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IPEO course - 3 image classification (SVM)

14 November 2024

Content (6 weeks)...
almost there!

= W1 General concepts of image classification / segmentation
Traditional supervised classification methods (RF)

= W2 Traditional supervised classification methods (SVM)
Best practices

= W3 Elements of neural networks

= W4 Convolutional neural networks

= W5 Convolutional neural networks for semantic segmentation
= W6 Sequence modeling, change detection

D. Tuia. ECEO N
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IPEO course - 4 sequence modeling

14 November 2024

What about the
temporal dimension?

4

2017-07-04
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SENTINEL

w

D. Tuia. ECEO



EPFL

IPEO course - 4 sequence modeling

14 November 2024

What about the
temporal dimension?

= We haven't been talking much about it.

= We focused mostly on spatial context and single images
classification and segmentation

= Today we talk about what can be done for time series (or image
sequences)

D. Tuia. ECEO »
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IPEO course - 4 sequence modeling

14 November 2024

Time can have several
uses in RS classification

1 - as extra features to classify or segment

‘q Or y

= How to exploit the temporal sequence?
= How to fuse the different information?

D. Tuia. ECEO ¢
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IPEO course - 4 sequence modeling

14 November 2024

Time can have several
uses in RS classification

2 - as a seguence to monitor changing processes: between 2 dates

Change map

Xt2 d

= Should the two models be the same?
= \We have very little label information...

D. Tuia. ECEO o
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14 November 2024

Time can have several
uses in RS classification
= 3 - as a sequence to monitor (changing) processes

1 J
.

X1

4

or or or

D. Tuia. ECEO ~
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14 November 2024

Time can have several
uses in RS classification
= 3 - as a sequence to monitor (changing) processes: monitoring

o8-

= How to pass information from one timestep to the other?

D. Tuia. ECEO ®
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Classify a static
process with multiple
time steps

It’s all about fusion
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14 November 2024

Stacking time
information

= Using multiple timesteps
brings more informaiton to
the classifier

= Quite used in crops
classification

Level-3 - || convSTAR :

Channel-wise refined

concatenation

From Turkoglu et al., Remote Sensing of Environment, 2021
https://www.sciencedirect.com/science/article/pii/S0034425721003230

(S

Speaker


https://www.sciencedirect.com/science/article/pii/S0034425721003230
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IPEO course - 4 sequence modeling

14 November 2024

Passing the
information

= A more advanced procedure
would be to take the information of

a timestep and pass it on to the
next one

= We call this a sequence model
(here a LSTM is used, more about
that later in this course.)

= Here we classify drivers of
deforestation in the tropics with a
“stacked” approach (baseline 1) vs
a LSTM (baseline 2).

(a) Baseline (1): CNN. If the input is a single image, no stacking is done

Classifier O—DE
k; dim(k) = Driver
2Lx1 prediction

. ResNet

X; dim(X) =
\_ TxCxWxH /

(b) Baseline (2): CNN-LSTM

J. Pisl, M. Russwurm, L. Hughes, G. Lenczner, L. See, J. D. Wegner, and D Tuia. Mapping drivers of tropical forest loss with satellite image time
series and machine learning. Enviro. Res. Lett., 19(6):064053, 2024. https://iopscience.iop.org/article/10.1088/1748-9326/ad44h?2

—_
=

o)
X
@
o}
o3
7]

B

Stack images M—‘E
Driver
prediction
X; dim(X) = X; dim(X) =
\ TxCx WxH (TxC)xWxH /


https://iopscience.iop.org/article/10.1088/1748-9326/ad44b2

EPFL

Change detection

Classify achanging
process with two time
steps

Siamese networks and
representation learning

modeling

14 November 2024

IPEO course - 4 sequence
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Change detection as
the 7 differences game

= When dealing with remote sensing, we face a similar problem
« Changes are rare

« Changes are small
* Most of the image hasn’t changed

D. Tuia
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First methods were

unsupervised

= Change vector analysis (Bovolo et al., 2005)

