

 École polytechnique fédérale de Lausanne

How do I choose the "right" data?

Relevant questions to ask beforehand:

What spatial resolution do I need?

Am I interested at detecting, identifying or characterizing?

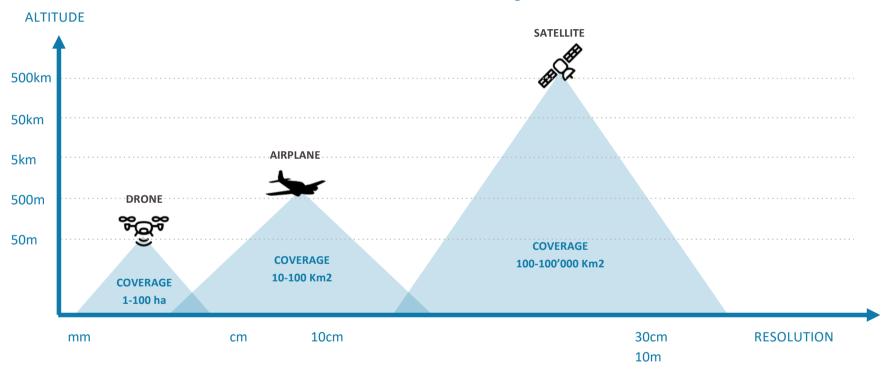
Where is my area of interest?

What time/frequency characterizes the process under study?

What accuracy do I need or what inaccuracy is acceptable?

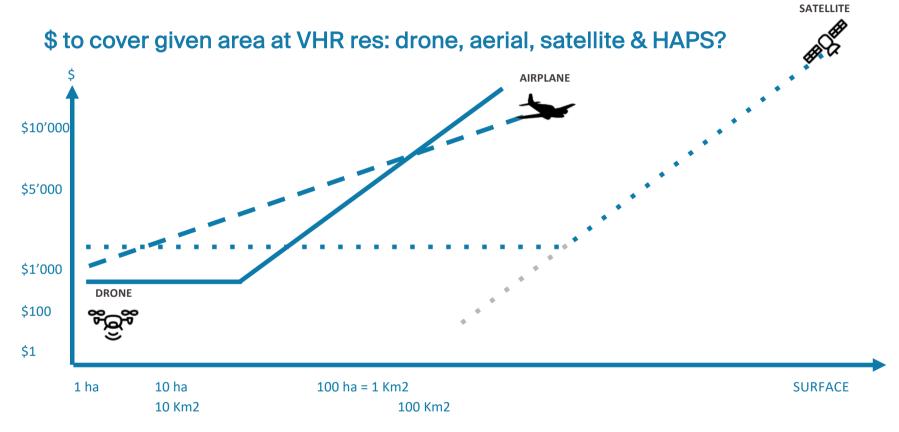
To be considered about data price:

Prices for available products differ considerably, mainly as a function of resolution. \$\$\$
Suppliers apply very different minimum order sizes and constraints.


IPEO course - Sensors 11 Sentember 2024

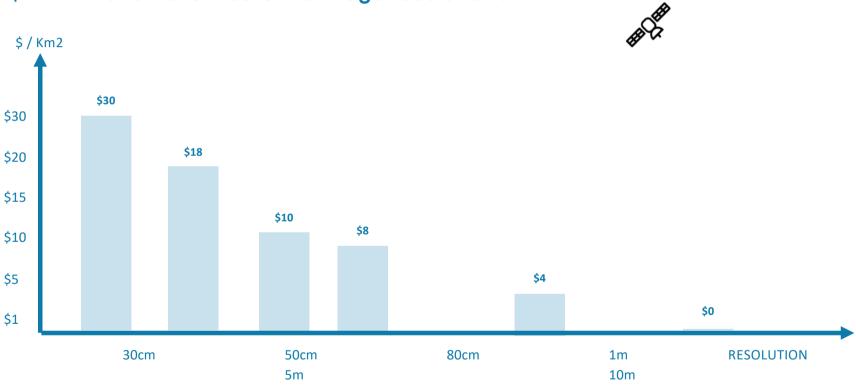
How do I choose the "right" data?

