EPFL

 École polytechnique fédérale de Lausanne

Content (6 weeks)

- W1 General concepts of image classification / segmentation
 Traditional supervised classification methods (RF)
- W2 Traditional supervised classification methods (SVM)
 Accuracy measures
- W3 Elements of neural networks
- W4 Convolutional neural networks
- W5 Convolutional neural networks for semantic segmentation
- W6 Sequence modeling, change detection

ification

IPEO course - 3 image class October 2024

EPFL

What do ML models look like?

Phase 1: extract a feature representation = extract relevant variables for the task at hand

Features?

Variables issued from the data that are more expressive to solve the problem

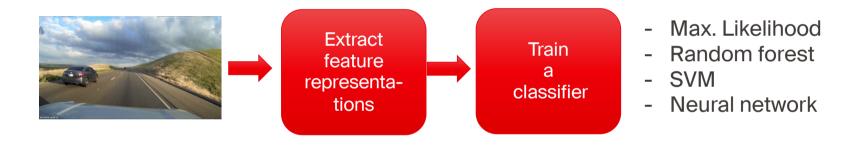
They are specific to the type of data:

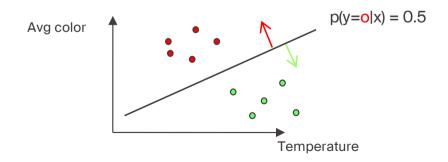
- Images: textures, color gradients,
- Environmental: temperature, pressure, altitude gradients, ...
- Text: occurrences of words, lenght of words, ...
- Regions: administrative statistics, area, ...
- Road neworks: length, number of intersections, typology, centrality measures, ...

What do these models look like?

Phase 2: training, (learning)

= using a series of X / Y pairs, learn how to relate them



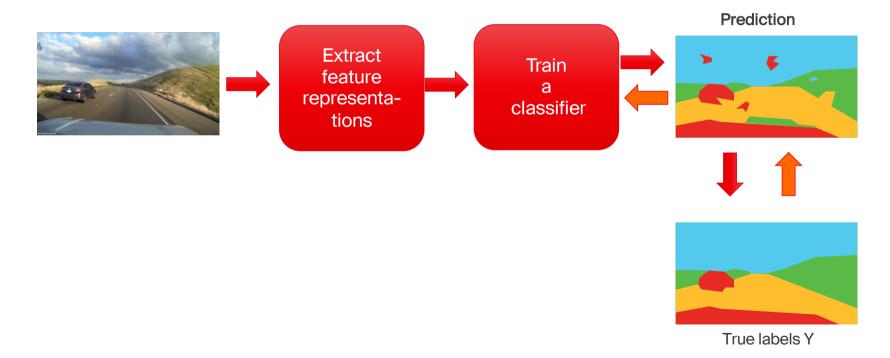


IPEO course – 3 image classification (RF) 4 October 2024

What do these models look like?

Phase 2: training, (learning)

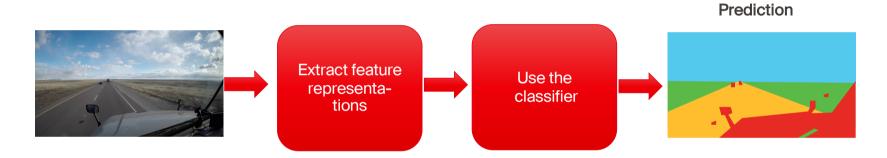
= using a series of X / Y pairs, learn how to relate them



What do these models look like?

