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 MULTIVARIATE ANALYSIS IN

 ECOLOGY AND SYSTEMATICS:

 PANACEA OR PANDORA'S BOX?

 Frances C. James

 Department of Biological Science, Florida State University, Tallahassee, Florida
 32306

 Charles E. McCulloch

 Biometrics Unit, Cornell University, Ithaca, New York 14853
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 INTRODUCTION

 Multivariate analysis provides statistical methods for study of the joint rela-
 tionships of variables in data that contain intercorrelations. Because several
 variables can be considered simultaneously, interpretations can be made that
 are not possible with univariate statistics. Applications are now common in
 medicine (117), agriculture (218), geology (50), the social sciences (7, 178,
 193), and other disciplines. The opportunity for succinct summaries of large
 data sets, especially in the exploratory stages of an investigation, has contrib-
 uted to an increasing interest in multivariate methods.

 The first applications of multivariate analysis in ecology and systematics
 were in plant ecology (54, 222) and numerical taxonomy (187) more than 30
 years ago. In our survey of the literature, we found 20 major summaries of
 recent applications. Between 1978 and 1988, books, proceedings of sym-
 posia, and reviews treated applications in ecology (73, 126, 155, 156),
 ordination and classification (13, 53, 67, 78, 81, 83, 90, 113, 121, 122, 159),
 wildlife biology (33, 213), systematics (148), and morphometrics (45, 164,

 129
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 130 JAMES & MCCULLOCH

 Table 1 Applications of multivariate analysis in seven jour-

 nals, 1983-1988. In descending order of the number of applica-

 tions, the journals are Ecology, 128; Oecologia, 80; Journal of

 Wildlife Management, 76; Evolution, 72; Systematic Zoology,

 55; Oikos, 41; Journal of Ecology, 35; and Taxon, 27.

 Principal components analysis 119

 Linear discriminant function analysis 100

 Cluster analysis 86

 Multiple regression 75

 Multivariate analysis of variance 32

 Correspondence analysis 32

 Principal coordinates analysis 15

 Factor analysis 15

 Canonical correlation 13

 Loglinear models 12

 Nonmetric multidimensional scaling 8

 Multiple logistic regression 7

 514

 200). For the six-year period from 1983 to 1988 (Table 1), we found 514
 applications in seven journals.

 Clearly, it is no longer possible to gain a full understanding of ecology and

 systematics without some knowledge of multivariate analysis. Or, con-
 trariwise, misunderstanding of the methods can inhibit advancement of the

 science (96).

 Because we found misapplications and misinterpretations in our survey of

 recent journals, we decided to organize this review in a way that would
 emphasize the objectives and limitations of each of the 12 methods in
 common use (Table 2; Table 3 at end of chapter). Several books are available

 that give full explanations of the methods for biologists (53, 128, 148, 159,
 164). In Table 3, we give specific references for each method. In the text we
 give examples of appropriate applications, and we emphasize those that led to
 interpretations that would not have been possible with univariate methods.

 The methods can be useful at various stages of scientific inquiry (Figure 1).

 Rather than classifying multivariate methods as descriptive or confirmatory,

 we prefer to consider them all descriptive. Given appropriate sampling, 6 of
 the 12 methods can also be confirmatory (see inference in Table 2). Digby &
 Kempton (53) give numerous examples of applications that summarize the
 results of field experiments. Most often the methods are used in an explora-

 tory sense, early in an investigation, when questions are still imprecise. This
 exploratory stage can be a very creative part of scientific work (206, pp.
 23-24). It can suggest causes, which can then be formulated into research
 hypotheses and causal models. According to Hanson (86), by the time the
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 MULTIVARIATE ANALYSIS 131

 Table 2 General objectives and limitations of multivariate analysis

 Objectives Codes to Procedures (see Table 3)

 1. Description All

 2. Prediction MR. LDFA, MLR

 3. Inference MR, MANOVA, LDFA, FA, MLR, LOGL
 4. Allocation LDFA

 5. Classification LDFA, MLR, CLUS

 6. Ordination LDFA, PCA, PCO, FA, CANCOR, COA, NMDS

 Limitations:

 1. The procedures are correlative only; they can suggest causes but derived
 factors (linear combinations of variables) and clusters do not necessarily
 reflect biological factors or clusters in nature.

 2. Because patterns may have arisen by chance, their stability should be
 checked with multiple samples, null models, bootstrap, or jackknife.

 3. Interpretation is restricted by assumptions.

 4. Automatic stepwise procedures are not reliable for finding the relative
 importance of variables and should probably not be used at all.

 theoretical hypothesis test has been defined, much of the original thinking is
 over. In the general scientific procedure, descriptive work, including descrip-
 tive applications of multivariate analysis, should not be relegated to a status
 secondary to that of experiments (28). Instead it should be refined so that
 research can proceed as a combination of description, modelling, and ex-
 perimentation at various scales (106).

 The opportunities for the misuse of multivariate methods are great. One
 reason we use the analogy of Pandora's box is that judgments about the results
 based on their interpretability can be dangerously close to circular reasoning
 (124, pp. 134-136; 179). The greatest danger of all is of leaping directly from
 the exploratory stage, or even from statistical tests based on descriptive
 models, to conclusions about causes, when no form of experimental design
 figured in the analysis. This problem is partly attributable to semantic differ-
 ences between statistical and biological terminology. Statistical usage of
 terms like "effect" or "explanatory variable" is not meant to imply causation,
 so the use of terms like "effects" and "roles" in titles of papers that report
 descriptive research (with or without statistical inference) is misleading.
 Partial correlations and multiple regressions are often claimed to have sorted
 out alternative processes, even though such conclusions are not justified. "If
 . . . we choose a group of ... phenomena with no antecedent knowledge of the
 causation . . . among them, then the calculation of correlation coefficients,
 total or partial, will not advance us a step toward evaluating the importance of
 the causes at work" (R. A. Fisher 1946, as quoted in reference 54, p. 432).
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 OBSERVATIONS

 EXPLORATORY
 DATA

 ANALYSIS

 DESCRIPTIVE INFORMATION
 MODEL* ABOUT CAUSES

 \/
 |CAUSAL|

 MODEL

 OBSERVATIONAL STUDY CONTROLLED LABORATORY
 USING OR FIELD

 QUASIEXPERIMENTAL DESIGN* EXPERIMENT*

 Figure I General research procedure showing stages (double boxes) at which exploratory and

 inferential* (confirmatory) multivariate analysis may be appropriate (modified from 106).

 Although this idea is familiar to biologists, it seems to get lost when they enter

 the realm of multivariate work.

 The objective of the present review is to help the researcher navigate

 between the Scylla of oversimplification, such as describing complex patterns

 with univariate analyses (147), and the Charybdis of assuming that patterns in

 data necessarily reflect factors in nature, that they have a common cause, or,

 worse, that statistical methods alone have sorted out multiple causes.

 Present understanding of the role of multivariate analysis in research affects

 not only the way problems are analyzed but also how they are perceived. We

 discuss three particularly controversial topics, and we realize that not all

 researchers will agree with our positions. The first is the often-cited "prob-

 lem" of multicollinearity, the idea that, if correlations among variables could
 be removed, one could sort out their relative importance with multivariate

 analysis. The problem here is a confusion between the objectives of the
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 MULTIVARIATE ANALYSIS 133

 method and the objectives of the researcher. Second, in the sections on
 analysis and ordination in plant ecology, we discuss the special problems that
 arise with indirect ordinations, such as the cases where the data are the
 occurrences of species in stands of vegetation. The arch pattern frequently
 seen in bivariate plots is not an artifact of the analysis; it is to be expected.
 Third, in the section on morphometrics, we explain why we argue that shape
 variables, which we define as ratios and proportions, should be studied
 directly. Of course the special properties of such variables require attention.
 We do not treat cladistics or the various software packages that perform
 multivariate analyses. In the last section, we give examples of how some
 basic concepts in ecology, wildlife management, and morphometrics are
 affected by the ways in which multivariate methods are being applied.