- We will have a look at the different sensor types available
 - Satellite platforms and constellations
 - Passive vs. Active
 - Panchromatic, Multispectral, Hyperspectral
 - SAR, LiDAR
- They all have their advantages related to specific applications
 - Scientific campaigns, production applications
 - Long time series, one-time assessment
 - Accurate measurement of surfaces, detection vs. identification, etc...


How do I choose the "right" data?

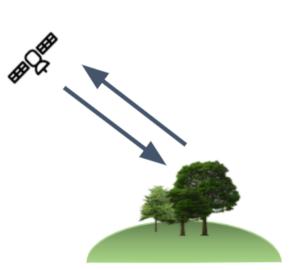
Altitude vs. resolution and coverage for drones, aerial, satellite

IPEO course - Sensors, 11 September 2024


How do I choose the "right" data?

IPEO course - Sensors, 11 September 2024

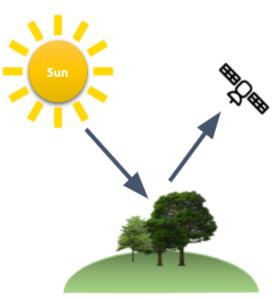
How do I choose the "right" data?



SATELLITE

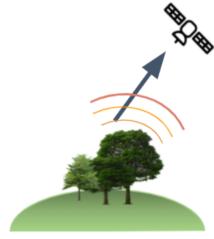
Note: this is an approximation about 2020 stauts and about archive data

IPEO course - Sensors, 11 September 2024


Earth observation: Active vs. Passive sensors

Active

Sensor emitted energy


Backscattering

Passive

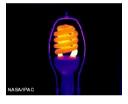
Measure reflected sunlight (< 3000 nm) e.g. visible, NIR

Reflectivity

Passive

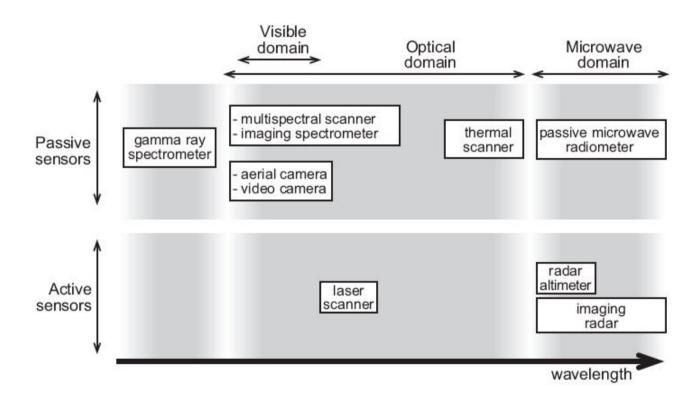
Measure surface emission (> 3000nm) e.g. TIR, Microwave sounder

Emissivity


■ IPEO course - Sensors 11 Sentember 2024

Earth observation: Active vs. Passive sensors

- A passive sensor measures naturally available energy
 - Reflectivity: Sunlight (< 3000 nm)


• Emissivity: Emission in the thermal infrared (> 3000 nm)

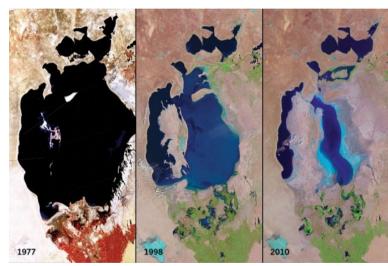
- An active sensor illuminates the target by sending a EM radiation and measuring the return time and intensity
 - Radars (e.g. Synthetic Aperture Radars) → microwaves
 - LiDAR (Light Detection And Ranging) → laser light (typically in NIR)

Earth observation: Active vs. Passive sensors

Passive: aerial photography

- Acquired from aircrafts or drones
- Usually very high spatial resolution (half-meter to few centimeters)
- Usually only R-G-B or NIR-R-G

