

 École polytechnique fédérale de Lausanne

Content (6 weeks)

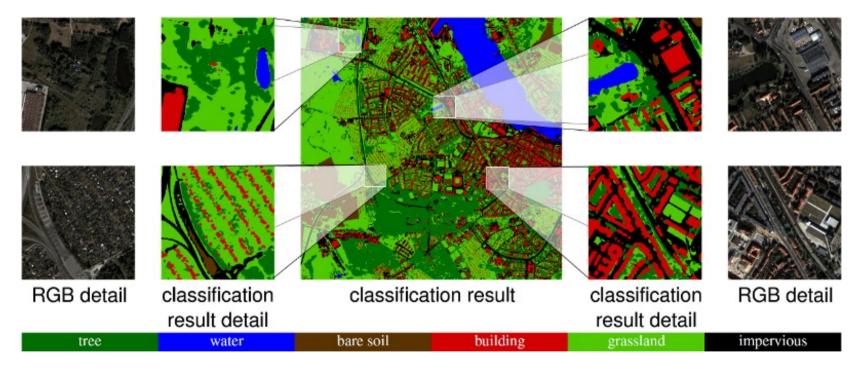
- W1 General concepts of image classification / segmentation
 Traditional supervised classification methods (RF)
- W2 Traditional supervised classification methods (SVM)
 Accuracy measures
- W3 Elements of neural networks
- W4 Convolutional neural networks
- W5 Convolutional neural networks for semantic segmentation
- W6 Sequence modeling, change detection

What do you see in this image?

- Your brain detects objects naturally
- It was trained to do it
- It does it automatically

It also provides you with a semantic interpretation, a class

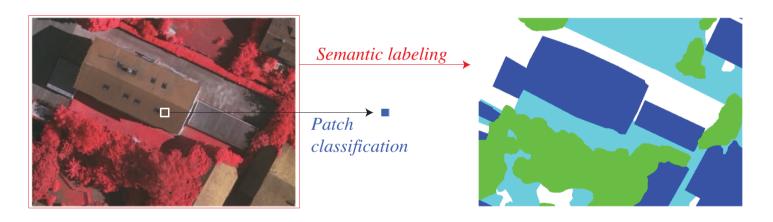
We want to achieve the same with Earth observation images, automatically



Source: inf-cv.uni-jena.de

pixel classification vs semantic segmentation

- Classifiers so far predict one value per unit of support (pixel, patch, ...)
- When we predict per pixel, we do semantic segmentation (or labeling)



M. Volpi and D. Tuia. Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. *IEEE Trans. Geosci. Remote Sens.*, 55(2):881–893, 2017.

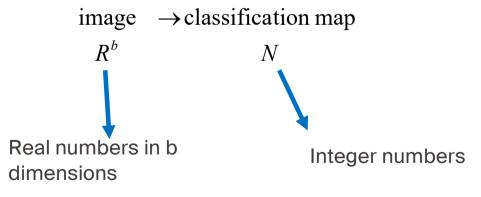
sification 4

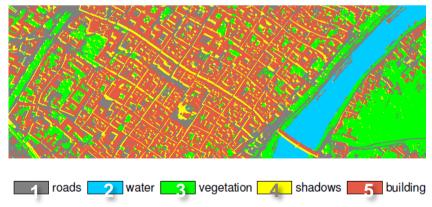
EPFL

Did you say classification / semantic seg.?

 In many applications, the complexity of the image information content has to be reduced

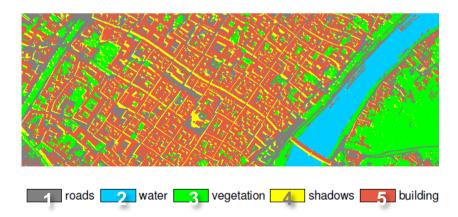
- A certain generalization can provide a clearer information
- In our case, each pixel is:





Did you say classification / semantic seg.?

