

 École polytechnique fédérale de Lausanne

Content (6 weeks)... almost there!

- W1 General concepts of image classification / segmentation
 Traditional supervised classification methods (RF)
- W2 Traditional supervised classification methods (SVM)
 Best practices
- W3 Elements of neural networks
- W4 Convolutional neural networks
- W5 Convolutional neural networks for semantic segmentation
- W6 Sequence modeling, change detection

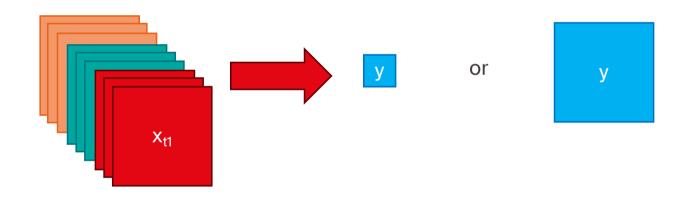
What about the temporal dimension?

What about the temporal dimension?

- We haven't been talking much about it.
- We focused mostly on spatial context and single images classification and segmentation
- Today we talk about what can be done for time series (or image sequences)

Time can have several uses in RS classification

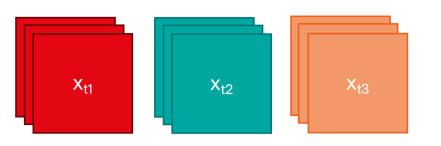
1 - as extra features to classify or segment



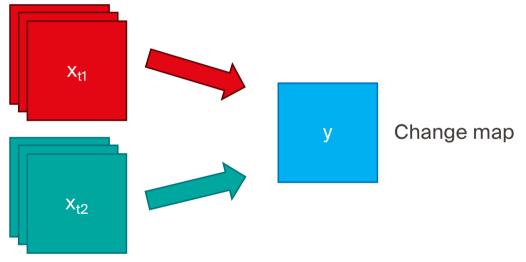
- How to exploit the temporal sequence?
- How to fuse the different information?

6

Time can have several uses in RS classification



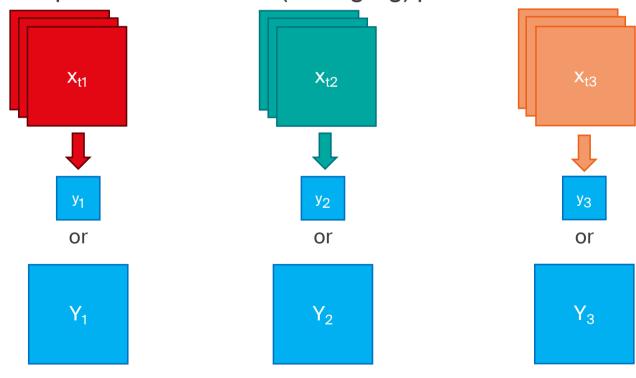
2 - as a sequence to monitor changing processes: between 2 dates



- Should the two models be the same?
- We have very little label information...

Time can have several uses in RS classification

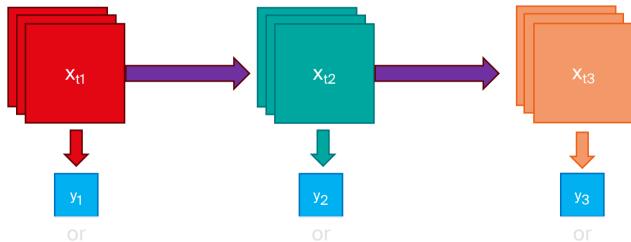
• 3 - as a sequence to monitor (changing) processes



IPEO course – 4 sequence modeling 14 November 2024

Time can have several uses in RS classification

3 - as a sequence to monitor (changing) processes: monitoring



How to pass information from one timestep to the other?

Classify a static process with multiple time steps

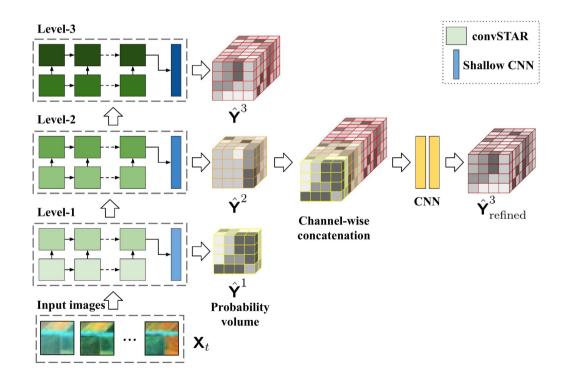
It's all about fusion

IPEO course – 4 sequence modeling 14 November 2024

EPFL

Stacking time information

- Using multiple timesteps brings more information to the classifier
- Quite used in crops classification



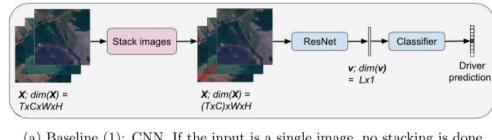
From Turkoglu et al., Remote Sensing of Environment, 2021 https://www.sciencedirect.com/science/article/pii/S0034425721003230

EPFL Passing the information

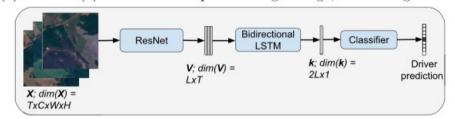
 A more advanced procedure would be to take the information of a timestep and pass it on to the next one

We call this a sequence model (here a LSTM is used, more about that later in this course.)

 Here we classify drivers of deforestation in the tropics with a "stacked" approach (baseline 1) vs a LSTM (baseline 2).



