
suited to address some of the empirical evidence involving trading volume.
The current model provides a simple and tractable benchmark that can be
extended in a number of interesting ways. For instance, in a differences of
opinion setting, it would be interesting to study the effects of trading costs and
restrictions (e.g., short sales constraints) on volume and return dynamics, the
role of different types of information (e.g., “soft” vs. “hard”) in generating dis-
agreement, volume, and return patterns around events when uncertainty and
disagreement may be higher (e.g., initial public offerings or takeover/merger
decisions), and the effects of learning about, and speculating on, disagreement
over time.

Appendix: Proofs

Proof for Lemma 1: We will prove this lemma by induction.

Base Step: At date t = T − 1, we know that the above holds, since

xi,T −1 = vi,T −1 − PT −1

ρT −1 + δ
, PT −1 = v̄T −1 and

EUi,T −1 = − exp
{
− (vi,T −1 − PT −1)2

2(ρT −1 + δ)

}
. (A1)

In particular, this implies that φT −1 = 1
KT −1

= 1
ρT −1+δ

.

Iterative Step: Suppose the conjecture that holds for all τ > t. We show it
therefore holds for t. Note that the beliefs of investor i can be written as

st+1 − ei,t+1 = V + θi,t+1

st+1 − ēt+1 = V + θi,t+1 + 1
2

(ei,t+1 − e j,t+1),
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where θi,t+1 ∼ N(0, qt+1). This implies that investor i’s beliefs about vi,t+1 and
Pt+1 are given by

Z ≡
(

Pt+1

vi,t+1

)

= N

⎛
⎜⎝
(

(1 − πt)v̄t + πtvi,t

vi,t

)
,

⎛
⎜⎝π2

t

(
ρt + qt+1 + 1

2
λt+1

)
π2

t (ρt + qt+1)

π2
t (ρt + qt+1) π2

t (ρt + qt+1)

⎞
⎟⎠
⎞
⎟⎠

= N

((
mi,t

vi,t

)
,

(
ηt πtρt

πtρt πtρt

))
. (A2)

At date t, investor i’s problem is given by

xit = arg max
x

Ei,t[− exp{−x(Pt+1 − Pt)

− xi,t+1(Pt+2 − Pt+1) . . . − xi,T −1(F − PT −1)}]

= arg max
x

Ei,t

[
− exp

{
−x(Pt+1 − Pt) − 1

2Kt+1
(vi,t+1 − Pt+1)2

}]
= arg max

x
Ei.t[− exp{c + b′Z + Z′ AZ}]

= arg max
x

exp
{
−1

2

(
μ′

Z�−1
Z μZ − 2c

)
+ 1

2
(μZ + �Zb)′(I − 2A�Z)−1�−1

Z (μZ + �Zb)
}

,

where c = xPt, b′ = (−x, 0), and A = − 1
2Kt+1

( 1 −1
−1 1 ). The relevant first-order

condition is given by

∂c
∂x

+ (μZ + �Zb)′(I − 2A�Z)−1 ∂b
∂x

= 0, (A3)

which reduces to

(mi,t − Pt − xηt)Kt+1 + (vi,t − Pt − xπtρt)(ηt − πtρt) = 0. (A4)

Solving for x, we get

xi,t = Kt+1(mi,t − Pt) + (ηt − πtρt)(vi,t − Pt)
Kt+1ηt + (πtρt)(ηt − πtρt)

. (A5)

Next, aggregating over all investors, we have∫
xi,t = 0 ⇒ Pt = v̄t, (A6)
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which implies that

mi,t − Pt = πt(vi,t − Pt).