 SUMMARY OF METHODS: OBJECTIVES
 LIMITATIONS, EXAMPLES

 Overview

 It is helpful to think of multivariate problems as studies of populations of
 objects about which information for more than one attribute is available (48,
 169). One can describe the pattern of relationships among the objects (in-
 dividuals, sampling units, quadrats, taxa) by ordination (reduction of a matrix
 of distances or similarities among the attributes or among the objects to one or
 a few dimensions) or by cluster analysis (classification of the objects into
 hierarchical categories on the basis of a matrix of inter-object similarities). In
 the former case, the objects are usually displayed in a graphic space in which
 the axes are gradients of combinations of the attributes. Principal components
 analysis is an ordination procedure of this type. It uses eigenstructure analysis
 of a correlation matrix or a variance-covariance matrix among the attributes.
 Principal coordinates analysis is a more general procedure in the sense that it
 starts with any type of distance matrix for distances among objects. Both
 principal components analysis and principal coordinates analysis are types of
 multidimensional scaling. Nonmetric multidimensional scaling uses the ranks
 of distances among objects, rather than the distances themselves. Correspon-
 dence analysis is an ordination procedure that is most appropriate for data
 consisting of counts (contingency tables). In this case, the distinction between
 objects and attributes is less relevant because they are ordinated simultaneous-
 ly. Factor analysis is similar to principal components analysis in that it uses
 eigenstructure analysis, usually of a correlation matrix among attributes. It
 emphasizes the analysis of relationships among the attributes. Canonical
 correlation reduces the dimensions of two sets of attributes about the same set
 of objects so that their joint relationships can be studied.

 When the objects fall into two or more groups, defined a priori, the
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 134 JAMES & MCCULLOCH

 problem is frequently to describe the differences among the groups on the

 basis of a set of attributes. Multivariate analysis of variance, which is often

 used in the analysis of experiments, can be used to test for differences among

 groups. Linear discriminant function analysis describes which of the attributes

 contribute most to the differences between the groups. When it is used as an

 exploratory ordination procedure, to reduce multigroup data to fewer di-

 mensions on the basis of a set of attributes, it is called canonical variates

 analysis. Another objective of linear discriminant function analysis, used less

 frequently in ecology and systematics, is to assign new objects to previously

 separated groups. Multiple logistic regression permits the prediction of a

 binary (0, 1) attribute from a set of other attributes, which may be categorical

 or continuous. Its counterpart for approximately normally distributed data is

 multiple regression. Loglinear analysis can reveal the relationships among

 categorical variables. It assumes a multiplicative model, so it is linear after

 logarithms are taken.

 Procedures 1-7 in Table 3 use linear combinations of the variables in some

 fashion. They are only efficient with continuous data. If the variables being

 analyzed are denoted by X1, X2, . . . , X,, then all the linear techniques find
 linear (additive) combinations of the variables that can be represented by:

 Lx =bl X + b2 X2 + ...+ bk Xk 1.

 where bl, b2, . . . , b, represent coefficients determined from the data. The
 way the coefficients are found is governed by the method used. For example,
 in principal components analysis they are chosen to make the variance L as

 large as possible, subject to the constraint that the sum of squares of the b's

 must be equal to one.

 Linear methods are appropriate when the researcher wants to interpret

 optimal linear combinations of variables (e.g. principal components in prin-
 cipal components analysis, factors in factor analysis, and discriminant func-
 tions in linear discriminant function analysis).

 The researcher applying linear methods usually assumes that the values of

 the variables increase or decrease regularly and that there are no interactions.

 If this is not the case, one should transform the variables to make them at least

 approximately linear (55). For example, a quadratic model can be constructed

 with XI as a variable W1 and X2 as WI squared, or interactions can be
 included, in which X3 iS Wl times W2 (104, 133). For some of the techniques
 the analysis of residuals can uncover the need for the inclusion of nonlinear
 terms or interactions. In multivariate analysis of variance, the nonlinearities

 appear in the interaction terms and may reveal biotic interactions in ex-

 perimental results (see below). Presence-absence data, categorical data, and
 ranks are usually more efficiently handled with nonlinear models. It seldom

This content downloaded from 
������������128.179.152.34 on Tue, 10 Sep 2024 07:18:19 UTC������������� 

All use subject to https://about.jstor.org/terms



 MULTIVARIATE ANALYSIS 135

 makes sense to calculate weighted averages from these types of data, as one
 does with the linear methods. With nonlinear methods, the variables are
 combined with nonlinear functions.

 The coefficient of an individual variable represents the contribution of that
 variable to the linear combination. Its value depends on which other variables
 are included in the analysis. If a different set of variables is included, the
 coefficients are expected to be different, the "bouncing betas" of Boyce (27).

 The term "loading," often encountered in multivariate analysis, refers to
 the correlation of an original variable with one of the linear combinations
 constructed by the analysis. It tells how well a single variable could substitute
 for the linear combination if one had to make do with that single variable (89,
 p. 221). High positive or negative loadings are useful in the general in-
 terpretation of factors. However, the signs and magnitudes of the coefficients
 should only be interpreted jointly; it is their linear combination, not the
 correlations with the original variables (cf 220), that must be used to gain a
 proper multivariate interpretation. Rencher (162) shows how, in linear dis-

 criminant function analysis, the correlations with the original variables (load-
 ings) lead one back to purely univariate considerations. This distinction is not
 important with principal components analysis because the correlations are
 multiples of the coefficients and their interpretations are equivalent.

 Unfortunately, in observational studies, it is often difficult to provide clear
 descriptions of the meanings of individual coefficients. Mosteller & Tukey
 (146, p. 394) discuss the important idea of the construction of combinations
 of variables by judgment, in the context of multiple regression.

 Some of the problems we found in our literature survey apply to univariate
 as well as to multivariate statistics. The first one is that statistical inference is
 being used in many cases when its use is not justified. The "alpha-level
 mindset" of editors leads them to expect all statements to be tested at the 0.05
 level of probability (175). As a result, our journals are decorated with galaxies
 of misplaced stars. What the authors and editors have forgotten is that
 statistical inference, whether multivariate or univariate, pertains to general-
 ization to other cases.

 Confirmatory conclusions are only justified with a statistical technique if
 the study was conducted with appropriate sampling. It is the way the data
 were gathered, or how an experiment was conducted, that justifies inferences
 using statistical methods, not the technique itself. Inferences are justified only
 if the data can be regarded as a probability sample from a well-defined larger
 population. When this is not the case, probability values should not be
 reported, and the conclusions drawn should extend only to the data at hand.

 The tendency to perform statistical tests when they are not justified is
 related to the even more general problem of when generalizations are jus-
 tified. There are too many cases in which results of analyses of single study
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 136 JAMES & MCCULLOCH

 plots or single species are assumed to be representative of those for large areas
 or many species. More caution is warranted even in cases of widespread
 sampling. For example, if several vegetation variables are measured at a
 series of regularly spaced sites along an altitudinal gradient, the correlations
 among the variables will show their joint relationship to altitude, but these
 will differ from the correlations that would have been found had the sites been
 randomly selected. A principal components analysis based on the former
 correlations should not be interpreted as giving information about sites in
 general, and only limited interpretations are possible, even in an exploratory
 sense.

 A further extension of the tendency to overinterpret data is the unjustified
 assignment of causation in the absence of experimentation. Papers that report
 the use of stepwise procedures (automatic variable selection techniques) with
 multiple regression, multivariate analysis of variance, linear discriminant
 function analysis, and multiple logistic regression to assess which variables
 are important are examples of the disastrous consequences of this tendency.
 Such judgments about the importance of variables usually carry implications
 about causal relationships. In the section on multiple regression, we defend
 our position that stepwise procedures should not be used at all.

 In summary, when faced with data that contain sets of correlated variables,
 ecologists and systematists may prefer to interpret each variable separately. In
 such cases univariate methods accompanied by Bonferroni-adjusted tests (89,
 especially pp. 7-9, but see index; 150) may be appropriate. Often, however,
 the joint consideration of the variables can provide stronger conclusions than
 are attainable from sets of single comparisons. With proper attention to the
 complexities of interpretation, combinations of variables (components, fac-
 tors, etc) can be meaningful. Linear methods of multivariate analysis (Table
 3, 1-7) should be used when the researcher wants to interpret optimal linear
 combinations of variables. Otherwise, nonlinear methods (Table 3, 8-12) are
 more appropriate and usually more powerful. Multivariate statistics, model-
 ling, and biological knowledge can be used in combination and may help the
 researcher design a crucial experiment (Figure 1).