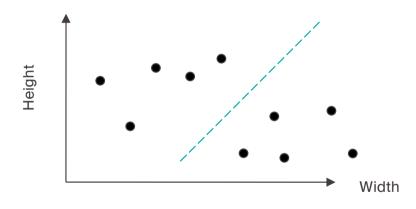
- We want to reduce each pixel, being a multidimensional information, into a single value corresponding to a <u>class</u>.
- The output is a thematic map
- A class can be
 - A land use type
 - A land cover type
 - A level of damage
 - A type of change
 - ...



EPFL A taxonomy

Unsupervised

- Class information is not available
- Decision function defined by data similarity only

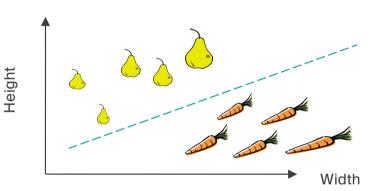


- Clustering
- Segmentation
- Saliency detection

Covered in this course

Supervised

- Class information is provided by examples from the user
- User intervention!



- Supervised classification
- Semantic segmentation
- Object detection
- Instance segmentation

But not manually!

- We want this to be <u>automatic</u> (as much as possible)
- Interpreting manually the entire image is too time consuming and costly
- So we have to teach the machine how to do it
 - How to recognize similar objects?
 - Easy for us, we have a fantastic processing unit (our brain)
 - For a machine, a pixel is only a vector of numerical values.

Machine learning!

IPEO course – 3 Image classification October 2024

The truth behind images

For you

	100	134	79	191	78	3	34	12	132	62
10	0 13	4 79	19	1 78	3	34	1 12	13	32 6	2
100	134	79	191	78	3	34	12	132	62)
23	121	78	156	100	21	22	134	156	100	
29	34	90	121	121	231	134	99	189	86	
12	127	95	232	23	230	212	90	198	67	
11	134	78	132	100	233	245	78	212	34	
190	156	121	145	77	230	7	56	200	230	6
189	234	231	111	78	34	8	3	255	100	
40	45	67	89	245	234	222	21	245	1	

For the	com	puter
---------	-----	-------

100	100	100
23	24	101
29	151	123
12	165	111

OR

IPEO course – 3 Image classification October 2024 **The truth behind**

images

For	you
-----	-----

	10	0	134	1	79		191		78		3		34		12		132	2	62	
10	00	13	4	79)	19	1	78	3	3		34	1	12		13	2	6	2	\vdash
100	13	34	79	9	19)1	78	3	3		34	4	12	-	13	2	62	2	þ	Γ
23	12	21	78	3	15	6	10	00	21		22	2	13	84	15	6	10	00		Γ
29	3	4	90	0	12	21	12	21	23	31	13	4	99	9	18	89	80	ô		┌
12	12	27	9	5	23	32	23	3	23	30	21	2	9	С	19	8	67	7		þ
11	13	34	78	3	13	32	10	00	23	33	24	45	78	3	2	2	34	4	0)
190	15	56	12	21	14	ŀ5	77	7	23	30	7		5	6	20	00	23	30	þ	Γ
189	2	34	23	31	11	1	78	3	34	-	8		3		2	55	10	00		
40	4	5	67	7	89	9	24	45	23	34	22	22	2		24	45	1			

For the computer

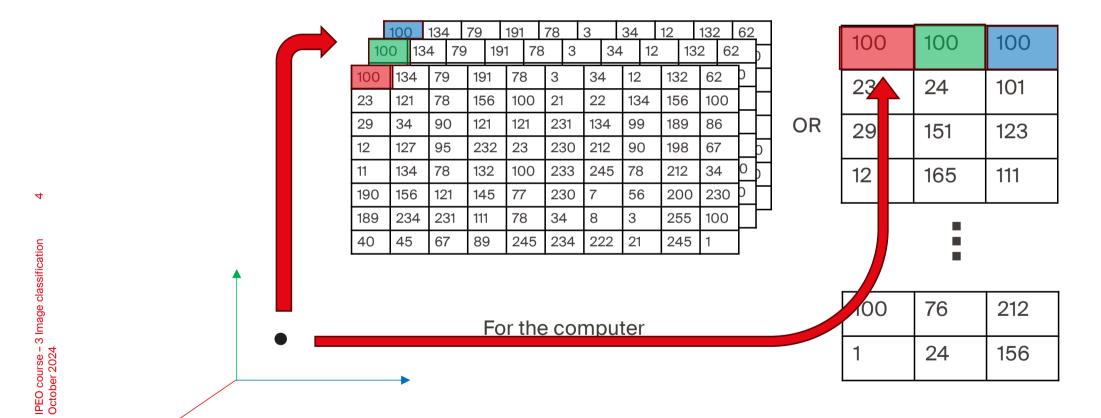
100	100	100
23	24	101
29	151	123
12	165	111

