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INTRODUCTION

Multivariate analysis provides statistical methods for study of the joint rela-
tionships of variables in data that contain intercorrelations. Because several
variables can be considered simultaneously, interpretations can be made that
are not possible with univariate statistics. Applications are now common in
medicine (117), agriculture (218), geology (50), the social sciences (7, 178,
193), and other disciplines. The opportunity for succinct summaries of large
data sets, especially in the exploratory stages of an investigation, has contrib-
uted to an increasing interest in multivariate methods.

The first applications of multivariate analysis in ecology and systematics
were in plant ecology (54, 222) and numerical taxonomy (187) more than 30
years ago. In our survey of the literature, we found 20 major summaries of
recent applications. Between 1978 and 1988, books, proceedings of sym-
posia, and reviews treated applications in ecology (73, 126, 155, 156),
ordination and classification (13, 53, 67, 78, 81, 83, 90, 113, 121, 122, 159),
wildlife biology (33, 213), systematics (148), and morphometrics (45, 164,
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130 JAMES & MCCULLOCH

Table 1 Applications of multivariate analysis in seven jour-
nals, 1983-1988. In descending order of the number of applica-
tions, the journals are Ecology, 128; Oecologia, 80; Journal of
Wildlife Management, 76; Evolution, 72; Systematic Zoology,
55; Oikos, 41; Journal of Ecology, 35; and Taxon, 27.

Principal components analysis 119
Linear discriminant function analysis 100
Cluster analysis 86
Multiple regression 75
Multivariate analysis of variance 32
Correspondence analysis 32
Principal coordinates analysis 15
Factor analysis 15
Canonical correlation 13
Loglinear models 12
Nonmetric multidimensional scaling 8
Multiple logistic regression 7

514

200). For the six-year period from 1983 to 1988 (Table 1), we found 514
applications in seven journals.

Clearly, it is no longer possible to gain a full understanding of ecology and
systematics without some knowledge of multivariate analysis. Or, con-
trariwise, misunderstanding of the methods can inhibit advancement of the
science (96).

Because we found misapplications and misinterpretations in our survey of
recent journals, we decided to organize this review in a way that would
emphasize the objectives and limitations of each of the 12 methods in
common use (Table 2; Table 3 at end of chapter). Several books are available
that give full explanations of the methods for biologists (53, 128, 148, 159,
164). In Table 3, we give specific references for each method. In the text we
give examples of appropriate applications, and we emphasize those that led to
interpretations that would not have been possible with univariate methods.

The methods can be useful at various stages of scientific inquiry (Figure 1).
Rather than classifying multivariate methods as descriptive or confirmatory,
we prefer to consider them all descriptive. Given appropriate sampling, 6 of
the 12 methods can also be confirmatory (see inference in Table 2). Digby &
Kempton (53) give numerous examples of applications that summarize the
results of field experiments. Most often the methods are used in an explora-
tory sense, early in an investigation, when questions are still imprecise. This
exploratory stage can be a very creative part of scientific work (206, pp.
23-24). It can suggest causes, which can then be formulated into research
hypotheses and causal models. According to Hanson (86), by the time the
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MULTIVARIATE ANALYSIS 131

Table 2 General objectives and limitations of multivariate analysis

Objectives Codes to Procedures (see Table 3)

1. Description All

2. Prediction MR. LDFA, MLR

3. Inference MR, MANOVA, LDFA, FA, MLR, LOGL

4. Allocation LDFA

5. Classification LDFA, MLR, CLUS

6. Ordination LDFA, PCA, PCO, FA, CANCOR, COA, NMDS
Limitations:

1. The procedures are correlative only; they can suggest causes but derived
factors (linear combinations of variables) and clusters do not necessarily
reflect biological factors or clusters in nature.

2. Because patterns may have arisen by chance, their stability should be
checked with multiple samples, null models, bootstrap, or jackknife.

3. Interpretation is restricted by assumptions.

4. Automatic stepwise procedures are not reliable for finding the relative
importance of variables and should probably not be used at all.

theoretical hypothesis test has been defined, much of the original thinking is
over. In the general scientific procedure, descriptive work, including descrip-
tive applications of multivariate analysis, should not be relegated to a status
secondary to that of experiments (28). Instead it should be refined so that
research can proceed as a combination of description, modelling, and ex-
perimentation at various scales (106).