Band 1

"
i¥

A Band 1

Unchanged Pixel

Band 2

D. Tuia
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CVA in action

= Example: colorado
flood in August 2013

D. Tuia
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It is qU|te de{)en

It could indeed dete-ct the big Changes
It also |nvoIved manyfalse posmves '
The method is rigid

(Mﬂ gl 3 ‘M?‘»w

It can’t detect types | of changes

» v "s-,

v,
>

dent on perturblng factors

CVA after postprocessing CVA after more postprocessing

D. Tuia
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Change detection NOT as
the 7 differences game

= Many things that have not changed, actually look very different
1. Seasonal effects: grass growing

20

D. Tuia
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Seasonal changes

26 August 2011 11 September 2011
Landsat 5 Landsat 5

12 September 2011
ALI

28 September 2011
Landsat 8

N
=

D. Tuia
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N
N

Change detection NOT as
the 7 differences game

D. Tuia

= When dealing with remote sensing, we face a similar problem
« Changes are rare

« Changes are small
* Most of the image hasn’t changed

= Many things that have not changed, actually look very different

1.

2. lllumination effects: a color can look very different from an image to the
other
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=PrL

19h

18h

Buljepow adousnbas ¢ - 8siN0d 03d| N



EPFL

IPEO course - 4 sequence modeling

Effect on spectral

signals

200, 200 200 - 200
.ll'wlf'
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N

D. Tuia
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So what can we do?

1 Use a supervised method

2 Make the image spaces more similar before applying an
unsupervised method

25

D. Tuia
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1. Use Supervised methods



£PFL  Supervised approaches
to change detection

e,
-
oo ol

(a) Strategy 1: semantic CD from land cover maps.

B IPEO course - 4 sequence modeling

N
#i

(b) Strategy 2: direct semantic CD.

(o]
pa$

D. Tuia

[From Daudt
Et al., 2018]
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/
\

¢Enc,LCM

/\
\/

d)Enc,CD

A
y

q)Enc,LCM

\
/

(DDec.LCM

<|)Dec.CD

q)Dec,LCM

Supervised approaches
to change detection

By
By

(a) Strategy 1: semantic CD from land cover maps.

»!9‘

S vB.

gl

(c) Strategy 3: separate CD and LCM.

/
\

¢Enc,LCM

/

d)Enc,CD

\

q)Enc,LCM

\
/

W
(b) Strategy 2: direct semantic CD.

¢Dec.LCM

]

¢Dec,CD

\

¢Dec,LCM

»ﬁ‘
M i
»"

(d) Strategy 4: integrated CD and LCM.

w
N

D. Tuia

[From Daudt
Et al., 2018]
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5]

Supervised approaches to change detection

E.
[a)]
a)lmage1 (b)Image2) (c)CD-GT (e) Str. 2 f) Str. 3 g) Str. 4.1 h) Str. 4.2
i) LCM1-GT (j) Str. 1&3 (k) Str. 4.1 [) Str. 4.2 (m)LCM2-GT (n) Str. 1&3 (o) Str. 4.1 (p) Str. 4.2
Figure 4.6: lllustrative images of the obtained results: (a)-(b) multitemporal image pair; (c) ground truth change
detection map; (d)-(h) predicted change maps; (i)-(I) ground truth and predicted land cover maps for image 1;
(m)-(p) ground truth and predicted land cover maps for image 2.
CD LCM
Kappa | Dice | Tot. acc. || Kappa | Tot. acc.
Strategy 1 3.99 5.56 86.07 71.92 87.22
Strategy 2 21.54 - 98.30 - -
Strategy 3 12.48 | 13.79 94.72 71.92 87.22
Strategy 4.1 19.13 | 20.23 96.87 67.25 85.74
Strategy 4.2 || 25.49 | 26.33 | 98.19 71.81 89.01
CNNF-O 0.74 2.43 64.54 - -
CNNF-F 328 | 484 | 88.66 - - [From Daudt
PCA+KM 0.67 | 2.31 | 8395 - - Et al., 2018]

3
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What do we need to
go further

= Probably more data,
* with more diversity
« with more samples
 in geographies not
too different from
the ones under

study

= The good news:

such data start to appear.
See SpacelNets7 >

w
'

D. Tuia

dBSpaceNet

R T

cosmicy dWs HJ

works

[Source: https://spacenet.ai/sn7-challenge/]
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=PrL  Still the problems are
difficult!

