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In the next two weeks

§ We will study a number of information extraction techniques

• spectral indices: enhance spectral relations between the bands of a pixel

• spatial indices: extract information about spatial relationships

§ We will also discuss how to deal with the increase in number of 
variables and see some data reduction techniques
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Where we left last 
time

§ is a feature descriptors vector containing information about spatial 
context of a pixel within a patch / region / object

§ is used to train a classifier, learn input-to-label information (next class)
§ it can be in terms of colors or of typical visual patterns (the visual 

words in bow)
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How big is that?

l is a high-dimensional feature vector

l its dimensionality can be from ~10-20 to 100-200000!!

Is that a problem?
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The problem of data 
dimensionality

§ Yes.

§ Problem 1: with so many dimensions, the 
informative ones remain hidden

§ We call that the CURSE OF 
DIMENSIONALITY
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The problem of data 
dimensionality

§ Yes.

§ Problem 1: with so many dimensions, the 
informative ones remain hidden

§ Fact 1: the higher the dimension, the bigger 
and emptier the space.

• 1 D is a line
• 2D is a square
• 3D is a cube
• …IP

EO
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The problem of data 
dimensionality

§ Yes.

§ Problem 1: with so many dimensions, the 
informative ones remain hidden

§ Fact 2: The emptier the space, the most 
crowded some areas become.

• (not all possible combinations happen) 
• ex: people 2m high with 25 shoe size are unlikely.
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The problem of data 
dimensionality

§ Yes.

§ Problem 1: with so many dimensions, the 
informative ones remain hidden

§ Consequence: since most dimensions are 
uninformative, noise adds up and becomes 
stronger than the discriminative signal.
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The problem of data 
dimensionality

§ Yes.

§ Problem 1: with so many dimensions, the 
informative ones remain hidden

§ Consequence: in high dimensions, 
standard distances measures lose their 
meaning

§ Many methods of ML are based on 
distances.
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The problem of data 
dimensionality

§ Yes.

§ Problem 2: with so many dimensions, methods are SLOW

§ Ex: a support vector machine (SVM) is O(n2d) complex. 
It means:

• for every additional example, it must compute n2 operations
• for every additional dimension, it must compute an additional 

operation.
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Example: classifying an 
hyperspectral image
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ROSIS sensor
102 bands + 1000 noise bands

Model training times (in seconds)



Revisiting the            
“How big is that?” slide

l is a high-dimensional feature vector

l its dimensionality can be from ~10-20 to 100-200000!!

l The amount of descriptors must be in accordance to the number of labeled 
samples and type of classifier

l The more diverse and abundant the information is, the better the classifier can 
perform!IP

EO
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This is where data 
transform come into play

So we need a way to fight the curse (of dimensionality)!

- Reduce the amount of data to be processed
- Keep only what is important (or informative) according to some criterion
- Throw away the garbage (noisy features, unrelated ones, …)
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Orthogonal 
transforms

• An approach is to transform (globally) the spectral space to obtain an 
orthogonal variables system

• The orthogonal system is obtained by a linear transformation of the 
spectral space

• Since it is orthogonal, the obtained variables (components) are 
decorrelated

• BUT: in the orthogonal system, the bands lose their physical meaning
(they become linear combination of the original features)
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And one to rule them 
all: PCA

§ Principal Components Analysis

§ Good old statistical method from the ‘60s

• Finds the projection that maximizes information (described in terms of 
variance of the original data explained) contained in the data

• Again: new variables are decorrelated, but meaningless
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Why decorrelated

§ Bands are correlated to each other
§ Maybe a linear combination can be more effective (1 index instead of 2)

§ In a nutshell: 
• extracting new descriptors as combinations of the existing ones
• if one descriptor summarizes all redundant information of the original data, 

we can use those subset instead
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Projection (idea)

• Projecting a dataset means finding a linear combination of the original 
variables

§ Ex: 
• given a dataset X (shoes size and weight, or … bands in an image)
• we want to find a projection matrix W
• projecting in an orthogonal space Y
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Y = XW



Projection (idea)
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Band1 Band1

B
a
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2
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a
n
d
2

Y1Y2

Values on band 1, x(1) Values on projected component 1,
y(1)=w(1,1)*x(1)+w(1,2)*x(2) 

Values on band 2, x(2)