 Review of Methods

 Our survey of the literature revealed that the methods most commonly applied
 in ecology were principal components analysis, linear discriminant function
 analysis, and multiple regression; in systematics the order of use was cluster
 analysis, principal components analysis, and linear discriminant function
 analysis. Therefore in this section we devote most of the space to these
 methods.

 We have included both multiple regression and multiple logistic regression
 even though many statisticians would not classify these methods as multi-
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 MULTIVARIATE ANALYSIS 137

 variate, a term they use only where the "response" (Y) variable rather than the

 "explanatory" (X) variable is multivariate. We acknowledge that, in multiple

 regression and multiple logistic regression, the outcome variable is univariate,

 but we include the topics here because many methodological issues in multi-

 ple regression carry forward to multivariate generalizations. The intercorrela-

 tions among the explanatory variables (X's) in multiple regression are impor-

 tant to proper interpretation of the results.

 MULTIPLE REGRESSION The objective of multiple regression should be

 either to find an equation that predicts the response variable or to interpret the

 coefficients as associations of one of the explanatory variables in the presence

 of the other explanatory variables. The coefficients (b1, b2, . . . , bk) in
 Equation 1 have been determined either to maximize the correlation between

 Y (the response variable) and L (the linear combination of explanatory var-

 iables) or equivalently to minimize the sum of squared differences between Y

 and L. Only in experiments where the X's are controlled by the investigator

 can the individual coefficients of a multiple regression equation be interpreted

 as the effect of each variable on the Y variable while the others are held

 constant, and only when a well-defined population of interest has been
 identified and randomly sampled can multiple regression provide statistically
 reliable predictions. Unfortunately, these conditions are rarely met. "Valida-

 tion" with new, randomly collected data will be successful only when the

 original sample is typical of the new conditions under which validation has

 taken place, and this is usually a matter of guesswork.

 Many workers think that, if one could eliminate multicollinearity (in-
 tercorrelations) among the X variables in a descriptive study, the predictive

 power and the interpretability of analyses would be improved (35). This belief

 has led to the practice of (a) screening large sets of redundant variables and

 removing all but one of each highly correlated set and then (b) entering the

 reduced set into a stepwise multivariate procedure, with the hope that the

 variables will be ranked by their importance. Statisticians have pointed out

 many times that this is unlikely to be the case. The procedure of screening
 variables may improve prediction, but it may also eliminate variables that are

 in fact important, and stepwise procedures are not intended to rank variables

 by their importance.

 Many authors have documented the folly of using stepwise procedures with
 any multivariate method (99; 100; 139, pp. 344-357, 360-361; 215, p. 177,
 Fig. 8.1, pp. 195-196). One example is the reanalysis by Cochran of data

 from a study of the relationship between variation in sets of weather variables

 and the number of noctuid moths caught per night in a light trap. Stepwise

 forward and backward variable selection procedures did not give the same

 best variable as a predictor or even the same two or three variables as the best
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 138 JAMES & MCCULLOCH

 subsets of predictors (51). In another case, an investigator analyzing 13 out of
 21 attributes of 155 cases of viral hepatitis used the bootstrap procedure to
 obtain repeated samples of the 155 cases. Of 100 stepwise regressions, only
 one led to the selection of the same four variables chosen by the initial
 stepwise regression, and it included a fifth one in addition (139, pp. 356-

 357). Clearly, stepwise regression is not able to select from a set of variables
 those that are most influential.

 Wilkinson (217, p. 481) used strong language to defend his refusal to
 include a stepwise regression program in a recent edition of the SYSTAT

 manual: "For a given data set, an automatic stepwise program cannot neces-
 sarily find a) the best fitting model, b) the real model, or c) alternative
 plausible models. Furthermore, the order variables enter or leave a stepwise
 program is usually of no theoretical significance."

 The best that can be hoped for, when an automatic selection method like
 stepwise multiple regression is used, is selection of a subset of the variables
 that does an adequate job of prediction (188, p. 668). However, this predic-
 tion can be achieved more reasonably without the stepwise procedure. The
 most reasonable solution for observational studies that have a battery of

 explanatory variables is to combine them into biologically meaningful groups
 (146), then to examine all possible subsets of regressions. The results may
 provide useful overall predictions, but even in this case they should not be

 used to rank variables by their importance. Thus, Abramsky et al (1) need not
 worry about field tests purported to discover interspecific competition from
 the values of coefficients in multiple regression equations. The method is
 statistically inappropriate for this purpose.

 Progress toward assessing the relative importance of variables can be made

 by modelling, a subjective step that incorporates subject-matter knowledge
 into the analysis. Interactive methods (96) and methods of guided selection
 among candidate models (4) can incorporate reasonable biological informa-
 tion into the analysis (see, e.g., 37, 153, 182). This step can help develop
 causal hypotheses, but the testing still requires some form of experiment and

 outside knowledge. When controlled experiments are not feasible, quasiex-
 perimental designs can be used to provide weak inferences about causes (32,
 41, 44, 106, 111). Such designs involve either blocking, time-series models,
 or both.

 We regret to report that, in our survey of recent journals in ecology and
 systematics, we could not find a single application of multiple regression to
 recommend as a good example. Even recent attempts to measure natural

 selection in the wild by means of multiple regression (119) are susceptible to
 the criticisms mentioned above (47, 136a). Use of a path-analytic model has

 been suggested as a means of adding biological information to the analysis
 (47, 136a), but even here, because it is not possible to break correlations
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 MULTIVARIATE ANALYSIS 139

 among characters with experiments, it is not possible to discover whether
 selection is acting on individual characters. For an example of a proper

 application of multiple regression and subsequent discussion, see Henderson
 & Velleman (96) and Aitkin & Francis (2).

 MULTIVARIATE ANALYSIS OF VARIANCE Multivariate analysis of variance

 is an inferential procedure for testing differences among groups according to

 the means of all the variables. It is like the usual analysis of variance except

 that there are multiple response variables (Y1, Y2, . . . , Y.) The relationship
 with univariate analysis of variance can be understood if MANOVA is viewed
 as an analysis of linear combinations of the response variables,

 Ly = bI Y + b2 Y2 + . . .+ bk Yk 2.

 Ly is now a single, combined, response variable. A univariate analysis of
 variance can be performed on Ly and an F-statistic calculated to test for
 differences between groups. One of the suggested tests in MANOVA (Roy's
 maximum root test criterion) is the same as choosing the b's in equation (2) to
 maximize the F-statistic and then using the maximized value of F as a new
 test statistic. MANOVA requires that each vector of Y's should be in-

 dependent and that they follow a distribution that is approximately multi-
 variate normal. A good nonmathematical introduction is available (85).

 In a good example of the application of multivariate analysis of variance in

 ecology, a manipulative factorial experiment designed to determine processes

 that affect the numbers of tadpoles of several species of amphibians was
 conducted in artificial ponds. Predation, competition, and water level were
 the explanatory variables and were regulated (216). The model incorporated
 the explanatory variables both additively and as interactions with other vari-
 ables. In one case of interaction between predation and competition, predation
 on newts (Notophthalmus) reduced the effects of competition as the pond
 dried up, allowing increased survival of the toad Bufo americanus. This result

 would not have been apparent from univariate analyses by species. For an

 application in a more evolutionary context, see Travis (204). In this paper, he
 used MANOVA to show that families of tadpoles grew at different rates but

 were not differentially susceptible to the inhibitory effects of population
 density.

 LINEAR DISCRIMINANT FUNCTION ANALYSIS Linear discriminant function

 analysis can be regarded as a descriptive version of multivariate analysis of
 variance for two or more groups. The objective is to find linear combinations

 of the variables that separate the groups. In Equation 2 above they give rise to

 the largest F-statistics. The researcher wants to understand Ly and what
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 140 JAMES & MCCULLOCH

 determines the groups to which specific data vectors belong. Linear dis-
 criminant function analysis does not formally require any assumptions, but it
 is the best technique for multivariate normal data when variances and covari-
 ances are the same in each group. Then the optimal combination of variables
 is linear. If the attributes are nonlinearly related, or the data are otherwise not
 multivariate normal (for example, categorical data), variances and covari-
 ances are poor summary statistics, and the technique is inefficient. An
 appropriate alternative, when there are only two groups, is multiple logistic
 regression (see below).