This implies that

xi,t = Kt+1πt + (ηt − πtρt)
Kt+1ηt + πtρt(ηt − πtρt)

(vi,t − Pt) = φt(vi,t − Pt). (A7)

Finally, the expected utility at time t is proportional to

EUt ∝ exp
{
−1

2

(
μ′

Z�−1
Z μZ − 2c

)+ 1
2

(μZ + �Zb)′(I − 2A�Z)−1�−1
Z (μZ + �Zb)

}

= exp

{
−1

2

(
Kt+1π

2
t + πtρt(1 − πt)2 + (ηt − πtρt)

)
Kt+1ηt + πtρt(ηt − πtρt)

(vi,t − Pt)2

}
, (A8)

which implies that

Kt = Kt+1ηt + πtρt(ηt − πtρt)
Kt+1π

2
t + πtρt(1 − πt)2 + (ηt − πtρt)

. (A9)

This completes the iterative step.
We know that KT −1 = ρT −1 + δ. Suppose Kt+1 = ρt+1 + γt+1. Then,

Kt = (ρt+1 + γt+1) ηt + πtρt(ηt − πtρt)
(ρt+1 + γt+1)π2

t + πtρt(1 − πt)2 + (ηt − πtρt)

= γt+1ηt + ρt
(
ηt − π2

t ρt
)

γt+1π
2
t + (

ηt − π2
t ρt
) = ρt + γt+1

(
ηt − π2

t ρt
)

γt+1π
2
t + (

ηt − π2
t ρt
)

= ρt + γt+1(qt+1 + λt+1/2)
γt+1 + (qt+1 + λt+1/2)

= ρt + γt,

where

1
γt

= 1
γt+1

+ 1
qt+1 + λt+1/2

. (A10)

This also implies that

φt = 1
ρt

⎛
⎜⎜⎝

ρt + γt

(
qt+1

qt+1 + λt+1/2

)
ρt + γt

⎞
⎟⎟⎠ , (A11)

which completes the proof. Q.E.D.

Proof of Corollary 1: Note that if δ = 0, then γt = 0 for all t and so Kt = ρt.
This also implies that φt = 1

ρt
. Similarly, when λt = 0, ηt = ρtπt, which implies

xi,t = 1
ρt

(vi,t − Pt). Q.E.D.
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Proof of Proposition 1: The expression for volume follows immediately from
the expression for the signed trade Ti,t+1. Since φt > 0 and πt ≥ 0, we know that
−φt+1πt ≤ 0. When λt = λ and qt = q for all t, then

φt+1(1 − πt) − φt = 1
ρt

⎛
⎜⎜⎝

ρt+1 + γt+1

(
q

q + λ/2

)
ρt+1 + γt+1

−
ρt + γt

(
q

q + λ/2

)
ρt + γt

⎞
⎟⎟⎠

= 1
ρt

⎛
⎜⎜⎝

(ρt(γt − γt+1) − ρtπtγt)
(

1 − q
q + λ/2

)
(ρt+1 + γt+1)(ρt + γt)

⎞
⎟⎟⎠ ≤ 0

since γt ≤ γt+1. Q.E.D.

Proof of Proposition 2: Since Ti,t+1 is normally distributed, and Volt+1 =
|Ti,t+1|, volume has a half-normal distribution. Specifically, this implies that

E[|Volt+1|] = E[|Ti,t+1|] =
√

2
π

σ 2
Ti,t+1

corr(Volt+2, Volt+1) = 2
π −2

(
(1−ρ2)3/2 −1+ρ2

√
1 − ρ2 +|ρ| arctan

(
|ρ|√

1−ρ2

))
,

where ρ = cov(Ti,t+1,Ti,t+2)√
var(Ti,t+1)var(Ti,t+2)

. The variance and covariance of signed trade are

given by

var[xi,t+1 − xi,t] = (φt+1(1 − πt) − φt)2var[�vi,t] + φ2
t+1π

2
t var[�ei,t+1]

cov(xi,t+2 − xi,t+1, xi,t+1 − xi,t)

= (φt+2(1 − πt+1) − φt+1)

× {(φt+1(1 − πt) − φt)(1 − πt)var[�vi,t] − φt+1π
2
t λt+1

/
2
}
,

and the variance in the difference in valuations is defined recursively as

var[�vi,0] = 1
4

σ0 and var[�vi,t+1] = (1 − πt)2var[�vi,t] + π2
t λt+1/2

since, in general, we assume that xi,0 − xj,0 ∼ N(0, σ0). Q.E.D.