 Few multispectral cameras (see Micasense or Tetracam which provides several bands)

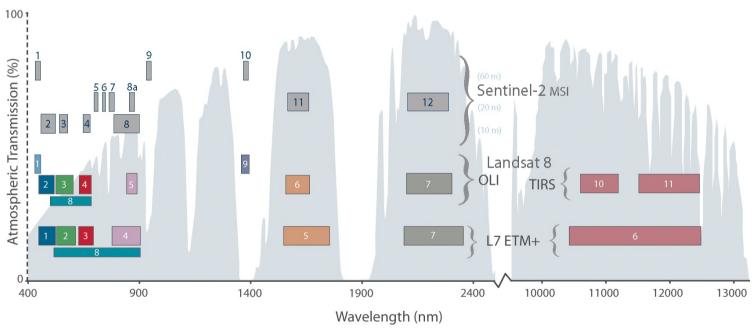


Sunbird uas

Sensefly Ebee

Passive: multispectral

- Term referred to aerial or satellite sensors with less than 20 bands
- Historically governmental missions (Landsat, MODIS, AVIRIS, Sentinel)
- Nowadays many private commercial companies (Airbus, Planet, Digitalglobe, Superview, etc.)
- Resolution varies according to the sensor.

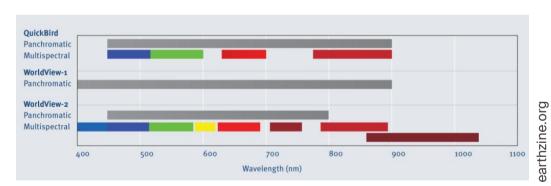


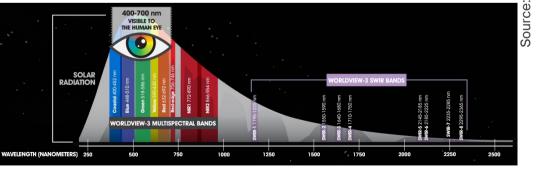
Landsat 2 Landsat 5

http://visibleearth.nasa.gov/view.php?id=78588

Landsat 7-8 vs Sentinel-2

http://eros.usgs.gov/sentinel-2


Passive: multispectral


At Very High spatial Resolution (<5m), commercial satellites:

- Pléiades, 4 bands
- SPOT 5/6/7, 4 bands
- · QuickBird, 4 bands
- WorldView II, 8 bands
- Worldview III, 16 bands
- Planetscope Doves, 4 bands
- Planet Skysat, 4 bands

IPEO course - Sensors, 11 September 2024

Passive: multispectral

Two multispectral sensors can have very different characteristics!

Sentinel 2 (RGB), 10m

Planet SkySat, 0.8m

Spectral resolution: multi- vs. hyperspectral

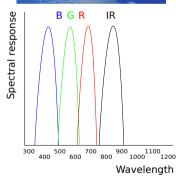
- The differences are mainly in terms of resolution and availability
- Multispectral sensors typically
 - Have 4-10 bands
 - Provide high to very high resolution (30m to ~2m)
 - Are commercially available
- Hyperspectral sensors
 - provide between tens and hundreds bands
 - Provide medium (satellite) to high (airborne) resolution

IPEO course - Sensors, 11 September 2024

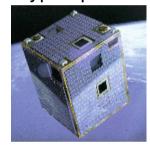
Spectral resolution: multi- vs. hyperspectral

