

 École polytechnique fédérale de Lausanne

ion extraction - 2

EPFL

Reminder: In the next two weeks

- We will study a number of information extraction techniques
 - spectral indices: enhance spectral relations between the bands of a pixel
 - spatial indices: extract information about spatial relationships
- We will also discuss how to deal with the increase in number of variables and see some data reduction techniques

More precisely

We will talk about how to describe local image appearance

- Spatial supports
- Families of descriptors

IPEO course – Information extraction

What is appearance description?

- Images show ambiguous appearance, especially at pixel level.
- Color / spectra is often not discriminative.
- E.g. in RGB images.
- Can you tell me which land coverage are these?

IPEO course Information extraction

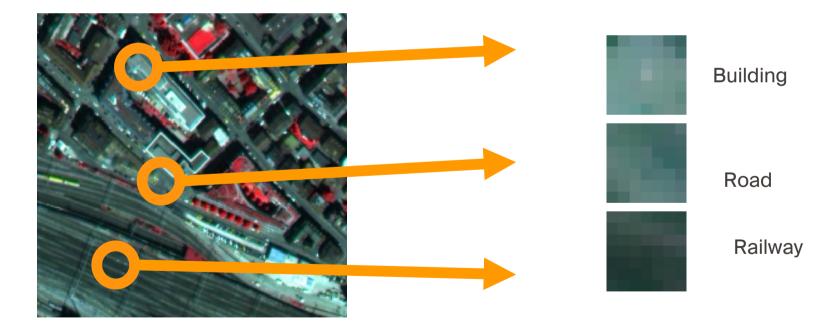
What is appearance description?

- This is particularly true at very high spatial resolution.
- Seeing the full image, you start to have an idea.

irse - Information extraction - 2

What is appearance description?

But if you add spatial context and localisation, ambiguity is resolved!



- Let's consider the input pixel space
- Aerial / sat VHR imagery holds often little spectral information
- Same color /spectral signature is observed for different classes