 In a summary of applications of linear discriminant function analysis in
 ecology, Williams (220) warns that more attention should be paid to the
 assumption of equality of dispersion within groups. He also emphasizes the
 special problems that arise if the sample sizes are small or different (see also
 34, 201, 210). Williams & Titus (221) recommend that group size be three
 times the number of variables, but this criterion is arbitrary. Discriminant
 function axes can be interpreted in either a univariate or a multivariate way
 (see overview). Again, the elimination of variables before the analysis and
 stepwise procedures should be avoided (163).

 When the data are plotted on axes defined by the discriminant functions,
 the distances (Mahalanobis D2) are measured in relation to variances and
 covariances. Population means may be judged far apart in cases in which the
 groups are similar except in one small but statistically highly significant way.
 This is not true of Euclidean distances in principal components space, so the
 two types of distances should not be interpreted in the same way (106, cf 34).
 Graphic presentation of the results can be clarified by the use of either
 concentration ellipses (43) around groups or confidence ellipses (105) around
 means of groups (188, pp. 594-601).

 Linear discriminant function analysis can be used to summarize the results
 of an experiment (e.g. 91), but in both ecology and systematics it is used most
 often as an exploratory ordination procedure. In such cases it is called
 canonical variates analysis. Many descriptive uses concern resource use and
 the ecological niche. In the literature on wildlife management, there are
 applications that attempt to define the habitat of a species from quantitative
 samples of the vegetation taken in used and unused sites. These topics are
 discussed in later sections.

 Some early exploratory applications of linear discriminant function analysis
 have made important contributions to studies of comparative morphology and
 functional anatomy. A good example is work comparing the shapes of the
 pectoral girdles (clavicles and scapulae) of mammals (8, 157). The variables
 were angles and indices based on the orientation of the attachments of
 muscles, so they were related functionally to the use of the forelimb. In Figure
 2, for primates, the first discriminant function (linear combination of var-
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 MULTIVARIATE ANALYSIS 141

 iables) separates the great apes, which use the forelimbs for hanging, from the

 quadrupedal primates. The second variate expresses an uncorrelated pattern of

 development that separates ground-dwellers from arboreal dwellers, some of

 which are quadrupedal in trees. Convergences between the suborders An-

 thropoidea and Prosimii and radiations within them are demonstrated simulta-

 neously (see 164 and Figure 2), and graded patterns within groups are

 evident. The analysis shows, in a way that could not have been demonstrated

 with univariate methods or with cluster analysis, that complex adaptations of

 biomechanical significance can be usefully viewed as a mosaic of positions

 along a small number of axes of variation. Note that, although the data were

 unlikely to have been normally distributed, the multivariate descriptive
 approach was very helpful, and the 9-variable data set for 25 taxa was

 displayed in two dimensions.

 PRINCIPAL COMPONENTS ANALYSIS Principal components analysis has

 been used widely in all areas of ecology and systematics. It reduces the

 dimensions of a single group of data by producing a smaller number of

 abstract variables (linear combinations of the original variables, principal
 components). The method is based on maximization of the variance of linear

 combinations of variables (Ly). Successive components are constructed to be
 uncorrelated with previous ones. Often most of the variation can be summa-
 rized with only a few components, so data with many variables can be

 Anthropoid

 brachiGtors Prosimian
 \, hangers

 IE 0 0~~~~~~~~~~~

 0 CD~~ ~~~~~0 Pros/rin/w
 An hropoid 0 o quadrupeds
 semibrachiators

 Anthropoid

 quadrupeds

 Canonical Axis I

 Figure 2 Discriminant function analysis of data for the shape of the pectoral girdle (clavicle and

 scapula) of primates by genera (redrawn from Figure 2 of 8).
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 142 JAMES & MCCULLOCH

 displayed effectively on a two- or three-dimensional graph that uses the
 components as axes.

 If the original variables were not measured on the same scale, the analysis

 should be performed on standardized variables by the use of the correlation
 matrix rather than the variance-covariance matrix. Unfortunately, with the

 correlation matrix, the interpretation of "variance explained" or accounted for

 by each component is changed, because all the variables have been standard-

 ized to have a variance of one. With the variance-covariance matrix, the

 eigenvalues and percent of eigenvalues are equal to the variances of the

 components and the percent of variance explained by the components. This

 interpretation does not hold for analyses using the correlation matrix. When

 one is presenting the results of a principal components analysis, it is important

 to give the list of objects and attributes, the eigenvalues, and any coefficients

 that are interpreted and to state whether the analysis was performed on the
 variance-covariance or the correlation matrix.

 Principal components analysis requires no formal assumptions, but in

 practice it is important to be aware of some of its limitations:

 (a) Because it is based on either variances and covariances or correlations,
 principal components analysis is sensitive to outliers, and the coefficients of

 individual components are highly subject to sampling variability. One should

 not put too much emphasis on the exact values of the coefficients.

 (b) When the distribution of ratios or proportions is reasonably near to

 normal, the analysis can be useful (see, e.g., 103, 125, 176), but without

 transformations principal components analysis cannot capture nonlinear rela-

 tionships (135). Investigators whose data consist of counts, ratios, pro-

 portions, or percentages should check to see whether transformations might
 make their distribution more appropriate or whether a nonlinear approach

 would be preferable. Methods have been developed that incorporate the use of
 ratios through log transformations (140-142; see section on morphometrics).

 (c) Mathematically orthogonal (independent) factors need not represent

 independent patterns in nature (14), so biological interpretations should be
 made with care.

 (d) Contrary to some recommendations (101, 191), principal components
 analysis should not be used in a multiple-sample situation, as it then con-

 founds within- and between-group sources of variation (60, 148, 194). In
 studies of geographic variation, a PCA on means by locality will give the
 appropriate data reduction.

 A particularly interesting example of principal components analysis is its

 application to data for the genetic structure of present-day human populations
 in Europe on the basis of a correlation matrix of the frequencies of 39 alleles
 (5, pp. 102-108). A map on which the scores by locality for principal

 component 1 are contoured shows a clear gradient from the Middle East
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 toward northwestern Europe, a pattern highly correlated with archeological

 evidence for the pattern of the ancient transition from hunting and gathering to

 agricultural societies. The analysis is compatible with the authors' demic

 diffusion hypothesis, which states that this major cultural change was associ-

 ated with a population expansion. The genetic structure of living populations

 may still reflect the ancient Neolithic transition. In quantitative genetics,

 principal components analysis has been used to analyze genetic correlations

 during development (40, 205). In morphometrics, comparisons of congeneric

 songbirds in a space defined by principal components (123, 151) have led to

 useful graphic comparisons of complex forms. Little progress would have

 been made with any of these problems by the use of univariate statistics.

 PRINCIPAL COORDINATES ANALYSIS Principal coordinates analysis begins

 with a matrix of distances among objects (159) and, to the extent possible,

 these distances are retained in a space with a reduced number of dimensions.

 It is the same as the technique called classical scaling by psychometricians

 (38, p. 190; 202). If the data are quantitative and the distances are squared

 distances between units in a coordinate space (Euclidean distances), a princi-

 pal coordinates analysis will produce the same result as will a principal

 components analysis on the correlation matrix among the attributes (53).
 In a good example in systematics, a matrix of Roger's genetic distances

 among colonizing populations of common mynahs (Acridotheres tristis) was

 expressed in a two-dimensional graphic space, and the populations in the
 graph were then connected with a minimum spanning tree according to their

 distances in the full dimensional space (16).

 Another useful analysis using principal coordinates analysis was performed

 on a matrix of the number of interspecific contacts among 28 species of

 mosses (53). The procedure allowed investigators to express the associations

 in two dimensions, and the species were seen to occur along a shade-moisture

 gradient in which six habitats were clearly separated.