OR

100	76	212
1	24	156

IPEO course - 3 Image classification October 2024

The truth behind images



Machine learning?

- ML has been defined as "learning from data".
- Learning how?With generic algorithms
- We don't want to write specific code
- We want to feed data to the generic algorithm
- We leave the algorithm build its own logic linking inputs and the output (.... and then improve it with specific knowledge)

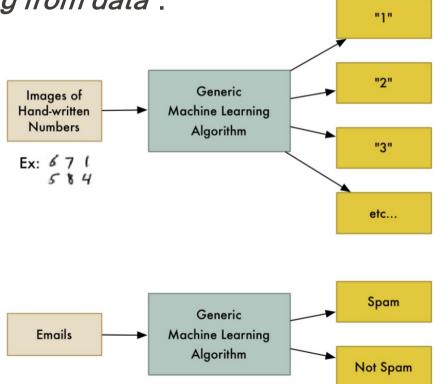
ion

IPEO course - 3 image classi October 2024

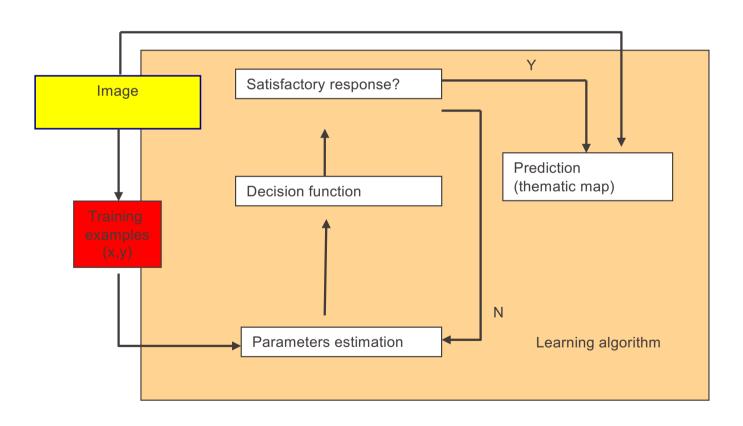
Machine learning?

ML has been defined as "learning from data".

