

 École polytechnique fédérale de Lausanne

Content (6 weeks)

- W1 General concepts of image classification
 Traditional supervised classification methods
 Best practices
- W2 Paper reading club!
- W3 Elements of neural networks
- W4 Convolutional neural networks
- W5 Convolutional neural networks for semantic segmentation
- W6 Paper reading club!

IPEO course - 3 image classification - best practices 9 October 2024

Some good practices

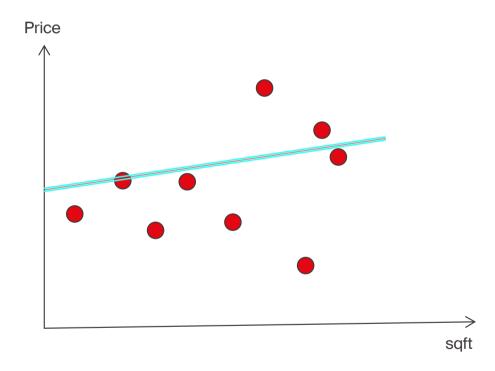
- Fighting overfitting
- Crossvalidation
- Spatial splits
- Accuracy measures

IPEO course - 3 image classification - best practices 9 October 2024

EPFL

The enemy: overfitting

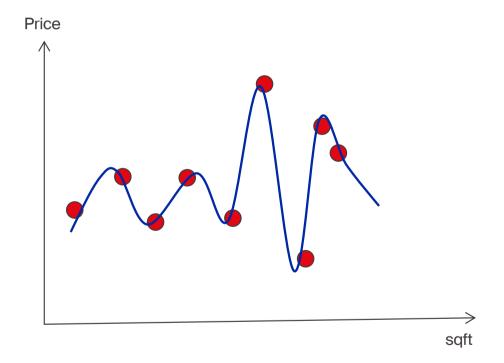
 Sometimes a simple linear prediction is not optimal



Going nonlinear

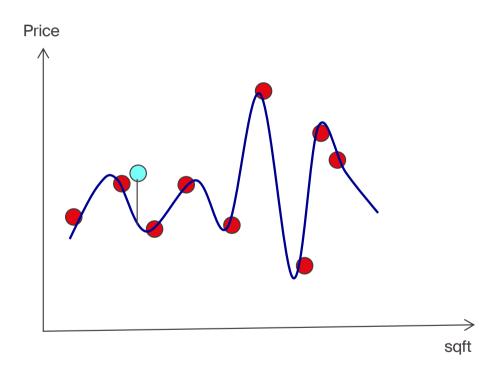
 Sometimes a simple linear prediction is not optimal

- We would prefer something nonlinear
- We would avoid to be too close to the training data

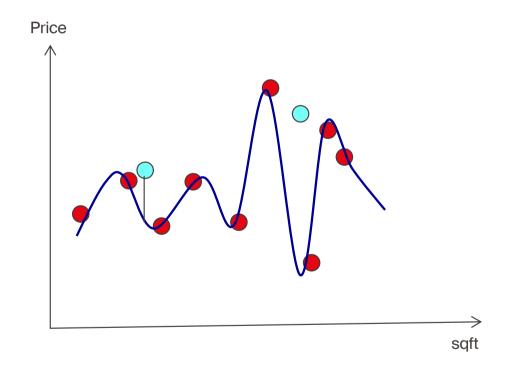


Going nonlinear

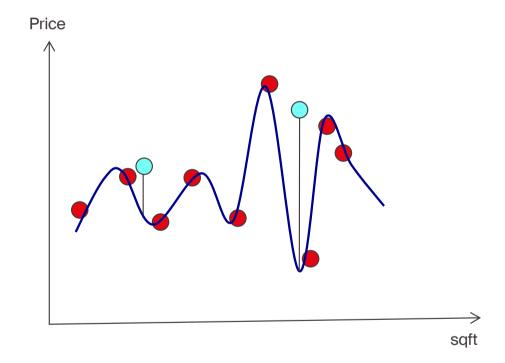
- Sometimes a simple linear prediction is not optimal
- We would prefer something nonlinear
- We would avoid to be too close to the training data
- Otherwise, when a new unseen point comes...
- This is called <u>overfitting</u>