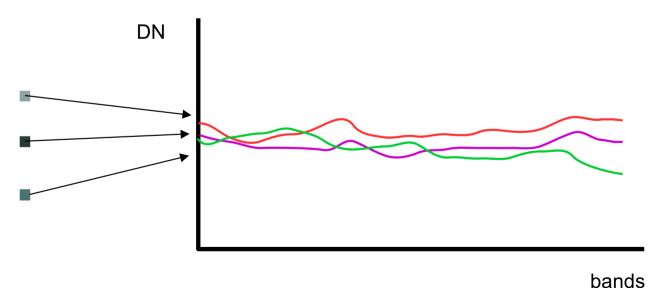


Image processing pipeline

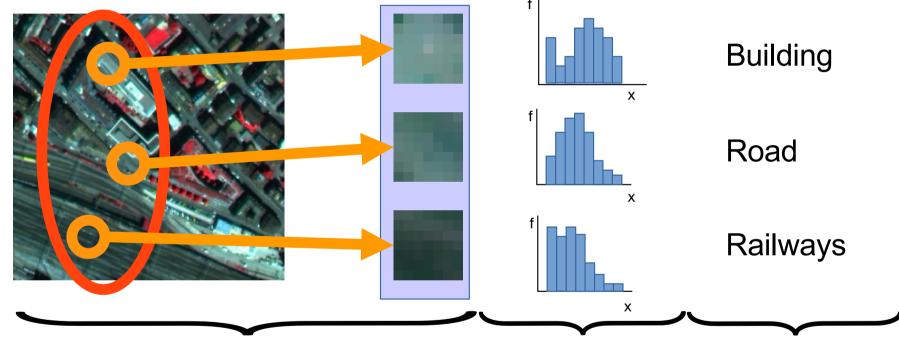


Image representation

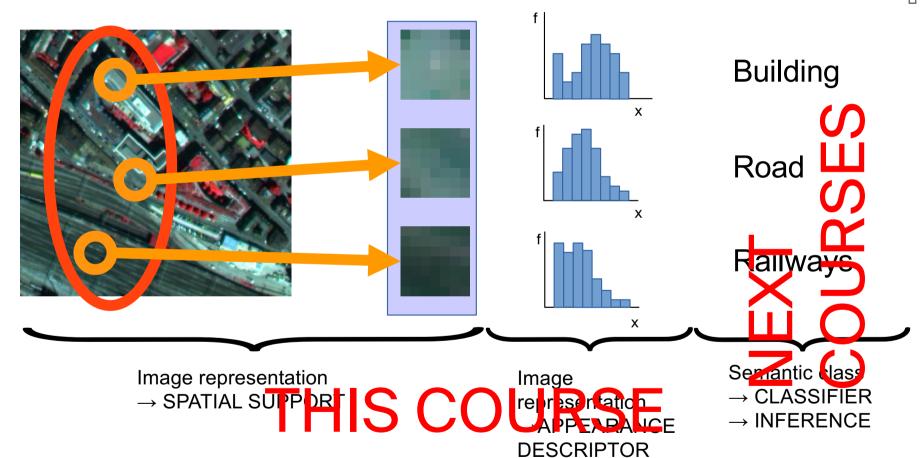
→ SPATIAL SUPPORT

Image representation → APPEARANCE DESCRIPTOR

Semantic class

- \rightarrow CLASSIFIER
- → INFERENCE

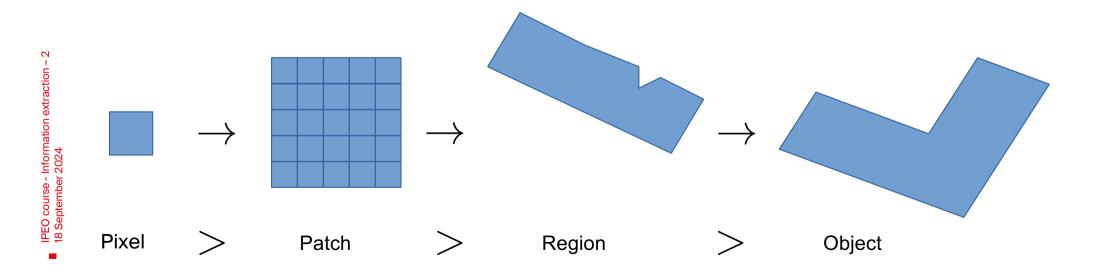
Image processing pipeline



Spatial supports

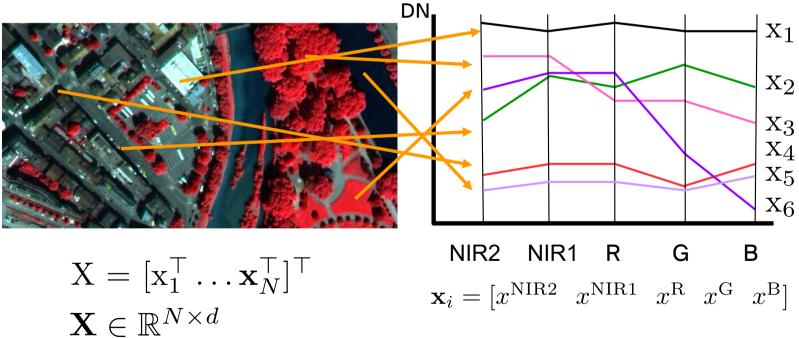
Spatial support types

- Defines *spatial boundaries* on which to compute descriptors
- Ideally, provide spatial boundaries as close as possible to those of the objects
- Large enough to contain relevant info, tight enough to preserve image resolution



1. Pixel

- Smallest possible mapping unit
- No spatial information
- Low(est)-level descriptor
- "Vector" of spectral information

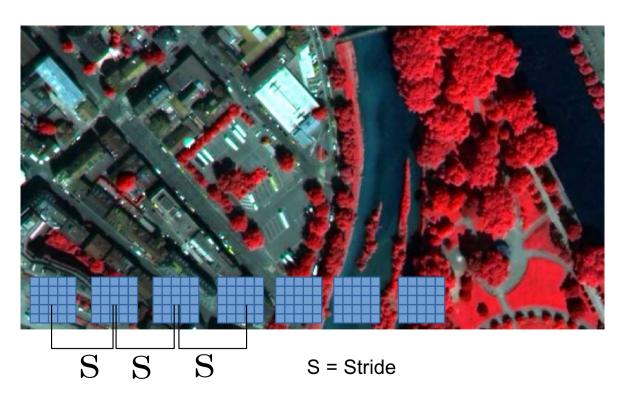


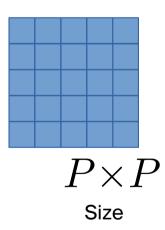
1. Pixel pros and cons

- ✓ Very simple to implement and run
- ✓ When the spectral information is rich, results can be good
 - → e.g. image spectroscopy channels + normalized band ratios
- No higher level semantic concepts
 - → parking, highway, tar rooftop, railway banks = "asphalt"
- ★ Lots of data samples to be processed
 - \rightarrow e.g. 2000 x 2000 x 5 image = 4*10⁶ samples and 2*10⁷ floats

2. Patch

- Square "windows", simplest possible spatial information
- For each patch, a set of descriptors (e.g. spatial statistics) is extracted
- 2 hyperparameters: stride and size





EPFL 2. Patch

The filter is defined by a *function* taking as input all the pixels contained in the image

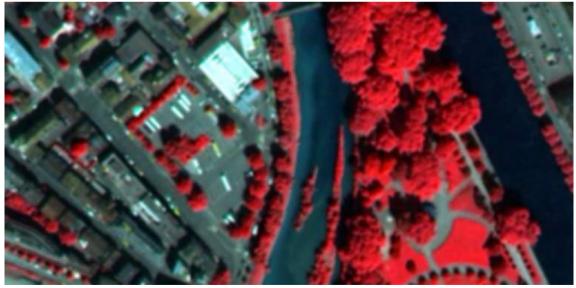
$$\mathbf{x} \mapsto f(\mathbf{x}) = \mathbf{x}'$$
 $f: \mathbb{R}^{P \times P} \to \mathbb{R}$

E.g. the spatial average

$$f(\mathbf{x}) = \frac{1}{P^2} \sum_{p=1}^{P^2} \mathbf{x}_p$$

(or expressed as a convolution:

$$f(\mathbf{x}) = \mathbf{W}_p \star \mathbf{x}$$
$$\mathbf{W}_p = \frac{1}{P^2}$$

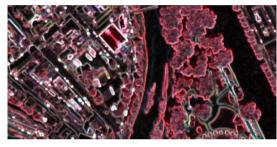


Spatial statistics on patches

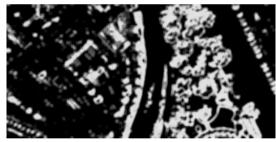
- By using S = 1, we create an image with the same spatial size of the original but with "new" signals
- Each pixel is now explicitly dependent on neighbors
- Compute descriptors related to local moments
- Family of descriptors to use usually problem / domain specific

$$\mathbf{X} = [\mathbf{x}_1^\top \dots \mathbf{x}_N^\top]^\top$$

St. dev



Range



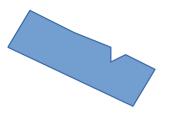
Energy

Average

2. Patch pros and cons

- Very simple to implement functions taking as inputs square patches
- ✓Lots of descriptors can be stacked (in d-dimensional arrays) and processed as standard images
- Off the shelf implementations in many software
- Object boundaries not preserved by spatial statistics
- ★ The spatial extent of the filtered image is the same (stride = 1), or the resolution degraded (stride > 1)