 FACTOR ANALYSIS Basic computational similarities lead many people to

 regard factor analysis as a category of procedures that includes principal

 components analysis, but historically the two methods have had different

 objectives. Whereas principal components analysis is a descriptive technique

 for dimension reduction and summarization, factor analysis explores the
 resultant multivariate factors-the linear combinations of the original vari-

 ables (89). The computational distinction is that, in factor analysis, the axes

 are rotated until they maximize correlations among the variables, and the

 factors need not be uncorrelated (orthogonal). The usual interpretation of the

 factors is that they "explain" the correlations that have been discovered among

 the original variables and that these factors are real factors in nature. Un-
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 fortunately, factor analysis encourages subjective overinterpretation of the
 data. A reading of the mythical tale about Tom Swift and his electric factor
 analysis machine (6) or Reyment et al (164, pp. 102-106) will persuade most
 people of the dangers of overinterpretation. Some newer versions of factor
 analysis, such as linear structural analysis (223, 224), avoid some of the
 problems of ordinary factor analysis.

 Applications of factor analysis in systematics through 1975 have been
 summarized (31, pp. 135-143), and several examples have appeared in the
 more recent ecological literature (66a, 95, 127, 174). Q-mode factor analysis
 investigates the correlations among objects rather than attributes. It has been
 applied in an exploratory way in numerical taxonomy (185, p. 246) and
 morphometrics (77). The distinction between Q-mode and the more con-
 ventional R-mode analysis has been discussed by Pielou (159).

 CANONICAL CORRELATION Canonical correlation is a generalization of
 correlation and regression that is applicable when the attributes of a single
 group of objects can be divided naturally into two sets (e.g. morphological
 variables for populations of a species at a set of sites and environmental
 variables associated with the same set of sites). Canonical correlation calcu-
 lates overall correlations between the two sets. Linear combinations within

 the first set of variables, Li, and within the second set, L2, are considered
 simultaneously, and the linear combinations that maximize the correlation

 between Li and L2 are selected. Further linear combinations are extracted that
 are uncorrelated with earlier ones. These are uncorrelated between sets except
 for paired linear combinations. Sample sizes that are small in relation to the
 number of variables can lead to instability, and the linear constraints imposed
 by the method can make interpretation difficult (198).

 In spite of its limitations, canonical correlation has been useful in an
 exploratory sense in several ecomorphological and coevolutionary studies.
 One such study showed that the size of the rostrum of aphids increases and
 that of the tarsus decreases in proportion to the degree of pubescence of the
 host plant: these features could easily obscure underlying phylogenetic rela-
 tionships (137). Another study explored the canonical correlation between bee
 and flower morphology by comparing eight species of bees according to their
 choice of flowers (87). Gittins (72) and Smith (183) review other examples.

 MULTIPLE LOGISTIC REGRESSION Multiple logistic regression is a mod-
 ification of multiple regression for the situation in which the response variable
 (Y) is categorical and takes one of only two values, 0 or 1. Multiple logistic
 regression models the log of the odds that Y = 1 (ln (Pr(Y = 1)/Pr(Y = 0))) as
 a linear function of the independent variables, which can be continuous or
 categorical. The method can be used either to predict values of the response
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 variable or to get information about particular X variables and the response

 variable. These are some of the same goals addressed by multiple regression,

 and multiple logistic regression is susceptible to many of the same limitations

 as multiple regression. Inference of causation (e.g. 166) is not justified, and

 stepwise procedures should be avoided. Multiple logistic regression can be

 used as an alternative to two-group linear discriminant function analysis when

 one or more of the variables are not continuous. In this case the response

 variable is group membership, and the explanatory variables are those used to

 discriminate between the two groups. If the data are multivariate normal,

 linear discriminant function analysis is a more efficient procedure (56).

 Multiple logistic regression is used frequently in wildlife studies, but most

 applications (e.g. 108, 115) use stepwise procedures. As discussed pre-

 viously, this is not a reliable way to rank variables by their importance.

 LOGLINEAR MODELS Loglinear analysis is an extension of the familiar

 chi-square analysis of two-way contingency tables (tables of counts or re-

 sponses) for which there are more than two variables. If some of the variables
 are continuous, they must be categorized before loglinear analysis is used.

 The objective is simply to study the relationships among the variables. When

 there is a distinction between the variables, one being a response variable and

 the others explanatory variables, loglinear analysis is not appropriate. Fien-
 berg (64) gives a good introduction to both loglinear models and multiple
 logistic regression.

 There are more examples of loglinear analysis in behavior than there are in

 ecology (63, 94). Examples of its use in ecology include a study of population

 attributes in Snow Geese (Chen caerulescens), including interrelationships

 among parental morphs and the sex and cohort affiliations of the goslings
 (65); a study of interrelations among characteristics of fruits of the entire
 angiosperm tree flora of southern Africa (114); and a defense of the existence

 of a previously described (52) nonrandom pattern for the distribution of birds
 on the islands of the Bismarck Archipelago in the South Pacific Ocean (71).

 One excellent study combined a loglinear analysis with "causal ordering" of
 the variables, thereby injecting some reasonable biological information into
 the model for a competition hierarchy among boreal ants (211). This is a good
 example of how a problem can be carried forward through the research
 process as outlined in Figure 1. The next step would be the design of a critical
 experiment.

 CORRESPONDENCE ANALYSIS, RECIPROCAL AVERAGING, AND DE-

 TRENDED CORRESPONDENCE ANALYSIS Correspondence analysis, which

 is the same as reciprocal averaging, is an ordination procedure that de-

 composes a two-way contingency table of counts of objects and their attri-

This content downloaded from 
������������128.179.152.34 on Tue, 10 Sep 2024 07:18:19 UTC������������� 

All use subject to https://about.jstor.org/terms



 146 JAMES & MCCULLOCH

 butes (97, 98). The data might be the number of times various plant species
 occur on different quadrats, the number of times particular behaviors occur
 among various species, or the number of fin rays on various fish. Scores are
 calculated for each of the row and column categories of the table, and row and
 column eigenvectors show the ways in which the rows and columns deviate
 from what would be expected with independence. These scores are used as
 axes for dimension reduction, and objects and attributes are ordinated simulta-
 neously. Because the analysis uses chi-square distances (81, p. 54) it should
 be based on data of counts. Continuous data such as allele frequencies,
 percentage of ground cover, or percentage of time spent foraging would be
 more efficiently handled by another method.

 An excellent example of correspondence analysis is a summary of data for
 the distribution of 17 genera of antelope in 16 African wildlife areas (82).
 With supplemental information about the vegetation in these areas and about
 the distribution of the same species in the past, the authors were able to make
 inferences about the distribution of habitats in the past. In another example,
 an ordination of 37 lakes in the Adirondack Mountains of northern New York
 was found to be highly correlated with surface lakewater pH (37).

 The term indirect ordination in plant ecology refers to the above class of
 problems, those involving a reduction of the dimensions of a table (matrix) of
 data for the occurrence of a set of species at a set of sites. The data may be
 counts, presence-absence data, or percentages. Because the species are likely
 to be responding in a unimodal way to underlying environmental gradients
 and each species is likely to have an individualistic response, their joint
 distribution is likely to be one of successive replacement (13). Phytosociolo-
 gists have long felt that, in such cases, neither correspondence analysis nor
 any of the other traditional ordination procedures give reasonable results. In
 particular, they complain that an arch or horseshoe effect is evident in the
 pattern of sites in a two-dimensional ordination. Detrended correspondence
 analysis is an ad hoc technique intended to remove this arch (36, 67).
 However, it sometimes fails and can even introduce further distortion (112).
 A recent critique by Wartenberg et al (214) argues that detrending does not
 contribute to the analysis and that the arch is not an anomaly. Rather, it is an
 inherent property of data that represent transitions in species abundances as
 one passes through localities more favorable to some species and later more
 favorable to other species. Not even nonmetric multidimensional scaling (see
 below) can provide satisfactory single-dimensional ordinations in this case
 (214), because the relationships among the variables (species) are both non-
 linear and nonmonotonic. With the indirect ordination problem, the arch in
 two-dimensional plots is to be expected. An unambiguous ordering along the
 arch would be an acceptable result.
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 NONMETRIC MULTIDIMENSIONAL SCALING Nonmetric multidimensional

 scaling is potentially a robust ordination method for reducing the dimensions

 of data without a priori transformations (see, e.g., 59, 112, 136, 154, and

 especially 214). The results are often similar to those of principal components
 analysis.