Proof of Lemma 2: Conjecture a linear equilibrium with the price given by

Pt = Atv̄t. (A12)

Given the price conjecture, investor i’s beliefs about dollar returns are given by

Ei,t[Pt+1 + Dt+1 − RPt] = At+1α(πv,tv̄i,t + (πs,t + πd,t)vi,t) + vi,t − RPt (A13)
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vari,t[Pt+1 + Dt+1 − RPt] = (At+1α(πs,t + πd,t) + 1)2ρt + (At+1απd,t + 1)2δ

+ (At+1απs,t)2(q + λt+1/2) ≡ VR,t, (A14)

where the projection coefficients are given by

πd,t = 1/δ

1/δ + 1/ρt + 1/q
, πs,t = 1/q

1/δ + 1/ρt + 1/q
, πv,t = 1 − πs,t − πd,t.

(A15)

Market clearing implies that∫
i

Ei,t[Pt+1 + Dt+1 − RPt]
vari,t[Pt+1 + Dt+1 − RPt]

= 0 ⇒ (At+1α + 1)v̄t = RPt, (A16)

which implies At = 1
R(1 + αAt) and the optimal demand is given by

xi,t = φt�vi,t where φt = 1
VR,t

(At+1α(πs,t + πd,t) + 1). (A17)

The steady state of the equilibrium is characterized by ρ = ρt = ρt+1, which
solves

ρ = α2ρπv + θ ⇒ ρ = α2

1/ρ + 1/δ + 1/q
+ θ, (A18)

and At = At+1 = 1/(R − α) ≡ A. Consequently,

φt = 1
VR,t

(1 + αA(πs + πd)) (A19)

VR,t = (1 + αA(πs + πd))2ρ + (1 + αAπd)2δ + (αAπs)2(q + λt+1/2). (A20)

Q.E.D.

Proof of Proposition 3: Level of Disagreement: Suppose there is a shock in
λ at time t + 1, that is, λt+1 = λ∗ > λs = λ for all s 
= t + 1. This implies that
for all s 
= t, VQ,t > VQ,s = VQ and consequently φt < φs = φ. In particular, for
what follows note that

φt

φ
≤ απv ⇔ λ∗ ≥ λ + 2VQ (1 − απv)

απv (Aαπs)
2 . (A21)

Also, note that the regression coefficients πs, πd, and πv, the steady-state vari-
ance ρ, and the price coefficient A do not change from their steady state.

The price volatility at date t + 1 depends on

var (Pt+1 − Pt) = A2
[

2α2

1 + απv

(
(πd + πs)2 θ

1 − α2
+ π2

dδ + π2
s (q + λt+1/2)

)]
,
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which is increasing in λt+1. Signed trade between dates t and t + 1 is given by

xi,t+1 − xi,t = (απvφt+1 − φt) �vi,t − απsφt+1�ei,t+1. (A22)

This implies that expected volume as a result of the disagreement shock is
given by

var(xi,t+1 − xi,t) = (απvφt+1 − φt)2var(�vi,t) + (απsφt+1)2λt+1/2 (A23)

= 1
2

α2π2
s φ2

⎡
⎢⎢⎢⎣λ

(
φt

φ
− απv

)2

(
1 − α2π2

v

) + λt+1

⎤
⎥⎥⎥⎦ . (A24)

An increase in the size of the disagreement shock has two effects on the expected
volume. The first effect is a direct increase in expected volume through the
λt+1 term. The second effect depends on the size of λt+1/λ—in particular, if
φt(λt+1) > απvφ, then an increase in λt+1 decreases expected volume. But when
φt(λt+1) ≤ απvφ, an increase in λt+1 again decreases φt(λt+1) and so increases
expected volume. In particular, when λt+1 is large enough so that φt