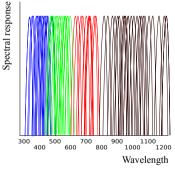
Digital camera

B G R

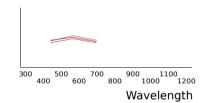

B G R

300 400 500 600 700 800 900 1000 1200

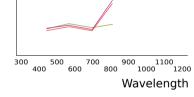

Wavelength

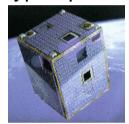

Multispectral

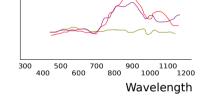
Hyperspectral



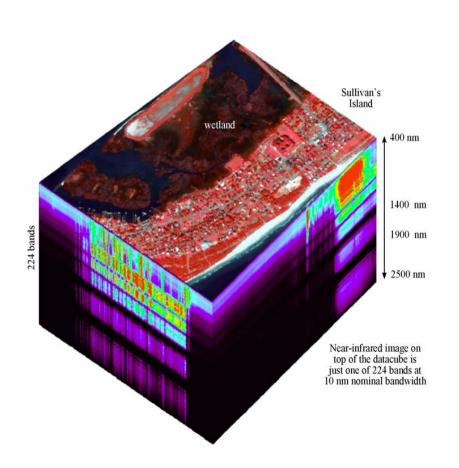
I IPEO course - Sensors, 11 September 2024


Spectral resolution: multi- vs. hyperspectral



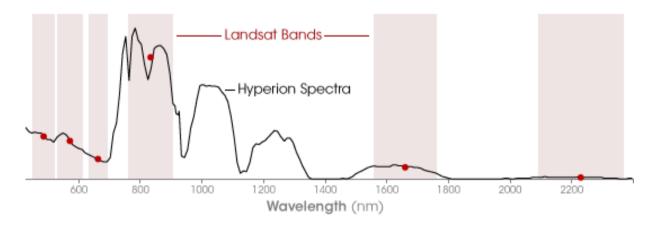

Multispectral

Hyperspectral



IPEO course - Sensors 11 Sentember 2026

Passive: hyperspectral

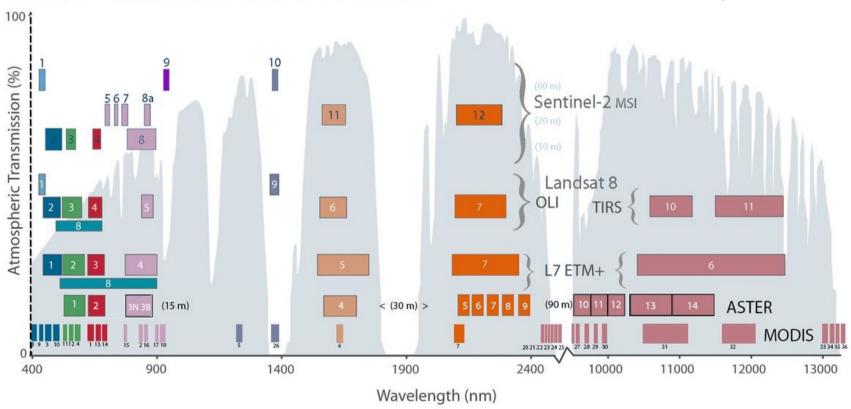

- Also called imaging spectrometers
- High number of narrow bands
- Provide a whole precise spectral signature per pixel

I IPEO course - Sensors, 11 September 2024

Spectral resolution: multi- vs. hyperspectral

- band values from Landsat (multispectral)
- spectrum retrieved by Hyperion (hyperspec.)

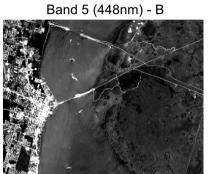
earthobservatory.nasa.gov

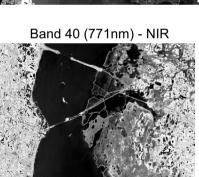

"Hyperspectral" MODIS

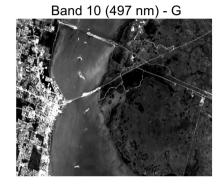
- MODerate resolution Imaging Spectrometer
- NASA mission
- FREE data, daily!
- 2 satellites AQUA (1:30pm) and TERRA (10:30am)
- 36 spectral bands,
- resolution varies :
 - 250m (Bands 1 and 2, used mainly for clouds studies)
 - 500m (bands 3-7, land properties in visible and infrared)
 - 1km (bands 8-36 from visible to thermal again used for atmosphere studies or for water properties)