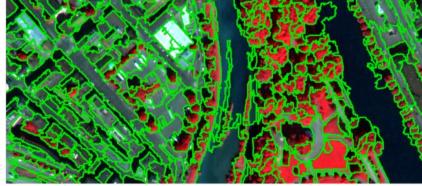
3. Regions / superpixels



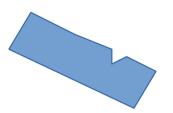
- Edges of regions correspond to gradients in image
- For each region, a set of descriptor is extracted
- Many hyperparameters, depending on method to be used (thresholds, min size, smoothing, etc)

Each region contains similar pixels

Decompose the image into nonoverlapping regions

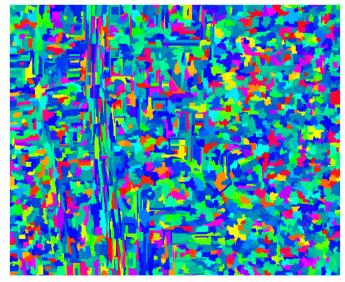


EPFL 3. Regions / superpixels

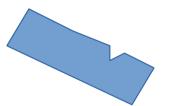


- Cluster pixels in groups that are
 - Nearby
 - Of similar spectral properties

Superpixels (each color is a SP)



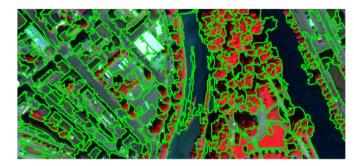
3. Regions / superpixels



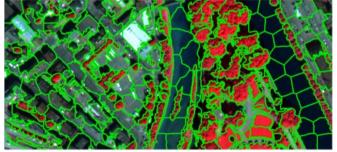
- Different systems producing such decompositions exist
- Each region is uniform under some criteria (color variance, texture, homogeneity, etc.)
- Compute discriminative / informative descriptors from each region
- Problem decomposed in N^r regions, and N^r << N

(here ~200 to 500 instead of 10E6)

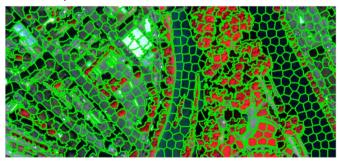
Felzenszwalb and Huttenlocher



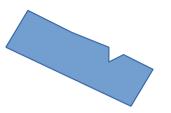
SLIC, $\sigma = 0.5, \, \tau = 500, \, m = 20$



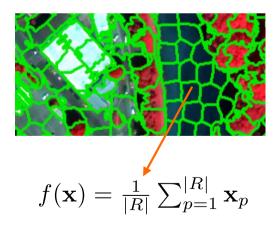
SLIC, $\sigma = 0.5, \, \tau = 500, \, m = 40$

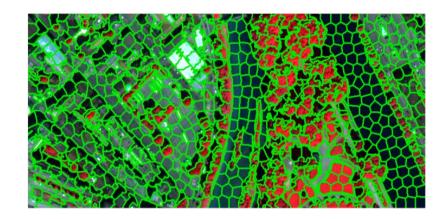


3. Regions / superpixels

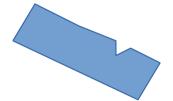


 Same reasoning as for "patch" descriptors, but the size of each region |R| is different!





3. Regions /spix pros and cons

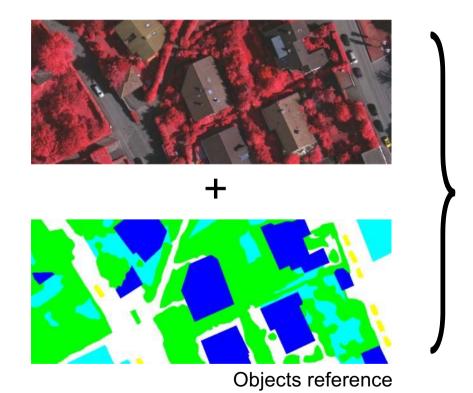


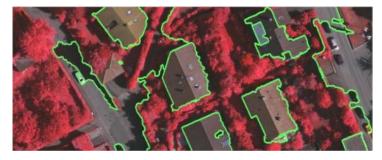
- ✓ Natural border of the objects composing the image are preserved
- ✓Size of the problem greatly reduced without loss of resolution (label assumed to be homogeneous in each region)
- Off the shelf libraries to compute regions
- Regions are not representative for real *objects* (1 object = 1 or + regions)
- **x** Errors in region computation cannot be recovered in later steps
 - → regions become the image "atomic regions"

IPEO course – Information extraction – 2 18 September 2024

4. Objects

- Edges correspond to *real* object boundaries
- Each object has fully described appearance
- Object segmentation is usually harder than classifying all pixels!





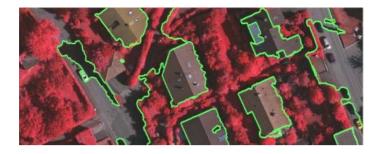
"Building" proposals

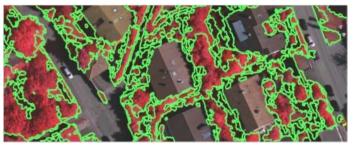


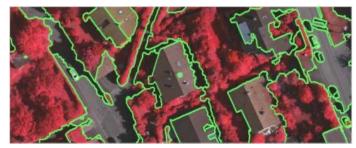
"Car" proposals

4. Objects

- Usually obtained by merging regions
- Ideally, an image image decomposed perfectly has O < R << N
- It is common to work on *object proposals* O^p, and to select among them the ones best scored by our models
- Problem decomposed in O^p objects, and R < O^p << N
- Information contained in O is semantically meaningful, while on pixel or regions it is not!