Values on projected component 2, 
y(2)=w(2,1)*x(1)+w(2,2)*x(2)

Values on projected component Y1:
y1

(1) = x1
(b1) w(1,1) + x1

(b2) w(2,1)

Values on projected component Y2:
y1

(2) = x1
(b1) w(1,2) + x1

(b2) w(2,2)

Values on band 1: xi
(b1)

Values on band 2: xi
(b2)



The projection matrix

§ W is a square matrix
§ As many lines and columns as bands
§ Ex: 3 bands
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Y = XW

Y(2)Y(1)X(1) X(2)

W

X(3)
Y(3)

… …

W =

W (1,1) W (1, 2) W (1,3)
W (2,1) W (2, 2) W (2,3)
W (3,1) W (3, 2) W (3,3)

!

"

#
#
#

$

%

&
&
&

Projects into 
component 1

Multiplies band 2



Projection (idea)
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Not orthogonal!OrthogonalOrthogonal



Variance explained as a way to select 
“how many components to keep”

• To choose among projections, we apply a variance maximization 
criterion

• The bands are correlated between each other

• Projecting must be a way of compacting information (in terms of 
variance)

• In a nutshell: we group relevant information in the first component, and 
then leave the less informative for the last components
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At the end, it helps 
reducing dimensionality
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Y(2)Y(1)X(1) X(2) X(3)
Y(3)X(4) X(D)

n 
pi

xe
ls

 / 
re

gi
on

s 
/ …

n 
pi

xe
ls

 / 
re

gi
on

s 
/ …

D dimensions (all descriptors) 3 dimensions (extract D, keep only
the 3 most informative)

PCA

… …



Projecting onto 
principal components

§ Each projection corresponds 
to a different view on data

• left: not interesting, does not 
compact variance

• right, the first component 
maximizes variance, the 
second has little fluctuations
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d
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Y1 Y1

Y2 Y2

NICE!



Projecting is 
basically…

§ …a rotation! (W is a rotation matrix)

§ We must then select the rotation matrix maximizing variance for the first 
component
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Band1

B
a
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d
2

Y1 Y2

W rotation



And now 
mathematically

§ The base of PCA is the Covariance matrix S
§ Covariance provides an insight on how similar two variables are
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Bands

b1 b2 bn

b1

b2

bn

. . .

. . .

var(1)

cov(2,1)

. . .

cov(n,1)

var(2)

var(n)

cov(1,2) cov(1,n)

cov(2,n)

cov(n,2)

. . .

. . .

. . .

. . .

. . . . . .

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

Covariance matrix

∑

n bands à n lines, n columns

n x n
1

N + 1
X>X

Ba
nd

s



And now 
mathematically

§ The off-diagonal terms, cov(band1,band2), show how much variables 
“covariate”

§ The diagonal terms, var(band1), shows the internal variance of each 
variable à its information, its energy

§ We want to diagonalize S, to decorrelate the components (no 
covariance between components)

§ We keep them orthogonal by adding a constraint
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And now 
mathematically

§ The final solution is the following

§ Which can be obtained by the following linear equations system:
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Diagonal matrix with
variance of each 
componentRotation matrix ⌃ = W⇤W>

Σw = λw
Variance of each 
component (entries of L)
= eigenvalues

Rotation vectors
= eigenvectors



And now 
mathematically

The objective to be pursued is
to have projected data of maximal
variance

This problem can be solved by the 
diagonalization of the covariance matrix 

(mathematical details on request, “Bie et al., 
Eigenproblems in Pattern Recognition”)
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w =arg max
||w||=1

var(Y )

arg max
||w||=1

||Xw||2

arg max
||w||=1

(Xw)>(Xw)

