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Content (6 weeks)… 
almost there!

§ W1  General concepts of image classification / segmentation
Traditional supervised classification methods (RF)

§ W2 Traditional supervised classification methods (SVM)
           Best practices

§ W3 Elements of neural networks
§ W4 Convolutional neural networks
§ W5 Convolutional neural networks for semantic segmentation
§ W6 Sequence modeling, change detection
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What about  the 
temporal dimension?
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What about  the 
temporal dimension?

§ We haven’t been talking much about it.
§ We focused mostly on spatial context and single images 

classification and segmentation

§ Today we talk about what can be done for time series (or image 
sequences)
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xt3xt3xt3

Time can have several 
uses in RS classification

1 - as extra features to classify or segment

§ How to exploit the temporal sequence?
§ How to fuse the different information?
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Time can have several 
uses in RS classification

2 - as a sequence to monitor changing processes: between 2 dates

§ Should the two models be the same?
§ We have very little label information…
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Time can have several 
uses in RS classification

§ 3 - as a sequence to monitor (changing) processes
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Time can have several 
uses in RS classification

§ 3 - as a sequence to monitor (changing) processes: monitoring
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§ How to pass information from one timestep to the other?



Classify  a static 
process with multiple 
time steps

It’s all about fusion
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Stacking time 
information

§ Using multiple timesteps 
brings more informaiton to 
the classifier

§ Quite used in crops 
classification
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From Turkoglu et al., Remote Sensing of Environment, 2021
https://www.sciencedirect.com/science/article/pii/S0034425721003230

https://www.sciencedirect.com/science/article/pii/S0034425721003230


Passing the 
information

§ A more advanced procedure 
would be to take the information of 
a timestep and pass it on to the 
next one

§ We call this a sequence model 
(here a LSTM is used, more about 
that later in this course.)

§ Here we classify drivers of 
deforestation in the tropics with a 
“stacked” approach (baseline 1) vs 
a LSTM (baseline 2).
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J. Pisl, M. Russwurm, L. Hughes, G. Lenczner, L. See, J. D. Wegner, and D Tuia. Mapping drivers of tropical forest loss with satellite image time 
series and machine learning. Enviro. Res. Lett., 19(6):064053, 2024. https://iopscience.iop.org/article/10.1088/1748-9326/ad44b2

https://iopscience.iop.org/article/10.1088/1748-9326/ad44b2


Change detection

Classify  a changing 
process with two time 
steps

Siamese networks and 
representation learning
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Change detection as 
the 7 differences game

§ When dealing with remote sensing, we face a similar problem
• Changes are rare
• Changes are small
• Most of the image hasn’t changed
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First methods were 
unsupervised

§ Change vector analysis (Bovolo et al. , 2005)
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CVA in action

§ Example: colorado 
flood in August 2013
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CVA in action
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§ It could indeed dete--ct the big changes
§ It also involved many false positives
§ The method is rigid
§ It can’t detect types    of changes
§ It is quite dependent  on  perturbing factors

CVA CVA after more postprocessingCVA after postprocessing



Change detection NOT as 
the 7 differences game

§ When dealing with remote sensing, we face a similar problem
• Changes are rare
• Changes are small
• Most of the image hasn’t changed

§ Many things that have not changed, actually look very different
1. Seasonal effects: grass growing
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Seasonal changes
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26 August 2011
Landsat 5

11 September 2011
Landsat 5

12 September 2011
ALI

28 September 2011
Landsat 8



Change detection NOT as 
the 7 differences game

§ When dealing with remote sensing, we face a similar problem
• Changes are rare
• Changes are small
• Most of the image hasn’t changed

§ Many things that have not changed, actually look very different
1. Seasonal effects: grass growing
2. Illumination effects: a color can look very different from an image to the 

other
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When illumination 
changes

IP
EO

 c
ou

rs
e 

–
4 

se
qu

en
ce

m
od

el
in

g

D
. T

ui
a

23



Effect on spectral 
signals
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1   Use a supervised method

2 Make the image spaces more similar before applying an 
unsupervised method



1. Use Supervised methods
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Supervised approaches 
to change detection
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[From Daudt
Et al., 2018]



Supervised approaches 
to change detection
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[From Daudt
Et al., 2018]



Supervised approaches to change detection
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[From Daudt
Et al., 2018]



What do we need to 
go further

§ Probably more data, 
• with more diversity 
• with more samples
• in geographies not 

too different from 
the ones under 
study

§ The good news: 
such data start to appear. 
See SpaceNet7 à
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[Source: https://spacenet.ai/sn7-challenge/]



Still the problems are 
difficult!
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[Source: https://spacenet.ai/sn7-challenge/]



2. Make the image 
spaces more similar 
before applying an 
unsupervised 
method 
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The idea is simple

§ Modify the images in a way that 
• all the unchanged parts look similar
• only the changes are highlighted
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Same two images after projection

In input space, unchanged areas look very different



The idea is simple

§ Modify the images in a way that 
• all the unchanged parts look similar
• only the changes are highlighted

§ We want to lear a representation that makes unchanged areas more 
similar.

