

Welcome!

... to today's guest lecture. Short presentation ...

Robin Monard (Schroff)

2020

M.Sc. Environmental engineering (TUM / EPFL)

2021-2024

Scientific assistant at PL-LCH, EPFL

2023

Permaculture Design Course

Since 2024

Nurseryman – Emme-Forstbaumschulen AG (Bern)

Currently

First projects + Agroforestry Design Education

German Association for Agroforestry (DeFAF)

r.monard@posteo.org

linkedin.com/in/robin-schroff/

orcid.org/0009-0003-5519-0614

Before we start

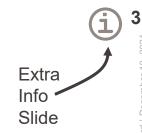
- Ask questions at any time!
- References on the slides are listed in appendix
- Setting the context A little reminder

$$B_n = ETM - P_e - R$$

B_n: net irrigation water requirements

ETM: maximum evapotranspiration

P_e: effective precipitation


R: reserve available at the start of the calculation period

→ Today's question: How to reduce the net irrigation water need ?!

 B_n

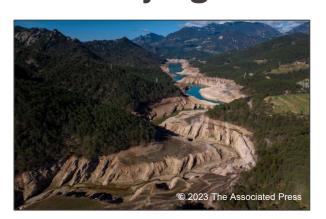
ETM

... while at the same time discovering solutions to many other problems

Structure

Introduction

Outlook

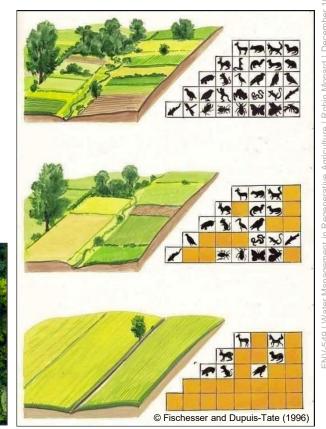

Water Management in Regenerative Agriculture (RA)

Why regenerative agriculture (RA)? - The obvious reasons

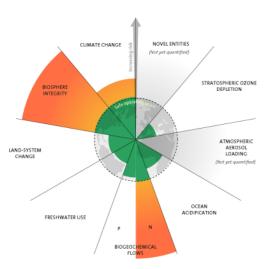
Water shortage problems

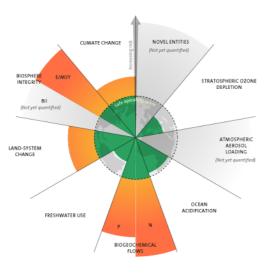
Water excess damages

Why regenerative agriculture (RA)? - The obvious reasons

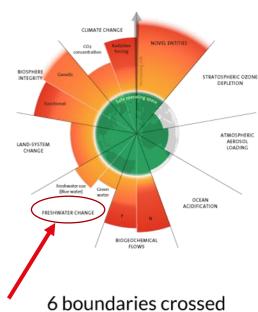


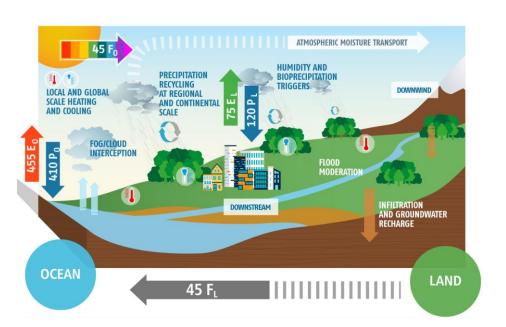
Water quality problems


Biodiversity crisis


The bigger picture: Planetary boundaries

3 boundaries crossed


2015


4 boundaries crossed

(Richardson et al. 2023)

2023

Green water and precipitation recycling

The global hydrologic landscape (Ellison et al. 2019)

Quantifications of water flows in 1000km3 per year

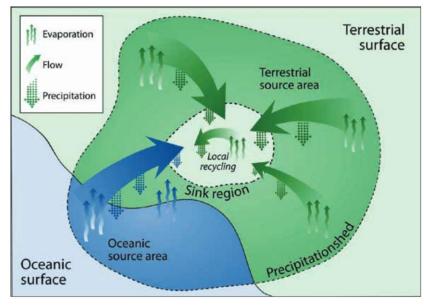
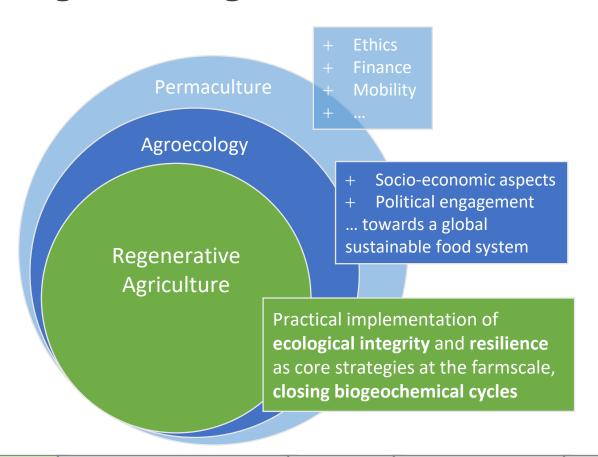
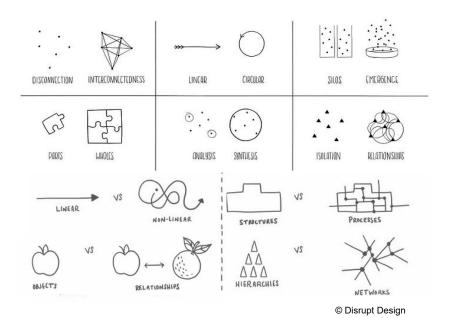



Diagram of a precipitationshed (Keys et al. 2012)

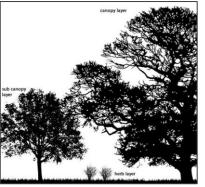
What is regenerative agriculture?

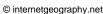
Regenerative Agriculture – Goals


- Soil Contribute to building soils along with soil fertility and health.
- Water Increase water percolation, water retention, and clean and safe water runoff.
- Biodiversity Enhance and conserve biodiversity.
- Ecosystem health Capacity for self-renewal and resiliency.
- Carbon Sequester carbon. (→ Sink instead of source!)