(a) Baseline (1): CNN. If the input is a single image, no stacking is done



(b) Baseline (2): CNN-LSTM

J. Pisl, M. Russwurm, L. Hughes, G. Lenczner, L. See, J. D. Wegner, and D Tuia. Mapping drivers of tropical forest loss with satellite image time series and machine learning. Enviro. Res. Lett., 19(6):064053, 2024. https://iopscience.iop.org/article/10.1088/1748-9326/ad44b2

Change detection

Classify a changing process with two time steps

Siamese networks and representation learning

There are seven total changes. Gergely Dudás/Dudolf

Change detection as the 7 differences game

- When dealing with remote sensing, we face a similar problem
 - Changes are rare
 - Changes are small
 - Most of the image hasn't changed

Magnitude

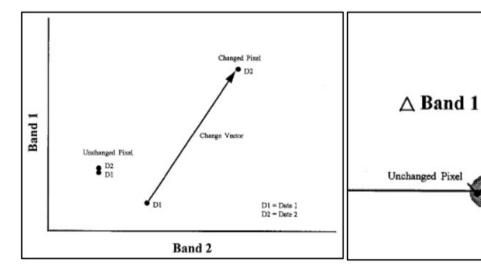
Direction

△ Band 2

EPFL

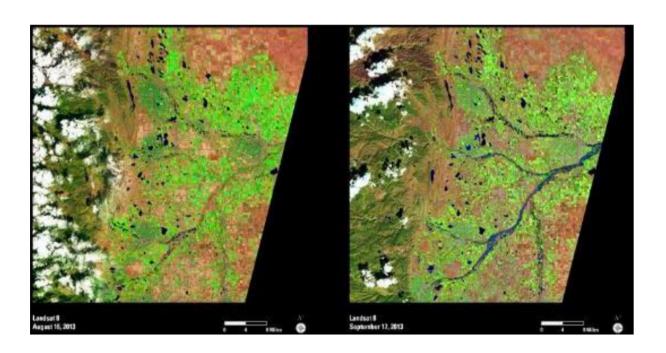
First methods were unsupervised

Change vector analysis (Bovolo et al., 2005)



CVA in action

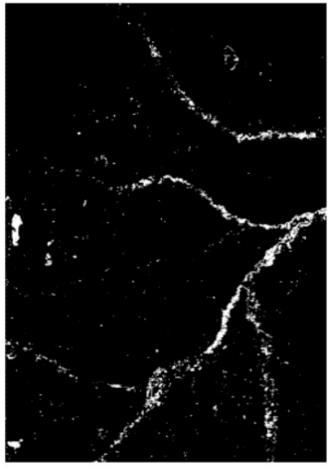
Example: colorado flood in August 2013



IPEO course - 4 sequence modeling

CVA in action

It could indeed dete—ct the big changes It also involved many false positives The method is rigid It can't detect types of changes It is quite dependent on perturbing factors



CVA

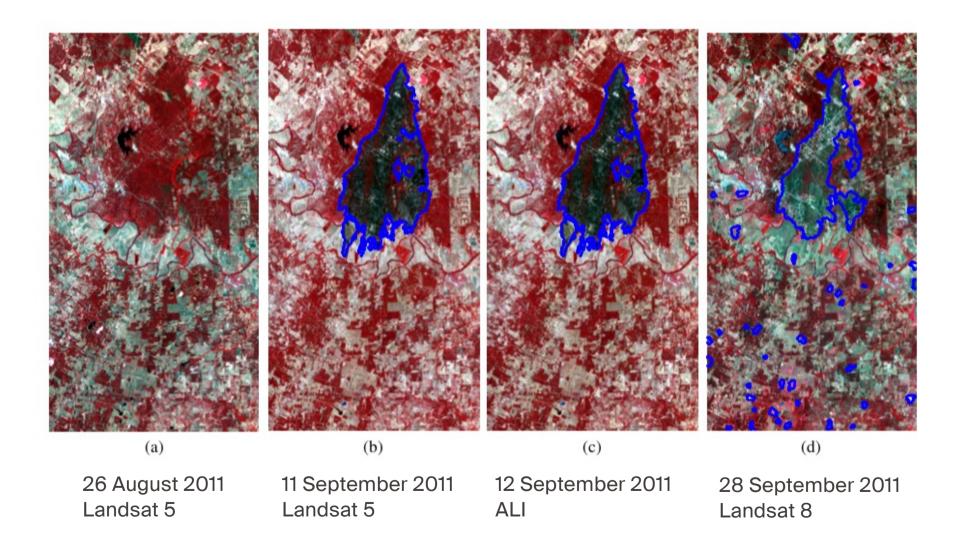
CVA after postprocessing

CVA after more postprocessing

Change detection NOT as the 7 differences game

- When dealing with remote sensing, we face a similar problem
 - Changes are rare
 - Changes are small
 - Most of the image hasn't changed
- Many things that have not changed, actually look very different
 - 1. Seasonal effects: grass growing

Seasonal changes



Change detection NOT as the 7 differences game

- When dealing with remote sensing, we face a similar problem
 - Changes are rare
 - Changes are small
 - Most of the image hasn't changed
- Many things that have not changed, actually look very different
 - 1. Seasonal effects: grass growing
 - 2. Illumination effects: a color can look very different from an image to the other

. Tuia

When illumination changes

17h

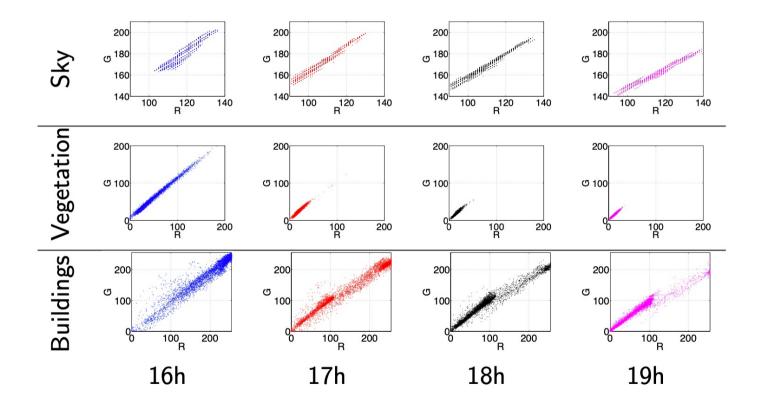
16h

18h 19h

EPFL

■ IPEO course – 4 sequence modeling

Effect on spectral signals



So what can we do?

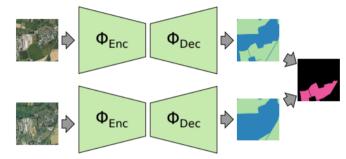
- 1 Use a supervised method
- 2 Make the image spaces more similar before applying an unsupervised method

Pailobom concined A control Call

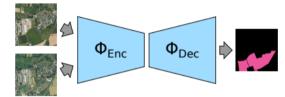
EPFL

1. Use Supervised methods

Supervised approaches to change detection



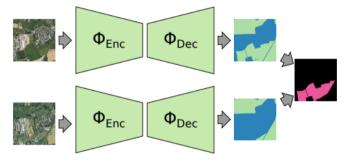
(a) Strategy 1: semantic CD from land cover maps.