arg max
||w||=1

w>X>Xw

arg max
||w||=1

w>⌃w

data are centered (zero mean)
<latexit sha1_base64="clLUiKTAiC0m+eUIG4qg8i94YRU=">AAACHXicdZDLSgMxGIUzXmu9jbp0E2yFdmGZGUTdCEU3LivYC3TGIZNm2tDMhSRTGIa+iBtfxY0LRVy4Ed/GdFqh3g4EDuf7f5IcL2ZUSMP40BYWl5ZXVgtrxfWNza1tfWe3JaKEY9LEEYt4x0OCMBqSpqSSkU7MCQo8Rtre8HLC2yPCBY3CG5nGxAlQP6Q+xUiqyNWPR4jDSlqF57BsiyRwaSV16ZHtIZ6l4+qtpcA0hzkwVFR29ZJZM3JB45f5QiUwU8PV3+xehJOAhBIzJETXNGLpZIhLihkZF+1EkBjhIeqTrrIhCohwsvx3Y3iokh70I65OKGGezm9kKBAiDTw1GSA5ED/ZJPyLdRPpnzkZDeNEkhBPL/ITBmUEJ1XBHuUES5YqgzCn6q0QDxBHWKpCi/Ml/G9aVs08qVnXVql+MaujAPbBAagAE5yCOrgCDdAEGNyBB/AEnrV77VF70V6nowvabGcPfJP2/gmDJ58Q</latexit>

var (y) =
P

i(yi � ȳ)2 =
P

i(yi � 0)2



It’s in most software 
suites (e.g. Matlab)
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[eigenVect,proj,eigenVal] = pca(X);

In

X:                    your original data (samples x features)
Out

eigenVect: the projection vectors, or eigenvectors  (W, of size (features x 
components))

proj: the projected data, you don’t even have to compute that. (samples x 
components)

eigenVal:  the variance of each component in decreasing order,   ordered as the 
eigenvectors. (components x 1)



Is that REALLY 
meaningless?
§ No.
§ The components lose their physical meaning, but are still combinations 

of the original variables.
§ Actually looking at the eigenvectors (eigenVect) allows you to see which 

variable correlates with which factor and to a-posteriori interpret them.
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Salary

Education

Green spaces

Age first job

Pop density

PC 2

PC 1



Back to remote 
sensing: an example

• QuickBird sensor
• 4 bands (B – G – R – NIR)
• 2.4m resolution
• Frauenbad, Zurich
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Question: how many PCs will we be able to extract?



Back to remote 
sensing: an example
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0

0.2

0.4

0.6

0.8

1

PC1 PC2 PC3 PC4

Variance explained

99% of information in the two first components!

λb

λb
b=1

B

∑

0.75

0.8

0.85

0.9

0.95

1

1.05

PC1 PC2 PC3 PC4

Cumulative variance explained



And here the four 
components!
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PC1 PC2

PC3
PC4

How many would you 
keep?

Ok, it is maybe not super 
impressive.. but we 
had only 4 descriptors to
start with (4 bands)

What if we had 10’000?



Other possibilities

Feature selection instead of data transforms:
select the most informative features in the set of features you have

• By clustering: 
§ Transpose your dataset X = X’, so that samples are features and variables are 

datapoints;
§ Run a kmeans with k = “how many feature you want to keep”;
§ Therefore k-means “groups” features instead of samples
§ For each cluster, keep the one closest to the cluster center.

• By recursive feature elimination (Guyon et al., 2002):
§ Run a model with all features
§ Run submodels with one feature removed each, 
§ Remove feature with least impaxct on result
§ Repeat
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Guyon, I., Weston, J., Barnhill, S. and Vapnik, V., 2002. Gene selection for cancer classification 
using support vector machines. Machine learning, 46, pp.389-422.



Example with RFE
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Image
1 band, panchromatic

54 features
Mathematical morphology
(texture features)

D. Tuia, F. Pacifici, M. Kanevski, and W. J. Emery. Classification of very high spatial resolution imagery using 
mathematical morphology and support vector machines. IEEE Trans. Geosci. Remote Sens., 47(11):3866–3879, 
2009. 

Result



Example with RFE
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D. Tuia, F. Pacifici, M. Kanevski, and W. J. Emery. Classification of very high spatial resolution imagery using 
mathematical morphology and support vector machines. IEEE Trans. Geosci. Remote Sens., 47(11):3866–3879, 
2009. 

Evolution of error (blue) when removing
Features one by one

Interpretability: which features were retained
when keeping 33, 29, 24 or 15.



In summary

§ We have seen why high dimensionality can be a problem for machine learning 
methods

§ We have seen one data reduction method, principal component analysis
§ It is very much used to reduce the number of variables (descriptors), and in all 

areas of science
§ But remember! Decorrelation is not independence!

§ We have also briefly discussed feature selection.IP
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Non linear relation
PCA does not work well

Linear relation
PCA works well