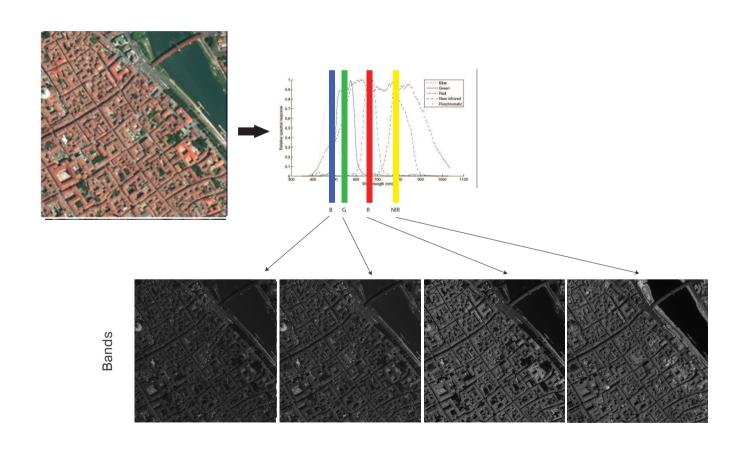
Phase 3: inference

= given a new image, you pass it through the model and retrieve the response



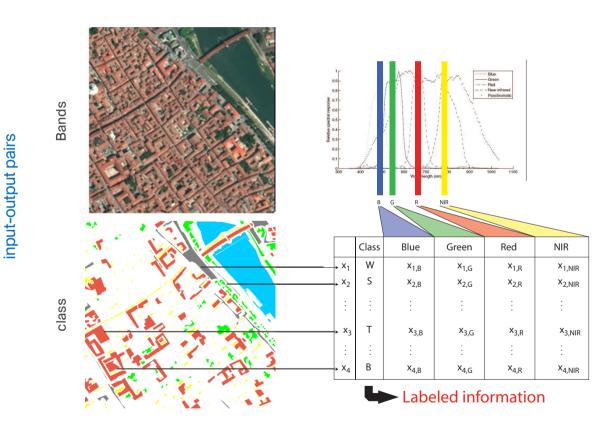
In this case, for each pixel it will attribute the most probable class It remains a prediction, so it will still have errors!