(Elevitch et al. 2018)

Regenerative Agriculture – Core principles

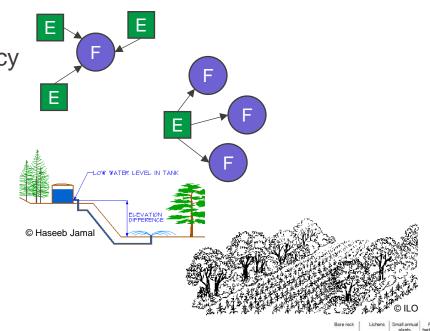

1) Systems thinking

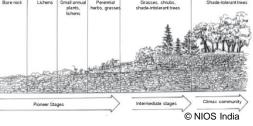

TOOLS OF A SYSTEM THINKER.

2) Ecosystem mimicry

Layers of the temperate deciduous forest

Agroforestry system




© Paul Hofmann

Regenerative Agriculture – Strategies

- Functional redundancy
- Multi-functionality
- Energy conservation
- Maximum diversity

Natural succession

Regenerative Agriculture Practices – An Overview

Ground cover management

Soil building

Integration of trees and shrubs

Water harvesting and Regen. hydrology

Crop diversity and Crop choice

Local nutrient cycling

Natural pest and weed management

Agroforestry Systems (AFS)

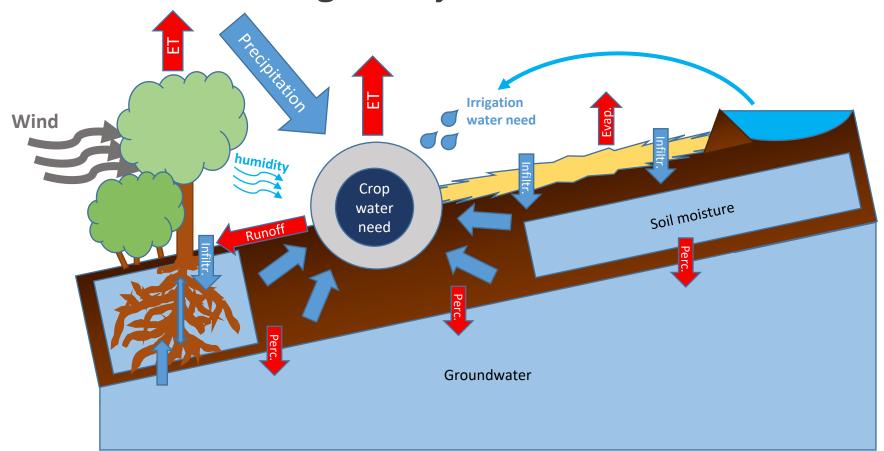
Rainwater harvest and redistribution: **Keyline Design**

Atmospheric water harvest: Dew collection; Fog collection

Adaptive crop choice: Crops adapted to (a changing) regional climate and to local site conditions **Genetic diversity**: Robust varieties; Composite-Cross-Population (CCP) seeds

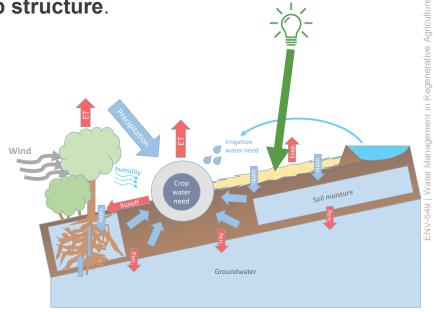
Crop diversity in time and space: Crop rotation; Synergistic cropping, Intercropping, Polycultures

Composting | Residue retention Integration of crops and livestock


Natural nutrient supply: Biological N-fixation; Microorganism supported P-supply; Compost tea

Preventive measures: Support of beneficial organisms; Soil health; Crop diversity and crop selection

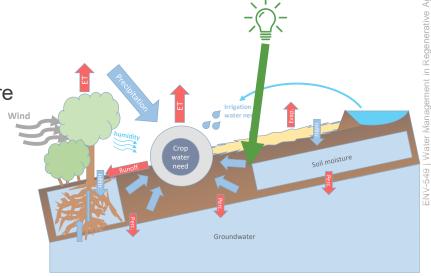
Natural plant strengthening agents: Compost tea; Liquid plant manures


Mechanical weed control | Biopesticides (last resort)

Water fluxes in Agro-ecosystems

Ground cover practices

- No bare soils to
 - keep the moisture in the topsoil,
 - protect it from UV radiation
 - and thus preserve soil life and crumb structure.
- Examples
 - Mulching
 - Cover crops and catch crops
 - Understory crops



Soil building – Soil organic matter and water retention

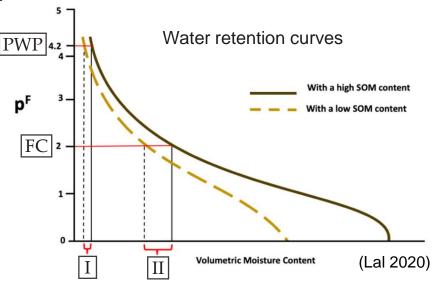
- Goal: Increase soil water retention (SWR)
 - → increased soil moisture
 - → decreased irrigation water need
 - → less runoff and erosion
- Key characteristics to improve SWR
 - Increased soil organic matter (SOM)
 - Increased pore space
 - Depth of the root system / rhizosphere

1% SOM in the top 15cm of soil can hold about 250000 L/ha = 250 m3/ha = 25 L/m2 = 25 mmof water (USDA 2014)

Note: Different studies find different values, but the message is the same

Soil building – Plant available water capacity (PAWC)

Increase in Soil organic matter (SOM) content


 increases SWR more at field capacity (FC) than at the permanent wilting point (PWP)

 increases Plant available water capacity (PAWC) for all soils (sand, silt, and clayey texture)

increases drought resilience also for degraded and depleted soils

high SOM content

The imperative for RA

What is RA? Water fluxes and ground cover Soil building

Agroforestry Systems >

Keyline Design > Outlook

Soil microorganisms – Example of mycorrhizal fungi (MF)

Fungi trading networks

- Water transport by mycorrhizal fungi (MF) to host plants
 - → MF can access **micropores** not available to plant roots
- Nutrient exchange between MF and host plants
 - \rightarrow C (sugar) $\leftarrow \rightarrow$ P/N/...

Soil building practices

Table 2. The summary on effects of agricultural practices on soil and water conservation and on other variables. The effects are compared to conventional tillage and use of agrichemicals. (Effect indicators: \uparrow positive, / neutral, \downarrow negative).