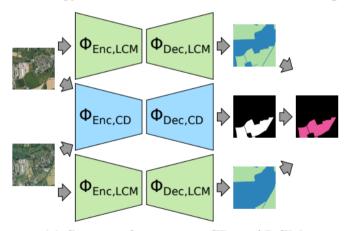
(b) Strategy 2: direct semantic CD.

■ IPEO course – 4 sequence modeling

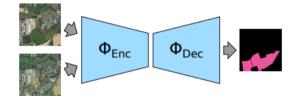
Supervised approaches to change detection



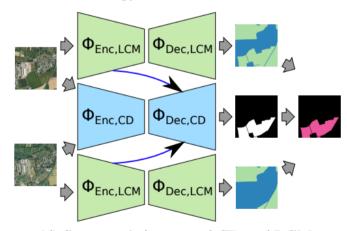
(a) Strategy 1: semantic CD from land cover maps.



(c) Strategy 3: separate CD and LCM.



(b) Strategy 2: direct semantic CD.



(d) Strategy 4: integrated CD and LCM.

[From Daudt Et al., 2018]

Supervised approaches to change detection

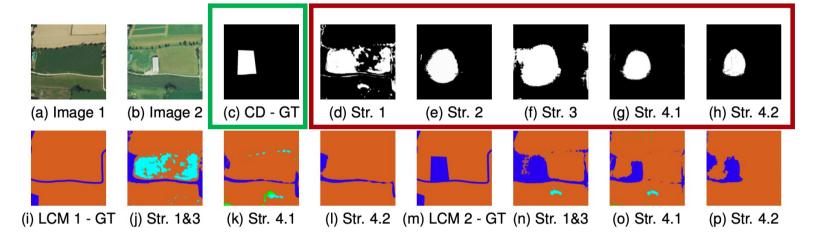


Figure 4.6: Illustrative images of the obtained results: (a)-(b) multitemporal image pair; (c) ground truth change detection map; (d)-(h) predicted change maps; (i)-(l) ground truth and predicted land cover maps for image 1; (m)-(p) ground truth and predicted land cover maps for image 2.

		CD	LCM		
	Kappa	Dice	Tot. acc.	Kappa	Tot. acc.
Strategy 1	3.99	5.56	86.07	71.92	87.22
Strategy 2	21.54	-	98.30	-	-
Strategy 3	12.48	13.79	94.72	71.92	87.22
Strategy 4.1	19.13	20.23	96.87	67.25	85.74
Strategy 4.2	25.49	26.33	98.19	71.81	89.01
CNNF-O	0.74	2.43	64.54	-	-
CNNF-F	3.28	4.84	88.66	-	-
PCA+KM	0.67	2.31	83.95	-	-

What do we need to go further

- Probably more data,
 - with more diversity
 - with more samples
 - in geographies not too different from the ones under study



Dellopom godoling A compo modeling

Still the problems are difficult!

Competitor	Final Place	Overall Score	Architectures	# Models	Pre-Training Weights	Training Time (H)	Inference Rate
lxastro0	1	41.00	1 × HRNet	1	ImageNet	36	346 km ² / min
cannab	2	40.63	3 × EfficienNet-b6 + UNet (siamese) 3 × EfficientNet-b7 + UNet (siamese)	6	None	23	49 km² / min
selim_sef	3	39.75	1 × EfficienNet-b6 + UNet 3 × EfficientNet-b7 + UNet	4	None	46	87 km² / min
motokimura	4	39.11	10 × EfficienNet-b6 + UNet	10	ImageNet	31	42 km² / min
MaxsimovKA	5	30.74	1 × SENet154 +UNet (siamese)	1	ImageNet	15	40 km² / min
baseline	N/A	17.11	1 × VGG16 + UNet	1	None	10	375 km² / mir

Table 1. SpaceNet 7 Winners

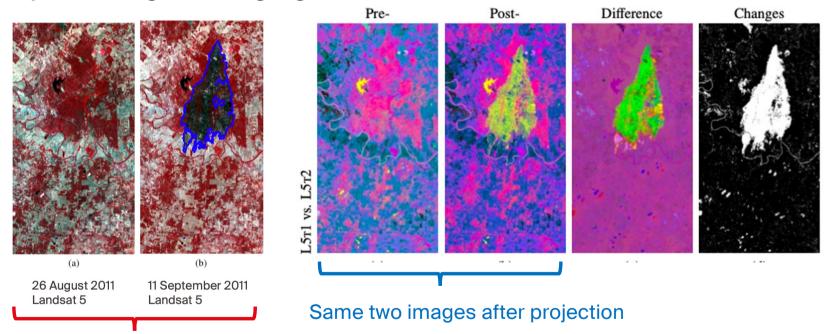
[Source: https://spacenet.ai/sn7-challenge/]

2. Make the image spaces more similar before applying an unsupervised method

IPEO course - 4 sequence modeling

The idea is simple

- Modify the images in a way that
 - all the unchanged parts look similar
 - only the changes are highlighted



In input space, unchanged areas look very different

■ IPEO course = 4 sequence modeling

The idea is simple

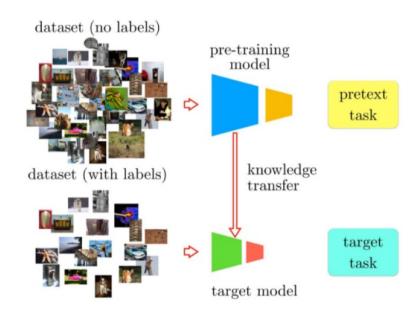
- Modify the images in a way that
 - all the unchanged parts look similar
 - only the changes are highlighted
- We want to lear a representation that makes unchanged areas more similar.
- But we don't have labels at all!
- We learned with self supervised learning, a.k.a

<u>learning from a tasks that is not the one you want, but for which you can get</u> <u>the labels for free.</u>

Leenstra, M., Marcos, D., Bovolo, F., **Tuia, D.**, Self-supervised pretraining enhances change detection in Sentinel-2 images Pattern Recognition in Remote Sensing workshop, ICPR, 2021

What is Self Supervised learning?

