R
*

*

Introduction to
Pytorch

Devis TUIA
Thien-Anh Nguyen
Manon Béchaz

Giacomo May

EPFL-ECEO
October 18, 2024
v ¢ Ry
i o
B Eoole .
polytechnique
fédérale de %
Lausanne . i

EPFL

Welcome to Pytorch Exercises 6-8

In the next four exercises, we will focus on
Deep Learning with Pytorch

IPEO exercise 6 Introduction to Pytorch with Logistic Regression

EPFL

Welcome to Pytorch Exercises 6-8

In the next four exercises, we will focus on
Deep Learning with Pytorch

IPEO exercise 6 Introduction to Pytorch with Logistic Regression
IPEO exercise 7 Image Classification with CNNs

EPFL

Welcome to Pytorch Exercises 6-8

In the next four exercises, we will focus on
Deep Learning with Pytorch

IPEO exercise 6 Introduction to Pytorch with Logistic Regression
IPEO exercise 7 Image Classification with CNNs
IPEO exercise 8 Model Training and Regularization

EPFL

Welcome to Pytorch Exercises 6-8

In the next four exercises, we will focus on
Deep Learning with Pytorch

IPEO exercise 6
IPEQO exercise 7
IPEO exercise 8
IPEO exercise 9

Introduction to Pytorch with Logistic Regression
Image Classification with CNNs

Model Training and Regularization

Semantic Segmentation

EPFL
Pytorch is Numpy with gradients

N7 NumPy O PyTorch

® package for numerical ® package for deep learning in
operations in Python Python

EPFL
Pytorch is Numpy with gradients

N7 NumPy O PyTorch

® package for deep learning in
Python
e first released 2016

® package for numerical
operations in Python

® first released 1995

EPFL
Pytorch is Numpy with gradients

NZ? NumPy O PyTorch

® package for numerical ® package for deep learning in
operations in Python Python

e first released 1995 o first released 2016

® basis for several classical ® basis for deep learning and
machine learning packages, de-facto standard library for

like scikit-learn scientific applications

EPFL
Pytorch is Numpy with gradients

NZ? NumPy O PyTorch

® package for numerical ® package for deep learning in
operations in Python Python

e first released 1995 o first released 2016

® basis for several classical ® basis for deep learning and
machine learning packages, de-facto standard library for
like scikit-learn scientific applications

¢ extends numpy with
automatic differentiation
and gradients

EPFL
Pytorch is Numpy with gradients

NZ? NumPy O PyTorch

® package for numerical ® package for deep learning in
operations in Python Python

e first released 1995 o first released 2016

® basis for several classical ® basis for deep learning and
machine learning packages, de-facto standard library for
like scikit-learn scientific applications

¢ extends numpy with
automatic differentiation
and gradients

¢ allows working with GPUs

=Pr-L
Automatic Differentiation

Image I of N gray pixels j from torch import tensor

I = tensor([[1],[0.8]...1,

| =iy, bo, k3, ..., I\
.12, 3, . IN] requires_grad=True)

=Pr-L
Automatic Differentiation

Image I of N gray pixels from torch import tensor

| = [i17i2,i3,...7iN] I = tensgr([[l],[@.S].. .],

requires_grad=True)
some function | — s, e.g.,
summation

summation function

s = I.sum()

N
SZZii
i=1

=PrL

Automatic Differentiation

Image | of N gray pixels j;

IZ[i17i2ai37"'7iN]

some function | — s, e.g.,
summation

N
s:Zii
i=1

analytic gradient calculation
“effect of one pixel on the sum

N
0s .0
o~ 25

from torch import tensor
I = tensor([[1],[0.8]...1,
requires_grad=True)

summation function

s = I.sum()

automatic differentiation

s.backward()

I.grad[0]
> 1.

EPFL

Logistic Regression

Objective: map an input pixel X = (Xgreen, Xred, Xnir) — ¥ probability of
“water” [0,1]

water

red °

land

nir

EPFL

Logistic Regression

Objective: map an input pixel X = (Xgreen, Xred, Xnir) — ¥ probability of
“water” [0,1]

logistic regression model fa 4(X)
=1 =o(AT
y=fap(X)=0c(A'X+0)

decision plane
red

nir

EPFL

Logistic Regression

Objective: map an input pixel X = (Xgreen, Xred, Xnir) — ¥ probability of
“water” [0,1]

logistic regression model fa 4(X)

= f — T
y="fap(X)=0c(A'x+b)
decision plane
red
with parameters slope
A = (8green; @red, anir) @and bias b of
the decision plane

and a “squishing” sigmoid function

o [0,1] nir

EPFL

Logistic Regression

How do we find a good decision plane A, b?

We solve the optimization objective

M
A, b = argp p min Z L(fap(Xi), ¥i)
i=1
in words:
¢ we find parameters A, b
e that minimize (arg min) the error Z,’L L(fa.b(X;), yi) of
* model output fa p(X;)
® with ground truth y; over a training dataset of M examples.

= we implement arg min with gradient descent in O PyTorch

EPFL

Gradient descent

Idea, we start with random A, b and update parameters iteratively

oL
AcA=1om
oL

® we can think of the gradient %—ﬁ in words: “what change in b
changes the loss £”.

¢ the learning rate n defines the step size and is an important
hyper-parameter.

=PrL

Water Classification

=PrL

Land-water classification

=PrL

Land-water classification

1
s

training error

o
¥

T T T T T T T T T
o] 250 500 750 1000 1250 1500 1750 2000
epoch

training data o .
optimize decision plane parameters

=PrL

Land-water classification

training error

T T T T T T T T T
o] 250 500 750 1000 1250 1500 1750 2000
epoch

training data o .
. optimize decision plane parameters
all pixels

feature space: green - red - nir

0g 10

06
04
02 and
el value green

Land-water classification

0.4+

training error

0.2+

T T T T T T T T
o] 250 500 750 1000 1250 1500 1750 2000
epoch

optimize decision plane parameters

feature space: green - red - nir

feature space: qreen - red - nir

pueq au anjen jaxid

1.0

0.
04 06
00 Civel value gree” pand

EPFL

Expected Result

250

500

750

1000

1250

1500

1750

2000

0 500 1000 1500 2000 2500

probability water

=PrL

Outlook: Why logistic regression?

Logistic regression corresponds to

a single linear layer

o(AX + b)

0.
as
Q-
—=-0)
a

input output

Multi-layer perceptron (neural net
with dense layers)

o(A1X+b1) o o(A2x + by)

input hidden output