Practice	Soil Conservation	Water Conservation	Other
Cover/catch crops	↑ soil structure ↑ soil erosion ↑ soil organic matter (SOM)	↑ soil moisture ↑ soil water capacity ↑ runoff ↑ water quality downstream	↑/↓ crop yield ↑ nutrient regulation ↓ weeds ↑ biodiversity
Residue retention/mulch	↑ soil erosion ↑ SOM	↑ soil moisture ↑ evapotranspiration ↑ runoff	↑↓ crop yield ↑ weeds ↑ fungus
No-till/direct seeding	↑ soil erosion ↑↓ SOM	↑ soil moisture ↑ soil water capacity ↑ runoff ↑ water quality downstream	↓/↑ crop yield ↑ nutrient regulation ↑ weeds ↑/ pests
Minimum tillage	↑ SOM	↑ soil moisture ↑ soil water capacity	↓ crop yield ↑ weeds
Crop rotation	↑ soil structure ↑/ SOM	↑ soil water capacity	↓↑ crop yield ↑ nutrient regulation ↑ weeds ↑ crop diversity
Intercropping	↑ soil structure ↑/ SOM	↑ soil water capacity	↓↑ crop yield ↑ nutrient regulation ↓ weeds ↑ crop diversity
Organic agriculture	↑ soil structure ↑/ SOM	↑ soil water capacity	↓/ crop yield ↑ nutrient regulation ↓↑ weeds ↑ crop diversity
Agroforestry	↑ soil structure ↑ soil erosion ↑ SOM	↑ soil water capacity ↑ evapotranspiration	↑ crop yield ↑ nutrient regulation ↑weeds ↑ crop diversity ↑ micro-climate ↑ carbon sequestration

RA farming approaches

Minimum mechanical soil disturbance

Maintaining a living root system

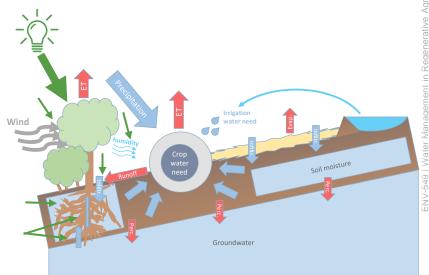
Organic material supply

Soil life stimulation

- Subsoiling
- Rotational grazing / holistic-planned grazing
- Biochar and Terra preta
- Composting

(Choden & Ghaley 2021)

The imperative for RA What is RA? > Water fluxes and ground cover > Soil building


Agroforestry systems (AFS) – Definition and effects

Effects on water fluxes

- Windbreak → Protection from drying winds
- Runoff barrier → Water interception and infiltration
- Increased Soil water holding capacity
- Biological irrigation by Hydraulic redistribution
 - → Deep-rooting (woody) plants vertically redistribute soil moisture
 - → **Hydraulic lift**: Water supply from deeper soil layers to shallow-rooting crops
 - → Reverse hydraulic lift: Accelerated draining of upper layers following strong precipitation
 - → Hydraulic redistribution enhanced by microorganisms and mycorrhizal networks
- Microclimate (Temperature buffering, humidity, ...)
 - → Reduced heat stress, improved crop quality/yields

Definition

«Land-use systems where woody perennials (trees, shrubs, etc.) are used on the same land as agricultural crops and/or animals» (FAO, short version)

The imperative for RA >

What is RA? Water fluxes and ground cover Soil building Agroforestry Systems Keyline Design Outlook

Agroforestry systems (AFS) – Further benefits

- Aesthetics
- Nutrient lift
- Shelter for livestock
- Fodder for livestock
- Erosion control → soil stability
- Build-up of soil organic matter
- Wood and tree products → timber yields
- Introduction of mycorrhizal fungi and networks → soil health, water and nutrient availability
- Crop diversification → resilience and productivity
- Wildlife habitat → biodiversity and pollinators
- Wildlife corridors → ecological habitat connectivity

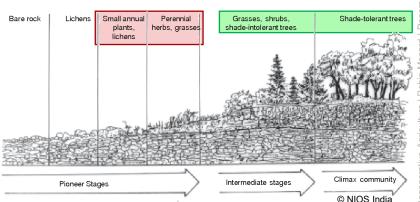
AFS classifications – Distinction by ...

... Dominant land-use

- 1) **Silvoarable** AFS → field crops
- 2) **Silvopasture** AFS → pasture
- 3) Agrosilvopastoral AFS
- 4) **Plantation** AFS → orchards, vineyards, or other perennials
- Fodder trees

... Complexity (Lovell et al. 2018)

- 1) Integration of woody plants in agriculture, e.g. fodder hedges, wind breaks
- 2) Woody plants as **productive components** (nuts, fruits, timber, ...), e.g. alley cropping
- 3) **Multifunctional AFS**, i.e. stratified species assemblages


... Spatio-temporal evolution (Siminski et al. 2016)

- 1) Static AFS Active management to preserve a more or less static composition and structure
- 2) Dynamic or Successional AFS (SAFS) Multi-stratum AFS, designed and dynamically managed based on ecological succession

Successional Agroforestry Systems (SAFS)

Concept of SAFS

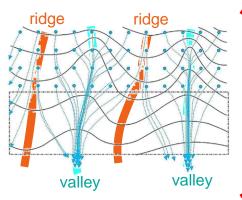
- Conventional agriculture artificially fixes natural succession at early stage, traditionally by plowing → working 'against' natural processes
- SAFS mimic ecological succession processes to capture carbon, water, nutrients
 - → working 'along with' natural processes
- Succession processes are artificially accelerated by targeted intervention → planting, pruning, thinning, harvest
- Disturbance events occur naturally (e.g. end of life of fruit tree) or are **intentionally** caused (e.g. timber harvest)
- Well-designed SAFS
 - are subject to continuous change
 → "Succession of cultivated plants"
 - have a similar structure to native forests
 - are multifunctional

Ecological succession (= Natural succession)

- Process of change in the ecological community in a certain environment over time
- Locally and periodically reinitiated following a severe disturbance event
- In natural ecosystems, the successive phases are distributed in time and space