- Sometimes a simple linear prediction is not optimal
- We would prefer something nonlinear
- We would avoid to be too close to the training data
- Otherwise, when a new unseen point comes...
- This is called <u>overfitting</u>



- Sometimes a simple linear prediction is not optimal
- We would prefer something nonlinear
- We would avoid to be too close to the training data
- Otherwise, when a new unseen point comes...
- This is called <u>overfitting</u>



IPEO course – 3 image classification – best practices 9 October 2024

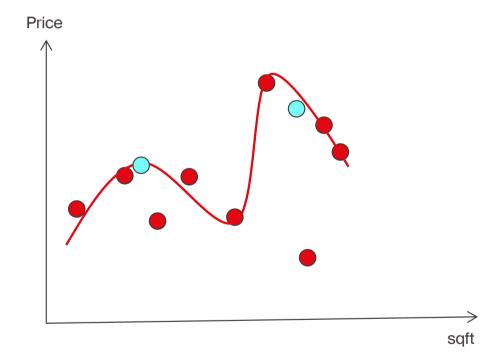
EPFL

Sometimes a simple linear prediction is not

Going nonlinear

 We would prefer something nonlinear

optimal



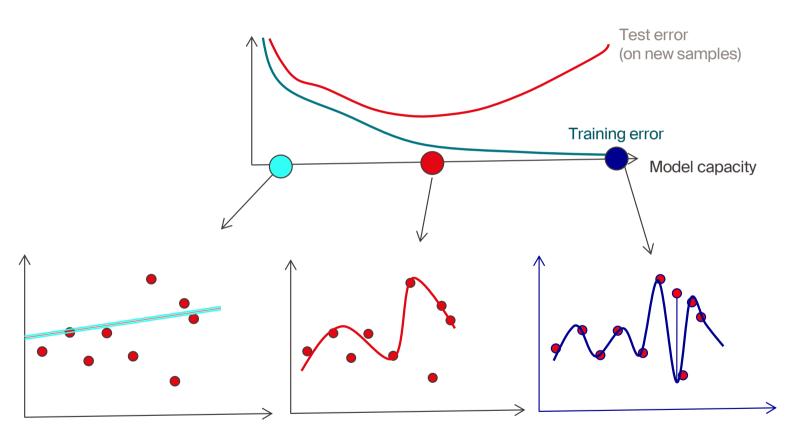
Overfitting (and generalization)

- Overfitting happens when you trust your training data too much.
- Our aim is to model the data structure well, not to represent the training data well
- If we fail miserably on unseen data, the learning was a failure
- So we need to
 - Train well
 - = minimize errors where we can estimate them
 - Limit model overcomplexification
 - = avoid overfitting

IPEO course – 3 image classification – best practices 9 October 2024

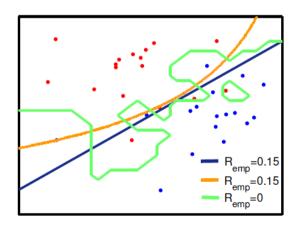
EPFL

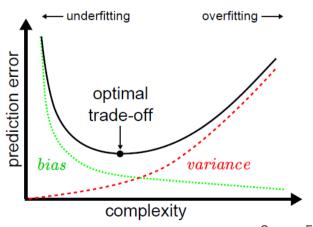
Overfitting (and generalization)



More complexity is not always good

- A classification algorithm has free parameters to be tuned
- Typically related to the generalization capability
- A good <u>generalization</u> is a trade-off between:
 - Having a low training error (fitting well enough the training examples)
 - But keeping the model "simple", with a low complexity





Source: F. de Morsier, PhD Thesis

How do we limit complexity?