§ But we don’t have labels at all!
§ We learned with self supervised learning, a.k.a

learning from a tasks that is not the one you want, but for which you can get 
the labels for free.
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Leenstra, M. , Marcos, D., Bovolo, F., Tuia, D., Self-supervised pretraining enhances change detection in Sentinel-2 
images Pattern Recognition in Remote Sensing workshop, ICPR, 2021



What is Self 
Supervised learning?

§ A new learning paradigm
§ Learning model via a pretext 

task

• A task for which the labels can 
be extracted automatically 
from the data

• A task that is connected to the 
main task. So learning it helps 
the main task
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Groundai.com



What is a pretext 
task?
§ Learning relative positions of patches 

helps understanding spatial structures
    [Doersch et al. ICCV 2015]
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§ Learning rotation angles teaches 
rotation invariance

    [Gidaris et al. ICLR 2018]

C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by context prediction,” in IEEE International Conference on Computer Vision (ICCV), pp. 1422–1430, 2015. 
S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting image rotations,” in International Conference on Learning Representations (ICLR), 2018. 



How can this help in 
change detection?

§ We want to warm start a CNN for change detection in an unsupervised way
§ We do not like when application irrelevant (e.g. illumination/seasonal) changes get in 

the way
§ In this pair, for example, no changes have occurred

§ We want pretext tasks projecting close samples where no changes have 
occurredIP

EO
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Pretext task 1:
discriminating overlapping patches

§ Binary classification 
task

• Red and green patches 
overlap, y = 0

• Red and blue do not, y =1
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From Leenstra et al., 2021



Pretext task 2 (harder)
push overlapping patches closer in feature space

§ We use triplets
• Red and green overlap
• Red and blue don’t

§ Minimize feature distance between 
red and green

    while

§ Maximizing distance between red 
and blue
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From Leenstra et al., 2021



Pretext task 2 (harder)
push overlapping patches closer in feature space

§ We use this loss:
• Red and green overlap
• Red and blue don’t

§ Minimize feature distance between 
red and green

    while

§ Maximizing distance between red 
and blue
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From Leenstra et al., 2021



Monitor a changing 
process with multiple 
time steps

RNNs and LSTMs

It’s all about passing information
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Now about sequences

§ If we look at image sequences, the classes might vary.
§ E.g. in agriculture, soil à crop à soil à other crop
§ One class per location is too reductive!

§ You could classify independently

§ knowing what happened before might help!IP
EO
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Sequences are very 
well studied in NLP*

IP
EO

 c
ou

rs
e 

–
4 

se
qu

en
ce

 m
od

el
in

g
14

 N
ov

em
be

r 2
02

4

D
. T

ui
a.

 E
C

EO
  

51*Natural language processing



Sequences are very 
well studied in NLP*
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You shall



Sequences are very 
well studied in NLP*
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Sequences are very 
well studied in NLP*
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You shall



Recurrent neural 
network

§ We will consider a model 
that applies recursion

§ A.k.a, a network that feeds 
its outputs as inputs for the 
next time step

55



Recurrent models

§ This means that
• The model goes through the sentence one word at a time
• For each word, it extracts a feature representation
• It injects such representation into the model considering the next word
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followed the cat



Recurrent models

§ This means that
• The model goes through the sentence one word at a time
• For each word, it extracts a feature representation (h ) with model (U )
• It injects such representation (v ) into the model considering the next 

word
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Let’s make it more 
remote-sensing-y

§ Task: clouds classification
§ Semantic segmentation
§ Images of geostationnary 

satellite 
§ SEVIRI infrared bands 

(MeteoSAT)
§ 1 location: 35,040 time steps 

(1 year every 15 minutes)
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Our base cloud classification CNN: hypercolumn
(see last course)

59

Image, time t
(8 bands)

Activations
(16 !lters)

CNN
!lters

Activations
(32 !lters)

CNN
!lters

Activations
(64 !lters)

CNN
!lters

Concatenate

Upscale

Fully connected
1 x 1 layers 
(800 neurons each)

Cloud mapCloud
score
map

Stack of 
activations
(122-dimensional)

...

