ENV-540: Image Processing for Earth Observation EPFL/ECEO, 2024

Exercise 9: Semantic Segmentation with Deep
Learning

Introduction

In the previous exercise, we implemented a full routine for training and
validating DL models for image classification. Now, we shall take it to the
next level and perform pixel-wise classification, also known as semantic
segmentation. This is of particular interest to remote sensing, as it allows
us to e.g. obtain spatially well-resolved land cover maps, among other
products.

The basic ingredients are exactly the same as for image classification (op-
timiser, loss function, training loop, etc.). We do have some changes to
make, though:

¢ Dataset: this time, we do not just want a single output number (class),
but one value per spatial location. Essentially, our dataset should
also provide a second image where each pixel has the class index as
its value.

* Model: likewise, we need a suitable model that provides spatial out-
puts rather than a single class vector. You have seen some examples
in the lecture. In this exercise we shall use a flavour of the Hypercol-
umn to do this job.

Info

¢ All parts in the code that require your input for completion are marked
with flag “#T0D0”.

¢ PyTorch has a very elaborate online documentation:
https://pytorch.org/docs/stable/index.html.
You are encouraged to consult it frequently!

Tasks

1 Setup

1.1 Prepare your environment: you will need a GPU for this exercise.
You can either use Colab, or connect to the EPFL’s cluster.

1.2 In the Web browser window, open the Jupyter Notebook ex8. ipynb.

1.3 Install the required dependencies by running the first code block.



https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hariharan_Hypercolumns_for_Object_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hariharan_Hypercolumns_for_Object_2015_CVPR_paper.pdf
https://pytorch.org/docs/stable/index.html

EPFL/ECEQ, 2024 ENV-540: Image Processing for Earth Observation

1.4 Check if the Graphics Processing Unit (GPU) is available within your
environment and PyTorch. Do so by running the respective code cell.
1.5 Also, set the random seed again for reproducibility.

2 Dataset

For this exercise we shall be using the ISPRS Vaihingen semantic segmen-
tation dataset. This is a set of fully-labelled satellite image-segmentation
mask pairs, with 9 cm resolution and six land cover classes: Impervious,
Buildings, Low Vegetation, Tree, Car, Clutter. The images come from a
large satellite scene over the town Vaihingen in Germany and were di-
vided into 33 patches, some of which are available with ground truth.
These patches are still too large for our model: we would quickly run
out of GPU memory if we tried to process an image of e.g. 4000 x 3000
pixels. Hence, they need to be further divided into even smaller patches.
This has already been done for you; all you need to do is to download the
image-label pair patches (sized 512 x 512 pixels) by running the code cell
below.

2.1 Download the prepared ISPRS Vaihingen dataset patches (code pro-
vided).

2.2 You are provided with a new PyTorch Dataset class for this dataset
that does all data organisation, loading and preparing for you. The
respective code block also provides you with a new function for set-
ting up a PyTorch DataLoader on this dataset.

2.3 Run the next provided code block to visualise images and segmen-
tation masks (labels). As you can see, we do not just have visual
imagery this time, but also a height model (a digital surface model).
So we need to create a model that can accept four input bands ac-
cordingly (infrared, red, green, DSM).

3 Model

As explained above, we shall be using a Hypercolumn for the task of se-
mantic segmentation. Hypercolumn is just one of multiple models that
can perform semantic segmentation, and there are more complex (and of-
tentimes more accurate) models these days. However, Hypercolumn has a
very elegant working principle and still performs reasonably well, as you
will see.

3.1 Read the explanation of Hypercolumns in the Notebook and try to
understand how it works.



https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hariharan_Hypercolumns_for_Object_2015_CVPR_paper.pdf

ENV-540: Image Processing for Earth Observation EPFL/ECEO, 2024

CODE Implement your own Hypercolumn according to the
blueprint provided in the description. Like last week,
this requires you to implement an object class (class
Hypercolumn(nn.Module)), including its constructor and
forward pass. Then, run the subsequent code block to
test whether your model provides the right output.

4 Model training

Like last week, we now have a dataset and a model to match the objective.
So let’s put the pieces together and train it! The good news here is that you
can literally copy-paste the vast majority of code you developed last week!
Both tasks were about classification, the main difference in objective is that
we now do pixel-wise classification. The pieces in PyTorch (loss,efc.) can
cope with both the same way, though.

4.1 Implement the loss function, optimiser, training epoch and valida-
tion epoch functions.

CODE Provide all the code blocks until the one that is provided
again by copy-pasting them from the previous exercise.
4.2 Train your model by running all code blocks in Section 4.

5 Model validation

Above we assessed the model’s accuracy during training on the held-out
validation set. This time, we unfortunately do not have a test set, since
the ISPRS Vaihingen dataset was originally designed as a contest, where
people would compete against each other! Hence, the labels for the test
set are still hidden and only accessible via the public evaluation server.
However, we can do something else here that we couldn’t before: visualise
our predictions!

5.1 Visualise the predictions on five random images from the validation
set by running the provided code block. By default, this will load
the model at epochs zero (fresh initialisation), one, five, and the last
saved checkpoint.

Q Can you see a pattern in how the model evolves along
the training epochs? If so, can you explain it (e.g., sudden
jumps in the quality of the prediction result)?




	Setup
	Dataset
	Model
	Model training
	Model validation