- A new learning paradigm
- Learning model via a pretext task
 - A task for which the labels can be extracted automatically from the data
 - A task that is connected to the main task. So learning it helps the main task



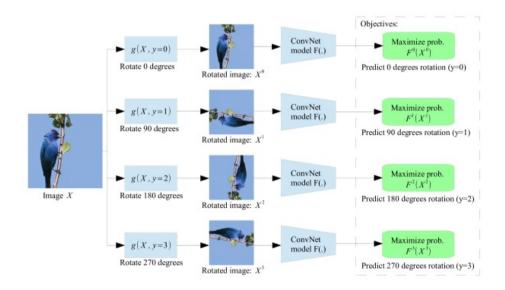
What is a pretext task?

 Learning relative positions of patches helps understanding spatial structures
 [Doersch et al. ICCV 2015]

Example:

Question 1: Question 2: X = (2, 3); Y = 3

 Learning rotation angles teaches rotation invariance
 [Gidaris et al. ICLR 2018]



How can this help in change detection?

- We want to warm start a CNN for change detection in an unsupervised way
- We do not like when application irrelevant (e.g. illumination/seasonal) changes get in the way

In this pair, for example, no changes have occurred

 We want pretext tasks projecting close samples where no changes have occurred

IPEO course - 4 sequence modeling

EPFL

Pretext task 1: discriminating overlapping patches

- Binary classification task
 - Red and green patches overlap, y = 0
 - Red and blue do not, y =1

IDEO course - 4 sequence modeli

EPFL

Pretext task 2 (harder) push overlapping patches closer in feature space

- We use triplets
 - Red and green overlap
 - Red and blue don't
- Minimize feature distance between red and green

while

 Maximizing distance between red and blue

From Leenstra et al., 2021

IDEO course – 4 segmence modeling

Pretext task 2 (harder) push overlapping patches closer in feature space

We use this loss:

$$L = \frac{1}{RC} \sum_{r=1,c=1}^{R,C} max(||{\bf z^1} - {\bf z^2}||_2 - ||{\bf z^1} - {\bf z^3}||_2 + m,0) + \gamma \cdot |{\bf z^1} - {\bf z^2}|$$

while

 Maximizing distance between red and blue

$$X = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

From Leenstra et al., 2021

Monitor a changing process with multiple time steps

RNNs and LSTMs

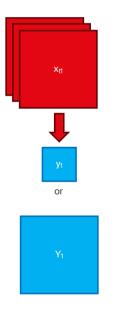
It's all about passing information

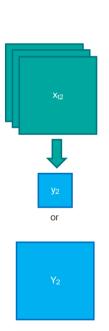
EPFL

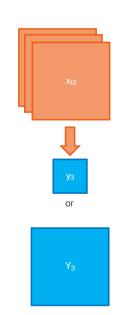
Now about sequences

- If we look at image sequences, the classes might vary.
- E.g. in agriculture, soil → crop → soil → other crop
- One class per location is too reductive!

You could classify independently







knowing what happened before might help!

input/feature #1

input/feature #2

output/label

Thou shalt

Sequences are very well studied in NLP*

input/feature #1

input/feature #2

output/label

You shall

EPFL

Sequences are very well studied in NLP*

IPEO course – 4 sequence modeling 14 November 2024

EPFL

Sequences are very well studied in NLP*

*Natural language processing

input/feature #1

input/feature #2

output/label

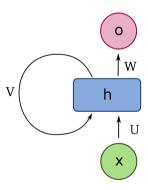
You shall

Recurrent neural network

- We will consider a model that applies recursion
- A.k.a, a network that feeds its outputs as inputs for the next time step

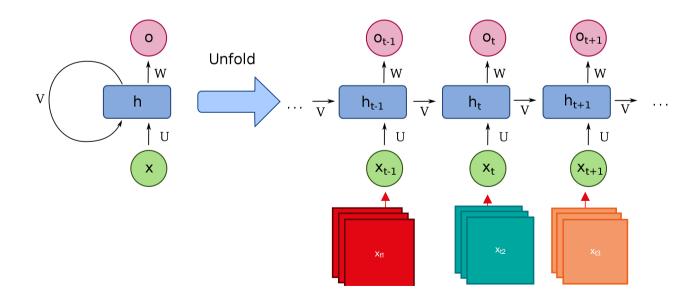
Recurrent models

- This means that
 - The model goes through the sentence one word at a time
 - For each word, it extracts a feature representation
 - · It injects such representation into the model considering the next word



Recurrent models

- This means that
 - The model goes through the sentence one word at a time
 - For each word, it extracts a feature representation (h) with model (U)
 - It injects such representation (v) into the model considering the next word

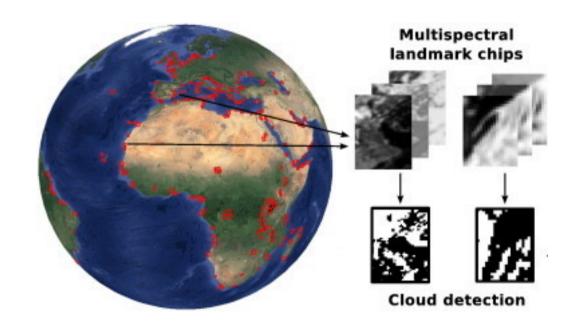


IPEO course – 4 sequence modeli

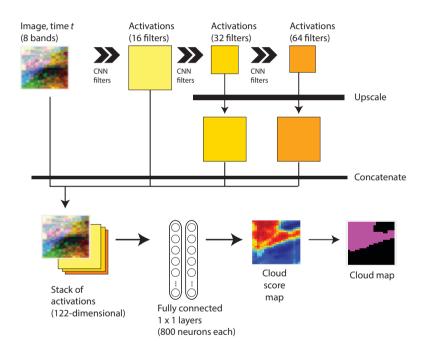
EPFL

Let's make it more remote-sensing-y

- Task: clouds classification
- Semantic segmentation
- Images of geostationnary satellite
- SEVIRI infrared bands (MeteoSAT)
- 1 location: 35,040 time steps (1 year every 15 minutes)

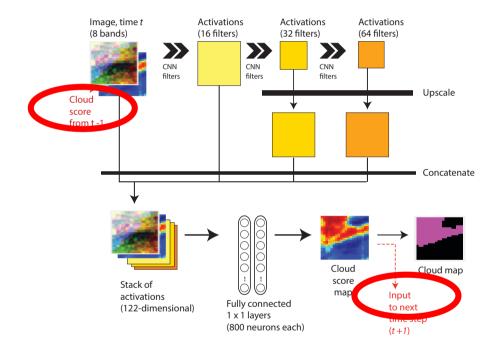


Our base cloud classification CNN: hypercolumn (see last course)



D. Marcos, M. Volpi, B. Kellenberger, and **D. Tuia**. Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models. *ISPRS J. Int. Soc. Photo. Remote Sens.*, 145(A):96–107, 2018.