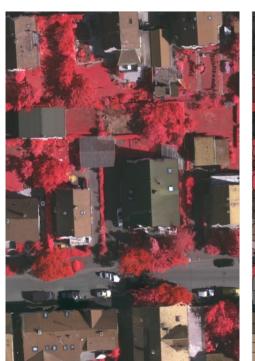


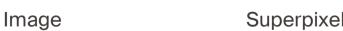




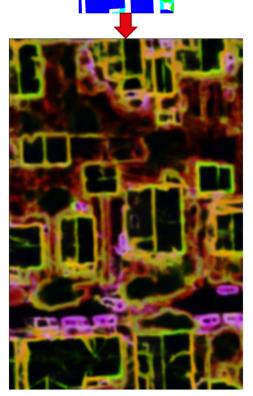
32

EPFL Creating object proposals

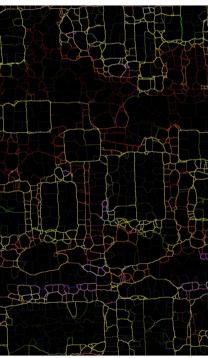




Superpixels

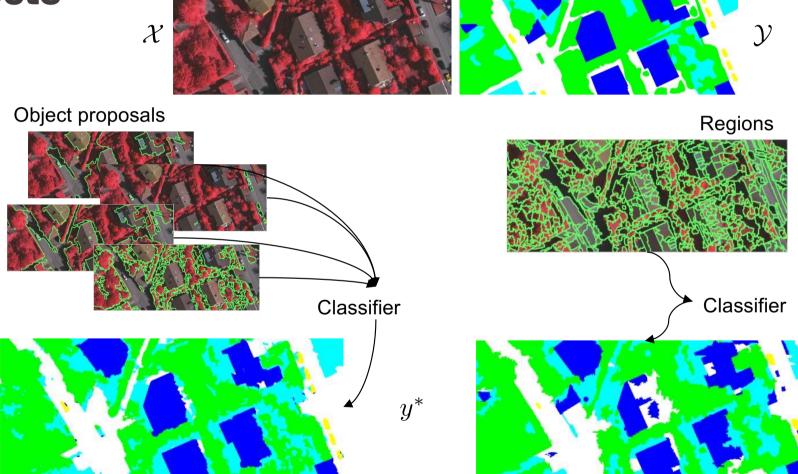


Object proposals

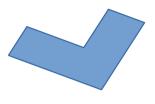


Class-specific borders (learned with machine learning model)

Regions vs objects



4. Objects pros and cons

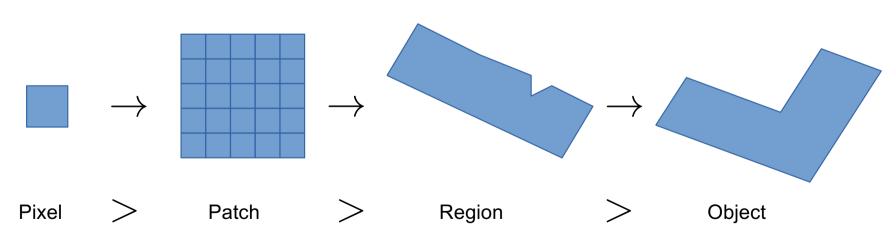


- ✓ Natural edges AND "semantic edges" are preserved, if they correspond
- Objects are not homogeneous in color, but their label is! (semantic + sensory gap)
- ✓Allows to learn exhaustive and informative aspects of our data
 → e.g. rooftops are composed by tar, concrete, chimneys, windows, veg.
- Objects can be trivially decomposed in regions, the opposite is hard
- Most of the time, finding objects is a very difficult task since size and shape is varying significantly across classes

EPFL Which one to chose?

Always study the problem:

- If spectral information is sufficient → go pixel
- If spatial resolution is not a concern → patches
- If unsure → regions
- If good geometry and you're good with statistical models → object