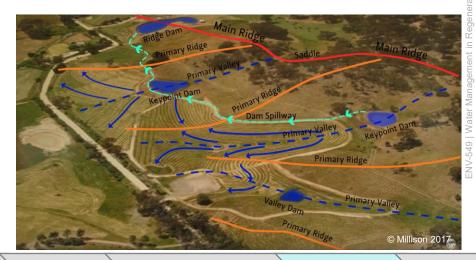
Agroforestry design considerations

- General considerations
 - Regional and local climate (P, T, Wind)
 - Site conditions (Topography, Geology, Soil)
 - System dynamics (Initial VS. Projected conditions)
 - Legal restrictions
 - Socio-economic context
- Band pattern: Geometry and orientation based on
 - Topography (Keyline Pattern, Contour lines)
 - Climatic considerations (Wind direction, Shadowing effects)
 - Farm characteristics (Machinery dimensions, Land parcel shape)
- Tree crop selection based on
 - Farmer's aims, maturation and other management considerations
 - Species compatibility and synergistic interplays
- Design principles for multifunctional AFS
 - High density and high diversity (structural and functional)
 - Promotion of complementary plant associations



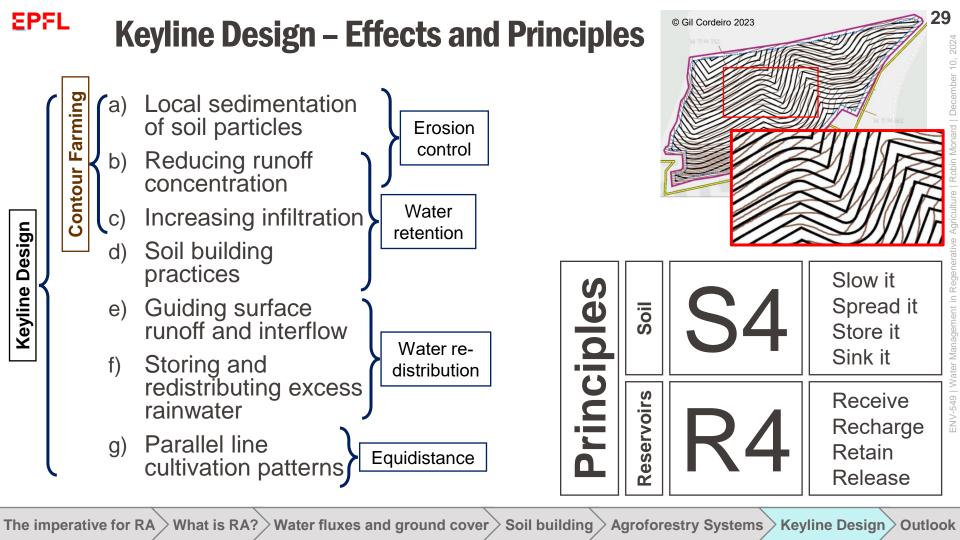
EPFL

The concept of Keyline

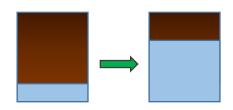


Keyline Design

- Methodology for holistic farm design and management ("Scale of Permanence")
- Analysis of where, how and when water can be harnessed
- Drainage and irrigation as interwoven disciplines
- "Let nature assist the farmer by making use of landscape topography and hydrology"


Concept

- Observation: Dry ridges and waterlogging in valleys
- Capture water as high in elevation as possible and use gravity to guide it from wetter (water excess) zones to dryer (water limited) zones
 - By developing landscape-specific machining and cultivation patterns
 - As well as water collection, transport and storage structures, if needed


The imperative for RA > What is RA? > Water fluxes and ground cover > Soil building >

Agroforestry Systems > Keyline Design > Outlook

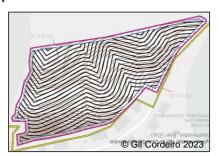
Keyline Design – Further benefits

Groundwater recharge

Surface water protection (drastically reduced nutrient and sediment loadings)

Non-structural / Nature-based flood mitigation

Landscape aesthetics


Flow control - Cultivation patterns and Subsoiling

Flow control through Cultivation Aproforestry bands A along Keyline patterns!

Subsoiling for

- Guiding of interflow along Keyline pattern
- Breaking up compacted layers
- Deep root development
- Improved soil water regime
- Improved soil aerobic conditions

Timing

Not too wet soil (smearing), Not too dry soil (breaking), Moderate temperatures

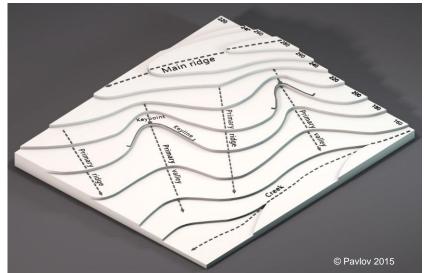
Frequency

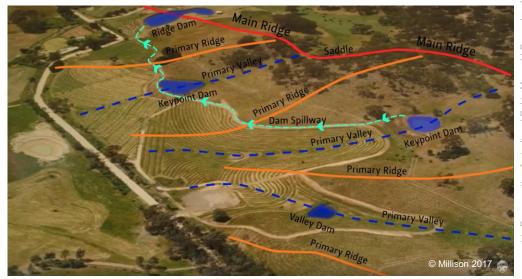
Depends on site conditions Stepwise increase from

Depth

year to year

Tools


Subsoiler / Flat lifter, e.g. Yeomans plow

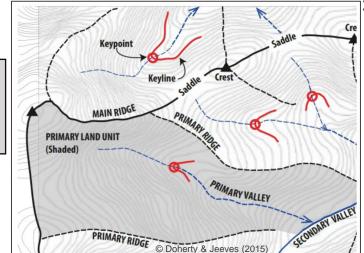


Reading the landscape – Major landshapes

Main ridge

- → Watershed limit
- → Drainage divide

Primary ridge

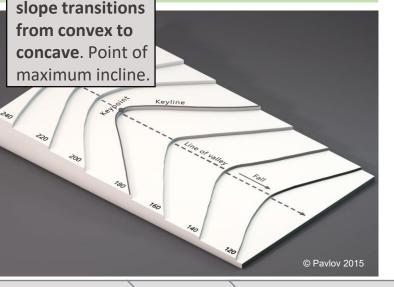

→ centerline = downslope crestline

Primary valley

→ centerline = downslope thalweg

Contour maps and Keypoint

Keypoint Point where the **slope transitions** from steep to gentle. The hydraulic erosive force decreases while the tendency to sediment deposition increases.