The opportunities for the misuse of multivariate methods are great. One
reason we use the analogy of Pandora’s box is that judgments about the results
based on their interpretability can be dangerously close to circular reasoning
(124, pp. 134-136; 179). The greatest danger of all is of leaping directly from
the exploratory stage, or even from statistical tests based on descriptive
models, to conclusions about causes, when no form of experimental design
figured in the analysis. This problem is partly attributable to semantic differ-
ences between statistical and biological terminology. Statistical usage of
terms like “effect” or “explanatory variable” is not meant to imply causation,
so the use of terms like “effects” and “roles” in titles of papers that report
descriptive research (with or without statistical inference) is misleading.
Partial correlations and multiple regressions are often claimed to have sorted
out alternative processes, even though such conclusions are not justified. “If
. . . we choose a group of . . . phenomena with no antecedent knowledge of the
causation . . . among them, then the calculation of correlation coefficients,
total or partial, will not advance us a step toward evaluating the importance of
the causes at work” (R. A. Fisher 1946, as quoted in reference 54, p. 432).
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OBSERVATIONS
EXPLORATORY
DATA
ANALYSIS
DESCRIPTIVE INFORMATION
MODEL* ABOUT CAUSES
CAUSAL
MODEL
OBSERVATIONAL STUDY CONTROLLED LABORATORY
USING ORFIELD
QUASIEXPERIMENTAL DESIGN* EXPERIMENT*

Figure 1 General research procedure showing stages (double boxes) at which exploratory and
inferential* (confirmatory) multivariate analysis may be appropriate (modified from 106).

Although this idea is familiar to biologists, it seems to get lost when they enter
the realm of multivariate work.

The objective of the present review is to help the researcher navigate
between the Scylla of oversimplification, such as describing complex patterns
with univariate analyses (147), and the Charybdis of assuming that patterns in
data necessarily reflect factors in nature, that they have a common cause, or,
worse, that statistical methods alone have sorted out multiple causes.

Present understanding of the role of multivariate analysis in research affects
not only the way problems are analyzed but also how they are perceived. We
discuss three particularly controversial topics, and we realize that not all
researchers will agree with our positions. The first is the often-cited “prob-
lem” of multicollinearity, the idea that, if correlations among variables could
be removed, one could sort out their relative importance with multivariate
analysis. The problem here is a confusion between the objectives of the
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MULTIVARIATE ANALYSIS 133

method and the objectives of the researcher. Second, in the sections on
analysis and ordination in plant ecology, we discuss the special problems that
arise with indirect ordinations, such as the cases where the data are the
occurrences of species in stands of vegetation. The arch pattern frequently
seen in bivariate plots is not an artifact of the analysis; it is to be expected.
Third, in the section on morphometrics, we explain why we argue that shape
variables, which we define as ratios and proportions, should be studied
directly. Of course the special properties of such variables require attention.
We do not treat cladistics or the various software packages that perform
multivariate analyses. In the last section, we give examples of how some
basic concepts in ecology, wildlife management, and morphometrics are
affected by the ways in which multivariate methods are being applied.

SUMMARY OF METHODS: OBJECTIVES
LIMITATIONS, EXAMPLES

Overview

It is helpful to think of multivariate problems as studies of populations of
objects about which information for more than one attribute is available (48,
169). One can describe the pattern of relationships among the objects (in-
dividuals, sampling units, quadrats, taxa) by ordination (reduction of a matrix
of distances or similarities among the attributes or among the objects to one or
a few dimensions) or by cluster analysis (classification of the objects into
hierarchical categories on the basis of a matrix of inter-object similarities). In
the former case, the objects are usually displayed in a graphic space in which
the axes are gradients of combinations of the attributes. Principal components
analysis is an ordination procedure of this type. It uses eigenstructure analysis
of a correlation matrix or a variance-covariance matrix among the attributes.
Principal coordinates analysis is a more general procedure in the sense that it
starts with any type of distance matrix for distances among objects. Both
principal components analysis and principal coordinates analysis are types of
multidimensional scaling. Nonmetric multidimensional scaling uses the ranks
of distances among objects, rather than the distances themselves. Correspon-
dence analysis is an ordination procedure that is most appropriate for data
consisting of counts (contingency tables). In this case, the distinction between
objects and attributes is less relevant because they are ordinated simultaneous-
ly. Factor analysis is similar to principal components analysis in that it uses
eigenstructure analysis, usually of a correlation matrix among attributes. It
emphasizes the analysis of relationships among the attributes. Canonical
correlation reduces the dimensions of two sets of attributes about the same set
of objects so that their joint relationships can be studied.

