
Introduction to
Pytorch

IPEO Exercise 6

Devis TUIA
Thien-Anh Nguyen

Manon Béchaz
Giacomo May

EPFL-ECEO

October 18, 2024

École
polytechnique
fédérale de
Lausanne

/

2

Welcome to Pytorch Exercises 6-8

In the next four exercises, we will focus on
Deep Learning with Pytorch

IPEO exercise 6 Introduction to Pytorch with Logistic Regression
IPEO exercise 7 Image Classification with CNNs
IPEO exercise 8 Model Training and Regularization
IPEO exercise 9 Semantic Segmentation

/

2

Welcome to Pytorch Exercises 6-8

In the next four exercises, we will focus on
Deep Learning with Pytorch

IPEO exercise 6 Introduction to Pytorch with Logistic Regression
IPEO exercise 7 Image Classification with CNNs
IPEO exercise 8 Model Training and Regularization
IPEO exercise 9 Semantic Segmentation

/

2

Welcome to Pytorch Exercises 6-8

In the next four exercises, we will focus on
Deep Learning with Pytorch

IPEO exercise 6 Introduction to Pytorch with Logistic Regression
IPEO exercise 7 Image Classification with CNNs
IPEO exercise 8 Model Training and Regularization
IPEO exercise 9 Semantic Segmentation

/

2

Welcome to Pytorch Exercises 6-8

In the next four exercises, we will focus on
Deep Learning with Pytorch

IPEO exercise 6 Introduction to Pytorch with Logistic Regression
IPEO exercise 7 Image Classification with CNNs
IPEO exercise 8 Model Training and Regularization
IPEO exercise 9 Semantic Segmentation

/

3

Pytorch is Numpy with gradients

• package for numerical
operations in Python

• first released 1995
• basis for several classical

machine learning packages,
like scikit-learn

• package for deep learning in
Python

• first released 2016
• basis for deep learning and

de-facto standard library for
scientific applications

• extends numpy with
automatic differentiation
and gradients

• allows working with GPUs

/

3

Pytorch is Numpy with gradients

• package for numerical
operations in Python

• first released 1995
• basis for several classical

machine learning packages,
like scikit-learn

• package for deep learning in
Python

• first released 2016
• basis for deep learning and

de-facto standard library for
scientific applications

• extends numpy with
automatic differentiation
and gradients

• allows working with GPUs

/

3

Pytorch is Numpy with gradients

• package for numerical
operations in Python

• first released 1995
• basis for several classical

machine learning packages,
like scikit-learn

• package for deep learning in
Python

• first released 2016
• basis for deep learning and

de-facto standard library for
scientific applications

• extends numpy with
automatic differentiation
and gradients

• allows working with GPUs

/

3

Pytorch is Numpy with gradients

• package for numerical
operations in Python

• first released 1995
• basis for several classical

machine learning packages,
like scikit-learn

• package for deep learning in
Python

• first released 2016
• basis for deep learning and

de-facto standard library for
scientific applications

• extends numpy with
automatic differentiation
and gradients

• allows working with GPUs

/

3

Pytorch is Numpy with gradients

• package for numerical
operations in Python

• first released 1995
• basis for several classical

machine learning packages,
like scikit-learn

• package for deep learning in
Python

• first released 2016
• basis for deep learning and

de-facto standard library for
scientific applications

• extends numpy with
automatic differentiation
and gradients

• allows working with GPUs

/

4

Automatic Differentiation

Image I of N gray pixels ii

I = [i1, i2, i3, . . . , iN]

/

4

Automatic Differentiation

Image I of N gray pixels ii

I = [i1, i2, i3, . . . , iN]

some function I→ s, e.g.,
summation

s =
N∑

i=1

ii

summation function

/

4

Automatic Differentiation

Image I of N gray pixels ii

I = [i1, i2, i3, . . . , iN]

some function I→ s, e.g.,
summation

s =
N∑

i=1

ii

analytic gradient calculation
“effect of one pixel on the sum”

∂s
∂i1

=
N∑

i=1

ii
∂

∂i1
= 1

summation function

automatic differentiation

/

5

Logistic Regression

Objective: map an input pixel x = (xgreen, xred, xnir)→ y probability of
“water” [0,1]

logistic regression model fA,b(x)

y = fA,b(x) = σ(ATx + b︸ ︷︷ ︸
decision plane

)

with parameters slope
A = (agreen,ared,anir) and bias b of
the decision plane

and a “squishing” sigmoid function
σ 7→ [0,1]

nir

red

decision plane
y > 0.5

y < 0.5

water

land

/

5

Logistic Regression

Objective: map an input pixel x = (xgreen, xred, xnir)→ y probability of
“water” [0,1]

logistic regression model fA,b(x)

y = fA,b(x) = σ(ATx + b︸ ︷︷ ︸
decision plane

)

with parameters slope
A = (agreen,ared,anir) and bias b of
the decision plane

and a “squishing” sigmoid function
σ 7→ [0,1]

nir

red

decision plane
y > 0.5

y < 0.5

water

land

/

5

Logistic Regression

Objective: map an input pixel x = (xgreen, xred, xnir)→ y probability of
“water” [0,1]

logistic regression model fA,b(x)

y = fA,b(x) = σ(ATx + b︸ ︷︷ ︸
decision plane

)

with parameters slope
A = (agreen,ared,anir) and bias b of
the decision plane

and a “squishing” sigmoid function
σ 7→ [0,1]

nir

red

decision plane
y > 0.5

y < 0.5

water

land

/

6

Logistic Regression

How do we find a good decision plane A,b?

We solve the optimization objective

A,b = argA,b min
M∑

i=1

L(fA,b(xi), yi)

in words:
• we find parameters A,b
• that minimize (argmin) the error

∑M
i=1 L(fA,b(xi), yi) of

• model output fA,b(xi)

• with ground truth yi over a training dataset of M examples.

we implement argmin with gradient descent in

/

7

Gradient descent

Idea, we start with random A, b and update parameters iteratively

A← A− η
∂L
∂A

b ← b − η
∂L
∂b

.

• we can think of the gradient ∂L
∂b in words: “what change in b

changes the loss L”.
• the learning rate η defines the step size and is an important

hyper-parameter.

/

8

Water Classification

/

9

Land-water classification

optimize decision plane parameters
all pixels

training data

/

9

Land-water classification

optimize decision plane parameters

all pixels

training data

/

9

Land-water classification

optimize decision plane parameters
all pixels

training data

/

9

Land-water classification

optimize decision plane parameters
all pixels

training data

/

10

Expected Result

/

11

Outlook: Why logistic regression?

Logistic regression corresponds to
a single linear layer

σ(Ax + b)

x1

x2

x3

y
a1

a2

a3

input output

Multi-layer perceptron (neural net
with dense layers)

σ(A1x + b1) ◦ σ(A2x + b2)

input hidden output