Learning how?With generic algorithms



Our generic algorithm for **Supervised classification**

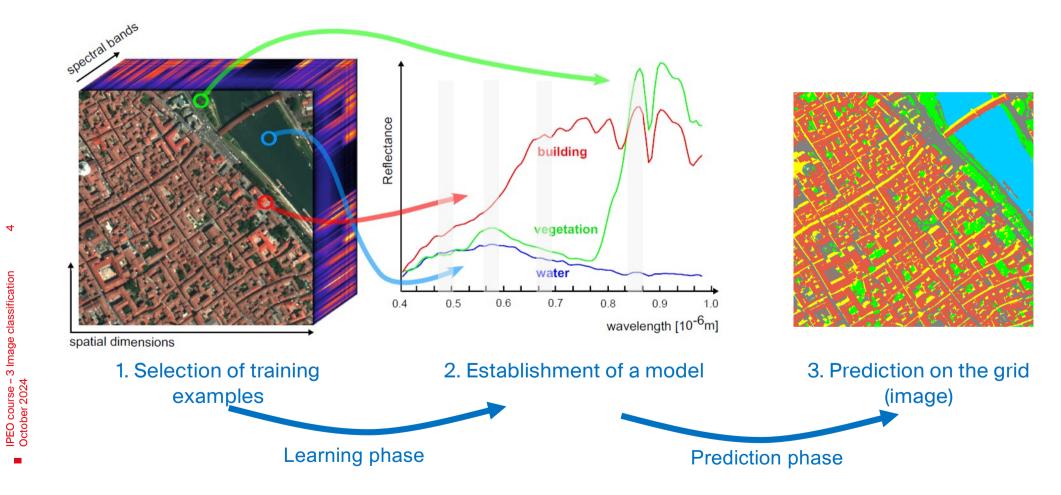


IPEO course - 3 Image classification October 2024

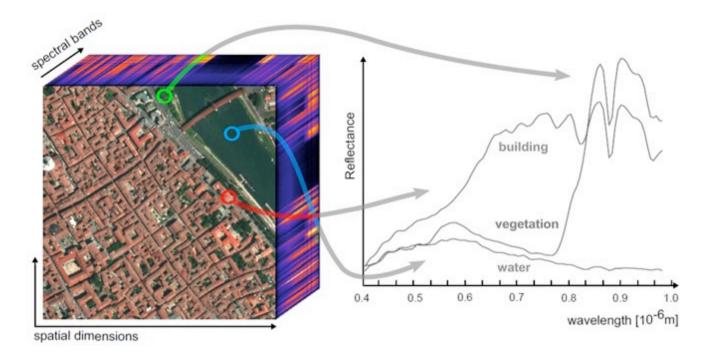
- ML has been defined as "learning from data".
- Learning how? With generic algorithms
- Does it work all the time? No. It's not magic.
- It works if we have
 - the right inputs
 - the right learning machine
 - sufficient training data

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

The three steps of classification



The three steps of classification



1. Selection of training examples

2. Establishment of a model

3. Prediction on the grid (image)

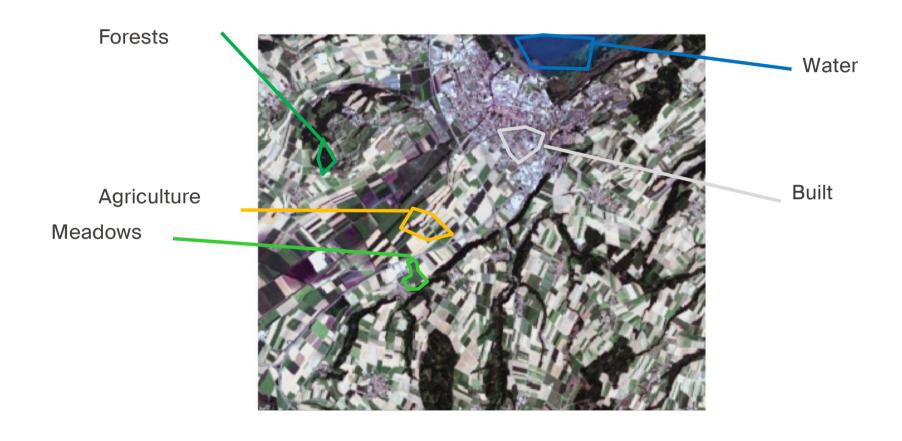
Selecting good examples

- A model "learns" data dependencies from examples
- Examples, also called training data, are
 - Given by a user (supervised classification)
 - From image interpretation

· From in-situ groundtruthing

 Drawn from the image by a given criterion (e.g. randomly, samples in low density regions, etc.)