D. Tuia

Combeiitor Final Overall Architectires # Pre-Training Training Inference
P Place Score Models Weights Time (H) Rate

IxastroQ 1 41.00 1 x HRNet 1 ImageNet 36 346 km2 / min

3 x EfficienNet-b6 + UNet (siamese) 5 o vt
Eannan . e 3 x EfficientNet-b7 + UNet (siamese) 6 None = 48ikme 1 min

. 1 x EfficienNet-b6 + UNet .

2
selim_sef 3 39.75 3 x EfficientNet-b7 + UNet 4 None 46 87 km2 / min
motokimura 4 39.11 10 x EfficienNet-b6 + UNet 10 ImageNet 31 42 km2 / min
MaxsimovKA 5 30.74 1 x SENet154 +UNet (siamese) 1 ImageNet 15 40 km2 / min
baseline N/A 17.11 1 x VGG16 + UNet 1 None 10 375 km2 / min
Table 1. SpaceNet 7 Winners

B IPEO course - 4 sequence modeling

[Source: https://spacenet.ai/sn7-challenge/]



EPFL

2. Make the image
spaces more similar
before applying an
unsupervised
method

36
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w
N

Theideais simple

D. Tuia

= Modify the images in a way that
 all the unchanged parts look similar
* only the changes are highlighted

Difference

o
b
—
¢
&
-
| J
26 August 2011 11 September 2011 Y
Landsat 5 Landsat 5 . \ .
L Y J Same two images after projection

In input space, unchanged areas look very different
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W
®

Theideais simple

D. Tuia

= Modify the images in a way that
 all the unchanged parts look similar
* only the changes are highlighted

= We want to lear a representation that makes unchanged areas more
similar.

= But we don’t have labels at all!

= We learned with self supervised learning, a.k.a

learning from a tasks that is not the one you want, but for which you can get
the labels for free.

Leenstra, M., Marcos, D., Bovolo, F., Tuia, D., Self-supervised pretraining enhances change detection in Sentinel-2
images Pattern Recognition in Remote Sensing workshop, ICPR, 2021
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What is Self
Supervised learning?

= A new learning paradigm

= [ earning model via a pretext
task

* A task for which the labels can
be extracted automatically
from the data

» Atask that is connected to the
main task. So learning it helps
the main task

[\

9

D. Tuia

dataset (no labels)

pre-training
model

pretext
task

knowledge
transfer

target
task

Groundai.com
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=PFL What is a pretext
task?

= Learning relative positions of patches
helps understanding spatial structures

[Doersch et al. ICCV 20‘]5] [GidariS etal. ICLR 2018]

D. Tuia

= Learning rotation angles teaches
rotation invariance

Objectives:

ConvNet > Maximize prob.
model F(.) FI(x"

Predict 0 degrees rotation (y=0)

> glX, y=0}

Rotate 0 degrees

Example:

ConvNet » Maximize prob.
model F(.) F'(X")

Predict 90 degrees rotation (y=1)

> glXx,y=1)

===
[P
e

Rotate 90 degrees

- ConvNet Maximize prob.
. > glX,y=2) model F(.) > F(X)
Image X Rotate 180 degrees Predict 180 degrees rotation (y=2)
- ConvNet Maximize prob.
» glX,y=3) model F(.) i FiX’)

Rotate 270 degrees Predict 270 degrees rotation (y=3)

Rotated image: X°

IPEO course - 4 sequence modeling

C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by context prediction,” in IEEE International Conference on Computer Vision (ICCV), pp. 1422-1430, 2015.
S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting image rotations,” in International Conference on Learning Representations (ICLR), 2018.
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How can this helpin
change detection?