IPEO course - Sensors, 11 September 2024

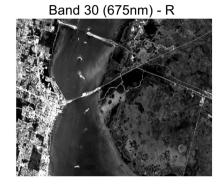
Hyperspectral: MODIS vs. multispectral

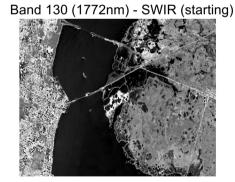

Comparison of Landsat 7 and 8 bands with Sentinel-2 and MODIS sensor onboard Terra & Aqua satellites

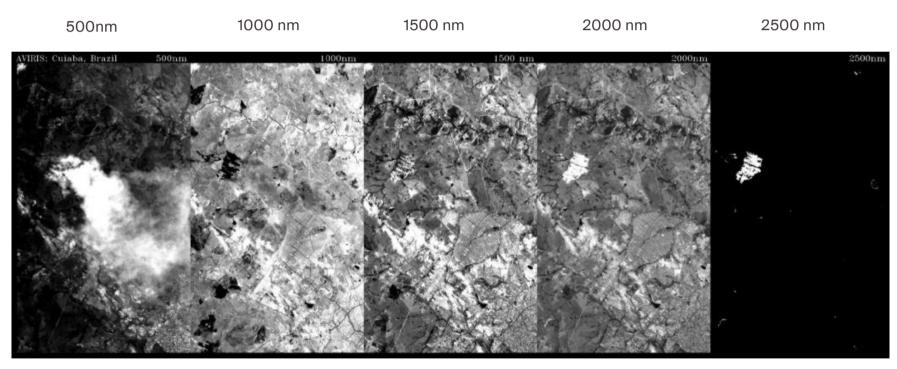


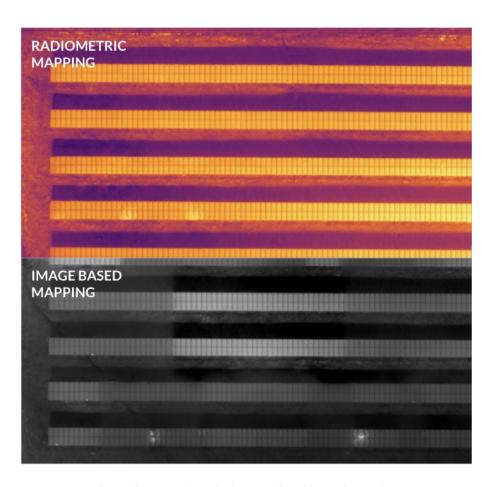

Hyperspectral: AVIRIS


- Airborne Visible Infrared Imaging Spectrometer
- First successful airborne hyperspectral experiment from NASA
- 400nm-2500nm in 224 bands (10 nm interval)


Hyperspectral: AVIRIS - Kennedy space center

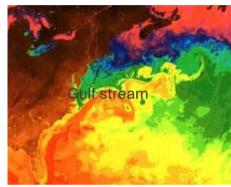


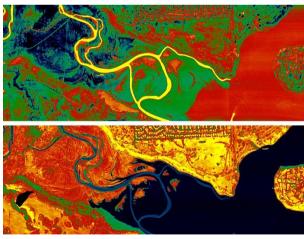




Hyperspectral: AVIRIS – Fire in Brazil

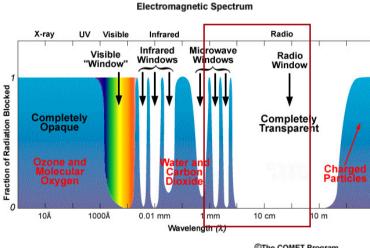
Source: Geog.ucsb.edu


Passive: Thermal

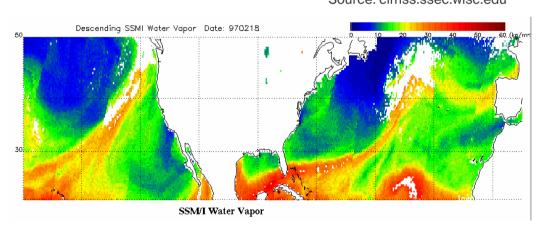

https://support.dronedeploy.com/docs/thermal-mapping

Passive: Thermal hyperspectral scanners

- Usually scan frequencies in atmospheric windows of thermal infrared
 - (3000-5000 nm)
 - (9000-14000 nm)
- Measure the radiation emitted by a body
 - => thermal reflections
 - =/= body temperature!
- Multiple bands can allow to deduce body temperature
- Applications:
 - Water surface temperature
 - Cloud detection and characterization