Selection of training examples by the user

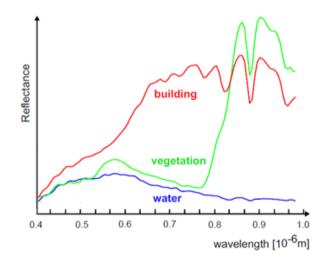


tion

IPEU course - 3 image class October 2024

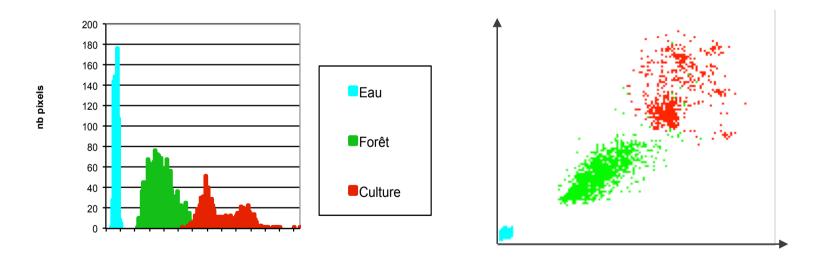
Spectral signatures

- The spectral signature is the response of a type of surface (a class) in radiance or reflectance
- We want it to be
 - Representative of the class
 - Different from the other classes
- In the following we discuss everything at the pixel level, but all kind of descriptors can be used (see course on spatial info)



Discriminative signatures

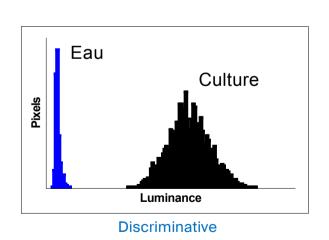
 Here is the distribution of three classes, in one (left) and two (right) dimensions



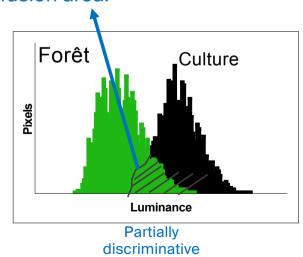
Discriminative signatures

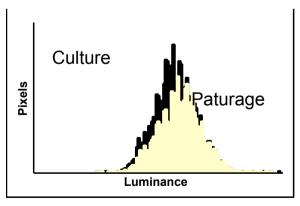
- The samples selected and the bands used must be discriminative for the problem at hand!
- Below examples of a band and four different thematic classes

Confusion area!



IPEO course - 3 Image classification October 2024





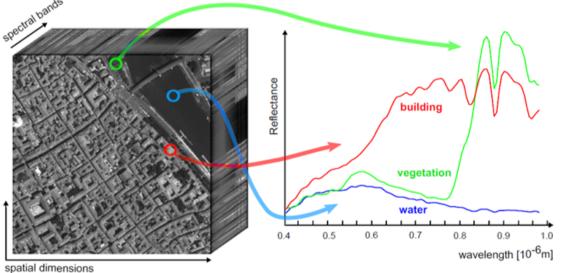
Not discriminative
The band is useless for these classes

Reminder: discriminative and well-selected makes life easier to the classifier

Remember ?

$$\mathbf{x}_i = [\mathbf{x}_i^{\text{av}} \ \mathbf{x}_i^{\text{std}} \ \mathbf{x}_i^{\text{entr}} \ \mathbf{x}_i^{\text{hist}} \ \mathbf{x}_i^{\text{bow}} \ \ldots]$$

EPFL The three steps of classification



1. Selection of training examples

3. Prediction on the grid (image)

IPEO course - 3 Image classification

Machine learning loves similarity measures

 To decide the class membership of a pixel, we need a model telling us that a pixel belongs to a class by

$$y_i^* = \arg\max_{c \in C} p(y_i = c | \mathbf{x})$$

- All classification models need two base ingredients:
 - A similarity measure, returning how much pixels "look alike"
 - A decision function, taking the decision
- Both functions are interrelated: similarity is used to take the decision

Machine learning loves similarity measures

- To take decisions, most ML models use similarity functions
- ~inverse of distances

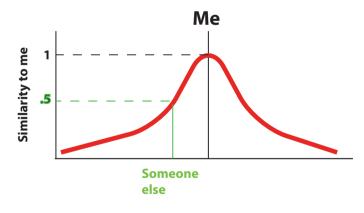
 It is a function that scores high if two objects look alike and low if they don't

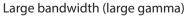
VS.