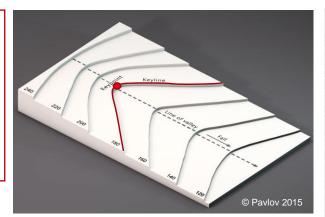


Keypoint

- Natural point of runoff concentration⁷
- Often high clay content, natural deposition area

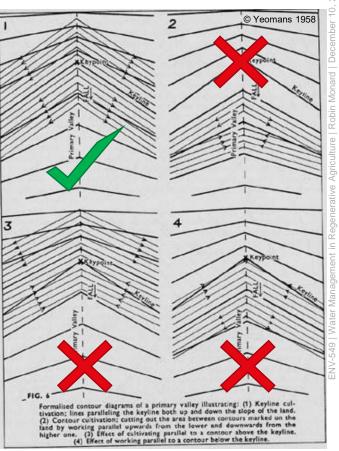
*might be determined via a GIS based surface runoff simulation

- Important for placement of dams and swales
- Nowadays less relevant for cultivation pattern development thanks to modern-day GIS technology and RTK-GNSS surveying


Inflection point Point where the

EPFL

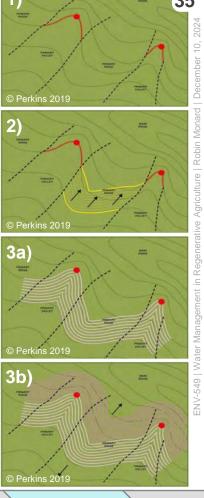
Traditional pattern design – The keyline


General goal (Reminder)

- Equidistant cultivation pattern
- Water flow from valleys to ridges

The keyline

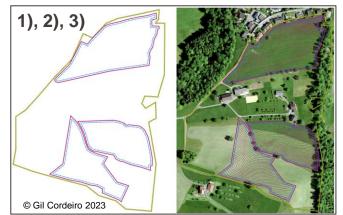
- A line through the keypoint of a primary valley on a true contour or, in actual practice, at a slight gradient, is called the "Keyline of the Valley" (Holmes 1960)
- The uphill and downhill parallel offset lines from the keyline are naturally sloped towards the ridges

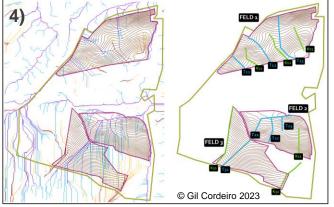


Pattern design with major landshapes

- Determine Keypoints and mark the Keylines to the edges of 1) the Primary Valleys
- **Connect the Keylines** of adjacent valleys by offsetting the 2) lowest contour on the Primary Ridge in uphill direction → Guideline for pattern development
- 3a) Parallel offsetting of the guideline in downhill direction until the guideline completing Primary Ridge contour line is met
- 3b) Continue the offsetting both in uphill and downhill direction as far as appropriate
 - → Equidistant cultivation pattern

This traditional procedure is only applicable to landscapes defined by «primary ridges» and «primary valleys»

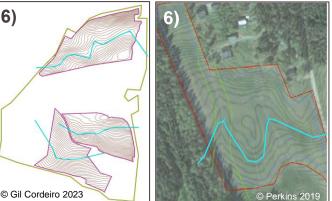

→ Rarely found in practice in continental Europe!



(Perkins 2019)

Modern approach: An iterative process! – [1/4]

- GIS data: Orthoimagery, DEM, Cadastral map, **Land-use map**, Erosion risk map (if available)
- Contour map from DEM with appropriate intervals Recommendations for different area slopes (Doherty et al. 2015) → 10cm (0-5° slope); 50cm (5-20°); 1-2m (20-45°); 3-5m (35-45°)
- 3) Defining the Area of interest
 - a) Delineate **access routes**, forestry strips, wilderness zones, areas too steep or narrow for machines, swamps and wetlands, narrow working widths, ...
 - b) Decide on water catchment earthworks
 - c) Reserve space for **headlands**
- Basic Topographic analysis
 - a) Valleys, ridges, centerlines
 - b) Surface runoff simulation / Flow path analysis
 - + Determination of keypoints (optional)



Modern approach: An iterative process! – [2/4]

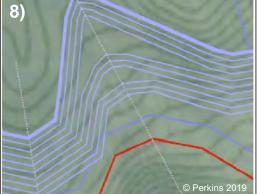
- 5) Subdivision of area of interest into homogeneous pattern zones
 - Pattern anticipation and identification of homogeneous pattern zones
 - A new pattern might be required, when encountering major land-shape anomalies or significant shifts in direction or form of a ridge or valley
 - Small-scale anomalies (e.g. runnels, indentations) are usually disregarded
- 6) Designing the guideline
 - → A **simplified contour line** used for offsetting from
 - Find a promising contour line (long, simple in shape, **not close to the borders**) and sketch a first guideline ...
 - ... which has a loose, simplified (triangular) character, considering only the major land shapes
 - ... whose valley center vertices are higher in elevation than ridge center vertices
 - ... which anticipates offset trajectories and extends beyond the area of interest for convenient offsetting
 - → Verification, adjustments or restart

6)

Modern approach: An iterative process! – [3/4]

7) Pattern development

by parallel offsetting of the guideline

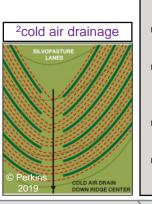

- Offset behavior entirely determined by the angles; Angles are preserved!
- Vertex trajectories follow the angle's bisecting line
- When offsetting towards a curve's geometric center, its radius is reduced

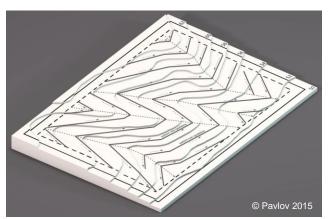
→ Anticipation of offset behavior and trajectories during guideline design for optimal uphill and downhill pattern development

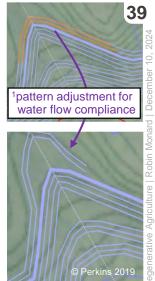
8) Angle smoothing

- Angles can be smoothened to respect tractor turning angles (usually max. 50°-55°)
- The resulting empty space between parallel lines can e.g. be utilized for locally enlarged AF bands
- For many angles, no smoothing required: Turns are naturally smoothened during implementation

© Payloy 201


Modern approach: An iterative process! – [4/4]


- 9) Pattern verification: Checklist
 - → Design adjustments if necessary
 - Compliance with Keyline principles: Water flow directions¹ and Equidistance
 - Slope along machining trajectories and at critical points (angles, end of row)
 - Smooth transitions if multiple patterns
 - Steering angles
 - Headlands
 - Simplicity


Simplicity

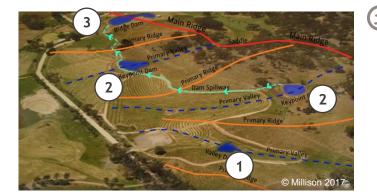
- Sound and functional
- **Practicable** for implementation
- Convenient for farming

"Convenience to be favored over theoretical perfection!"