= We want to warm start a CNN for change detection in an unsupervised way

. }{lp}le do not like when application irrelevant (e.g. illumination/seasonal) changes get in
e way

= |n this pair, for example, no c’rganges have occurred

v v

= We wantdpretext tasks projecting close samples where no changes have
occurre

£

D. Tuia
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'S
)

Pretext task1:
discriminating overlapping patches

D. Tuia

= Binary classification
task

* Red and green patches
overlap,y =0

* Red and blue do not, y =1

From Leenstra et al., 2021
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Pretext task 2 (harder)
push overlapping patches closer in feature space

= We use triplets
 Red and green overlap
* Red and blue don't

» Minimize feature distance between
red and green

while

= Maximizing distance between red
and blue

From Leenstra et al., 2021

@

D. Tuia
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Pretext task 2 (harder)
push overlapping patches closer in feature space

= We use this loss:

R,C
Y max(lizt — 2% — 2" — 232 +m, 0) +v - |z — 27

r=1,c=1

1

L:ﬁ

» Minimize feature distance between
red and green

while

= Maximizing distance between red
and blue

From Leenstra et al., 2021

44

D. Tuia
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Monitor a changing
process with multiple
time steps

RNNs and LSTMs

It’s all about passing information
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14 November 2024

Now about sequences

= |[f we look at image sequences, the classes might vary.

= E.g. in agriculture, soil - crop - soil =2 other crop

= One class per location is too reductive!

= You could classify independently

or

= knowing what happened before might help!

Speaker
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modeling

IPEO course - 4 sequence
14 November 2024

Sequences are very
well studied in NLP*

input/feature #1 input/feature #2

Thou shalt

*Natural language processing

output/label

D. Tuia. ECEO
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modeling

-4 sequence

14 November 2024

IPEO course

Sequences are very
well studied in NLP*

*Natural language processing

output/label

D. Tuia. ECEO
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14 November 2024

Sequences are very
well studied in NLP*

[4)]
(]

D. Tuia, ECEO EPFL
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modeling

-4 sequence

14 November 2024

IPEO course

Sequences are very
well studied in NLP*

*Natural language processing

output/label

D. Tuia. ECEO
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Recurrent neural
network

= We will consider a model
that applies recursion

= A.K.a, a network that feeds
its outputs as inputs for the
next time step

VectorStock®

55
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B |ADF summer school 2023

Recurrent models

= This means that
 The model goes through the sentence one word at a time
* For each word, it extracts a feature representation
* It injects such representation into the model considering the next word

a
o]

D. Tuia, ECEO EPFL
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Recurrent models

= This means that
 The model goes through the sentence one word at a time
« For each word, it extracts a feature representation (A#) with model (U)

* |tinjects such representation (v) into the model considering the next
word

T

ET)% Unfold W
Cj-T =) . 0~
&

v v v

()

& &
mab

fw fw
T
\Y \Y

4]
~

D. Tuia, ECEO EPFL
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IPEO course - 4 sequence
14 November 2024

Let’s make it more
remote-sensing-y

= Task: clouds classification
= Semantic segmentation

= [mages of geostationnary
satellite

= SEVIRI infrared bands
(MeteoSAT)

= 1location: 35,040 time steps
(1 year every 15 minutes)

Multispectral
landmark chips

Cloud detection



=PFL  Our base cloud classification CNN: hypercolumn
(see last course)

Image, time t Activations Activations Activations
(8 bands) (16 filters) (32 filters) (64 filters)
= » » »
g CNN CNN CNN

filters filters filters
Upscale

Concatenate

- hd md-
Cloud Cloud map

Stack of score
activations map
Fu IIy connected

1x 1 layers

(800 neurons each)

-~ 00000
-~ 00000

(122-dimensional)

D. Marcos, M. Volpi, B. Kellenberger, and D. Tuia. Land cover mapping at very high resolution with rotation
equivariant CNNs: towards small yet accurate models. ISPRS J. Int. Soc. Photo. Remote Sens., 145(A):96—-107,
= 2018.
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Adding recursion to

the hypercolumn

Image, time t Activations
(8 bands) (16 filters)