......

D. Marcos, M. Volpi, B. Kellenberger, and D. Tuia. Land cover mapping at very high resolution with rotation 
equivariant CNNs: towards small yet accurate models. ISPRS J. Int. Soc. Photo. Remote Sens., 145(A):96–107, 
2018. 



Adding recursion to 
the hypercolumn
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Image, time t
(8 bands)

Activations
(16 !lters)

CNN
!lters

Activations
(32 !lters)

CNN
!lters

Activations
(64 !lters)

CNN
!lters

Concatenate

Upscale

Fully connected
1 x 1 layers 
(800 neurons each)

Cloud mapCloud
score
map

Stack of 
activations
(122-dimensional)

Input 
to next
time step
(t +1)

Cloud 
score
from t -1

...

......



From CNN to 
recursion

§ Design a single timestep CNN (here for semantic segmentation)
§ Add as input a (r x c x 2) - dimensional array of zeros
§ Copy the network t times
§ Declare the (r x c x 2) input of t as the fully connected scores at t-1

61

CNN



From CNN to 
recursion

§ Design a single timestep CNN
§ Add as input a (r x c x 2) - dimensional array of zeros
§ Copy the network t times
§ Declare the (r x c x 2) input of t as the fully connected scores at t-1

62

CNN



From CNN to 
recursion

§ Design a single timestep CNN
§ Add as input a (r x c x 2) - dimensional array of zeros
§ Copy the network t times
§ Declare the (r x c x 2) input of t as the fully connected scores at t-1

63

CNN CNN CNN



From CNN to 
recursion

§ Design a single timestep CNN
§ Add as input a (r x c x 2) - dimensional array of zeros
§ Copy the network t times
§ Declare the (r x c x 2) input of t as the fully connected scores at t-1

64

CNN CNN CNN

Same network, with shared parameters!



Training the network

§ Pass every image time sequence in the network
§ Backpropagate through the network

65

CNN CNN CNN

Image at time tImage at time t-1Image at time t-2

Prediction
Time t

Prediction
Time t-1

Prediction
Time t-2



Training the network

§ Pass every image time sequence in the network
§ Backpropagate through the network, update w in each CNN

66

CNN CNN CNN

bigmiddlesmall

Prediction
Time t

Prediction
Time t-1

Prediction
Time t-2



Training the network

§ Pass every image time sequence in the network
§ Backpropagate through the network, update w in each CNN
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CNN CNN CNN

Prediction
Time t

bigmiddlesmall

Prediction
Time t-1

Prediction
Time t-2



Training the network

§ Pass every image time sequence in the network
§ Backpropagate through the network
§ Average weights

68

CNN CNN CNN

Average w



Results
Setting
§ Test: March, June, 

September, December
§ Train: all other months

§ Metric: weighted average 
accuracy (over timesteps i), 
so it’s normal error increases 
over time

Take home
§ Adding time information 

includes prediction accuracy
§ We get the prediction for all 

the time sequence
§ Consistency is increasedIP
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88
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90

CNN (t = 1)
RNN (t = 2)
RNN (t = 3)
RNN (t = 4)
RNN (t = 5)

Video

../../../../../conferences/2018/igarss/cloudyRNN/talk/clouds.avi


Results

IP
EO

 c
ou

rs
e 

–
4 

se
qu

en
ce

 m
od

el
in

g
14

 N
ov

em
be

r 2
02

4

D
. T

ui
a.

 E
C

EO
 

70



RNNs in a nutshell

§ Recursive model that can be unrolled
§ Use t-2 output as input to t-1 and so on
§ Very intuitive and works well!