 Like principal components analysis and principal coordinates analysis, it is

 a scaling technique, but with nonmetric multidimensional scaling, only the

 rank order of interobject distances is used. Thus the objective is to estimate

 nonlinear monotonic relationships. A limitation of both principal coordinates

 analysis and nonmetric multidimensional scaling is that interpretations must

 be qualitative and subjective. Because the axes are not functions of original
 variables, they are not very useful for formulating hypotheses about possible

 causal relationships. In facto with principal coordinates analysis and nonmetric

 multidimensional scaling, variables do not enter into the analysis; only in-

 terobject distances are used.

 CLUSTER ANALYSIS With cluster analysis, objects are placed in groups

 according to a similarity measure and then a grouping algorithm. The reduc-

 tion in the data comes from forming g groups (g-less than n) out of n objects.

 In ecology and systematics, the general term "cluster analysis" usually means
 agglomerative hierarchical cluster analysis. This is a set of methods that starts

 with a pairwise similarity matrix among objects (individuals, sites, pop-

 ulations, taxa; see Section on distances and similarities). The two most similar

 objects are joined into a group, and the similarities of this group to all other

 units are calculated. Repeatedly the two closest groups are combined until

 only a single group remains. The results are usually expressed in a dendro-

 gram, a two-dimensional hierarchical tree diagram representing the complex

 multivariate relationships among the objects.

 The most appropriate choice among the various algorithms for agglomerat-

 ing groups depends upon the type of data and the type of representation that is

 desired. It has become conventional in ecology and systematics to use the

 UPGMA (unweighted pair-group method using averages). This method usual-
 ly distributes the objects into a reasonable number of groups. It calculates

 differences between clusters as the average of all the point-to-point distances

 between a point in one cluster and a point in the other (53, 159, 185). There

 are also algorithms for divisive cluster analysis, in which the whole collection

 of objects is divided and then subdivided (67).

 Cluster analysis is most appropriate for categorical rather than continuous
 data. It is less efficient than principal components analysis or linear dis-

 criminant function analysis when the data are vectors of correlated measure-

 ments. It has been the primary method used in phenetic taxonomy (185), in
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 which many attributes are considered simultaneously and the objects (op-
 erational taxonomic units or OTU's) are clustered according to their overall
 similarity. Cluster analysis produces clusters whether or not natural groupings
 exist, and the results depend on both the similarity measure chosen and the

 algorithm used for clustering. Dendrograms codify relationships that may not
 really be stable in the data. They are frequently overinterpreted in both
 systematics and ecology. Nevertheless, as applied by Sokal et al (186) to the
 hypothetical caminalcules, cluster analysis can be as robust for the reconstruc-

 tion of hierarchical phylogenetic relationships as are cladistic methods. Sys-
 tematics relies heavily on both cluster analysis and cladistics.

 RELATED MATTERS

 Jackknife and Bootstrap

 Jackknifing (146, 148, pp. 31-33) and bootstrapping (57, 58) are statistical
 techniques that resample the data in order to calculate nonparametric es-
 timates of standard errors. They are particularly effective in two situations
 that arise frequently in multivariate analysis:

 (a) in estimation of standard errors for complicated statistics for which the
 sampling variability is not well understood and standard formulas are not
 available (e.g. coefficients of principal components) and

 (b) when the distributional assumptions necessary for the use of standard
 error formulas are not met (e.g. for nonnormal or skewed data).

 Jackknifing and bootstrapping differ in the ways in which they resample the
 data and calculate standard errors. With the typical jackknifing method, each
 of the observations in a sample, which may be multivariate, is left out of the

 data set in turn, and the statistic for which one wants the standard error is
 recalculated. The variability in these recalculated values is used to calculate
 the standard error. Examples would be applications to coefficients of principal
 components in studies of morphometric variation (69).

 With bootstrapping for a single sample, a random sample with replacement
 is drawn from the original sample until it is the same size as the original
 sample. Some of the original observations are likely to occur more than once
 in the bootstrap sample. The statistic is recalculated from this sample. This
 process is repeated, typically 200 or more times, and the standard deviation
 of the recalculated values is used as the standard error. Often, the bootstrap

 can be applied more easily to complicated situations than can the jackknife,
 which is mainly a single-sample technique. Applications of the jackknife
 and bootstrap for estimating population growth rates have been com-

 pared (134).
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 Distances and Similarities

 We use the terms distance and similarity to describe various measures of the

 association between pairs of objects or their attributes. Principal coordinates

 analysis, nonmetric multidimensional scaling, and cluster analysis require the

 input of a matrix of such measures. Cluster analysis operates most naturally

 with similarities, whereas principal coordinates analysis and nonmetric multi-

 dimensional scaling are traditionally described in terms of distances (53).

 With some types of data, such as immunological data (42) or DNA hybridiza-

 tion data (180), laboratory results are in the form of interobject distances so

 they can be entered directly or transformed to similarities as needed. The

 various distance and similarity measures have been compared (53; 149, Ch. 9;

 159). The proper choice of a measure differs according to the form of the data

 (measurements, counts, presence-absence, frequencies), the type of standard-

 ization desired, and whether or not it is appropriate to use metric distances.

 The special problems that pertain to genetic distances have been discussed

 elsewhere (17, 61, 149, 172).

 SPECIAL PROBLEMS IN ECOLOGY AND
 SYSTEMATICS

 We think that the present understanding of multivariate analysis among

 ecologists and systematists is affecting not only how they treat data but how
 research questions are formulated. To illustrate this point, we discuss in this

 section some particular issues in animal community ecology, wildlife man-

 agement, ordination in plant ecology, and morphometrics.

 Resource Use and the Niche

 Soon after it was proposed that the realized ecological niche be viewed as an
 area in a multidimensional resource hyperspace (102), Green (79) used linear

 discriminant function analysis to construct two-dimensional graphic ordina-

 tions of the relationships of bivalve molluscs in lakes in central Canada based

 on physical and chemical properties of the lakes. In many subsequent studies,

 linear discriminant function analysis has proved useful as a descriptive tech-

 nique for summarizing, displaying, and comparing differences in resource use

 among populations (see summaries in 92 and 177).

 Green (79, 80) and others have attempted a statistical test for niche size and
 overlap, but unfortunately, linear discriminant function analysis is not appro-
 priate as a test of niche size. Equality of dispersion matrices is an assumption

 of the statistical model, but at the same time niche size is being defined by a

 characteristic of the dispersion matrix. Having been assumed, it cannot be

 tested (106, pp. 42-44). No one would expect the mean resource use of
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 different species to be exactly the same, so the test is only of whether sample
 sizes in the study are sufficiently large to show these differences (see 169).

 One can obtain data on resource use for each of a set of species and then
 express an assemblage as an ordination of their variation (43, 79, 104, and
 others). Or one can compare used with available resources (34). The former
 approach has been used to study the regeneration niche of plants (70) and to
 analyze interspecific associations in plant populations to get a "plant's eye
 view" of the biotic environment (207). In these cases the data were the species
 of plants that were neighbors of the species of interest. Grubb (84) used this
 general approach to show how species-specific "regeneration niches" vary.
 He suggested that this variation may contribute to the maintenance of the
 coexistence of both common and rare species in a plant community. This is
 the kind of new hypothesis, suggested partly by multivariate work, that could
 be tested with experiments.

 Wildlife Management

 Wildlife biologists have maintained a good dialogue with statisticians about
 multivariate statistical methods (33, 213), and they are aware of the potential
 problems with scale, sampling, and linear methods (21). Also, they have been
 urged to become more experimental (173, 209).

 We will give two examples of troublesome areas. First, in recent years the
 US Fish and Wildlife Service has supported a large program to produce
 predictive models of wildlife-habitat relations (212). Unfortunately, thus far,
 few of these models have achieved high predictive power (18, 29, 138). There
 are several reasons for these problems (130), not all statistical, but the issues
 of sampling procedures, adjustment for nonlinearities, screening variables to
 obtain an uncorrelated set, and the use of stepwise procedures discussed
 above need more attention. Even if predictive models can eventually be
 developed, there is no guarantee that they will be useful for management
 (195). That would require the additional step of causal analysis (see previous
 section).