By penalising every time we split into a deeper tree, we avoid taking decisions on smaller and smaller "leaves"

By keeping parameters small, we avoid the model to rely too much on the training data

How do we construct the partitioning?

- Solution
 - · A. Stop early (e.g. set a minimum depth)
 - . B. Prune the tree using cost:

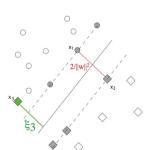
$$\sum_{m=1}^{|T|} Gini(m) + \alpha |T|$$

- First grow a very large (deep) tree T₀. You now have the solution for α = 0.
- For each a, there is a subtree $\,T \subset T_0\,$
- Increase α and re-run. The regularizer is the price to pay for increasing the number of terminal nodes
- Use a k-fold cross-validation approach to evaluate the error function above. Use the average
 error as final measure.
- Once minimized, grow an optimal tree using all data

Tolerance to errors?

 One single missclassification can make the classifier overfit!

- Every time we make a mistake, we penalize by ξ_i (= the distance of the sample from the classification plane)
- If no mistake, $\xi_i = 0$
- Meaning: the bigger the mistake, the more we penalize



How do we limit complexity?

By regularizing solutions

How do we construct the partitioning?

- Solution
 - · A. Stop early (e.g. set a minimum depth)
 - . B. Prune the tree using cost:

$$\sum_{m=1}^{|T|} Gini(m) + \alpha |T|$$

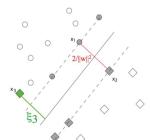
- First grow a very large (deep) tree T_0 . You now have the solution for $\alpha=0$.
- For each a, there is a subtree $\,T\subset T_0\,$
- Increase α and re-run. The regularizer is the price to pay for increasing the number of terminal nodes
- Use a k-fold cross-validation approach to evaluate the error function above. Use the average
 error as final measure.
- Once minimized, grow an optimal tree using all data

Tolerance to errors?

 One single <u>missclassification</u> can make the classifier <u>overfit!</u>

$$\min_{\mathbf{w}} ||\mathbf{w}||^2 + C \sum_{i} \xi$$

- Every time we make a mistake, we penalize by ξ_i (= the distance of the sample from the classification plane)
- If no mistake, ξ_i = 0
- Meaning: the bigger the mistake, the more we penalize



Optimization objective: min (errors on training data + regularizer)

How do we limit complexity?

- By regularizing solutions
- By choosing parameters that do not prone overfitting (e.g. min number of samples in each leaf, which has a similar effect of the regularizer seen in previous slide)

How do we limit complexity?

- By regularizing solutions
- By choosing parameters that do not prone overfitting (e.g. min number of samples in each leaf, which has a similar effect of the regularizer seen in previous slide)
- By early stopping (important in neural netwroks)

In other words: know when to stop minimizing the training error.

(cross) validation is a possible way to estimate that.

IPEO course – 3 image classification - best practices 9 October 2024

Some good practices

- Overfitting
- (Cross)validation
- Spatial splits
- Accuracy measures

IPEO course - 3 image classification (R

EPFL

Use a validation set when you have it!

- A classification algorithm has free parameters to be tuned
- Cross-validation can allow to estimate the generalization capability (=accuracy on unseen test data)
- If you have a lot of data, you can take out part of it for validating how well your model is doing on data never seen during training