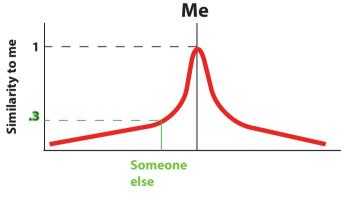
Gaussian similarity

• The γ parameter will decide how much similarity decreases with feature distance.

$$K(me, se) = \exp(-2\gamma^2(me - se)^2)$$







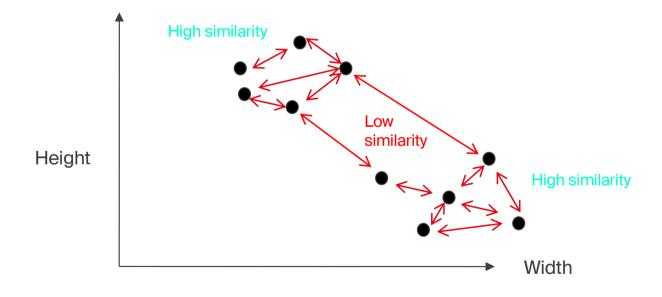
Small bandwidth (small gamma)

IPEO course – 3 Image classification October 2024

me = me se = someone else

What we would like to obtain

• In a first approximation, it can be seen as the inverse of distance



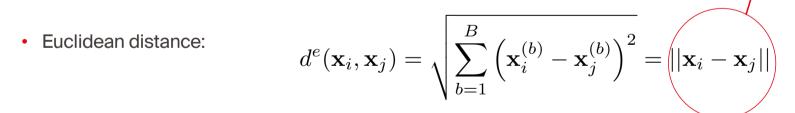
Euclidean norm

EPFL

Similarity functions

- There are many similarity functions
- The more classical are the Euclidean distances.

• They define a similarity $s(\mathbf{x}_i, \mathbf{x}_j) = \exp \left(-d(\mathbf{x}_i, \mathbf{x}_j)\right)$

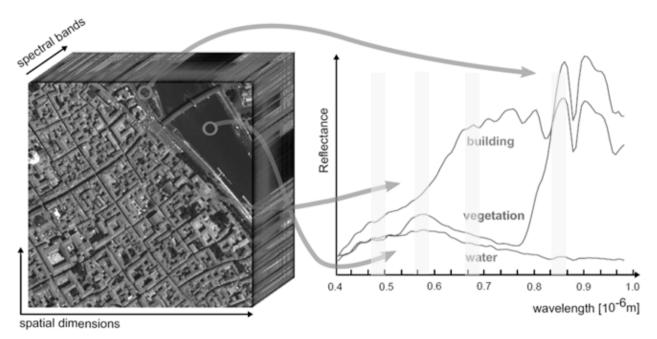


• Manhattan distance: $d^m(\mathbf{x}_i,\mathbf{x}_j) = |\mathbf{x}_i - \mathbf{x}_j|$

Similarity functions

- There are many similarity functions
- The more classical are the Euclidean distances.
- They define a similarity $s(\mathbf{x}_i, \mathbf{x}_j) = \exp(-d(\mathbf{x}_i, \mathbf{x}_j))$
- How they use similarity will define the classifier.
- But in the end, they all $y_i^* = rg \max_{c \in C} p(y_i = c | \mathbf{x})$