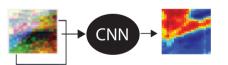
Adding recursion to the hypercolumn

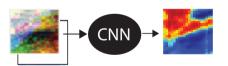


- Design a single timestep CNN (here for semantic segmentation)
- Add as input a (r x c x 2) dimensional array of zeros
- Copy the network t times
- Declare the (r x c x 2) input of t as the fully connected scores at t-1

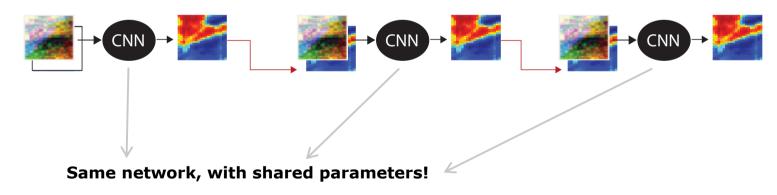
- Design a single timestep CNN
- Add as input a (r x c x 2) dimensional array of zeros
- Copy the network t times
- Declare the (r x c x 2) input of t as the fully connected scores at t-1

- Design a single timestep CNN
- Add as input a (r x c x 2) dimensional array of zeros
- Copy the network t times
- Declare the (r x c x 2) input of t as the fully connected scores at t-1

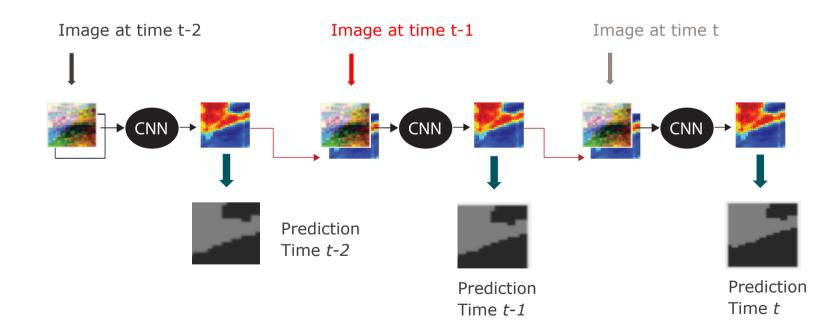




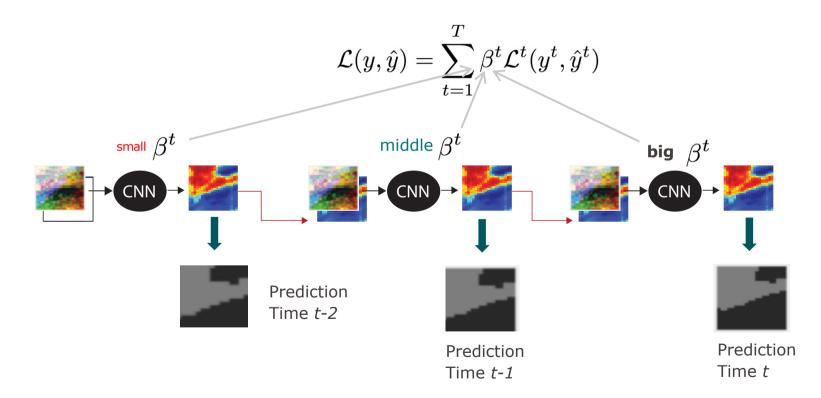
- Design a single timestep CNN
- Add as input a (r x c x 2) dimensional array of zeros
- Copy the network t times
- Declare the (r x c x 2) input of t as the fully connected scores at t-1



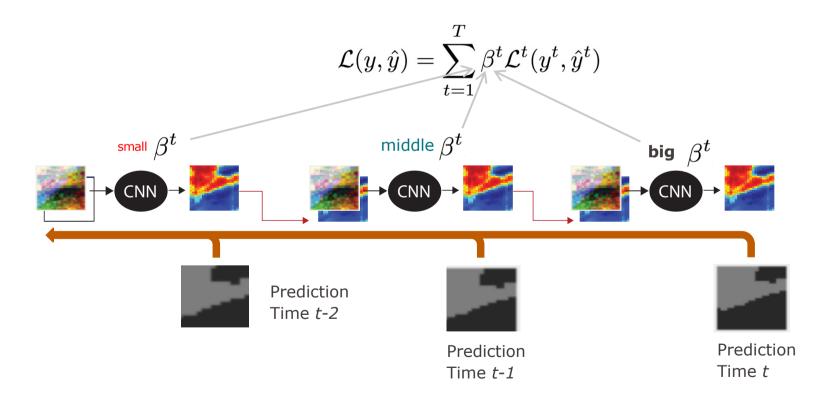
- Pass every image time sequence in the network
- Backpropagate through the network



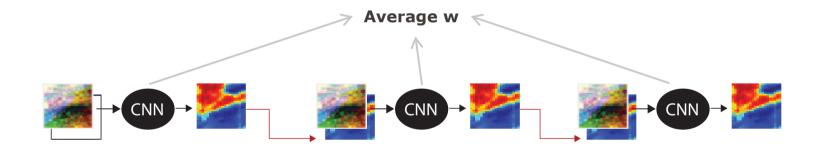
- Pass every image time sequence in the network
- Backpropagate through the network, update w in each CNN



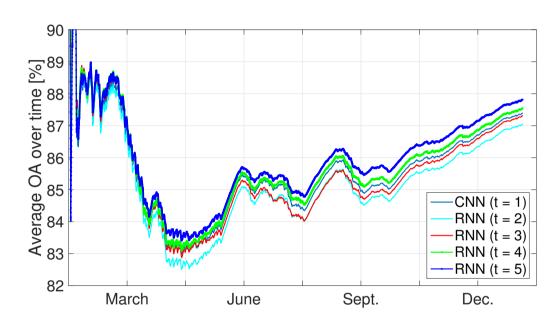
- Pass every image time sequence in the network
- Backpropagate through the network, update w in each CNN



- Pass every image time sequence in the network
- Backpropagate through the network
- Average weights