 An additional problem arises with studies of habitat selection, which in
 wildlife biology usually means the difference between occupied and available
 (unoccupied) habitat for a particular species. A common procedure is to
 measure many variables pertaining to the vegetation and its structure both at
 various localities where a species of interest occurs and at randomly selected
 locations. Then stepwise discriminant function analysis or stepwise multiple
 logistic regression is usually applied to examine differences between occupied
 and unoccupied sites and to rank the habitat variables by their "importance"
 (129, 165 and citations therein, 167). To see the problem with this approach,
 excluding the problems with stepwise procedures, recall that the linear dis-
 criminant function analysis model tests mean differences between groups. If a
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 species were highly narrow (selective) in its habitat use, but the mean were

 the same as that of the average habitat, the species would be judged not to be

 selective by the model (see Species B in Figure 3a and 107). Also, the

 characteristics of the poorly defined "unused" group will always affect the

 result (219). Some of these problems are avoided if sites are located along

 principal component 1 for variation in randomly selected sites (192). An

 alternative is to use the first two principal components (131) for randomly

 selected sites and to depict concentration ellipses (188, pp. 594-601) for

 occupied and random sites on a graph with those components serving as axes

 A.

 D C B A Available habitat
 )'(sampled at randoml)

 Canonical Axis I

 B.

 Available habitat

 /(SapMled at random)

 Principal Component I

 Figure 3a Comparisons of habitat used and habitat available for four hypothetical species (A,
 B, C, D). Four separate two-group linear discriminant function analysis or multiple linear
 regression tests between used and available habitat, one for each species, would test differences
 in means but not variances. A and B would not be different from habitat available; C and D would

 be different. However, this result is misleading because B is as selective (same variance) as D and

 is more selective (lower variance) than C.

 Figure 3b Distribution of randomly selected sites in a bivariate graphic space determined by

 principal components I and II of their habitat characteristics. Concentration ellipses for randomly

 selected sites and for sites that are occupied by the species of interest indicate both the habitat

 used and its variance relative to the total variance.
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 (Figure 3b). This procedure assumes sufficient covariation in the data set for
 randomly selected sites that two reliable axes can be derived (152). One study

 that demonstrated the instability that can result otherwise attributed it to
 interobserver bias (76).

 Ordination in Plant Ecology

 The most general definition of ordination is the reduction of a multivariate

 data set for a set of objects and their attributes so that their pattern can be seen
 on a continuous scale (159). Thus linear discriminant function analysis,
 principal components analysis, principal coordinates analysis, and nonmetric

 multidimensional scaling all qualify as ordination procedures (Table 2).

 Ordination procedures are useful for descriptions of the results of environ-
 mental perturbations and experiments (53), but they are used most often in
 purely observational studies. Several particularly useful reviews of the ordina-

 tion literature are available (53, 112, 159).

 In plant ecology, the term ordination usually refers to analyses in which the

 objects are stands of vegetation at study sites. When the attributes are sets of

 environmental variables, such as soil nutrients or quantitative measures of the

 structure of the vegetation, the objective is usually to find a combination of

 attributes that may suggest an underlying cause for a systematic pattern of the
 distribution of the stands, one not obvious from the geographic distribution of
 the stands. Austin et al (15) present some new extensions of this approach,
 which is called direct ordination or gradient analysis. The more common

 approach in plant ecology is to analyze a matrix of data for the presences and

 absences of species in each stand, or their actual or relative density, biomass,
 or cover (83), as the attributes. This is called indirect ordination. The objec-
 tive is to find a systematic pattern of relationships among the stands based on

 the cooccurrences of their component species. The resultant ordination may
 subsequently be related to environmental factors (14).

 If sites are being ordinated (the usual R-mode analysis), and they have been

 selected at random, inferences about patterns in a larger area are possible. If
 the objects and attributes are exchanged (Q-mode analysis), species are
 ordinated. The biplot (66, 196), a graphical version of principal components
 analysis and correspondence analysis, can provide a simultaneous view of

 ordinations of species and stands. The special problems that arise with
 indirect ordinations when the attributes do not increase or decrease regularly
 through the data are discussed in the section on correspondence analysis.
 Previous criticisms of principal components analysis as an indirect ordination

 technique (e.g. 67) should be reconsidered in the light of these arguments.
 In recent years, principal coordinates analysis and nonmetric multi-

 dimensional scaling have been popular indirect ordination methods. Phytoso-
 ciological studies that use indirect ordinations of stands by their species
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 composition have provided succinct descriptions of stands by their species

 composition. We agree with Harper (88) that if the objective is to determine

 causes, the approach of focusing a study on the population biology of species

 independently and including all interspecific interactions, rather than on

 studying relationships among communities or among stands, should also be

 tried. Experiments and quasiexperiments will be required, and multivariate

 descriptive work at the population level, now a poorly developed field, should

 be important.

 Morphometrics

 Morphometrics is the mathematical description of the form of organisms.

 There are many different kinds of problems in morphometric work, and even

 for a given problem researchers do not always agree about the best methods of

 analysis (46). The literature on multivariate morphometrics includes applica-

 tions in growth (203) and quantitative genetics (118, 208).

 For a long time the appealing graphic technique of the transformation of a

 grid to show its deformation when drawings of two organisms were compared

 (197) did not seem to be amenable to quantification. However, the study of

 geometric transformations of forms has been extended, and several techniques

 have been developed to describe geometric shape change between forms when

 the data are for x,y coordinates for homologous landmarks (23-26, 39, 101,

 158, 184). Size and shape are considered to be latent unmeasured variables,

 defined only after the demonstration of a global transformation between

 forms. Sometimes principal components analysis is used to reduce the di-
 mensions of the result.

 Mapping techniques are another set of methods designed to detect shape

 change among two-dimensional forms (19, 20, 181, 184). In this case the data

 are interpoint distances between two superimposed forms. Fourier analysis,
 another alternative for the description of forms that have fixed outlines, can
 capture shape information without using sets of homologous landmarks (161,

 170). Ferson et al (62) applied linear discriminant function analysis to such

 shape data for two electromorph groups of the mussel Mytilus edulis.

 A more general problem in morphometrics than the quantification of shape

 change among two-dimensional objects is the study of allometry, how shape

 changes with size during growth, or among members of a population, or

 among populations or taxa. Many systematists prefer conventional linear
 methods of multivariate analysis for this problem (148, 164). The data are

 standardized measurements taken on each organism. Atchley et al (12) de-

 scribe the geometric and probabilistic aspects of distances among individuals
 (objects) in multivariate morphometric space.

 If the variation in the original data is predominantly in size, the coefficients

 of the first principal component based on a variance-covariance matrix will be
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 of the same sign, and that component will be highly correlated with the
 original variables. Size can be defined variously as this first component, as
 any one of the original variables, or as any combination of the original
 variables that is biologically reasonable (168). Principal component 1 of the
 correlation matrix has also been used as a size statistic (132). It is often
 correlated with other reasonable size measures, but we do not recommend it
 as a size statistic because differences in scale (size) among the variables have
 been removed by the construction of the correlation matrix. Similarly, a
 proposed method to constrain the first principal component of the correlation
 matrix of the logs of the measurements to be a measure of shape-free size
 (189) does not fully achieve its objective, because the residual variation is not
 interpretable as shape. A complex method proposed for the removal of
 within-group size in a multiple-group principal components analysis (101)
 removes size-related shape as well as size, and the residual variation is not
 necessarily uncorrelated with size (171).

 With a principal components analysis on the variance-covariance matrix of
 log measurements, the relative magnitudes of the coefficients can often
 indicate whether the component contains shape information as well as size
 information (145). Although the first principal component often has been
 designated as a general size factor, it usually contains an unknown amount of
 allometrically related shape variation (68, 93, 140) and interpretation of the
 second component as shape alone is unwise (110, 190). A solution to the
 problem of the study of shape independently of size is to study shape directly,
 as either ratios or proportions, expressed as the differences between the
 logarithms of distances. Of course the proper mathematical treatment of shape
 variables requires great care, but the direct study of shape variables should
 play a central role in morphometric analyses.