The three steps of classification



1. Selection of training examples

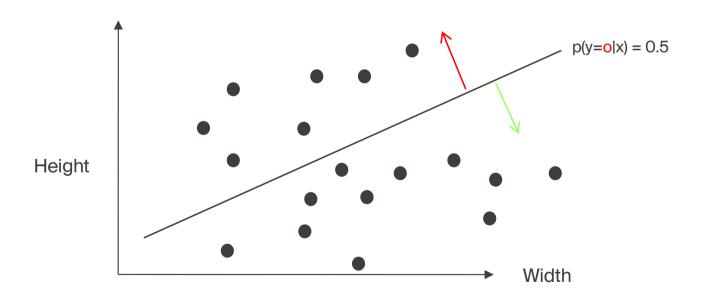
2. Establishment of a model

3. Prediction on the grid (image)

Prediction

The decision function assigns all the pixels to the classes

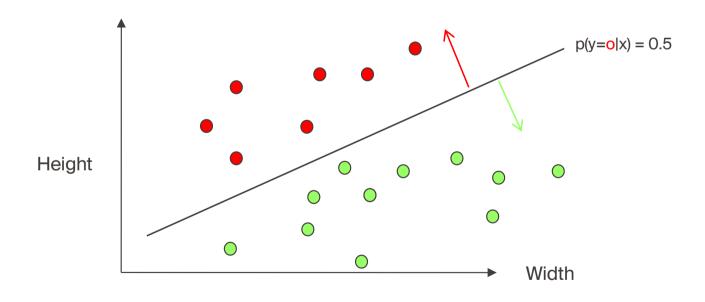
$$y_i^* = \arg\max_{c \in C} p(y_i = c | \mathbf{x})$$



EPFL Prediction

The decision function assigns all the pixels to the classes

$$y_i^* = \arg\max_{c \in C} p(y_i = c | \mathbf{x})$$

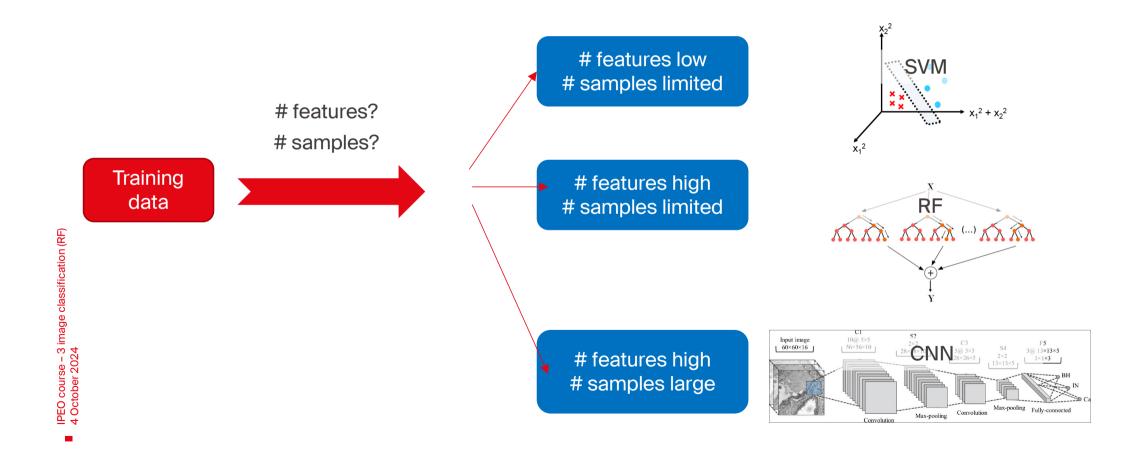


PEO course - 3 Image classific

Supervised classification approaches: a taxonomy

- Parametric methods: assumptions about the distribution of classes ("generative approach")
 - Gaussian Maximum Likelihood (GML) → Remote sensing course ENV-341
- Nonparametric methods: no assumptions (or less strict) about the distribution of classes, focus on modelling the class separation ("discriminative approach")
 - K-NN (lazy learner) → in a sec
 - Decision trees and random forests → today, next course
 - Support Vector Machine (SVM) → next week
 - Neural Networks (typically convolutional neural networks CNNs) → in two weeks

Nonparametric classifiers: how to chose?



Nonparametric classifiers: how to chose?

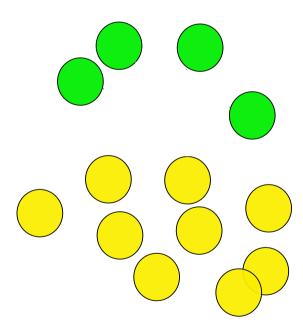
FEATURE SELECTION CLASSIFICATION MODELS DATA SOURCE FEATURE EXTRACTION HR Pixel features (spectral/Indices, e.g NDVI) # features: < 20 # samples: < 1000 Object (spatial) features (e.g. mean, std) Hand-crafted features: colour histograms # features: 100-50'000 # samples: < 100'000 BoVW, pLSA, LDA, SPM, LLC Supervised features: Deep features from Convolutional Neural Networks (CNN) # features: 1000 - 10'000 # samples: 100'000 - 10 Mio