When the objects fall into two or more groups, defined a priori, the
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134 JAMES & MCCULLOCH

problem is frequently to describe the differences among the groups on the
basis of a set of attributes. Multivariate analysis of variance, which is often
used in the analysis of experiments, can be used to test for differences among
groups. Linear discriminant function analysis describes which of the attributes
contribute most to the differences between the groups. When it is used as an
exploratory ordination procedure, to reduce multigroup data to fewer di-
mensions on the basis of a set of attributes, it is called canonical variates
analysis. Another objective of linear discriminant function analysis, used less
frequently in ecology and systematics, is to assign new objects to previously
separated groups. Multiple logistic regression permits the prediction of a
binary (0, 1) attribute from a set of other attributes, which may be categorical
or continuous. Its counterpart for approximately normally distributed data is
multiple regression. Loglinear analysis can reveal the relationships among
categorical variables. It assumes a multiplicative model, so it is linear after
logarithms are taken.

Procedures 1-7 in Table 3 use linear combinations of the variables in some
fashion. They are only efficient with continuous data. If the variables being
analyzed are denoted by X, X5, . . . , X, then all the linear techniques find
linear (additive) combinations of the variables that can be represented by:

Lx=b1X1+b2X2+...+kak 1.

where by, by, . . . , b, represent coefficients determined from the data. The
way the coefficients are found is governed by the method used. For example,
in principal components analysis they are chosen to make the variance L as
large as possible, subject to the constraint that the sum of squares of the b’s
must be equal to one.

Linear methods are appropriate when the researcher wants to interpret
optimal linear combinations of variables (e.g. principal components in prin-
cipal components analysis, factors in factor analysis, and discriminant func-
tions in linear discriminant function analysis).

The researcher applying linear methods usually assumes that the values of
the variables increase or decrease regularly and that there are no interactions.
If this is not the case, one should transform the variables to make them at least
approximately linear (55). For example, a quadratic model can be constructed
with X; as a variable W, and X, as W, squared, or interactions can be
included, in which X5 is W, times W, (104, 133). For some of the techniques
the analysis of residuals can uncover the need for the inclusion of nonlinear
terms or interactions. In multivariate analysis of variance, the nonlinearities
appear in the interaction terms and may reveal biotic interactions in ex-
perimental results (see below). Presence-absence data, categorical data, and
ranks are usually more efficiently handled with nonlinear models. It seldom
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MULTIVARIATE ANALYSIS 135

makes sense to calculate weighted averages from these types of data, as one
does with the linear methods. With nonlinear methods, the variables are
combined with nonlinear functions.

The coefficient of an individual variable represents the contribution of that
variable to the linear combination. Its value depends on which other variables
are included in the analysis. If a different set of variables is included, the
coefficients are expected to be different, the “bouncing betas” of Boyce (27).

The term “loading,” often encountered in multivariate analysis, refers to
the correlation of an original variable with one of the linear combinations
constructed by the analysis. It tells how well a single variable could substitute
for the linear combination if one had to make do with that single variable (89,
p. 221). High positive or negative loadings are useful in the general in-
terpretation of factors. However, the signs and magnitudes of the coefficients
should only be interpreted jointly; it is their linear combination, not the
correlations with the original variables (cf 220), that must be used to gain a
proper multivariate interpretation. Rencher (162) shows how, in linear dis-
criminant function analysis, the correlations with the original variables (load-
ings) lead one back to purely univariate considerations. This distinction is not
important with principal components analysis because the correlations are
multiples of the coefficients and their interpretations are equivalent.

Unfortunately, in observational studies, it is often difficult to provide clear
descriptions of the meanings of individual coefficients. Mosteller & Tukey
(146, p. 394) discuss the important idea of the construction of combinations
of variables by judgment, in the context of multiple regression.

Some of the problems we found in our literature survey apply to univariate
as well as to multivariate statistics. The first one is that statistical inference is
being used in many cases when its use is not justified. The “alpha-level
mindset” of editors leads them to expect all statements to be tested at the 0.05
level of probability (175). As a result, our journals are decorated with galaxies
of misplaced stars. What the authors and editors have forgotten is that
statistical inference, whether multivariate or univariate, pertains to general-
ization to other cases.