»

CNN
filters

»

CNN
filters

Activations
(32 filters)

»

CNN
filters

v
- -

activations
(122-dimensional)

00000
-~ 00000

@)
Q

Fully connected

1x 1 layers

(800 neurons each)

Upscale

Concatenate

60



=PFL From CNN to
recursion

= Design a single timestep CNN (here for semantic segmentation)

-
ﬂ*@*ﬁ
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From CNN to
recursion

= Design a single timestep CNN
= Add as input a (r x c X 2) - dimensional array of zeros

ﬂ-*@*ﬁ

L

62
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From CNN to
recursion

= Design a single timestep CNN

= Add as input a (r x c X 2) - dimensional array of zeros

= Copy the network 7 times

ﬂ‘_

-D-I=

L

ﬂ‘_

- D=

L

ﬂ‘_

- D=

[



=PFL From CNN to
recursion

= Design a single timestep CNN

= Add as input a (r x c X 2) - dimensional array of zeros

= Copy the network t times

= Declare the (r x ¢ x 2) input of t as the fully connected scores at t-1

O E #O05E A0S

L

Same network, with shared parameters!



=PFL Training the network

= Pass every image t

65

Ime sequence in the network

= Backpropagate through the network

Image at time t-2

l

Image at time t-1 Image at time t

l

L

-0

l
Ao

Prediction
Time t-2

Prediction Prediction
Time t-1 Time t

Lﬂ“@*$
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=Pl Training the network

= Pass every image time sequence in the network
= Backpropagate through the network, update w in each CNN

i
j) =Y BL Y, 5")
t=1

middle 5t

ﬂ”@*ﬁj ﬂH
Prediction
Time t-2

Prediction Prediction
Time t-1 Time t
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=Pl Training the network

= Pass every image time sequence in the network
= Backpropagate through the network, update w in each CNN

Tﬂtﬁt yt At
=1

middle 5t t

b|g

ﬂ”@* Elﬂ”@*ﬁ
-

Prediction
Time t-2

Prediction Prediction
Time t-1 Time t




=PFL Training the network

= Pass every image time sequence in the network

= Backpropagate through the network

= Average weights

ﬂ‘_

Average w



=PFL  Results .
Setting

= Test: March, June,
September, December

9°H | | | | | | | = Train: all other months

g89 1

o 88 7 . .

g ] = Metric: weighted average

S accuracy (over timesteps ),

286 1 so it’s normal error increases

O . ver tim

8,85 —CNN (t=1) ove ©

S84 RNN (t = 2)

o —RNN (t = 3)

<83+ —RNN (t=4)-
2 —_RNN (t-5) Take home
: 82 March June Sept Dec. = Adding time information
includes prediction accuracy
38 | = We get the prediction for all
33 Video the time sequence
23 = Consistency is increased

o]
©

D. Tuia. ECEO
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RNNs in a nutshell

= Recursive model that can be unrolled
= Use t-2 output as input to t-1 and so on
= Very intuitive and works well!

But:
= Does not handle well very long sequences

= Because gradients are pushed through the network from end to
beginning

= To alleviate this, Hochreiter and Schmidhuber (1997) proposed a
solution, which became state of art: the Long-Short Term Memory
network (LSTM)

D. Tuia. ECEO N
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LSTM (unrolled view)

= Like a RNN, the LSTM considers one word at a time in the sentence
direction;

= Like a RNN, the LSTM passes on a hidden vector Ato the next step;
= Unlike a RNN, the LSTM also passes a long memory vector c.