NOAA ocean explorer

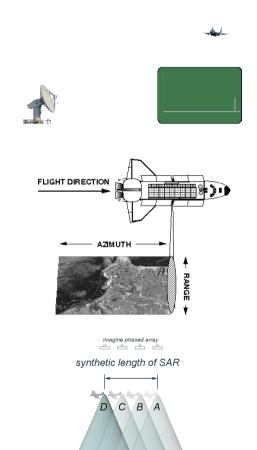
TASI airborne images (4am, 2pm)


EPFL Passive: microwave radiometer

- Consider energy emitted at wavelengths from millimeters to centimeters
- Usually mounted on meteorological satellites
- Used to study
 - Air temperature;
 - Sea surface temperature;
 - Soil moisture:
 - Water vapour.

©The COMET Program

Source: cimss.ssec.wisc.edu



Source: http://southport.jpl.nasa.gov/desc/

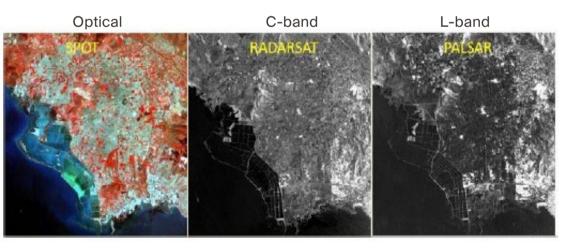
Source: http://www.radartutorial.eu

EPFL Active: SAR

- Synthetic Aperture Radar
 - Emit microwave pulses and record return time after hitting the ground
- Radar:
 - Travel time => converted to distance
 - The narrower the width of the wave, the higher the resolution of the range
- Synthetic Aperture:
 - Antenna length defines the resolution in the azimuth direction
 - Increase spatial resolution by simulating a huge antenna

Active: SAR - Wavelength of the radar bands

- L band: more than 15 cm
- S band: 7.5 to 15 cm.


Medium range meteorological applications (e.g. rainfall measurements)

• C band: 3.75 to 7.5 cm.

Sea ice surveillance. No atmosphere contamination in rains

• X band: 2.4 to 3.75 cm.

High resolution radars, mapping and surveillance

Sentinel-1 mission objectives

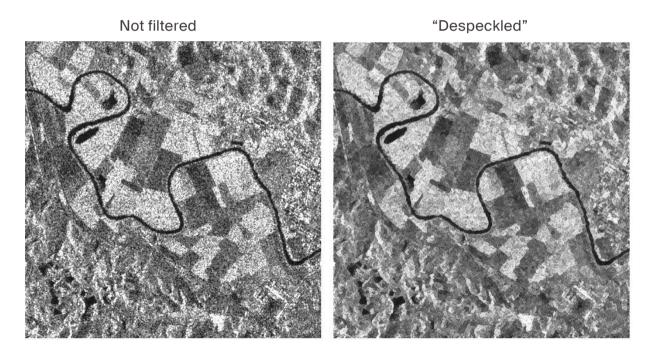
Mission Objectives: to provide routine day-andnight all-weather medium resolution observation capability

Instrument: C-band Synthetic Aperture Radar (SAR)

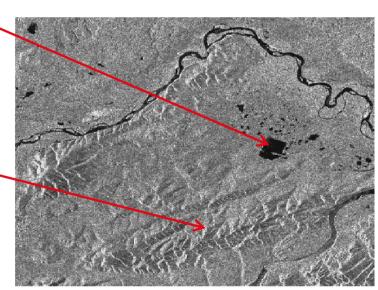
Constellation of 2 satellites in the same orbit (S1 A & B, 180° phased)