Confirmatory conclusions are only justified with a statistical technique if
the study was conducted with appropriate sampling. It is the way the data
were gathered, or how an experiment was conducted, that justifies inferences
using statistical methods, not the technique itself. Inferences are justified only
if the data can be regarded as a probability sample from a well-defined larger
population. When this is not the case, probability values should not be
reported, and the conclusions drawn should extend only to the data at hand.

The tendency to perform statistical tests when they are not justified is
related to the even more general problem of when generalizations are jus-
tified. There are too many cases in which results of analyses of single study
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136 JAMES & MCCULLOCH

plots or single species are assumed to be representative of those for large areas
or many species. More caution is warranted even in cases of widespread
sampling. For example, if several vegetation variables are measured at a
series of regularly spaced sites along an altitudinal gradient, the correlations
among the variables will show their joint relationship to altitude, but these
will differ from the correlations that would have been found had the sites been
randomly selected. A principal components analysis based on the former
correlations should not be interpreted as giving information about sites in
general, and only limited interpretations are possible, even in an exploratory
sense.

A further extension of the tendency to overinterpret data is the unjustified
assignment of causation in the absence of experimentation. Papers that report
the use of stepwise procedures (automatic variable selection techniques) with
multiple regression, multivariate analysis of variance, linear discriminant
function analysis, and multiple logistic regression to assess which variables
are important are examples of the disastrous consequences of this tendency.
Such judgments about the importance of variables usually carry implications
about causal relationships. In the section on multiple regression, we defend
our position that stepwise procedures should not be used at all.

In summary, when faced with data that contain sets of correlated variables,
ecologists and systematists may prefer to interpret each variable separately. In
such cases univariate methods accompanied by Bonferroni-adjusted tests (89,
especially pp. 7-9, but see index; 150) may be appropriate. Often, however,
the joint consideration of the variables can provide stronger conclusions than
are attainable from sets of single comparisons. With proper attention to the
complexities of interpretation, combinations of variables (components, fac-
tors, etc) can be meaningful. Linear methods of multivariate analysis (Table
3, 1-7) should be used when the researcher wants to interpret optimal linear
combinations of variables. Otherwise, nonlinear methods (Table 3, 8-12) are
more appropriate and usually more powerful. Multivariate statistics, model-
ling, and biological knowledge can be used in combination and may help the
researcher design a crucial experiment (Figure 1).

Review of Methods

Our survey of the literature revealed that the methods most commonly applied
in ecology were principal components analysis, linear discriminant function
analysis, and multiple regression; in systematics the order of use was cluster
analysis, principal components analysis, and linear discriminant function
analysis. Therefore in this section we devote most of the space to these
methods.

We have included both multiple regression and multiple logistic regression
even though many statisticians would not classify these methods as multi-
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MULTIVARIATE ANALYSIS 137

variate, a term they use only where the “response” (Y) variable rather than the
“explanatory” (X) variable is multivariate. We acknowledge that, in multiple
regression and multiple logistic regression, the outcome variable is univariate,
but we include the topics here because many methodological issues in multi-
ple regression carry forward to multivariate generalizations. The intercorrela-
tions among the explanatory variables (X’s) in multiple regression are impor-
tant to proper interpretation of the results.

MULTIPLE REGRESSION The objective of multiple regression should be
either to find an equation that predicts the response variable or to interpret the
coefficients as associations of one of the explanatory variables in the presence
of the other explanatory variables. The coefficients (b, b, . . . , by) in
Equation 1 have been determined either to maximize the correlation between
Y (the response variable) and L (the linear combination of explanatory var-
iables) or equivalently to minimize the sum of squared differences between Y
and L. Only in experiments where the X’s are controlled by the investigator
can the individual coefficients of a multiple regression equation be interpreted
as the effect of each variable on the Y variable while the others are held
constant, and only when a well-defined population of interest has been
identified and randomly sampled can multiple regression provide statistically
reliable predictions. Unfortunately, these conditions are rarely met. “Valida-
tion” with new, randomly collected data will be successful only when the
original sample is typical of the new conditions under which validation has
taken place, and this is usually a matter of guesswork.

Many workers think that, if one could eliminate multicollinearity (in-
tercorrelations) among the X variables in a descriptive study, the predictive
power and the interpretability of analyses would be improved (35). This belief
has led to the practice of (a) screening large sets of redundant variables and
removing all but one of each highly correlated set and then () entering the
reduced set into a stepwise multivariate procedure, with the hope that the
variables will be ranked by their importance. Statisticians have pointed out
many times that this is unlikely to be the case. The procedure of screening
variables may improve prediction, but it may also eliminate variables that are
in fact important, and stepwise procedures are not intended to rank variables
by their importance.