Further hints

- Working with triangular lines for easy manipulation, offset anticipation and effective communication
- For the sake of overall simplicity pattern anomalies such as local flow inversions are disregarded when rare and insignificant in scale
- **Steep slopes** (> 20°) might implicate significant design compromises for compatibility with machinery
- Provide downhill cold air drainage² by designing a gap along ridge centerlines, if frost management is relevant

Swales and Offstream Dams


Swales (ditches and drains)

- On-contour Swales: Level, no slope
 - Active infiltration of rainfall to build water tables
 - Well suited for permeable soils with occasional but heavy rainfall
- Off-contour Swales (0.25%-1% slope from valleys to ridges)
 - Collect water, convey to reservoirs, connect reservoirs
 - Optional: Integration of steps and pools along the channel for active infiltration
- Culverts for tractor crossings and optional swale bottom outlets

Combination with AF for increased water

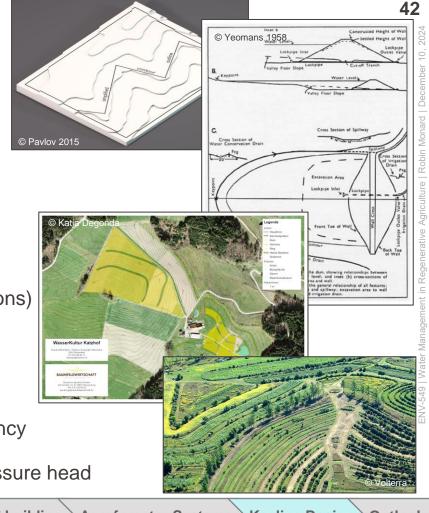
uptake

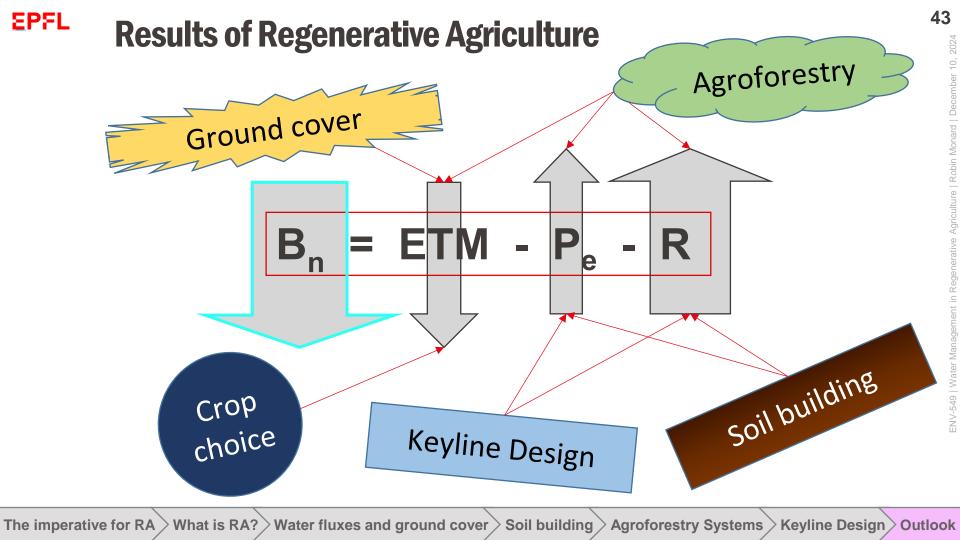
Offstream dams to impound excess rainwater

- 1) Valley dam Largest water storage capacity but low in the landscape
- 2) Keypoint dam
 Often good landscape geometry and high clay content
- 3) Ridge dam Sufficient building material, good accessibility, safe overtopping behavior
- 4) Contour dam For locations where other dam types are not feasible
- 5) Saddle dam Can be fed from four directions
- 6) Turkey's nest dam / Hilltop dam Filled with a pump from downhill reservoirs

Reservoir planning

- General analysis and assessment Needs, Site characteristics, Climate, Risk (e.g. landslides, slumping)
- Topographic survey Possible reservoir placements and serial connections
- Catchment analysis
- On-site geotechnical assessment Soil profile and clay content
- Dam dimensioning
 - Shallow shores → Water vegetation → Wave action buffer + nutrient cleaning
 - Inside slopes ideally 1:3 1:2 (for the first 2-3m)
 - Outside slopes ideally 1:2 1:1
- Drains and spillways
 - Analysis: Catchment size? Flow paths? Land-use? ...?
 - Special features: Contour-line swale spillway? Trickle tube? ...?
- Natural sealing Local loam, Sodium bentonite, Quicklime (Calcium oxide)



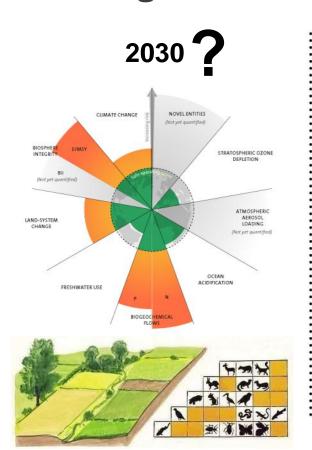


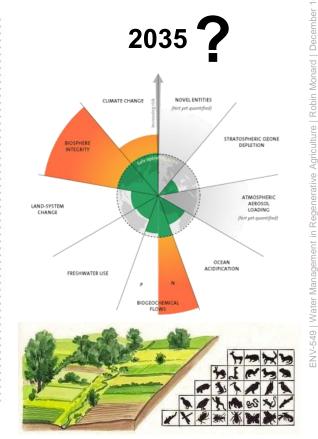
Keyline design considerations

- General considerations
 - → c.f. "Agroforestry design considerations"
- Agro-ecosystems thinking
 - → Integrated site design with many interconnected elements
- Reservoir planning
 - · Water uses and needs
 - Potential supply and transport
 - → Roofs, Sealed ground, Roads and driveways
 - System dynamics (Initial VS. Projected conditions)
 - → Future development of runoff coefficients
 - → Strategic long-term planning of reservoir locations and dimensions (constantly evolving supply and demand)
- Irrigation systems
 - Pressurized irrigation systems for best efficiency
 - **Driplines**: require approx. 7m pressure head
 - Low-pressure sprinklers: require max 17m pressure head