But: 
§ Does not handle well very long sequences
§ Because gradients are pushed through the network from end to 

beginning
§ To alleviate this, Hochreiter and Schmidhuber (1997) proposed a 

solution, which became state of art: the Long-Short Term Memory 
network (LSTM)
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LSTM (unrolled view)

§ Like a RNN, the LSTM considers one word at a time in the sentence 
direction;

§ Like a RNN, the LSTM passes on a hidden vector h to the next step;
§ Unlike a RNN, the LSTM also passes a long memory vector c.
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followed the cat

P(followed|I) P(the|I,followed) P(cat|I,followed,the)

C. Frank, M. Russwurm, J. Fluixa, A. Abellan, and D. Tuia. Short-term runoff forecasting in an alpine catchment with a long short-term memory 
neural network. Frontiers in Water and AI, 5, 2023. https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full

https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full


The LSTM cell
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Input 
signal 
(text)

Prediction
(probability of the 

word)

Hidden state
(short memory, 

like in RNN)

Cell state
(long 

memory)

C. Frank, M. Russwurm, J. Fluixa, A. Abellan, and D. Tuia. Short-term runoff forecasting in an alpine catchment with a long short-term memory 
neural network. Frontiers in Water and AI, 5, 2023. https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full

https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full


The LSTM cell
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The forget gate regulates how much of the info in the long term memory c is deleted from the memory



The LSTM cell
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The input and cell gate regulate how much of the inputs is to be added in the long term memory



The LSTM cell
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Together, they update the long-term memory c:



The LSTM cell
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The output gate combines the inputs (x and h), modulated by the long term memory c 
to obtain the new hidden state h



In a nutshell

§ The LSTM provides a mechanism to pass information across the 
sequence step (the long-term memory c)

1. Go one word at a time
2. Update c
3. Estimate hidden state for the current word using new input x, previous states c and h
4. Use h to predict P(word | previous_ones)
5. Pass h and c on to the next word in the sequence

§ This means information from multiple steps ago gets injected directly!
§ For the rest it looks pretty much like the RNN.
§ All the gates computations involve weight matrices with learnable 

parameters (every time xt or ht are used)
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A last example

§ We wanted to map the upper limit of the forest in Valais
§ This limits moves in time, due to climate change and landuse 

practices
§ We have 80 years of 
    historical images
    from Swisstopo
§ But labels only in 2020!
§ We developed a sequence-
    based approach
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https://farsouthecology.com/do-treelines-in-the-southern-hemisphere-follow-the-rules/



It’s a 80 years adventure with varying technology…
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And it shows on the images!

VS

https://map.geo.admin.ch/
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Neural 
network2020

predictions label

A single time classifier

https://doi.org/10.1016/j.rse.2022.113217 
T.-A. Nguyen, B. Kellenberger, and D. Tuia. Mapping forest in the Swiss Alps treeline ecotone with explainable deep 
learning. Remote Sens. Environ., 281(113217), 2022. 

S

Model: U-Net
Loss: crossentropy between labels and predictions in 2020

https://doi.org/10.1016/j.rse.2022.113217
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Neural 
network2020

predictions label

Neural 
network1988

Neural 
network1946

S,T

S,T

S,T

A multitemporal classifier

T.-A. Nguyen, M. Russwurm, G. Lenczner, and D. Tuia. Multi-temporal forest monitoring in the Swiss Alps with knowledge-guided deep learning. 
Remote Sens. Environ., 305:114109, 2024. https://doi.org/10.1016/j.rse.2024.114109 

Model: convolutional GRU*. Gates weighed proportional to time-lag
Loss: as before + cross-entropy between the maps at t and t-1, t-1 and t-2, etc.

*Gated Recurrent 
Units (GRU): very 
similar to a LSTM

https://doi.org/10.1016/j.rse.2024.114109
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Neural 
network2020

predictions label

Neural 
network1988

Neural 
network1946

Prior knowledge
- forest expansion is slow
- forest loss is abrupt

S,T

S,T

S,T

A multitemporal classifier enforcing 
forest dynamic knowledge

T.-A. Nguyen, M. Russwurm, G. Lenczner, and D. Tuia. Multi-temporal forest monitoring in the Swiss Alps with knowledge-guided deep learning. 
Remote Sens. Environ., 305:114109, 2024. https://doi.org/10.1016/j.rse.2024.114109 

https://doi.org/10.1016/j.rse.2024.114109


Temporal evolution loss

C
V4

E

D
. T

ui
a

/ 2
02

4

84

If forest disappears,
Gradient at time t is 0.

Similarity of gradients
between time steps



Numerically
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Gray images Color images All

Time dimension helps (mostly on historical gray images)! 

Forest dynamics knowledge helps!



Mapping Swiss 
forests
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In summary

§ Time is a goldmine in remote sensing

§ Models exist to account for the time dimension in remote sensing

§ We have seen 3 cases where time plays a more and more important 
role
• Classification with temporal inputs
• Change detection
• Sequence steps classification
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