Validation with some left out data

Validation of model parameters

Total number of data samples

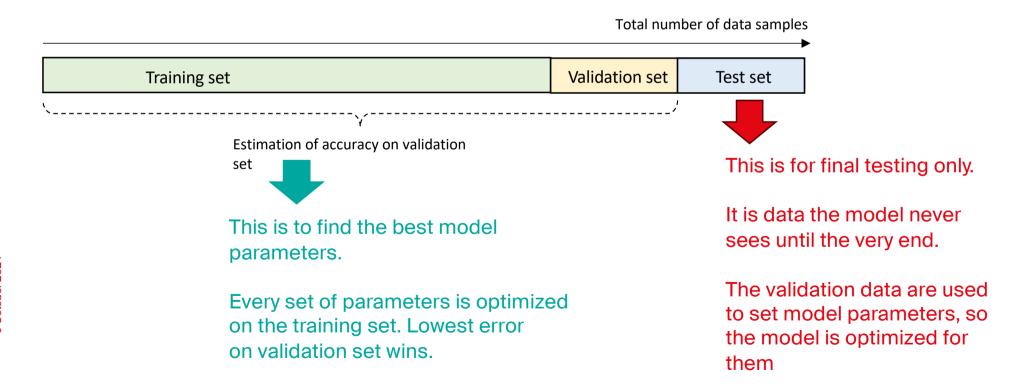
Dataset

IPEO course – 3 image classification – best practices 9 October 2024

EPFL

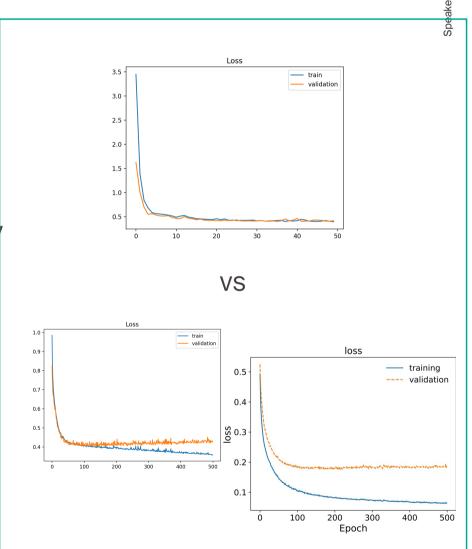
Validation with some left out data

Validation of model parameters



Use a validation set when you have it!

- A classification algorithm has free parameters to be tuned
- Cross-validation can allow to estimate the generalization capability (=accuracy on unseen test data)
- If you have a lot of data, you can take out part of it for validating how well your model is doing on data never seen during training
- This can be used for:
 - Comparing different parameters sets
 - Seeing if you are overfitting



- When you don't have many data, you need to work with what you have...
- Idea behind cross-validation:
 - Split the training examples into different subset or "folds"
 - Leave one fold for testing and estimating accuracy
 - Use the remaining folds for training the model
 - Repeat above steps until all folds have been once tested
 - Take average error as performance metric

Cross-validation

K-folds cross-validation

Total number of data samples

Dataset

Cross-validation

K-folds cross-validation

Total number of data samples

Training set

Validation set

Test set

Estimation of accuracy on validation set

K-folds cross-validation

Training set

Validation

Test set

set

Estimation of accuracy on validation set

K-folds cross-validation

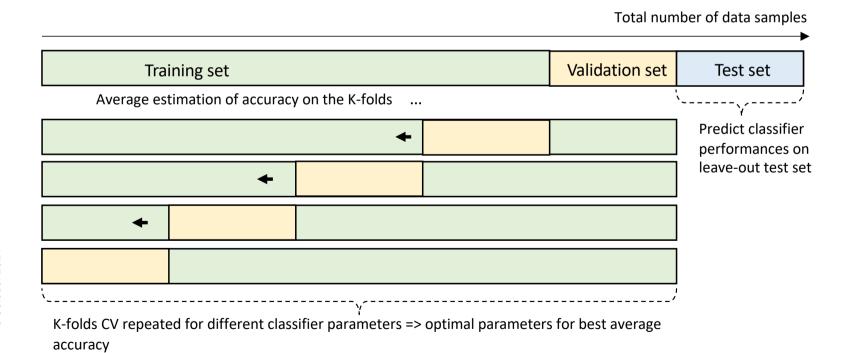
Training set Validation Test set

Total number of data samples

Estimation of accuracy on validation set

EPFL Cross-validation

K-folds cross-validation



| IPEO course - 3 image classification - best practi

Some good practices

- Overfitting
- Crossvalidation
- Spatial splits
- Accuracy measures

Am I doing a good job?