Example: k-NN

- K nearest neighbors (KNN) assess class membership according to distance to neighbors in the feature space
- K-NN does not make any assumption about classes
- It does not even model class distributions!
- It only assumes that
 - o close elements are of the same class
 - classes are separated by a low-density region

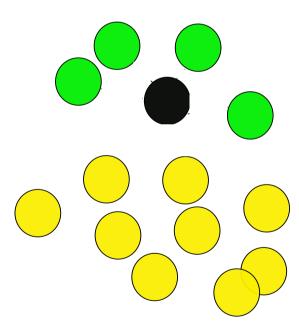
EXAMPLE: *K*-NN

- We have this two classes problem.
- All you know is the distribution of these training samples



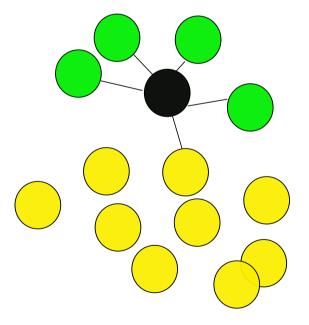
Example: k-NN

- We have this two classes problem.
- All you know is the distribution of these training samples
- What is the class of this new one?



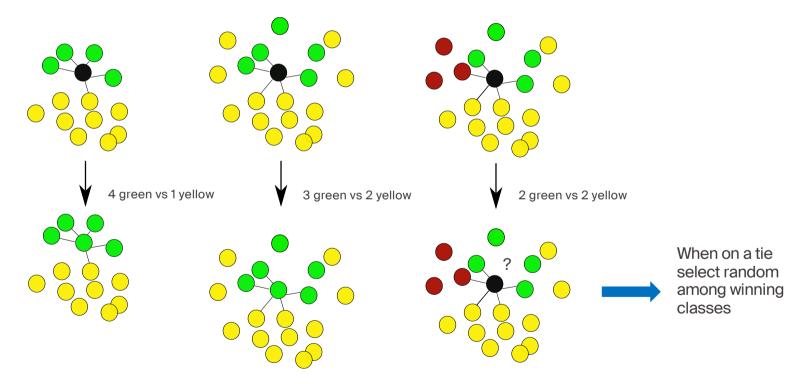
Example: k-NN

- We have this two classes problem.
- All you know is the distribution of these training samples
- What is the class of this new one?



Let's look at the k=5 nearest neighbors

• Principle (example with k = 5 neighbors)



IPEO course – 3 Image classification October 2024

Lazy learners: k-NN

- Pros
 - Very intuitive and easy to implement
 - Local and possibly nonlinear

Cons

- Euclidean distances are used, sensitive to differences in variance between the bands
- Mid running time: N distances for each pixel (N = # of labeled)
- k must be found heuristically

K-NN

EPFL

a super-inefficient (Matlab) code

```
% xtr are the training data, (ntr x ndim)
% ytr are the training labels
% xts are the data to be predicted (nts x ndim)
0 : predKnn = zeros(size(xts,1),1);ntr=length(xtr);nts=length(xts);%initialize answers matrix
1 : K = 5; % K is a parameter to be set.
2 : for i = 1:nts
        dist = zeros(1,ntr); %re-initialize distance matrix every time
        for j = 1: ntr
4:
             dist(j) = pdist([xtr(j,:);xts(i,:)]); %calculate distances
5:
         end
       [SDist, SID] = sort(dist); % sort by distance, keep the indices sID
7:
8:
      SID = SID(1:K); % keep only the k shortest distances
       m = ytr(sID); % find the class of the samples among the knn-s
      m = mode(m); % the most occurring class is the mode
10:
      predKnn(i) = m; % that is the winner!
12 : end
```

kNN – pros and cons

- *k*-NN does not make any assumption about classes
- It is simple but very nonlinear!
- It does not even model class distributions! (it's lazy)
- It only assumes that
 - close elements are of the same class
 - classes are separated by a low-density region