 The study of allometry, the covariation of size and shape rather than of size
 and size-free shape or shape orthogonal to size, has been emphasized by
 Mosimann (140). He shows that, if biologically reasonable size and shape
 variables can be defined a priori, and if the data can be assumed to be
 lognormally distributed, substantial mathematical theory is available for
 morphometric studies. The lognormal assumption can be tested (110). Log
 transformations do not always equalize variances (30), but equal variances
 among measurements are by no means required for morphometric analysis
 (143). Thus shape variables, which are dimensionless ratios or proportions
 expressed as differences between logarithms, can be analyzed directly with
 either univariate or multivariate methods (144, 145). In a particularly interest-
 ing example, Darroch & Mosimann (49) study shape directly in a reanalysis
 of Anderson's classic data set for measurements of the flowers of three
 species of iris, originally analyzed by R. A. Fisher. The species are well
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 Table 3 Objectives and limitations of the 12 multivariate procedures used most commonly in ecology and
 systematics, with references.

 Procedure Objectives and Limitations

 1. Multiple Regression Objectives:

 (MR) 1. To predict one variable (Y, response variable) from others (X's,
 explanatory variables)

 2. To investigate the association of an X variable with the Y
 variable in the presence of other variables

 3. If causal models are appropriate (usually with experiments), to
 investigate cause and effect

 Limitations:

 1. Good predictability alone does not allow inference of causation.
 2. Prediction should be carried out only in situations similar to

 those in which the model was derived.

 3. Stepwise regression is usually inappropriate.
 4. The procedure considers only linear functions of those X vari-

 ables analyzed.

 5. The procedure is intended for continuous Y variables whose
 values are independent; errors should be normal and sampling
 random for statistical inference.

 References: 4, 139, 150, 215

 2. Multivariate Analysis of Objective:

 Variance 1. To test for differences among two or more groups of objects
 (MANOVA) according to the means of all the variables (attributes); mainly

 an inferential method

 Limitation:

 1. The procedure is intended for continuous, multivariate normal
 data; each vector of observations must be independent.

 References: 85, 89, 109, 128, 148

 3. Linear Discriminant Function Objectives:

 Analysis 1. To describe multigroup situations; finds linear combinations of
 (LDFA) variables (attributes) with maximal ability to discriminate

 groups of objects; when used to reduce the dimensions of data,
 called canonical variates analysis

 2. A linear discriminant function (equation) can be used to classify
 current observations or to allocate new observations to the
 groups

 Limitations:

 1. The procedure is intended mainly for continuous data; it is
 inefficient for data not well summarized by variances and
 covariances.

 2. With linear discriminant functions, the researcher assumes
 equal variance-covariance matrices (identical orientation and
 size of concentration ellipses).
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 Table 3 (Continued)

 Procedure Objectives and Limitations

 3. Only linear combinations of the variables are considered, so

 analysis will not discover nonlinear combinations.

 4. Groups must be defined a priori.

 References: 89, 109, 148, 220

 4. Principal Components Analysis Objectives:

 (PCA) 1. To describe a matrix of data consisting of objects and attribu

 by reducing its dimensions, usually for graphical display; to fi

 uncorrelated linear combinations of the original variables (atl

 butes) with maximal variance

 2. To suggest new combined variables for further study

 Limitations (see text):

 1. The procedure is intended mainly for continuous data; it

 inefficient for data not well summarized by variances a

 covariances.

 2. The procedure considers only linear combinations of the va

 ables, so it will not discover nonlinear combinations.

 References: 53, 89, 109, 148, 159

 5. Principal Coordinates Analysis Objective:

 (PCO) 1. To describe the data by reducing the dimensions of a distan(
 matrix among objects, usually for graphical display;

 generalization of PCA in which non-Euclidean distances may t

 used

 Limitations:

 1. Results depend on the distance measure chosen.

 2. The procedure produces a new coordinate system but cann(

 indicate combinations of variables (attributes), because only th

 distance matrix among objects is used.

 References: 53, 148, 159

 6. Factor Analysis Objectives:

 (FA) 1. To reproduce a correlation matrix among original variables b
 hypothesizing the existence of one or more underlying factor

 2. To discover underlying structure in a data set by interpreting th

 factors

 Limitations:

 1. Exploratory factor analysis methods are so unstructured tha

 interpretations are subjective.

 2. The procedure is inefficient for data not well summarized b3
 correlations, so it is not ideal for nonlinear relationships ol

 categorical data.

 References: 54, 89, 109, 148
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 Table 3 (Continued)

 Procedure Objectives and Limitations

 7. Canonical Correlation Objective:

 (CANCOR) 1. To analyze the correlation between two groups of variabl

 (attributes) about the same set of objects simultaneously, rath

 than calculating pairwise correlations

 Limitation:

 1. The procedure is inefficient for data not well summarized t

 correlations or linear combinations, so not ideal for nonline

 relationships or categorical data.

 References: 54, 89, 109, 148

 8. Multiple Logistic Regression Objectives:

 (MLR) 1. To model a dichotomous (0,1) variable (Y, response variabli
 as a function of other categorical or continuous variables (X':

 explanatory variables), which may be categorical or continuot

 2. To investigate the association of an X variable with the

 variable in the presence of other X variables

 3. If causal models are appropriate (usually with experiments), I

 investigate cause and effect

 4. To serve as an alternative to two group linear discriminai

 function analysis when the variables are categorical or otherwis

 not appropriate for DFA

 Limitations:

 1. Good predictability alone does not allow inference of causatior

 2. Stepwise logistic regression is usually inappropriate.

 3. The procedure considers only linear functions of those X vari

 ables analyzed.

 4. Prediction should be carried out only in situations similar t

 those in which the model was estimated.

 References: 64, 148

 9. Loglinear Models Objective:

 (LOGL) 1. To investigate the joint relationships among categorical vari

 ables

 Limitations:

 1. Variables must be categorical or made to be categorical.

 2. When there are response and explanatory variables, technique

 like logistic regression may be more appropriate.

 References: 64, 148

 10. Correspondence Analysis Objectives:

 (COA) 1. To describe data consisting of counts by reducing the number o

 dimensions, usually for graphical display

 2. To suggest new combined variables for further study
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 Table 3 (Continued)

 Procedure Objectives and Limitations

 Limitations:

 1. The procedure is inefficient for data that are not counts becai

 they will not be well described by chi square distances.

 2. The procedure is not suitable for nonlinear data; it will

 discover nonlinear relationships.

 References: 81, 120, 159

 11. Nonmetric Multidimensional Objective:

 Scaling 1. To describe data by reducing the number of dimensions, usm
 (NMDS) for graphical display; to discover nonlinear relationships

 Limitation:

 1. The procedure uses rank order information only.

 References: 53, 54, 116, 148

 12. Cluster Analysis Objectives:

 (CLUS) 1. To classify groups of objects judged to be similar according I
 distance or similarity measure

 2. To reduce consideration of n objects to g (g less than n) gro

 of objects

 Limitations:

 1. Results depend on the distance measure chosen.

 2. Results depend on the algorithm chosen for forming clustc
 References: 53, 54, 75, 148, 159

 discriminated by shape alone. Although these methods were developed for
 morphometric studies, they are applicable in other situations (e.g. 22). We
 think that authors who have objected to the direct use of ratios in morphomet-
 ric studies (3, 9-11, 101, 160, 164, 199) have been overlooking some
 powerful techniques for the direct study of shape and its covariation with size.

 CONCLUSIONS

 Ecologists and systematists need multivariate analysis to study the joint
 relationships of variables. That the methods are primarily descriptive in nature
 is not necessarily a disadvantage. Statistical inference may be possible, but,
 as with univariate analysis, without experiments even the most insightful
 applications can only hint at roles, processes, causes, influences, and strat-
 egies. When experiments are not feasible, quasiexperimental designs, which
 involve paired comparisons or time-series analysis, may be able to provide
 weak inferences about causes. As with univariate work, statistical inference

 (tests and p-values) should be reported only if a probability sample is taken
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 from a well-defined larger population and if assumptions of the methods are
 met. Interpretations of multivariate analyses should be restricted to the joint
 relationships of variables, and stepwise procedures should be avoided.

 We did not expect our review to have such a negative flavor, but we are
 forced to agree in part with the criticism that multivariate methods have
 opened a Pandora's box. The problem is at least partly attributable to a history
 of cavalier applications and interpretations. We do not think that the methods
 are a panacea for data analysts, but we believe that sensitive applications
 combined with focus on natural biological units, modelling, and an ex-
 perimental approach to the analysis of causes would be a step forward. In
 morphometrics, few workers are taking advantage of some precise mathema-
 tical methods for the definition of size and shape and their covariation.
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