Step by step: 1 – digital information

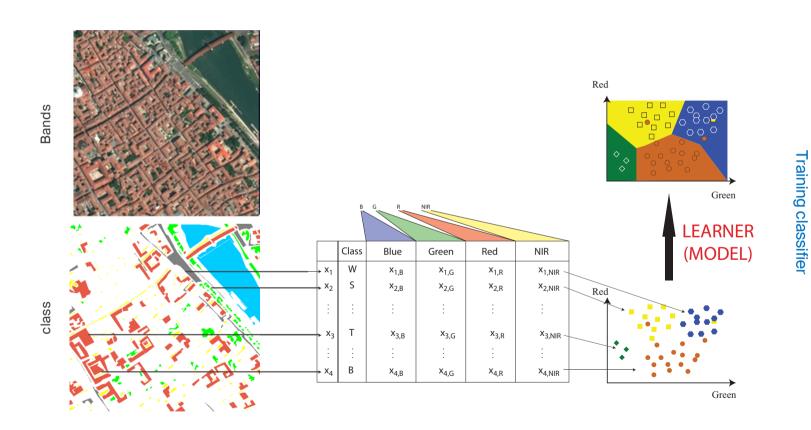


EPFL

Step by step: 2 – labeled examples

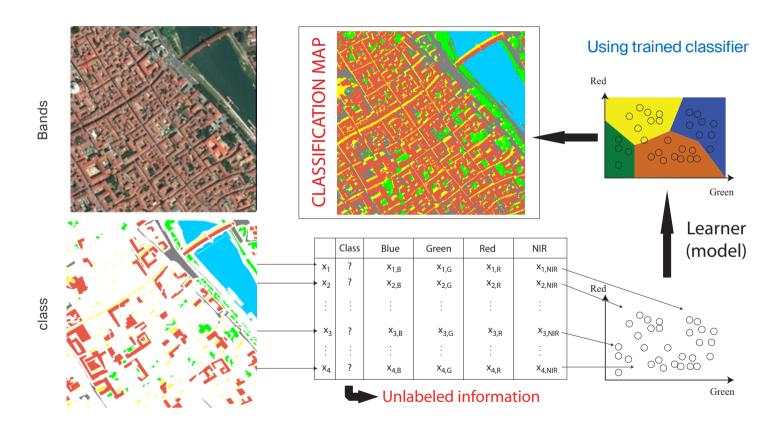


Step by step: 3 – build the model

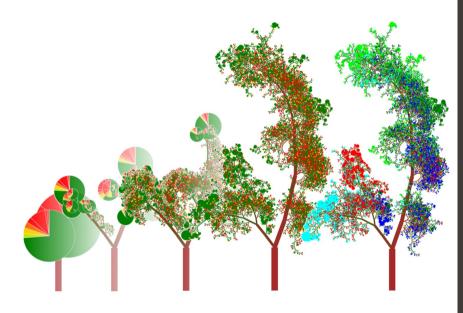


IPEO course – 3 image classification (RF) 4 October 2024

Step by step: 4 – predict unseen data



IPEO course – 3 image classification (RF) 4 October 2024



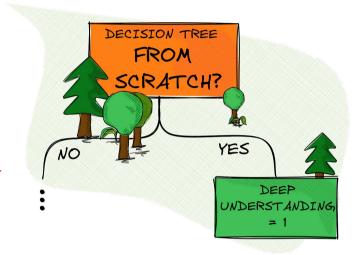
source: Rhaensch.de

Decision trees and random forests

EPFL Random forests

- It an ensemble model (it classifies evey pixel according to the majority vote of many simple models)
- Each model is called a decision tree

how would you do it?



Source: towards data science

Source: banakok pos

IPEO course - 3 image classification (F

EPFL

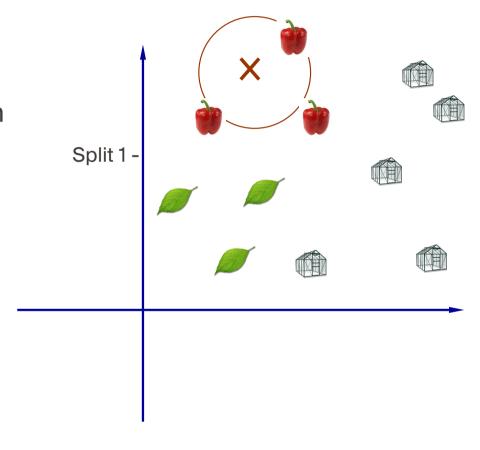
Segmenting the feature space

Basically a decision tree segments the input space

It does that using a <u>supervised rule</u>

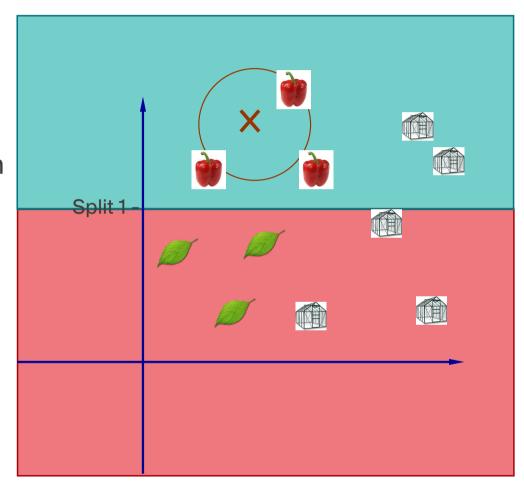
Something like: "if I divide there, would the two resulting segments be clearer about classes"?

 You can find the nonlinear solution in 3 splits.