EPFL Results



<u>Video</u>

Setting

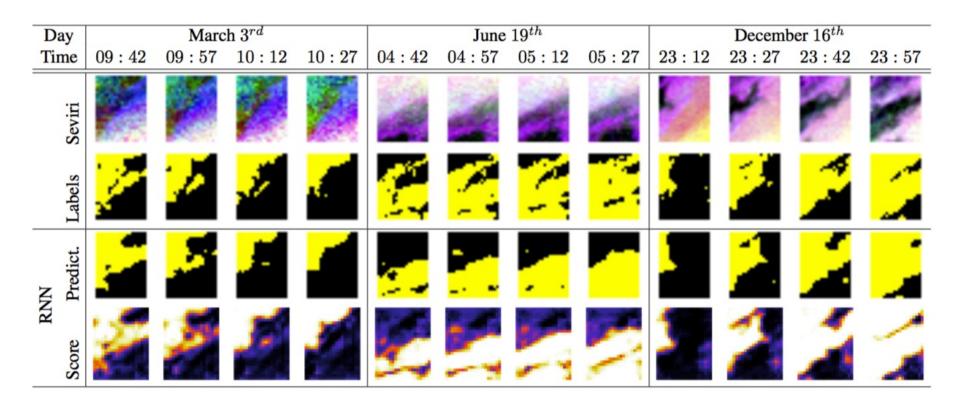
- Test: March, June, September, December
- Train: all other months
- Metric: weighted average accuracy (over timesteps /), so it's normal error increases over time

Take home

- Adding time information includes prediction accuracy
- We get the prediction for all the time sequence
- Consistency is increased

IPEO course – 4 sequence modeling 14 November 2024

EPFL Results



EPFL |

RNNs in a nutshell

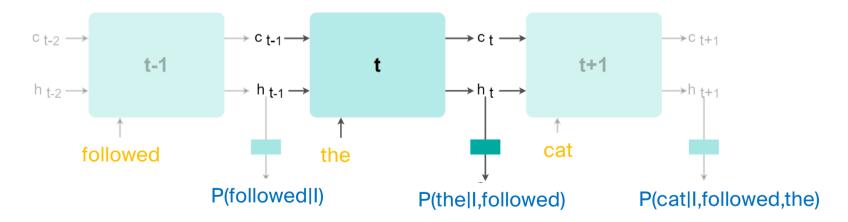
- Recursive model that can be unrolled
- Use t-2 output as input to t-1 and so on
- Very intuitive and works well!

But:

- Does not handle well very long sequences
- Because gradients are pushed through the network from end to beginning
- To alleviate this, Hochreiter and Schmidhuber (1997) proposed a solution, which became state of art: the Long-Short Term Memory network (LSTM)

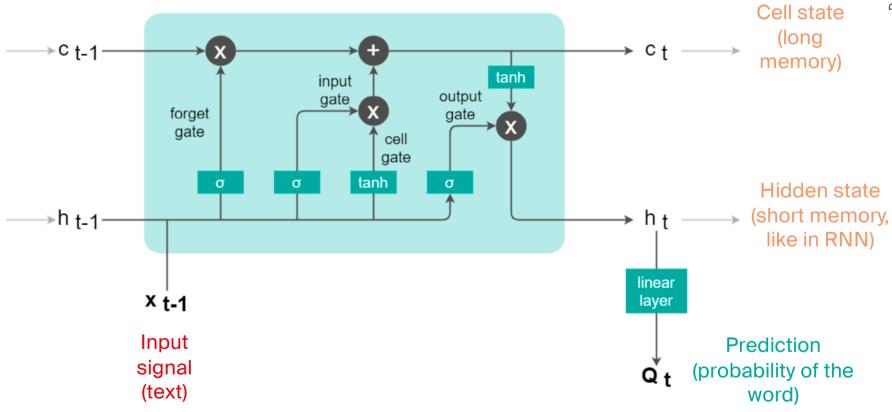
LSTM (unrolled view)

- Like a RNN, the LSTM considers one word at a time in the sentence direction;
- Like a RNN, the LSTM passes on a hidden vector h to the next step;
- <u>Unlike</u> a RNN, the LSTM also passes a long memory vector c.



C. Frank, M. Russwurm, J. Fluixa, A. Abellan, and D. Tuia. Short-term runoff forecasting in an alpine catchment with a long short-term memory neural network. *Frontiers in Water and AI*, 5, 2023. https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full

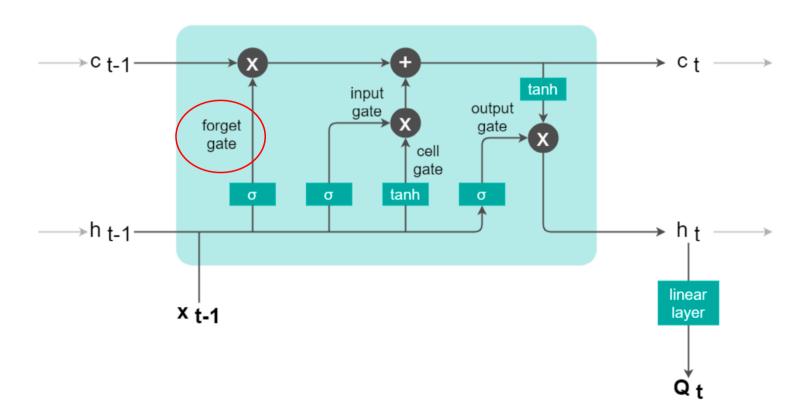
EPFL The LSTM cell



C. Frank, M. Russwurm, J. Fluixa, A. Abellan, and D. Tuia. Short-term runoff forecasting in an alpine catchment with a long short-term memory neural network. *Frontiers in Water and AI*, 5, 2023. https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1126310/full