Predicted classes

True labels

IPEO course – 3 image classification – best practices 9 October 2024

EPFL

We can compare our predictions to the true labels

Predicted classes

True labels

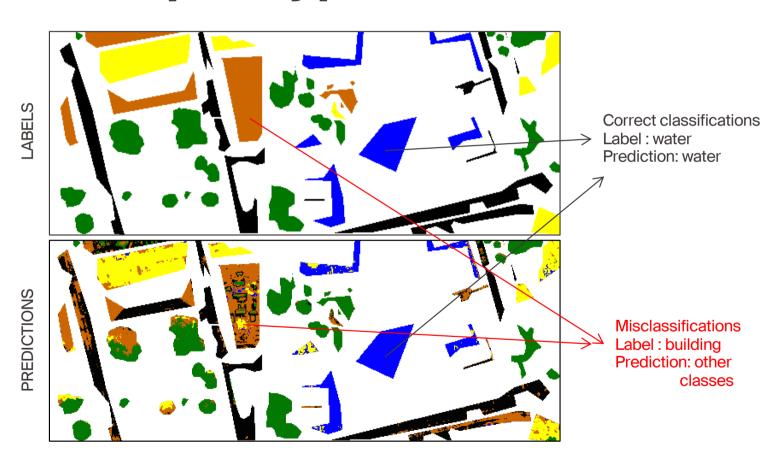
And we better do it only on areas we didn't use for establishing the model (to avoid positive biases)



Predicted classes

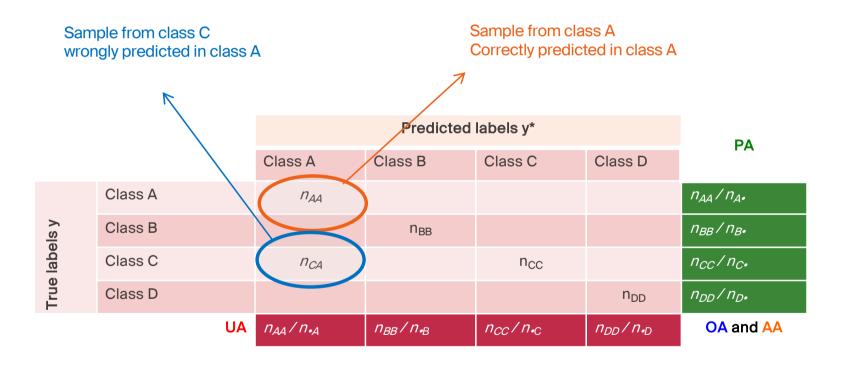
True labels

Then we compare the true and predicted pixel by pixel



Confusion matrix

Relates known truth pixels and predictions

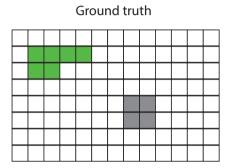


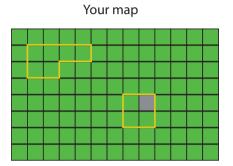
EPFL AccuracieS

- Overall accuracy: percentage of correct classifications
 - = sum of the diagonal of the CM / num of pixels
- Average accuracy: average of the per-class accuracies
 - = the honest one. If you fail on one small class, it is going to show!
- User's accuracy: commission errors, % that a pixel classified into a class belongs to that class.
 - = sum of the column sums of the CM
- Producer's accuracy: omission errors, % that a reference sample has been classified correctly.
 - = sum of the row sums of the CM

IPEO course - 3 image classification - best practices 9 October 2024

EPFL User vs producer's





Predicted

6/9*100 = 66%

User Accuracy

"how many of the classifier's predictions were correct"