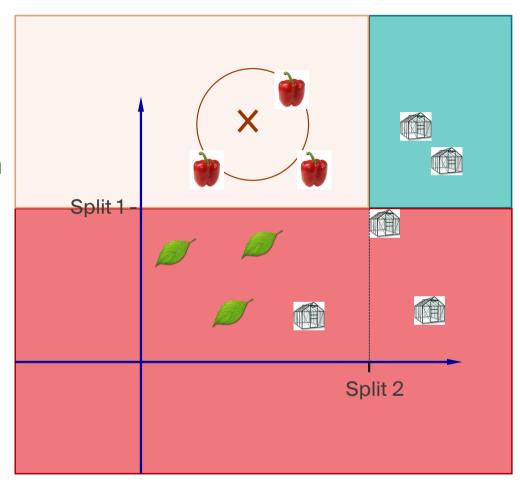
Feature Space

 You can find the nonlinear solution in 3 splits.



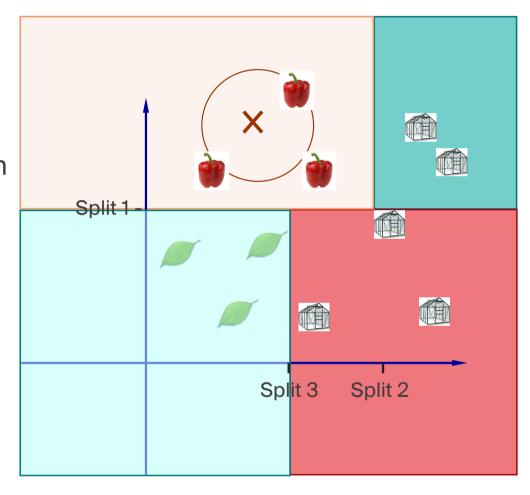
Feature Space

- You can find the nonlinear solution in 3 splits.
- (with 2 you would get the bell pepper right)



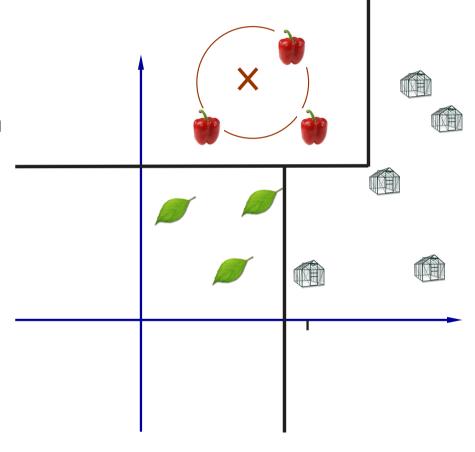
Feature Space

 You can find the nonlinear solution in 3 splits.



Feature Space

 You can find the nonlinear solution in 3 splits.

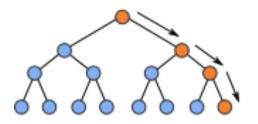


Feature Space

IPEO course – 3 image classification (RF) 4 October 2024

EPFL

The decision tree in a nutshell



http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

- 1. A decision tree selects one feature at the time and splits the data in 2.
- The split variable and threshold are those maximizing class homogeneity in the children nodes.
- 3. Then you work on the remaining data in the children nodes and split them again (and again)
- 4. When you stop, you classify a leaf by the majority label.

EPFL

How to split?

- In the website, decisions are taken according to the "best split".
- If you looked into the footnote, they also recommended to look for "Gini index" or "Cross entropy". These are two node purity indices:

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

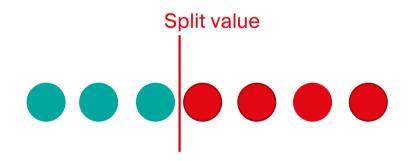
$$D = \sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

• \hat{p}_{mk} is the proportion of samples in region m from class k

IPEO course – 3 image classification (RF) 4 October 2024

How to split (example)

Let's consider two variables leading to very different splits



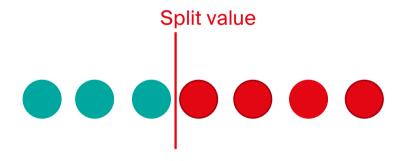
Gini (left) =
$$(0 * (1-0) + (1 * (1-1)) = 0 + 0 = 0$$