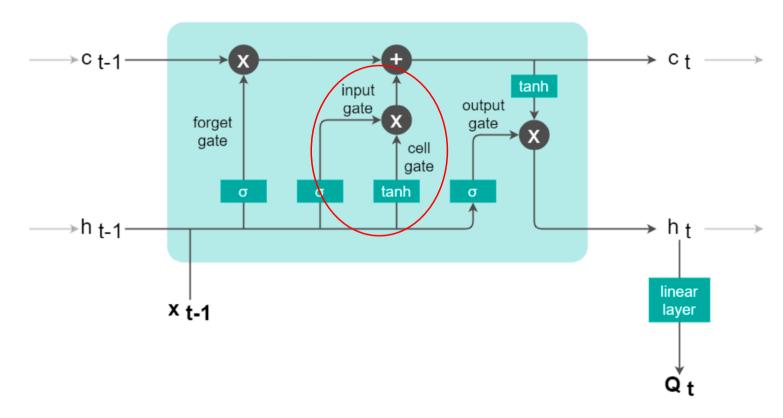
IADF summer school 2023

The LSTM cell



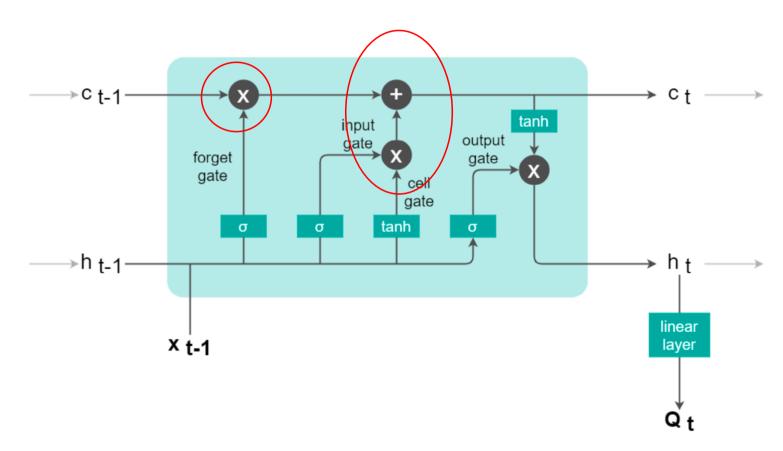
The forget gate regulates how much of the info in the long term memory c is deleted from the memory

The LSTM cell



The input and cell gate regulate how much of the inputs is to be added in the long term memory

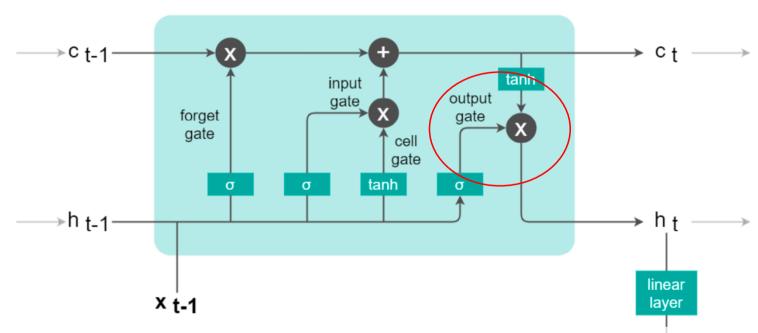
The LSTM cell



Together, they update the long-term memory c:

$$c_{t+1} = \underbrace{f_{t+1} \cdot c_t}_{\text{forget}} + \underbrace{i_{t+1} \cdot g_{t+1}}_{\text{input}}$$

EPFL The LSTM cell



The output gate combines the inputs (x and h), modulated by the long term memory c to obtain the new hidden state h

$$h_{t+1} = o_{t+1} \cdot \tanh(c_{t+1}).$$

EPFL In a nutshell

- The LSTM provides a mechanism to pass information across the sequence step (the long-term memory c)
 - 1. Go one word at a time
 - 2. Update c
 - 3. Estimate hidden state for the current word using new input x, previous states c and h
 - 4. Use h to predict P(word | previous_ones)
 - 5. Pass hand c on to the next word in the sequence
- This means information from multiple steps ago gets injected directly!
- For the rest it looks pretty much like the RNN.
- All the gates computations involve weight matrices with learnable parameters (every time x_t or h_t are used)

EPFL

A last example

We wanted to map the upper limit of the forest in Valais

This limits moves in time, due to climate change and landuse practices

- We have 80 years of historical images from Swisstopo
- But labels only in 2020!
- We developed a sequencebased approach

https://farsouthecology.com/do-treelines-in-the-southern-hemisphere-follow-the-rules/

EPFL It's a 80 years adventure with varying technology...

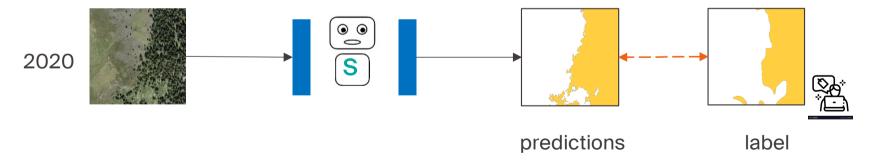
VS

And it shows on the images!

A single time classifier

Model: U-Net

Loss: crossentropy between labels and predictions in 2020



T.-A. Nguyen, B. Kellenberger, and D. Tuia. Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning. *Remote Sens. Environ.*, 281(113217), 2022. https://doi.org/10.1016/j.rse.2022.113217

A multitemporal classifier

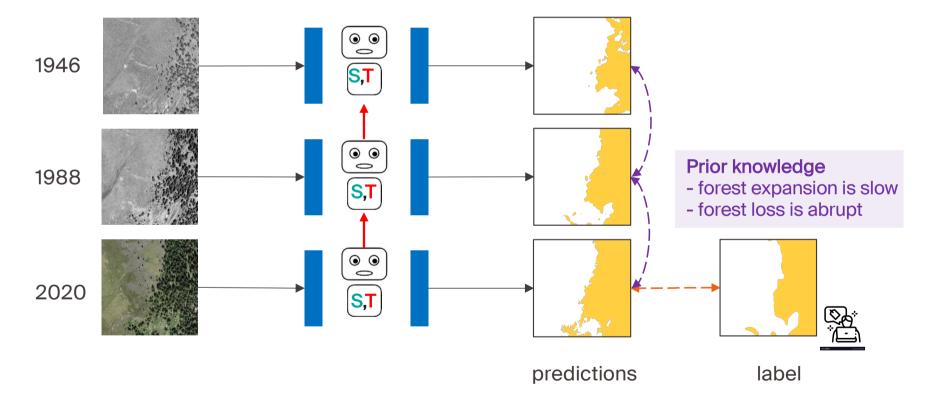
Model: convolutional GRU*. Gates weighed proportional to time-lag Loss: as before + cross-entropy between the maps at t and t-1, t-1 and t-2, etc.