6 days repeat cycle at Equator (with 2 satellites)

Applications include:


- · Marine, Ice and Land Monitoring
- Maritime surveillance
- · Terrain stability monitoring
- Emergency mapping for humanitarian aid in crisis situations

■ IPEO course – Sensors, 11 September 2024

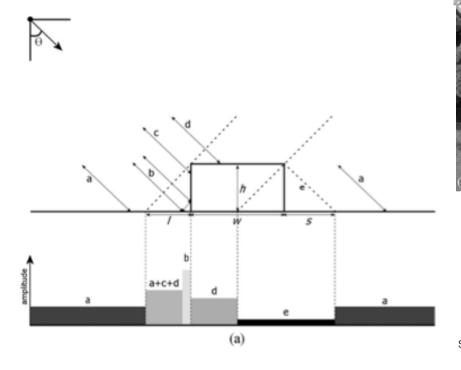

Active: SAR is not optical imaging!

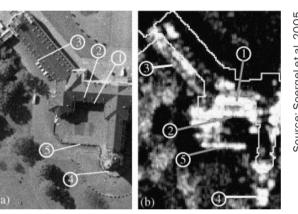
There is a noise effect called speckle

Active: SAR is not optical imaging!

- SAR is an image reconstructed from pulse echos
- It depicts how the particle interacts with the surface and returns to the antenna, not how light is reflected.
- A few features
 - Water is black, as beams do not return
 - Mountains are bright in the looking direction (many beams bounce back)
 - Shadowing effect behind vertical structures

Active: SAR specific effects: layover, shadows...

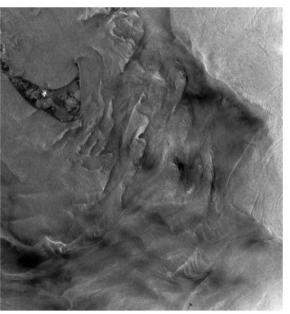

The layover effect: may seem minimal, but...



Source: http://earth.esa.int/

Active: SAR is not optical imaging!

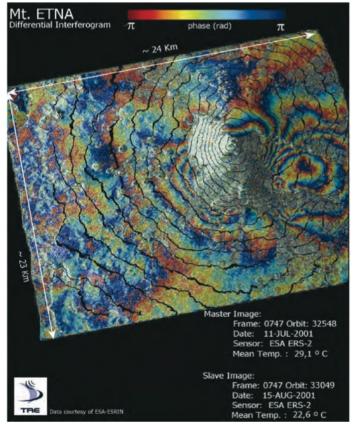
Buildings show a very complex structure



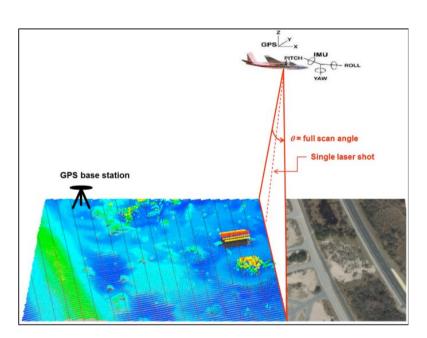
Source: Brunner et al. 2010

■ IPEO course – Sensors 11 Sentember 2024

Active: So why using SAR?


- SAR "sees" through clouds (microwaves)
- SAR "sees" at night (active sensor)
- SAR penetrates in the ground (depth proportional to frequency)
- SAR allows to characterize surface roughness

Active: So why using SAR?