Gini (right) = $(1 * (1-1) + (0 * (1-0)) = 0 + 0 = 0$
Gini(split) = 0

EPFL

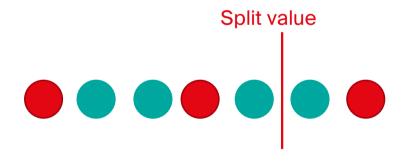
How to split (example)

Let's consider two variables leading to very different splits



Gini (left) =
$$(0 * (1-0) + (1 * (1-1)) = 0 + 0 = 0$$

Gini (right) = $(1 * (1-1) + (0 * (1-0)) = 0 + 0 = 0$
Gini(split) = 0



```
Gini(left) = (2/5 * 3/5) + (3/5+2/5) = 0.24 + 0.24 = 0.48

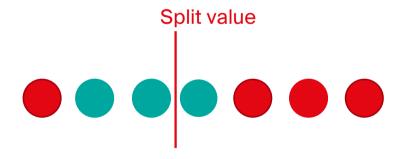
Gini(right) = (.5 * .5) + (.5 * .5) = 0.25 + 0.25 = 0.5

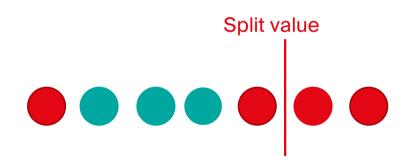
Gini(split) = 0.98
```

How to split (example)

IPEO course – 3 image classification (RF) 4 October 2024

Let's consider one fix variable and two different split values





Gini(left) =
$$(1/3 * (2/3) + 2/3 * (1/3)) = 0.22 + 0.22 = 0.44$$

Gini(right) = $(3/4*(1/4) + (1/4*(3/4)) = 0.38$
Gini(split) = 0.82

Gini(left) =
$$(2/5 * (3/5)) + 3/5*(2/5)) = 0.24 + 0.24 = 0.48$$

Gini(right) = $(1 * (1-1) + + (0*(1-0)) = 0$
Gini(split) = 0.48

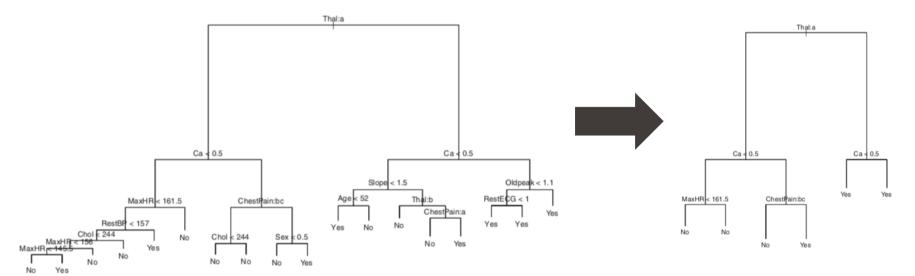
How do we construct the partitioning?

- Top-down, greedy approach
 - Top-down: start at top of tree, successively split predictor space
 - Greedy: at each step, best split is made at that step only. Stop when a criterion is met.
- This will lead to overfit and overcomplex trees.

EPFL

How do we construct the partitioning?

- Solution
 - A. Stop early (e.g. set a minimum depth)
 - B. Prune the tree



IPEO course – 3 image classification (RF) 4 October 2024

How do we construct the partitioning?

- Solution
 - A. Stop early (e.g. set a minimum depth)
 - B. Prune the tree using cost:

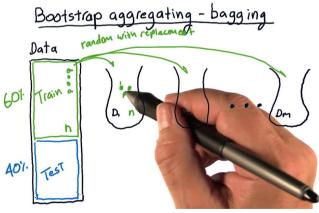
$$\sum_{m=1}^{|T|} Gini(m) + \alpha |T|$$

- First grow a very large (deep) tree T_0 . You now have the solution for $\alpha = 0$.
- For each lpha, there is a subtree $\,T\subset T_0$
- Increase α and re-run. The regularizer is the price to pay for increasing the number of terminal nodes
- Use a k-fold cross-validation approach to evaluate the error function above. Use the average error as final measure.
- Once minimized, grow an optimal tree using all data.