» Ctq—> —>Ct —>
t-1 t t+1
» htq1— —>ht—>
)
P(followedll) P(thell,_followed) P(cat|l,followed,the)

C. Frank, M. Russwurm, J. Fluixa, A. Abellan, and D. Tuia. Short-term runoff forecasting in an alpine catchment with a long short-term memory
neural network. Frontiers in Water and Al, 5, 2023. https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full

~
N

D. Tuia, ECEO EPFL


https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full
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Cell state
5 . - (long
Ct-1 '? - > Ct memory)
input
gate output
forget gate
gate A coll
gate
ﬂ ﬂ m Hidden state
“h .1 > ht » (short memory,
like in RNIN)
linear
X t-1 layer
Input Prediction
signal Qt (probability of the
(text) word)

C. Frank, M. Russwurm, J. Fluixa, A. Abellan, and D. Tuia. Short-term runoff forecasting in an alpine catchment with a long short-term memory
neural network. Frontiers in Water and Al, 5, 2023. https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full

~
o]

D. Tuia, ECEO EPFL


https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full
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The LSTM cell

-C -1 :& > > Ct :
1 input
gate output
forget gate
gate > cell
gate
N t-1 > ht
linear
X t1 layer

Qt

The forget gate regulates how much of the info in the long term memory c is deleted from the memory

~
N

D. Tuia, ECEO EPFL
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The LSTM cell

-Ct-1 - >Ct
A
output
forget gate
gate
-h -1 > ht
linear
X t1 layer

Qt

The input and cell gate regulate how much of the inputs is to be added in the long term memory

~
a

D. Tuia, ECEO EPFL
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The LSTM cell

\_‘J input
ate output
forget gate
gate -
gate
htq > ht
linear
X t1 layer
Qt
Together, th te the long-term memory c: Ct+1 = Jt+1 * Ct+ 041 * Gt+1
ogether, they update the long-te emorycC t+ Sto1 -+ 041 Gt

forget input

~
o]

D. Tuia, ECEO EPFL
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The LSTM cell

-C 11 - > Ct
forget
gate
o |
I h t_1 > h t
linear
X t1 layer

The output gate combines the inputs (x and h), modulated by the long term memory c
to obtain the new hidden state h

ht_|_1 = Ot41 tanh (Ct+1).

N

D. Tuia, ECEO EPFL
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In a nutshell

= The LSTM provides a mechanism to pass information across the
seqguence step (the long-term memory c)

1 Go one word at atime
Update ¢

2

3. Estimate hidden state for the current word using new input x, previous states cand A
4. Use Ahto predict P(word | previous_ones)

5. Pass Aand conto the next word in the sequence

= This means information from multiple steps ago gets injected directly!
= For the rest it looks pretty much like the RNN.

= All the gates computations involve weight matrices with learnable
parameters (every time x; or h; are used)

~
e}
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= We wanted to map the upper limit of the forest in Valais

= This limits moves in time, due to climate change and landuse
practices

= We have 80 years of
historical images
from Swisstopo

= But labels only in 2020!

= \We developed a sequence-

based approach

https://farsouthecology.com/do-treelines-in-the-southern-hemisphere-follow-the-rules/

IPEO course - 4 sequence modeling

14 November 2024
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It’s a 80 years adventure with varying technology...

VS

And it shows on the images!

®
o
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https://map.geo.admin.ch/
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A single time classifier

Model: U-Net
Loss: crossentropy between labels and predictions in 2020

2020

\ 4
©)
X
I
I
I
v

predictions label

T.-A. Nguyen, B. Kellenberger, and D. Tuia. Mapping forest in the Swiss Alps treeline ecotone with explainable deep
learning. Remote Sens. Environ., 281(113217), 2022. https://doi.org/10.1016/j.rse.2022.113217
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**" A multitemporal classifier

Model: convolutional GRU*. Gates weighed proportional to time-lag
Loss: as before + cross-entropy between the maps at fand #-7, -7and -2, etc.

N
]
[d)) ®
— (42
]

*Gated Recurrent

Units (GRU): very

.@ ® similarto a LSTM
1988 = =
ST
L —

2020 > 4-——
predictions label

m CV4E

Remote Sens. Environ., 305:114100, 2024, https://doi.org/10.1016/j.rse.2024.114109

T-A. Nguyen, M. Russwurm, G. Lenczner, and D. Tuia. Multi-temporal forest monitoring in the Swiss Alps with knowledge-guided deep learing.

