# **EPFL**

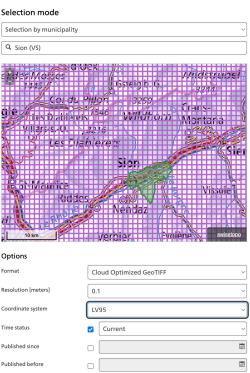


 École polytechnique fédérale de Lausanne

# **Download data in remote sensing**

asion Lencal

- As in all fields of data science, a key step is to obtain the data
- Multiple platforms and sources provide aerial and satellite data
- Some are free, some are not, some provide a limited and/or conditional free offer
- For manual labelling of geospatial data and local visualization: QGIS (<a href="https://qgis.org/">https://qgis.org/</a>)




### **Swisstopo**

https://www.swisstopo.admin.ch/en/orthoimage-swissimage-10

 RGB orthophotos at 10cm (or 25 cm depending on the area) of Switzerland

- One release per year since 2017: Free
- Upon request before (started in 1946)
- Digital Elevation Model available
- Maps: potential machine learning labels
- Extremely easy-to-download







# **Copernicus browser – Overall**

https://browser.dataspace.copernicus.eu/

- Free to use and publicly owned tool (ESA Project)
- Visualise, compare and analyse and download data
- Limited amount of freely available processing data
- Sentinel, Landsat, MODIS, Probas-V and GIBS products available
- Easily visualize pre-computed layers (NDVI, NDWI, ...)
- Manual exporting method not suitable for large data sets

Date

Satellite

source

**Product** 

### **Copernicus browser – User interface**

Default

Sentinel-2

LAYERS:

**DATA COLLECTIONS:** 

Sentinel-2 L1C
Sentinel-2 L2A

True color

False color
Based on bands B8, B4, B3

Highlight Optimized Natural Color
Enhanced natural color visualization

False color (urban)
Based on bands B12, B11, B4
Moisture index

SWIR Based on bands B12, B8A, B4

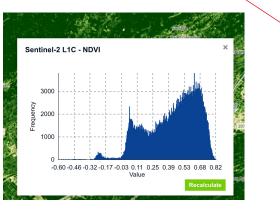
Add to Pins

Based on a combination of bands (B8 - B4)/(B8 + B4)

Based on a combination of bands (B8A - B11)/(B8A + B11)

SEARCH

### **Copernicus browser – Easy statistics**


Draw or import an region of interest-

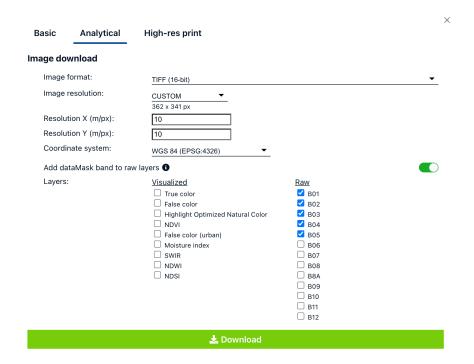
Get the time serie of an index in a selected area with a single button

Get the histogram of the selected area with a single button.



Time serie

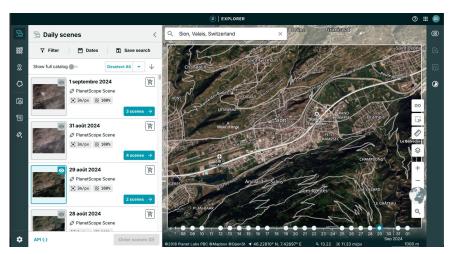



→ [L] 8.57 km² 🗙 💠 🔟 🔼 🔲 🧳

Histogram

Gaston Lenczner




### **Copernicus browser – Download data**



### **Planet explorer**

https://www.planet.com/explorer/

- Education and Research Standard Plan: free to download 5000km²/month.
- High resolution imagery (3m)
- Manual exporting method not suitable for large data sets
- User friendly interface to specify the area of interest, the dates and deal with parameters like cloud coverage



# **Google Earth Engine – What is it?**

https://code.earthengine.google.com

- Cloud-based platform for processing vast amounts of satellite imagery and geospatial data.
- Programming interface: Uses JavaScript and Python APIs
- Large-scale data processing: Can analyze large amounts of data without needing local infrastructure.
- Support machine learning

# **Google Earth Engine - Pros**

- Large catalog of remote sensing datasets
  - Imagery (e.g. Sentinel, Landsat)
  - Climate (e.g. ERA5)
  - Surface temperature (e.g. MODIS)
  - Digital Elevation Models (e.g. SRTM)
  - Land Cover (e.g. ESA World Cover)
- Real-time data availability: Many datasets are updated regularly.
- Web-based Javascript interface and Python API
  - Easy to share results and scripts with others
- Free for non-commercial use
- Usable to download big amounts of data with coding scripts

### **Google Earth Engine - Cons**

- Requires a Google account.
- Requires some coding knowledge.
- Impractical to export data outside the platform:
  - Through Google drive with the Javascript API
    - Natively supported, easy-to-do
    - Manual method not suitable for large data sets
    - A file size limit
  - Through Python API
    - A file size limit that can be bypassed by splitting the data into smaller parts
- Commercial use restrictions (not our concern)
- Google can change the way it works at any time.
- Need to be careful when downloading a new dataset:
  - SAR data are log transformed, normalized and thresholded.