IPEO course – Information extraction – 2 18 September 2024

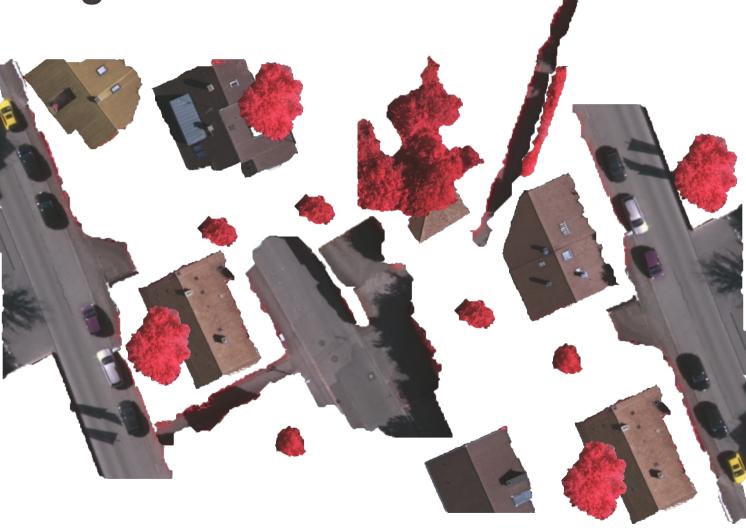
Appearance descriptors

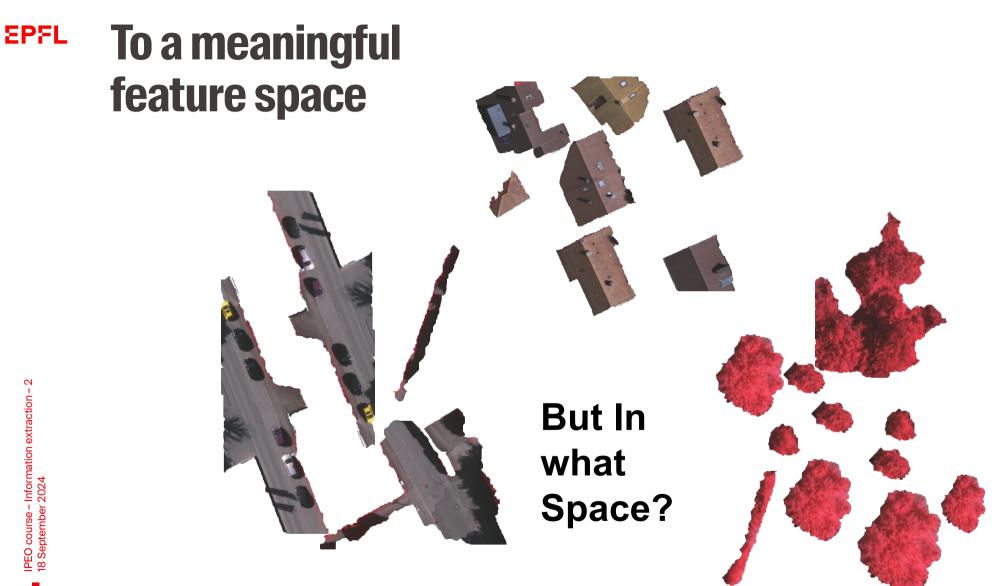
What to extract? And why?

Images are spatial entities, and so is their content

- Color and spatial arrangement of colors (e.g. texture, gradients, orientations) are equally important to label and detect things
- Important aspects can be approximated by simple statistics (generally first [e.g. mean, histogram] and second moments [e.g. standard deviation, variance])

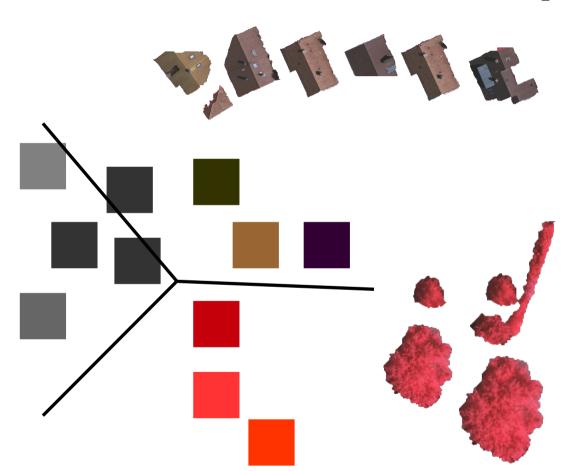
From the image space...





Example 1: Average color per region

 $\bar{\mathbf{x}} = [\bar{R} \ \bar{G} \ \bar{B}]$

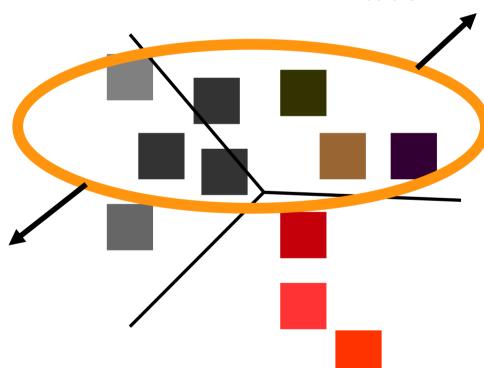


R is the set containing all the pixels p in R

Example 1: Average color per region

It tells little about texture or spatial arrangement!

The average color is not discriminative enough between objects with similar colors!



IPEO course – Information extraction – 2 18 September 2024

Appearance descriptors

- Encode *discriminative* statistical properties of the patch / regions / objects
- Try to encode what you see, what makes a road a "road" and a rooftop a "rooftop"?
- Most of the time, stack together all the information you can!

$$\mathbf{x}_i = [\mathbf{x}_i^{ ext{av}} \ \mathbf{x}_i^{ ext{std}} \ \mathbf{x}_i^{ ext{entr}} \ \mathbf{x}_i^{ ext{hist}} \ \dots]$$

i is the index of the patch / region / object.

IPEO course – Information extraction

Example descriptors: average color in the region

$$\mathbf{x}_i = \begin{bmatrix} \mathbf{x}_i^{\mathrm{av}} & \mathbf{x}_i^{\mathrm{std}} & \mathbf{x}_i^{\mathrm{entr}} & \mathbf{x}_i^{\mathrm{hist}} & \ldots \end{bmatrix}$$

(information about average spectral signature / color)

$$\bar{\mathbf{x}} = \frac{1}{|R|} \sum_{j=1}^{j \in R} \mathbf{x}_j$$

$$= \begin{bmatrix} x_i^{\text{av,R}} & x_i^{\text{av,G}} & x_i^{\text{av,B}} \end{bmatrix}$$

IPEO course - Information extraction -

Example descriptors: standard deviation in the region

$$\mathbf{x}_i = [\mathbf{x}_i^{\mathrm{av}} \ (\mathbf{x}_i^{\mathrm{std}} \ \mathbf{x}_i^{\mathrm{entr}} \ \mathbf{x}_i^{\mathrm{hist}} \ \ldots]$$