[oo]
N

D. Tuia/ 2024


https://doi.org/10.1016/j.rse.2024.114109
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A multitemporal classifier enforcing
forest dynamic knowledge

" Prior knowledge
" - forest expansion is slow
\ - forest loss is abrupt

& — — —

predictions label

T-A. Nguyen, M. Russwurm, G. Lenczner, and D. Tuia. Multi-temporal forest monitoring in the Swiss Alps with knowledge-guided deep learing.

Remote Sens. Environ., 305:114100, 2024, https://doi.org/10.1016/j.rse.2024.114109

[oo]
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-

no chang

forest loss

forest gain

mixed

Temporal evolution loss

o]
»
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N
1
ltCA(Pt—l’Pt) = N Z "Vpn,t”2 X lcos(vpn,t—l’ Vpn,t)

t—1 t
plausible
. L]
t—1 t
I .
t—1 t
fires, windthrow, human intervention: plausible
.
t—1 t
Is slow gain: plausible rapid gain: implausible ¢
t—1 t t—1 t
t—1 t t—1 t t—1 t
0

small penalization

large penalization

n=1

-
? lica

If forest disappears,
Gradient at time tis O.

v

Similarity of gradients
between time steps
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Numerically

Gray images

Color images All

Gray (1946-1995) RGB (1998-2020) All (1946-2020)

IoU F1 F1, IoU F1 F1, IoU F1 F1,
U-Net 735+ 1.4 84.7 + 0.9 72.1 + 2.4 87.5 + 0.4 93.3 + 0.2 81.6 + 0.3 79.1 + 0.7 88.4 + 0.4 75.5 + 1.6
U-Net + ConvGRU 76.9 + 1.9 86.9 + 1.2 80.1 + 0.8 85.5 + 0.3 92.2 + 0.2 81.5 + 0.2 80.2 + 1.3 89.0 + 0.8 80.6 + 0.6
U-Net + IrregConvGRU 76.0 + 1.2 86.3 + 0.8 81.0 + 0.5 83.0 + 1.9 90.7 + 1.1 80.6 + 0.8 78.7 + 1.4 88.1 + 0.8 80.9 + 0.3

Time dimension helps (mostly on historical gray images)!

Gray (1946-1995) RGB (1998-2020) All (1946-2020)

IoU F1 F1, IoU F1 F1, IoU F1 F1,
tMSE 67.8 + 2.0 80.8 + 1.4 64.7 + 3.2 82.2 + 8.6 90.0 + 5.6 76.8 + 3.3 73.6 + 4.5 84.7 + 3.1 69.2 + 1.6
tCE (Saha et al., 2020) 72.7 + 1.2 84.2 + 0.8 69.3 + 2.0 87.2 + 0.4 93.2 + 0.2 80.3 + 0.7 78.5 + 0.8 88.0 + 0.5 73.3 + 1.5
tCA 68.5 + 4.9 81.2 + 3.5 782 + 1.4 73.7 + 7.2 84.6 + 4.8 77.2 + 1.8 70.5 + 5.5 82.6 + 3.8 779 + 1.3
tMSE + tCA 73.2 + 2.7 845 + 1.8 76.6 + 2.0 80.4 + 6.8 89.0 + 4.4 78.7 + 2.0 76.0 + 4.1 86.3 + 2.7 77.3 + 1.3
tCE + tCA 76.0 + 1.2 86.3 + 0.8 81.0 + 0.5 83.0 + 1.9 90.7 + 1.1 80.6 + 0.8 787 + 1.4 88.1 + 0.8 80.9 + 0.3

Forest dynamics knowledge helps!

o]
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In summary

= Time is a goldmine in remote sensing
= Models exist to account for the time dimension in remote sensing

= We have seen 3 cases where time plays a more and more important
role
« Classification with temporal inputs
« Change detection
« Sequence steps classification

[o.]
o
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