Many authors have documented the folly of using stepwise procedures with
any multivariate method (99; 100; 139, pp. 344-357, 360-361; 215, p. 177,
Fig. 8.1, pp. 195-196). One example is the reanalysis by Cochran of data
from a study of the relationship between variation in sets of weather variables
and the number of noctuid moths caught per night in a light trap. Stepwise
forward and backward variable selection procedures did not give the same
best variable as a predictor or even the same two or three variables as the best

This content downloaded from
128.179.152.34 on Tue, 10 Sep 2024 07:18:19 UTC
All use subject to https://about.jstor.org/terms



138 JAMES & MCCULLOCH

subsets of predictors (51). In another case, an investigator analyzing 13 out of
21 attributes of 155 cases of viral hepatitis used the bootstrap procedure to
obtain repeated samples of the 155 cases. Of 100 stepwise regressions, only
one led to the selection of the same four variables chosen by the initial
stepwise regression, and it included a fifth one in addition (139, pp. 356
357). Clearly, stepwise regression is not able to select from a set of variables
those that are most influential.

Wilkinson (217, p. 481) used strong language to defend his refusal to
include a stepwise regression program in a recent edition of the SYSTAT
manual: “For a given data set, an automatic stepwise program cannot neces-
sarily find a) the best fitting model, b) the real model, or c) alternative
plausible models. Furthermore, the order variables enter or leave a stepwise
program is usually of no theoretical significance.”

The best that can be hoped for, when an automatic selection method like
stepwise multiple regression is used, is selection of a subset of the variables
that does an adequate job of prediction (188, p. 668). However, this predic-
tion can be achieved more reasonably without the stepwise procedure. The
most reasonable solution for observational studies that have a battery of
explanatory variables is to combine them into biologically meaningful groups
(146), then to examine all possible subsets of regressions. The results may
provide useful overall predictions, but even in this case they should not be
used to rank variables by their importance. Thus, Abramsky et al (1) need not
worry about field tests purported to discover interspecific competition from
the values of coefficients in multiple regression equations. The method is
statistically inappropriate for this purpose.

Progress toward assessing the relative importance of variables can be made
by modelling, a subjective step that incorporates subject-matter knowledge
into the analysis. Interactive methods (96) and methods of guided selection
among candidate models (4) can incorporate reasonable biological informa-
tion into the analysis (see, e.g., 37, 153, 182). This step can help develop
causal hypotheses, but the testing still requires some form of experiment and
outside knowledge. When controlled experiments are not feasible, quasiex-
perimental designs can be used to provide weak inferences about causes (32,
41, 44, 106, 111). Such designs involve either blocking, time-series models,
or both.

We regret to report that, in our survey of recent journals in ecology and
systematics, we could not find a single application of multiple regression to
recommend as a good example. Even recent attempts to measure natural
selection in the wild by means of multiple regression (119) are susceptible to
the criticisms mentioned above (47, 136a). Use of a path-analytic model has
been suggested as a means of adding biological information to the analysis
(47, 136a), but even here, because it is not possible to break correlations
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MULTIVARIATE ANALYSIS 139

among characters with experiments, it is not possible to discover whether
selection is acting on individual characters. For an example of a proper
application of multiple regression and subsequent discussion, see Henderson
& Velleman (96) and Aitkin & Francis (2).

MULTIVARIATE ANALYSIS OF VARIANCE Multivariate analysis of variance
is an inferential procedure for testing differences among groups according to
the means of all the variables. It is like the usual analysis of variance except
that there are multiple response variables (Yy, Y5, . . . , Y,). The relationship
with univariate analysis of variance can be understood if MANOVA is viewed
as an analysis of linear combinations of the response variables,

Ly=b1Y1+b2Y2+...+kak 2.

L, is now a single, combined, response variable. A univariate analysis of
variance can be performed on L, and an F-statistic calculated to test for
differences between groups. One of the suggested tests in MANOVA (Roy’s
maximum root test criterion) is the same as choosing the b’s in equation (2) to
maximize the F-statistic and then using the maximized value of F as a new
test statistic. MANOVA requires that each vector of Y’s should be in-
dependent and that they follow a distribution that is approximately muiti-
variate normal. A good nonmathematical introduction is available (85).