φ
− απv ≤ 0,

then an increase in λt+1 increases expected volume.
The autocovariance in volume depends on the absolute value of the serial

covariance in signed trade

|cov(xi,t+2 − xi,t+1, xi,t+1 − xi,t)|
= ∣∣α(απvφt+2 − φt+1)

[
πv(απvφt+1 − φt)var(�vi,t) + απ2

s φt+1λt+1
/

2
]∣∣ (A25)

= 1
2

α2φ2π2
s λ(1 − απv)

∣∣∣∣∣∣∣∣
απv

(
φt

φ
− απv

)
(
1 − α2π2

v

) − λt+1

λ

∣∣∣∣∣∣∣∣ . (A26)

In this case, when λt+1 is large enough so that φt − απvφ ≤ 0, increasing λt+1

increases the autocovariance. On the other hand, when

απv

(
φt

φ
− απv

)
(
1 − α2π2

v

) − λt+1

λ
> 0,

then increasing λt+1 decreases the autocovariance in volume.

Frequency of Disagreement: Suppose the disagreement shock occurs at t + 1.
This implies that

var(�vi,t+1) = α2π2
v var(�vi,t) + α2π2

s λ∗/2 and

var(�vi,t+s+1) = (
α2π2

v

)svar(�vi,t+1). (A27)
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Moreover, in the steady state of this equilibrium, since there is a disagreement
shock every τ periods, we know that

var(�vi,t+τ ) = var(�vi,t) = (
α2π2

v

)τ−1(
α2π2

v var(�vi,t) + α2π2
s λ∗/2

)
,

which implies

var(�vi,t) =
(
α2π2

v

)τ−1
α2π2

s λ∗/2

1 − (
α2π2

v

)τ ≡ σ 2
τ ; (A28)

note that σ 2
τ ≥ σ 2

τ ′ for τ ′ > τ .
Volume at date t + 1 depends on

var(xi,t+1 − xi,t) = (απvφ − φt)2σ 2
τ + (απsφ)2λ∗/2

and volume on the following dates t + 2, . . . , t + s depend on

var(xi,t+s+1 − xi,t+s) = φ2(1 − απv)2(α2π2
v

)s(
α2π2

v σ 2
τ + α2π2

s λ∗/2
)
. (A29)

The average volume over τ periods is given by

1
τ

τ∑
s=0

E[|xi,t+s+1 − xi,t+s|] = 1
τ

τ∑
s=1

√
2
π

var(xi,t+s+1 − xi,t+s)

+ 1
τ

√
2
π

var(xi,s+1 − xi,s),

which implies that expected volume decreases as τ increases.
Similarly, when τ > 1, then covariance between volume at t + 1 and t + 2

depends on

|cov(xi,t+2 − xi,t+1, xi,t+1 − xi,t)|
= ∣∣α(απvφt+2 − φt+1)

[
πv(απvφt+1 − φt)var(�vi,t) + απ2

s φt+1λ
∗/2

]∣∣
= ∣∣αφ(απv − 1)

[
πv(απvφ − φt)σ 2

τ + απ2
s φλ∗/2

]∣∣
and on the following days, it depends on

|cov(xi,t+s+2 − xi,t+s+1, xi,t+s+1 − xi,t+s)|
= ∣∣αφπv(απv − 1)2

[(
α2π2

v

)s−1(
α2π2

v σ 2
τ + α2π2

s λ∗/2
)]∣∣.

When λ∗ is small enough so that απvφ − φt > 0, then increasing τ leads to
a decrease in the average volume autocorrelation. However, when λ∗ is large
enough so that απvφ − φt < 0, then decreasing τ will decrease the covariance
in the first period (i.e., cov(xi,t+2 − xi,t+1, xi,t+1 − xi,t)), and consequently will
decrease the average correlation if τ is small enough. However, when τ is large
enough (and so σ 2

τ is small enough), the remaining terms dominate, and the
overall effect is to decrease the average volume autocorrelation with an increase
in τ . Q.E.D.
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