IPEO course - 3 image classification (

From the tree to the forest

- A single decision tree can overfit (see above)
- A single decision tree can suffer from high variance: if we use different training sets, decisions can be quite different
- The concept of bagging is meant to reduce such variance by building a committee of models.
- Random forests (RF) use it.



Source: Udacity.com/course/ud501

From the tree to the forest

- Let's say a single decision tree has an output Z with variance σ^2
- If we repeat the modeling with n independent trials, we get n models with variances $Z_1, Z_2, Z_3, ..., Z_n$ each one with variance σ^2 .
- According to the central limit theorem, the variance of their average is σ^2/n .
- In other words: averaging independent models reduces variance.

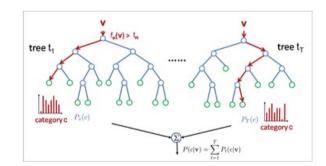
Source: iis.ww.ic.ac.uk

EPFL

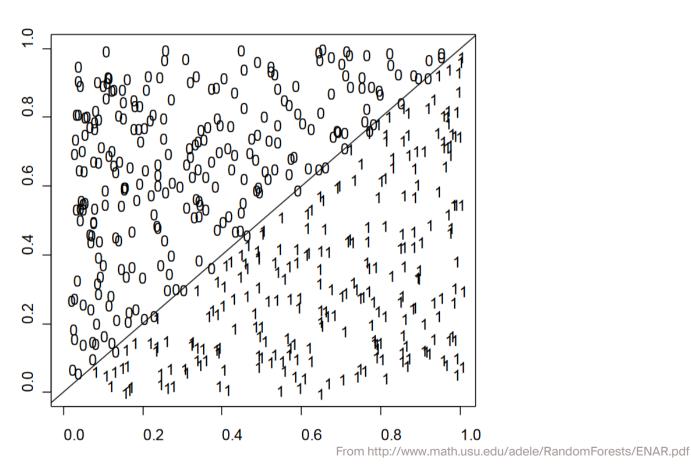
Forest through randomization

 In practice we train B different methods (f*) with subsets of the data and features

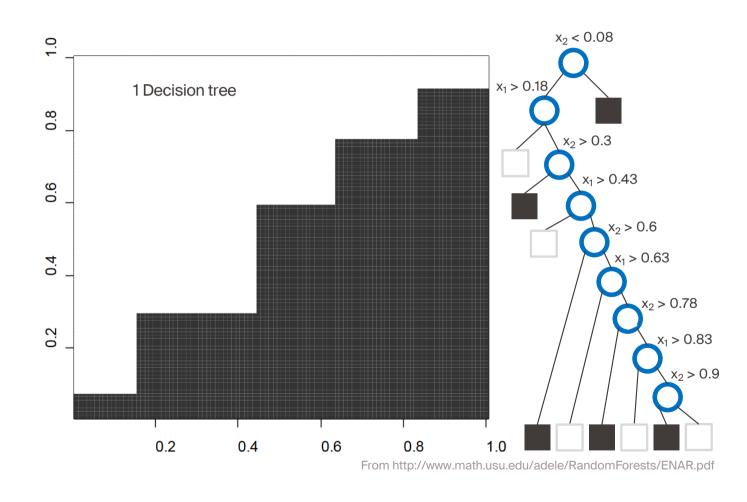
Then take a majority vote (classification)