- With two SAR acquisitions, we can measure height displacements of the order of the half of the wavelength.
- In this example (2001 eruption of Mt. Etna), the sensor ERS is used. It has λ
 = 5.6cm, so each fringe (color cycle) is a 2.8cm vertical displacement.
- This is the domain of differential interferometry InSAR (not covered in this course).

ource: http://www.esa.int/ (InSAR principle

EPFL Active: LiDAR

- Similar to radar: focused laser beams ⇔ instead of radio waves
- Travel time -> converted to distances
- Retrieves the 3D coordinates of the object using:
 - Travel time
 - Sensor location
 - Firing angle of the beam
- Requires:
 - Accurate 3D positioning of sensor
 - Accurate positioning of airplane

Source: NOAA 2012

Point clouds examples

Point clouds examples

What's coming next with EO platforms..

- Large constellation of small satellites
 - Several hundreds of satellites
 - · Acquiring multiple images / day (hourly)
- Real-time live video stream from satellite
 - SEN https://sen.com/
- Onboard processing (alert system, detections, etc.)
 - http://www.esa.int/Applications/Observing_the_Earth/Phsat/First_Earth_observation_satellite_with_Al_ready_for_launch
- → Main trend is towards higher frequency of revisit

IDEO cellireo - Sonsore 11 Sontombor 2024

EO satellites – a selection

Satellite	Launch	Spatial resolution	# of spectral bands	Spectral domain*	Swath	Revisit time	Price
Landsat-8 (OLI)	2013	15 m 30 m 30 m	1 5 3	Pan B, G, R, NIR SWIR	185 km	16 days	free
Terra (ASTER)	1999	15 m 30 m	4 6	B, G, R, NIR SWIR	60 km	16 days	
Sentinel-2A/B (constellation: 2)	2015/ 2017	10 m 20 m 60 m	4 6 3	B, G, R, NIR NIR, SWIR B, NIR, SWIR	290 km	5 days	
Rapideye (constellation: 5)	2003	6.5 m	5	B, G, R, RE, NIR	77 km	1 day	0.95 to 1.3 €/km²
SPOT-6/SPOT-7 (constellation: 2)	2012/ 2014	1.5 m 6 m	1 4	Pan B, G, R, NIR	60 km	1 day	
Planet - doves (constellation: 149)	2013/ 2017	3.0/3.7 m	4	B, G, R, NIR	24.6 km	1 day**	~0.10 €/km²
Planet - SkySat (constellation: 7)	2013/ 2016	0.9 m 2.0 m	1 4 (Video option)	Pan B, G, R, NIR	8 km	< 1 day	
OptiSAR# (constellation: 8)	2021	1.5x2.5 m	4 (Optical) (not confirmed) 1 (SAR)	B, G, R, NIR (not confirmed) X-Band	5 km	1 day	? not yet available
Pleiades 1A/B (constellation: 2)	2011	0.5 m 2 m	1 4	Pan B, G, R, NIR	20km	1 day	17 €/km²

^{*} Pan - panchromatic, B - blue, G - green, R - red, RE - red edge, NIR - near infrared, SWIR - shortwave infrared

^{# 8} SAR-satellites with X- and L-Band sensors, in tandem mode with 8 optical VHR satellites.

EO satellites – Open list

 Here is an open source collaborative list of Earth Observation satellites initiated by the <u>Geoawesomeness</u> team:

https://docs.google.com/spreadsheets/d/1KEODq9f7ej8QiNZug3fY8jKoy5zDXC0gNdPdcOFDjDM/edit#gid=0

A little sat-exercise

- Form a group of 3 persons
- For next week, prepare a poster for one of the topics you can find at this page:
 - https://docs.google.com/spreadsheets/d/1YpL98taed5Ygptjx1PamjR QC2kKjWuuNIk4FF5wrC5k/edit?gid=0#gid=0
- Send the poster on moodle (name the file "Topic#_YourLastNames.pdf", max 60Mb).

Deadline: Thursday next week, 12:00

Summing up

- There are MANY sensors around
- You must know your options, so that, according to your needs, you can chose the more suitable
- Always check
 - The resolution needed (not the maximal, but the scale of the process under study and the level of characterization required)
 - The spectral properties of the problem
 - The acquisition conditions (when studying typhoons, optical images will be useless except for observation of top layer of the clouds..)