# Gaston Lenczner

### **Google Earth Engine – Visualize data**

```
var sion = ee.Geometry.Point([7.3606, 46.2331]); // Define the location of Sion, Switzerland
    var region = sion.buffer(10000).bounds(); // 10 km buffer around Sion as a bounding box
    // Load S2 image collection
   var s2 = ee.ImageCollection('COPERNICUS/S2').filterBounds(sion).filterDate('2024-07-01', '2024-08-31');
   // Take most recent image
   var s2_first = s2.sort('system:time_start', false).first()
   // Select the RGB bands (Red, Green, Blue)
    var rqb = s2 first.select(['B4', 'B3', 'B2']);
11
   // Center the map on Sion and display the RGB image
   Map.centerObject(region, 10);
    Map.addLayer(rgb, {min: 0, max: 5000}, 'S2 RGB');
15
   // Highlight the region on the map
16
    Map.addLayer(region, {color: 'red'}, 'Region of Interest');
17
18
    // Export the image to Google Drive
20 - Export.image.toDrive({
21
      image: rgb.
22
    region: region,
23
      description: 'Sion_S2_RGB_Summer2024',
      scale: 10, // S2 has 10m resolution for RGB bands
25 });
```

# Saston Lenczne

### **Google Earth Engine – Visualize data**

```
var sion = ee.Geometry.Point([7.3606, 46.2331]); // Define the location of Sion, Switzerland
    var region = sion.buffer(10000).bounds(); // 10 km buffer around Sion as a bounding box
    // Load S2 image collection
    var s2 = ee.ImageCollection('COPERNICUS/S2').filterBounds(sion).filterDate('2024-07-01', '2024-08-31');
    // Take most recent image
   var s2_first = s2.sort('system:time_start', false).first()
   // Select the RGB bands (Red, Green, Blue)
    var rgb = s2 first.select(['B4', 'B3', 'B2']);
11
   // Center the map on Sion and display the RGB image
   Map.centerObject(region, 10);
    Map.addLayer(rgb, {min: 0, max: 5000}, 'S2 RGB');
15
16
   // Highlight the region on the map
    Map.addLayer(region, {color: 'red'}, 'Region of Interest');
18
    // Export the image to Google Drive
20 - Export.image.toDrive({
21
     image: rgb.
    region: region,
23
      description: 'Sion_S2_RGB_Summer2024',
      scale: 10, // S2 has 10m resolution for RGB bands
25 });
                                  Target area to download
```



#### **Google Earth Engine – Visualize data**

Possible to add customized pre processing: here, we compute the median over July and August and remove clouded images

```
1 // Mask clouds
    var MAX CLOUD PROBABILITY = 20:
  3 function maskClouds(s2, s2Clouds){
       var s2EdgdesMasked = s2.map(function(img){
          return ima.updateMask(img.select('B8A').mask().updateMask(img.select('B9').mask()))
  6
        })
       var s2SrWithCloudMask = ee.Join.saveFirst('cloud_mask').apply({
         primary: s2EdgdesMasked, secondary: s2Clouds,
         condition: ee.Filter.equals({leftField: 'system:index', rightField: 'system:index'})
i 10
       var s2CloudMasked = ee.ImageCollection(s2SrWithCloudMask).map(function(img){
 11 -
          return imq.updateMask(ee.Image(imq.get('cloud mask')).select('probability').lt(MAX CLOUD PROBABILITY))
i 12
i 13
       })
i 14
       return s2CloudMasked
 15
 16
 17
     var sion = ee.Geometry.Point([7.3606, 46.2331]); // Define the location of Sion, Switzerland
     var region = sion.buffer(10000).bounds(); // 10 km buffer around Sion as a bounding box
 20
 21 // Load S2 image collection
 22 var s2 = ee.ImageCollection('COPERNICUS/S2').filterBounds(sion).filterDate('2024-07-01', '2024-08-31');
 23 // Load associated cloud probability
 var s2Clouds = ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY').filterDate('2024-07-01', '2024-08-31').filterBounds(sion);
 25 // Take median over all images that do not contain clouds
26 var s2_median = maskClouds(s2, s2Clouds).median()
 27 // Select the RGB bands (Red, Green, Blue)
    var rgb = s2 median.select(['B4', 'B3', 'B2']);
 29
    // Center the map on Sion and display the RGB image
 31 Map.centerObject(region, 10);
 32 Map.addLaver(rgb, {min: 0, max: 5000}, 'S2 RGB');
```

#### **EPFL**

### **Google Earth Engine – Visualize data**



S2 image without preprocessing on one date



Median S2 image with cloud masking over July and August 2024

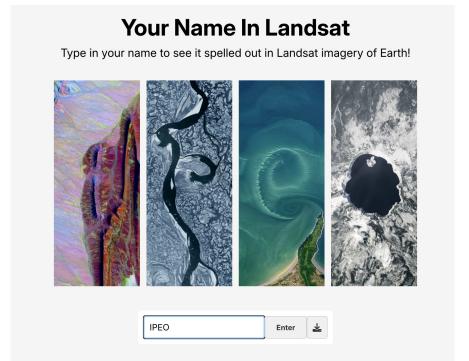
### **QGIS – Visualize and annotate locally**





Planet data

Landsat 8 data


Annotation vector

Landsat RGB imagery overlayed with Planet RGB imagery and outwash plain annotation in Greenland

### **Take-home message**

- No easy and free way to download large amounts of remote sensing images
  - Through Planet explore and Copernicus browser: Good for visualization and downloading small datasets.
  - Through Google Earth Engine: Many datasets and possible large files exports but with some coding tricks.
  - Swisstopo for Switzerland
- Labels can be available depending on the country policy
  - Switzerland: Swisstopo, France: IGN, ...
- Many other platforms exist (PEPS by CNES, USGS.gov, ...)
- QGIS to work locally with GIS data.
- Dedicated geospatial Python libraries
  - Rasterio, fiona, shapely, geopandas, ...

### **Bonus: Find your name in Landsat**