T.-A. Nguyen, M. Russwurm, G. Lenczner, and D. Tuia. Multi-temporal forest monitoring in the Swiss Alps with knowledge-guided deep learning. Remote Sens. Environ., 305:114109, 2024. https://doi.org/10.1016/j.rse.2024.114109

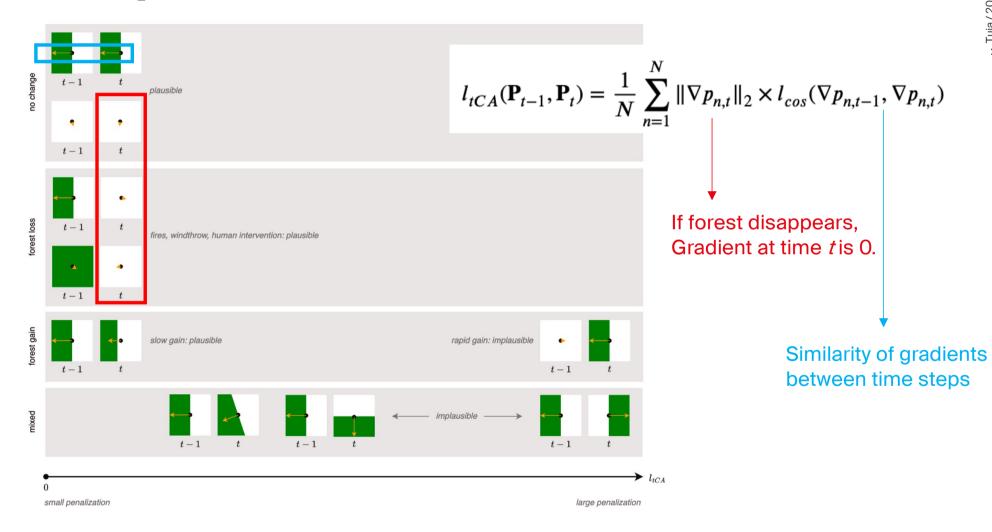
EPFL

A multitemporal classifier enforcing forest dynamic knowledge



T.-A. Nguyen, M. Russwurm, G. Lenczner, and D. Tuia. Multi-temporal forest monitoring in the Swiss Alps with knowledge-guided deep learning. Remote Sens. Environ., 305:114109, 2024. https://doi.org/10.1016/j.rse.2024.114109

Temporal evolution loss

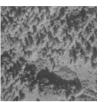


CV4E

EPFL Numerically

Gray images

Color images



ΑII

	Gray (1946–1		
	IoU	F1	F1 _c
U-Net	73.5 ± 1.4	84.7 ± 0.9	72.1 ± 2.4
U-Net + ConvGRU	76.9 ± 1.9	86.9 ± 1.2	80.1 ± 0.8
U-Net + IrregConvGRU	76.0 ± 1.2	86.3 ± 0.8	81.0 ± 0.5

RGB (1998–2020)			All (1946–202			
IoU	F1 F1 _c		IoU F1		F1 _c	
87.5 ± 0.4 85.5 ± 0.3	93.3 ± 0.2 92.2 ± 0.2	81.6 ± 0.3 81.5 ± 0.2	79.1 ± 0.7 80.2 ± 1.3	88.4 ± 0.4 89.0 ± 0.8	75.5 ± 1.6 80.6 ± 0.6	
83.0 ± 1.9	90.7 ± 1.1	80.6 ± 0.8	78.7 ± 1.4	88.1 ± 0.8	80.9 ± 0.3	

Time dimension helps (mostly on historical gray images)!

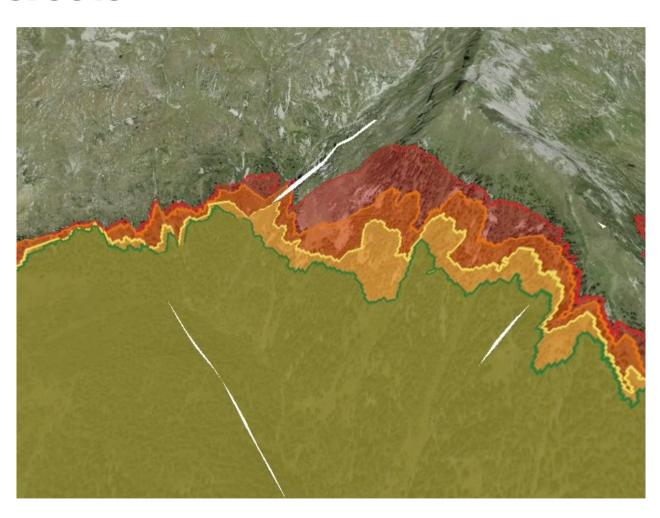
	Gray (1946–1995)		RGB (1998–2020)		All (1946–2020)				
	IoU	F1	F1 _c	IoU	F1	F1 _c	IoU	F1	F1 _c
tMSE	67.8 ± 2.0	80.8 ± 1.4	64.7 ± 3.2	82.2 ± 8.6	90.0 ± 5.6	76.8 ± 3.3	73.6 ± 4.5	84.7 ± 3.1	69.2 ± 1.6
tCE (Saha et al., 2020)	72.7 ± 1.2	84.2 ± 0.8	69.3 + 2.0	87.2 ± 0.4	93.2 ± 0.2	80.3 ± 0.7	78.5 ± 0.8	88.0 ± 0.5	73.3 + 1.5
tCA	68.5 ± 4.9	81.2 ± 3.5	78.2 ± 1.4	73.7 ± 7.2	84.6 ± 4.8	77.2 ± 1.8	70.5 ± 5.5	82.6 ± 3.8	77.9 ± 1.3
tMSE + tCA	73.2 ± 2.7	84.5 ± 1.8	76.6 ± 2.0	80.4 ± 6.8	89.0 ± 4.4	78.7 ± 2.0	76.0 ± 4.1	86.3 ± 2.7	77.3 ± 1.3
tCE + tCA	76.0 ± 1.2	86.3 ± 0.8	81.0 ± 0.5	83.0 ± 1.9	90.7 ± 1.1	80.6 ± 0.8	78.7 ± 1.4	$88.1~\pm~0.8$	80.9 ± 0.3

Forest dynamics knowledge helps!

PEO course – 4 sequence modeling

EPFL

Mapping Swiss forests



2020199519701945

In summary

- Time is a goldmine in remote sensing
- Models exist to account for the time dimension in remote sensing
- We have seen 3 cases where time plays a more and more important role
 - Classification with temporal inputs
 - Change detection
 - Sequence steps classification