(information about variance of the color, in each object)

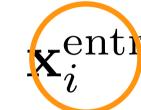
$$\mathbf{x}_i^{\text{std}} = \sqrt{\frac{1}{|R|} \sum_{j \in R} (\mathbf{x}_j - \bar{\mathbf{x}})^2}$$

$$= [x_i^{\text{std,R}} \ x_i^{\text{std,G}} \ x_i^{\text{std,B}}]$$

O course - Information extraction - 2

Example descriptors: entropy in the region

$$\mathbf{x}_i = \begin{bmatrix} \mathbf{x}_i^{\mathrm{av}} & \mathbf{x}_i^{\mathrm{std}} \end{bmatrix}$$



 $\mathbf{x}_i^{ ext{hist}}$

• • •]

(information about variance and "disorder" of color values, spatially)

$$\mathbf{x}_i^{\text{entr}} = -\sum_{j=1}^{\text{nbins}} p_j \log(p_j)$$

 p_j is the histogram of the region, with colors divided in bins

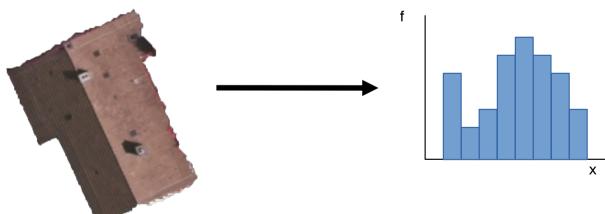
$$= [x_i^{\text{entr,R}} \ x_i^{\text{entr,G}} \ x_i^{\text{entr,B}}]$$

IPEO course – Information extraction – 2 18 September 2024

Example descriptors: histogram of colors in the region

$$\mathbf{x}_i = [\mathbf{x}_i^{ ext{av}} \ \mathbf{x}_i^{ ext{std}} \ \mathbf{x}_i^{ ext{entr}} \ (\mathbf{x}_i^{ ext{hist}} \ \dots]$$

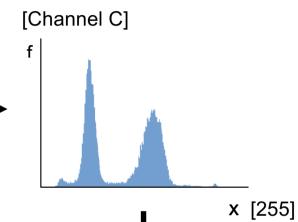
Distribution of the color (information frequency of given color ranges)

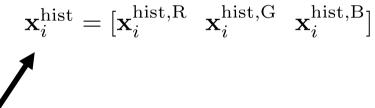


Building the histogram

Count DN occurrences

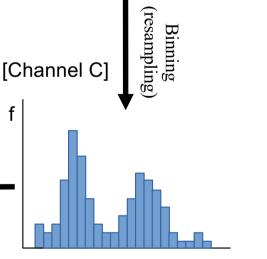
Per each channel





$$\mathbf{x}_i^{\text{hist,C}} = [f_i^1 \ f_i^2 \ \dots \ f_i^{\text{nbins}}]$$
 $\mathbf{x}_i^{\text{hist,C}} \leftarrow \sum f = 1$
e.g. $[0.01 \ 0.04 \ \dots \ 0.1]$

Vectorization
(1 such vector per color channel!)

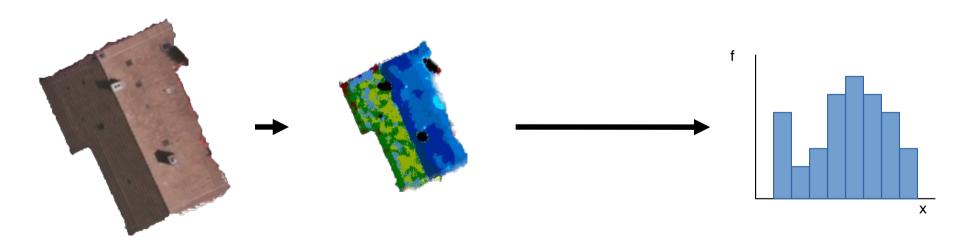


x Inbins1

Example descriptors: bag of visual words (BOW)

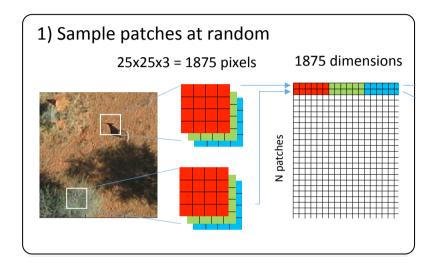
$$\mathbf{x}_i = [\mathbf{x}_i^{ ext{av}} \ \mathbf{x}_i^{ ext{std}} \ \mathbf{x}_i^{ ext{entr}} \ \mathbf{x}_i^{ ext{hist}} (\mathbf{x}_i^{ ext{bow}} \ \dots]$$

Distribution of *features*Or spatial prototypes



IPEO course – Information extraction – 2 18 September 2024

Building the BOW (1)

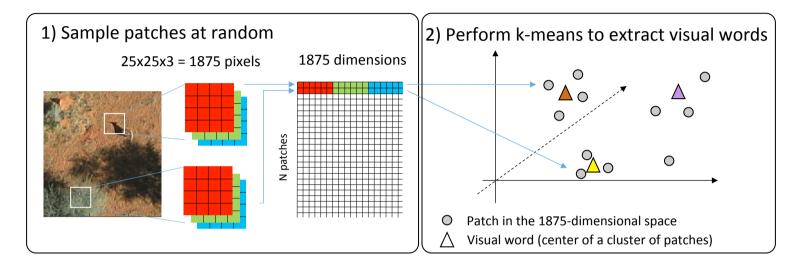


- extract random patches from the image,
- enough to have all representative structures
- Every patch is a 1875 dim vector, 1 dimension per pixel composing it

We want to use this 1875-dimensional space as a space to extract the descriptors from

But how?