Results of Regenerative Agriculture


Farms which


- Recharge aquifers instead of depleting groundwater
- Take care of our surface waters
- Increase and fill green water stocks
- Contribute to regional flood mitigation
- Boost biodiversity
- Are climate-proof / Climate plasticity
- Sequester carbon
- Are highly productive
- And economically stable



Results of Regenerative Agriculture

References 1 [A-G]

- Allen, Michael F. « Mycorrhizal Fungi: Highways for Water and Nutrients in Arid Soils ». Vadose Zone Journal 6, nº 2 (2007). https://doi.org/10.2136/vzj2006.0068.
- Basch, Gottlieb, Peter Caky, Maria Almagro, Airi Kulmala, Rossano Filippini, Twan Gielen, and Adriano Battilani. « Nature-based Solutions for water management under climate change », (2022). https://ec.europa.eu/eip/agriculture/sites/default/files/fg46-mp1-nature_based_solutions_at_a_field_scale.pdf.
- Choden, Tshering, and Bhim Bahadur Ghaley. « A Portfolio of Effective Water and Soil Conservation Practices for Arable Production Systems in Europe and North Africa ». Sustainability 13, nº 5 (2021). https://doi.org/10.3390/su13052726.
- Collins, Abe, and Darren J. Doherty. « A Keyline Primer Building Soils, Harvesting Rainwater, Storing Carbon ». Land & Livestock, (2009).
- Cortés Torres, Héctor G., and J. Javier Ramírez Luna. *Diseño Hidrológico del Terreno (Sistema Keyline), en Parcelas Agrícolas con Precipitación Limitada Manual Técnico*. 1st ed. Manuales. Jiutepec, Mor., México: Instituto Mexicano de Tecnología del Agua, (2013). https://www.imta.gob.mx/biblioteca/libros-html/diseno-hidrologico-del-terreno/files/assets/basic-html/index.html#1.
- Del Carmen Ponce-Rodríguez, Ma., Francisco Oscar Carrete-Carreón, Gerardo Alonso Núñez-Fernández, José De Jesús Muñoz-Ramos, and María-Elena Pérez-López. « Keyline in Bean Crop (Phaseolus Vulgaris L.) for Soil and Water Conservation ». Sustainability 13, nº 17 (2021). https://doi.org/10.3390/su13179982.
- Doherty, Darren J., Andrew Jeeves, and Georgi Pavlov. Regrarians Handbook, (2015).
- Duncan, Sara, and Tayler Krawczyk. « Keyline Water Management: Field Research & Education in the Capital Region: Soil Indicators Monitoring Program ». Farm Adaptation Innovator Program. nvestment Agriculture Foundation of BC, (2018). https://www.bcclimatechangeadaptation.ca/app/uploads/F109-Keyline-Water-Management-CRD-2018-report.pdf.
- Elevitch, Craig, D. Mazaroli, and Diane Ragone. « Agroforestry Standards for Regenerative Agriculture ». Sustainability 10, nº 9 (2018). https://doi.org/10.3390/su10093337.
- Ellison, D., Lan Wang-Erlandsson, R. van der Ent, and M. van Noordwijk. « Upwind forests: managing moisture recycling for nature-based resilience ». *Unasylva* 70, nº 1 (2019). https://boris.unibe.ch/142918/1/Upwind_forests_managing_moisture_recycling_for_nature_based_resilience.pdf.
- Fischesser, Bernard, and Marie-France Dupuis-Tate. Le guide illustré de l'écologie. Paris: Ed. de La Martinière, 1996.
- Giambastiani, Yamuna, Gherardo Biancofiore, Matteo Mancini, Antonio Di Giorgio, Riccardo Giusti, Stefano Cecchi, Lorenzo Gardin, and Alessandro Errico. « Modelling the Effect of Keyline Practice on Soil Erosion Control ». Land 12, nº 1 (2022). https://doi.org/10.3390/land12010100.
- Gil Cordeiro, Diego Manuel. « Keyline Design: Efficient agricultural water management through algorithm-based cultivation patterns ». Conference paper manuscript, GISRUK 2023.

 Glasgow, UK, (2023). https://www.researchgate.net/publication/367479097 Keyline Design Efficient agricultural water management through algorithm-based cultivation patterns.
- Gil Cordeiro, Diego Manuel. « Keyline-Design als Wassermanagementstrategie in der Landwirtschaft ». Bachelor thesis. ZHAW Zürcher Hochschule für Angewandte Wissenschaften, (2023). https://doi.org/10.21256/ZHAW-27907.
- Gmür, Albert M., and Bram van Egmond. « Bodenstabilisierung mit Kalk im Weiherbau ». (1995). https://doi.org/10.5169/SEALS-78822.

References 2 [H-Q]