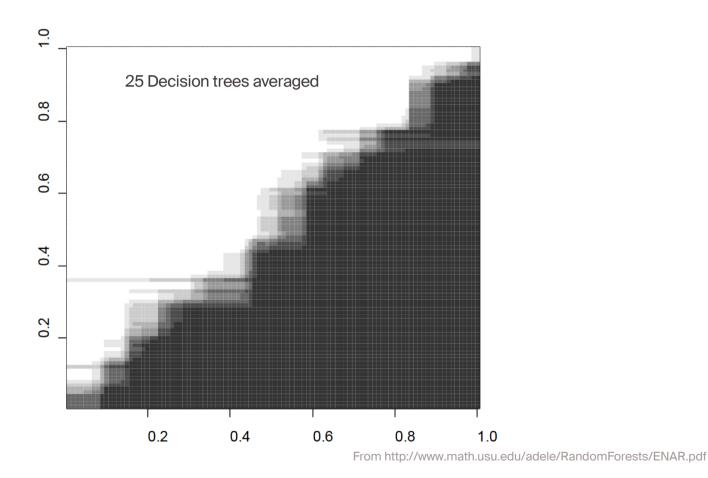
 Even more in practice, we can't have truly independent subsets, so we resample parts of the data and use them in each model training.

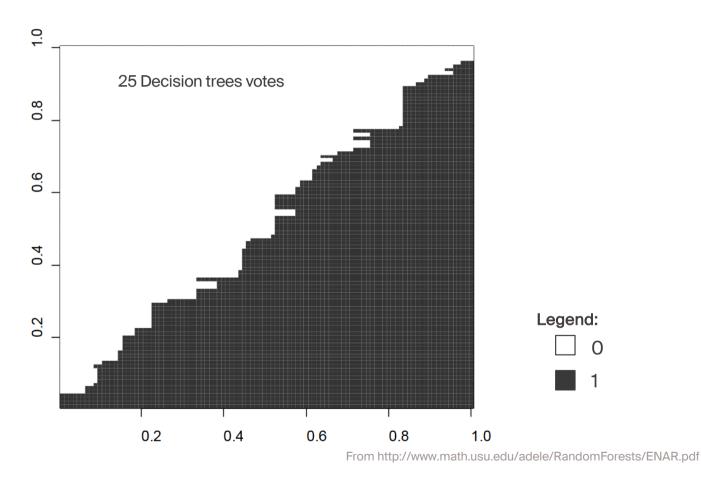


Legend:



Legend:



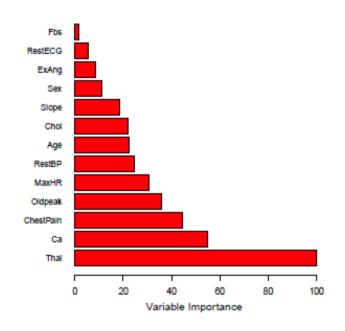


EPFL And we get for free

Error estimates.

- Out-of-bag (OOB): observations (samples) not used in a given tree of the forest
- OOB prediction: majority vote of the predictions over these unused samples
- OOB classification error is an estimate of the test error for a bagged model

Variable importance.



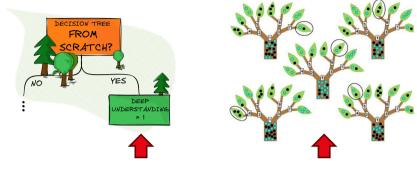
Random forests.

- Basically you repeat the decision tree generation over and over
- Each time you take a different subset of your labeled data
- Each time you generate different variables and split values
- So each tree will be different, but consider the same problem

A different look on the same problem

- Some will be good in some classes
- Others will be good at searching some parts of the feature space (those they have seen)
- But together they will be a strong <u>robust</u>, <u>nonlinear</u> model.

EPFL Random forest is cool because



- It is simple
- You basically have 2 parameters: depth of the trees and number of trees
- It can handle high dimensional data (= many variables)
- It gives you a non linear solution
- BUT still you need to pre-compute your features before training the model.