Building the BOW (2)



- Run a k-means, i.e. cluster the patches into a number of representative types
- Each cluster center is a typical pattern seen in the images
- We call them visual words

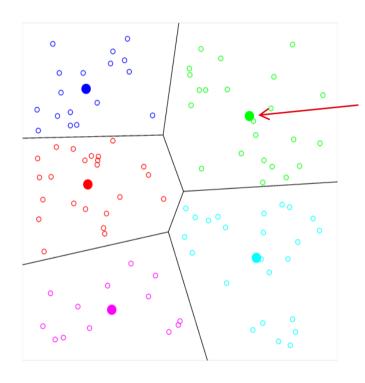
A brief explanation of k-means

- It's a method to partition the data into groups, in an unsupervised way
- Aims at finding compact clusters
 - → minimize variance within the clusters!
- Variance? (statistics course)

$$var(x) = \sum_{i} (x_i - \mu)^2$$

Mean of x

Example of k-means (k = 5)



Mean of data assigned to the green cluster

= Centroid of the cluster μ

The centroids is What we are interestd in!

Because they "represent well" Common patterns in the data!

k-means objective function

• We define a cost function L(m,x) in this sense:

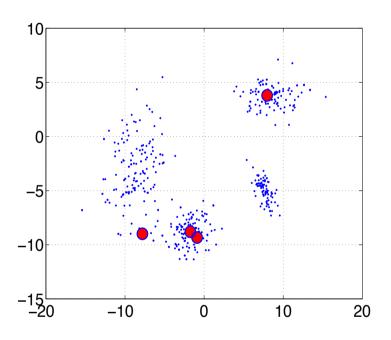
$$L(\mu,x) = \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_{nk} |x_n - \mu_k||^2$$
 Sum over all The clusters
$$\sum_{n=1}^{N} \delta_{nk} |x_n - \mu_k||^2$$
 otherwise

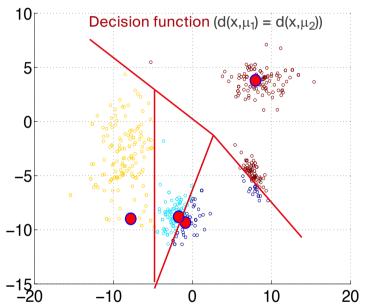
The smaller L(m,x) is, the more desirable the solution.

EPFL k-means in a nutshell

- K-means is an iterative method
- It starts with a guess of the cluster centers (often random)
- Computes the assignment by minimizing L
- Updates the centers as the means of the samples assigned to each center
- Repeats 2.-3. until stability is reached.
- Stability can be: a fixed number of iterations
- when the centroids do not move anymore

EPFL Example

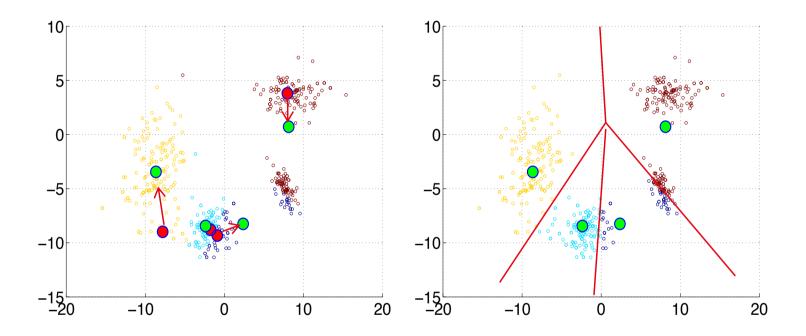




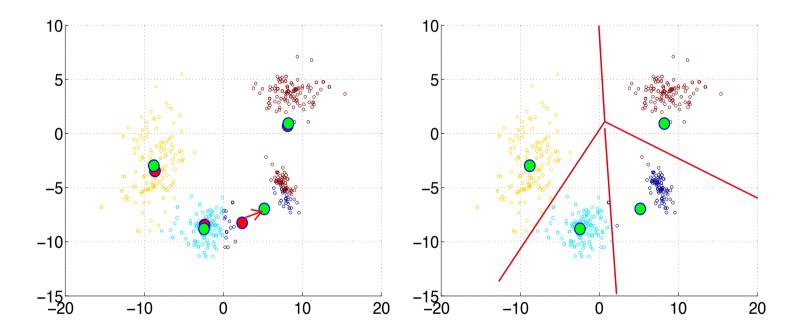
Data and initial (random) centroids

Initial cluster assignment

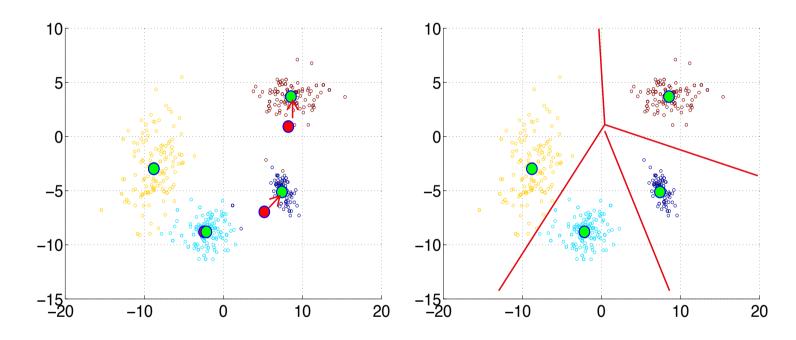
Iteration 1: solving 3 clusters



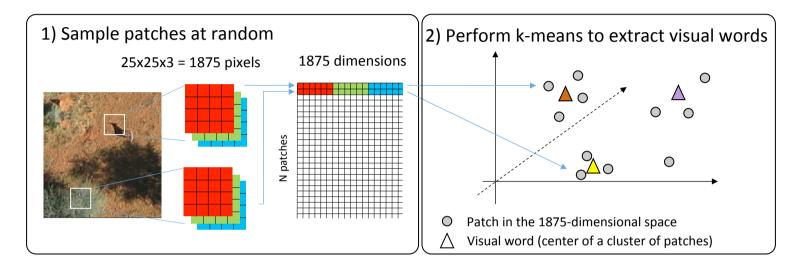
Iteration 2: solving the blue cluster



Iteration 3: convergence!