- Hofmann, Paul. « Entwicklung multifunktionaler Agroforstsysteme für die gemäßigten Breitengrade Integration von agrarökologischen Prinzipien, Sukzessionsdynamiken und Keyline-Design am Beispiel "Hof Sonnenwald" ». Master thesis, Hochschule für Nachhaltige Entwicklung Eberswalde, (2019).
- Holmes, J. Macdonald. The Geographical Basis of Keyline. Sydney: Angus & Robertson, (1960).
- Kakouridis, Anne, John A. Hagen, Megan P. Kan, Stefania Mambelli, Lewis J. Feldman, Donald J. Herman, Peter K. Weber, Jennifer Pett-Ridge, and Mary K. Firestone. « Routes to Roots: Direct Evidence of Water Transport by Arbuscular Mycorrhizal Fungi to Host Plants ». New Phytologist 236, no 1 (2022). https://doi.org/10.1111/nph.18281.
- Keys, Patrick W., Lan Wang-Erlandsson, Line J. Gordon, Victor Galaz, and Jonas Ebbesson. « Approaching Moisture Recycling Governance ». *Global Environmental Change* 45 (2017). https://doi.org/10.1016/j.gloenvcha.2017.04.007.
- Khangura, Ravjit, David Ferris, Cameron Wagg, and Jamie Bowyer. « Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health ». Sustainability 15, no 3 (2023). https://doi.org/10.3390/su15032338.
- LaCanne, Claire E., and Jonathan G. Lundgren. « Regenerative Agriculture: Merging Farming and Natural Resource Conservation Profitably ». *PeerJ* 6 (2018). https://doi.org/10.7717/peerj.4428.
- Lal, Rattan. « Soil Organic Matter and Water Retention ». Agronomy Journal 112, nº 5 (2020). https://doi.org/10.1002/agj2.20282.
- Lovell, Sarah Taylor, Christian Dupraz, Michael Gold, Shibu Jose, Ronald Revord, Erik Stanek, and Kevin J. Wolz. « Temperate Agroforestry Research: Considering Multifunctional Woody Polycultures and the Design of Long-Term Field Trials ». *Agroforestry Systems* 92, nº 5 (2018). https://doi.org/10.1007/s10457-017-0087-4.
- Millison, Andrew. Permaculture Water Design: Drought Proofing Farms. Video series. 22 vol. Online module. Corvallis: Oregon State University Ecampus, (2017). https://www.youtube.com/playlist?list=PL2fCGQa2PY7AjkepQNbwatKWUkiY3FwXL.
- Mitzel, Tristan. « Einführung in die Planung von Agroforstsystemen im Programm QGIS unter Berücksichtigung von Keyline- bzw. Hauptlinien-Design ein Leitfaden für die Praxis ». Bachelorarbeit, Universität Kassel, (2022). https://agroforst-info.de/wp-content/uploads/2022/12/Mitzel-BSc-Planung-mit-QGIS-unter-Beruecksichtigung-von-Keyline-DeFAF.pdf.
- Mollison, Bill. Permaculture: A Designers' Manual. 2. ed. Tyalgum: Tagari, (2004).
- Montagnini, Florencia, éd. *Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty*. Vol. 12. Advances in Agroforestry. Cham: Springer International Publishing, (2017). https://doi.org/10.1007/978-3-319-69371-2.
- Pavlov, Georgi. *Understanding the Application of Keyline Geometry*, (2015). http://permatronc.ressources-permaculture.fr/Ajoute-des-fichiers-ici/EBOOK_Understanding_the_Application_of_Keyline_Geometry_%5BENGLISH%5D.pdf.
- Perkins, Richard. Regenerative Agriculture: A Practical Whole Systems Guide to Making Small Farms Work. RP 59°N, (2019).

EPFL

References 3 [R-Z]

- Rhodes, Christopher J. « The Imperative for Regenerative Agriculture ». Science Progress 100, nº 1 (2017). https://doi.org/10.3184/003685017X14876775256165.
- Richardson, Katherine, Will Steffen, Wolfgang Lucht, Jørgen Bendtsen, Sarah E. Cornell, Jonathan F. Donges, Markus Drüke, et al. « Earth beyond Six of Nine Planetary Boundaries ». Science Advances 9, nº 37 (2023). https://doi.org/10.1126/sciadv.adh2458.
- Rockström, Johan, Will Steffen, Kevin Noone, Åsa Persson, F. Stuart lii Chapin, Eric Lambin, Timothy M. Lenton, et al. « Planetary Boundaries: Exploring the Safe Operating Space for Humanity ». Ecology and Society 14, no 2 (2009). https://doi.org/10.5751/ES-03180-140232.
- Rockström, Johan, John Williams, Gretchen Daily, Andrew Noble, Nathanial Matthews, Line Gordon, Hanna Wetterstrand, et al. « Sustainable Intensification of Agriculture for Human Prosperity and Global Sustainability ». *Ambio* 46, nº 1 (2017). https://doi.org/10.1007/s13280-016-0793-6.
- Sekiya, Nobuhito, Hideki Araki, and Katsuya Yano. « Applying Hydraulic Lift in an Agroecosystem: Forage Plants with Shoots Removed Supply Water to Neighboring Vegetable Crops ». *Plant and Soil* 341, no 1-2 (2011). https://doi.org/10.1007/s11104-010-0581-1.
- Shepard, Mark. Restoration Agriculture: Real-World Permaculture for Farmers. Austin, Texas: Acres U.S.A, (2013).
- Siminski, Alexandre, Karine Louise Dos Santos, and Juliano Gil Nunes Wendt. « Rescuing Agroforestry as Strategy for Agriculture in Southern Brazil ». *Journal of Forestry Research* 27, nº 4 (2016). https://doi.org/10.1007/s11676-016-0232-3.
- Tittonell, Pablo, Veronica El Mujtar, Georges Felix, Yodit Kebede, Luciana Laborda, Raquel Luján Soto, and Joris De Vente. « Regenerative agriculture—agroecology without politics? » Frontiers in Sustainable Food Systems 6 (2022). https://doi.org/10.3389/fsufs.2022.844261.
- USDA (Taylor, Ciji). « USDA Helps Landowners Manage for Soil Health, Buffer Drought Effects », (2014). https://web.archive.org/web/20231024081924/https://www.usda.gov/media/blog/2014/06/06/usda-helps-landowners-manage-soil-health-buffer-drought-effects.
- Van Der Ent, Rudi J., Hubert H. G. Savenije, Bettina Schaefli, and Susan C. Steele-Dunne. « Origin and Fate of Atmospheric Moisture over Continents ». Water Resources Research 46, nº 9 (2010). https://doi.org/10.1029/2010WR009127.
- Waller, Peter, and Muluneh Yitayew. Irrigation and Drainage Engineering. Cham: Springer International Publishing, (2016). https://doi.org/10.1007/978-3-319-05699-9.
- Wilson, Matt, Sarah Lovell, and Tobias Carter. Perennial Pathways Planting Tree Crops: Designing & Installing Farm-Scale Edible Agroforestry. Madison, WI: Savanna Institute, 2018.
- Yeomans, P.A. The Challenge of Landscape: The Development and Practice of Keyline. Keyline Pub. Pty., (1958). https://repositorio.ufsc.br/bitstream/handle/123456789/206486/1958%20Percival%20Alfred%20Yeomans%20the-challenge-of-landscape.pdf?sequence=1.
- Young, Katherine J. « Mimicking Nature: A Review of Successional Agroforestry Systems as an Analogue to Natural Regeneration of Secondary Forest Stands ». In *Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty*, edited by Florencia Montagnini, 12:179-209. Advances in Agroforestry. Cham: Springer International Publishing, (2017). https://doi.org/10.1007/978-3-319-69371-2 8.