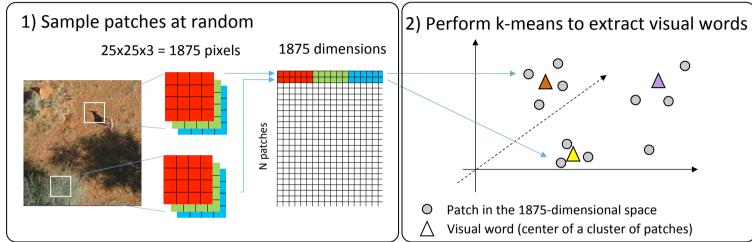


Building the BOW

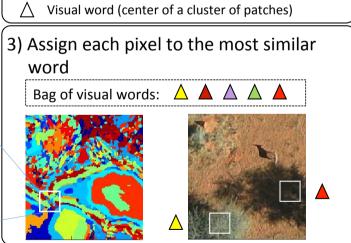


- Run a k-means, i.e. cluster the patches into a number of representative types
- Each cluster center is a typical pattern seen in the images
- We call them visual words

EPFL Building the BOW

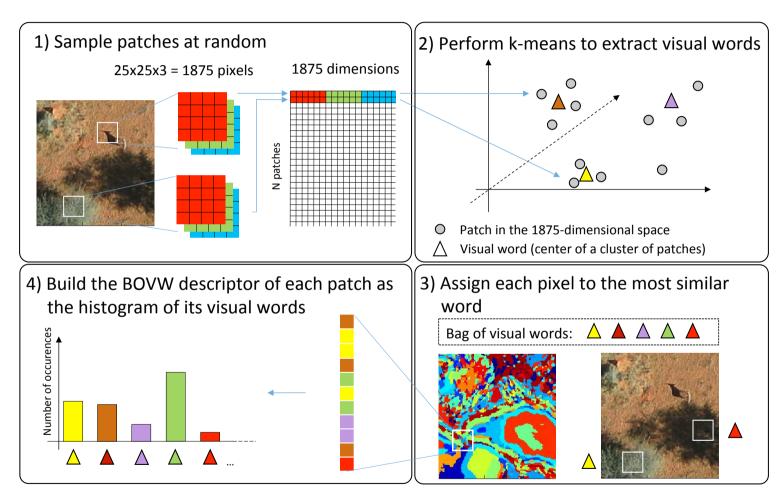


- Each possible patch in the image lives in the 1875-dim space of 2)
- We assign every patch to the closest visual word
- We color the image by the closest visual word



0

Building the BOW

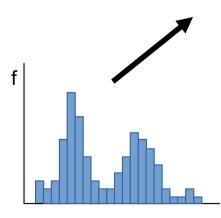


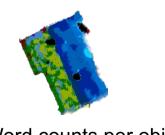
IPEO course – Information extraction – 2 18 September 2024

EPFL Summing up the BOW

Compute filters on all channels

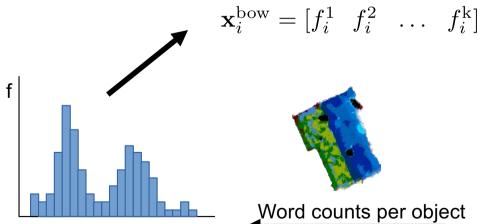
e.g. oriented filters, gradients, etc.



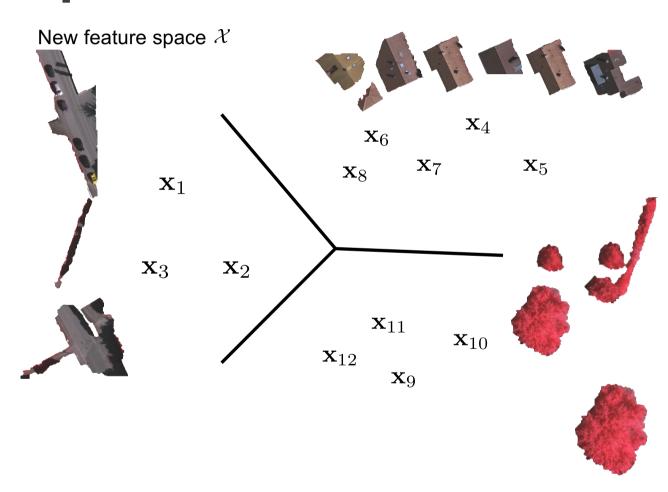


Word counts per object (binning)

- Stack filter responses (*D*-dimensional image)
- Run kmeans clustering over all pixels with many centers (k)
- Assign to each pixel the label of the closes centroid



From colors to feature space



- The appearance of patches / regions / objects requires a careful extraction of information:
 - The spatial support must be as precise as possible
 - The descriptors must cover all the possible data variability
 - The descriptors must be related to the problem to be solved
 e.g. classifying
 - vegetated areas vs non-vegetated areas requires spectral information / spectral indexes;
 - buildings vs roads requires texture and "shape" information; etc.