In a good example of the application of multivariate analysis of variance in
ecology, a manipulative factorial experiment designed to determine processes
that affect the numbers of tadpoles of several species of amphibians was
conducted in artificial ponds. Predation, competition, and water level were
the explanatory variables and were regulated (216). The model incorporated
the explanatory variables both additively and as interactions with other vari-
ables. In one case of interaction between predation and competition, predation
on newts (Notophthalmus) reduced the effects of competition as the pond
dried up, allowing increased survival of the toad Bufo americanus. This result
would not have been apparent from univariate analyses by species. For an
application in a more evolutionary context, see Travis (204). In this paper, he
used MANOVA to show that families of tadpoles grew at different rates but
were not differentially susceptible to the inhibitory effects of population
density.

LINEAR DISCRIMINANT FUNCTION ANALYSIS Linear discriminant function
analysis can be regarded as a descriptive version of multivariate analysis of
variance for two or more groups. The objective is to find linear combinations
of the variables that separate the groups. In Equation 2 above they give rise to
the largest F-statistics. The researcher wants to understand L, and what
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140 JAMES & MCCULLOCH

determines the groups to which specific data vectors belong. Linear dis-
criminant function analysis does not formally require any assumptions, but it
is the best technique for multivariate normal data when variances and covari-
ances are the same in each group. Then the optimal combination of variables
is linear. If the attributes are nonlinearly related, or the data are otherwise not
multivariate normal (for example, categorical data), variances and covari-
ances are poor summary statistics, and the technique is inefficient. An
appropriate alternative, when there are only two groups, is multiple logistic
regression (see below).

In a summary of applications of linear discriminant function analysis in
ecology, Williams (220) warns that more attention should be paid to the
assumption of equality of dispersion within groups. He also emphasizes the
special problems that arise if the sample sizes are small or different (see also
34, 201, 210). Williams & Titus (221) recommend that group size be three
times the number of variables, but this criterion is arbitrary. Discriminant
function axes can be interpreted in either a univariate or a multivariate way
(see overview). Again, the elimination of variables before the analysis and
stepwise procedures should be avoided (163).

When the data are plotted on axes defined by the discriminant functions,
the distances (Mahalanobis D?) are measured in relation to variances and
covariances. Population means may be judged far apart in cases in which the
groups are similar except in one small but statistically highly significant way.
This is not true of Euclidean distances in principal components space, so the
two types of distances should not be interpreted in the same way (106, cf 34).
Graphic presentation of the results can be clarified by the use of either
concentration ellipses (43) around groups or confidence ellipses (105) around
means of groups (188, pp. 594-601).

Linear discriminant function analysis can be used to summarize the results
of an experiment (e.g. 91), but in both ecology and systematics it is used most
often as an exploratory ordination procedure. In such cases it is called
canonical variates analysis. Many descriptive uses concern resource use and
the ecological niche. In the literature on wildlife management, there are
applications that attempt to define the habitat of a species from quantitative
samples of the vegetation taken in used and unused sites. These topics are
discussed in later sections.

Some early exploratory applications of linear discriminant function analysis
have made important contributions to studies of comparative morphology and
functional anatomy. A good example is work comparing the shapes of the
pectoral girdles (clavicles and scapulae) of mammals (8, 157). The variables
were angles and indices based on the orientation of the attachments of
muscles, so they were related functionally to the use of the forelimb. In Figure
2, for primates, the first discriminant function (linear combination of var-
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MULTIVARIATE ANALYSIS 141

iables) separates the great apes, which use the forelimbs for hanging, from the
quadrupedal primates. The second variate expresses an uncorrelated pattern of
development that separates ground-dwellers from arboreal dwellers, some of
which are quadrupedal in trees. Convergences between the suborders An-
thropoidea and Prosimii and radiations within them are demonstrated simulta-
neously (see 164 and Figure 2), and graded patterns within groups are
evident. The analysis shows, in a way that could not have been demonstrated
with univariate methods or with cluster analysis, that complex adaptations of
biomechanical significance can be usefully viewed as a mosaic of positions
along a small number of axes of variation. Note that, although the data were
unlikely to have been normally distributed, the multivariate descriptive
approach was very helpful, and the 9-variable data set for 25 taxa was
displayed in two dimensions.

PRINCIPAL COMPONENTS ANALYSIS Principal components analysis has
been used widely in all areas of ecology and systematics. It reduces the
dimensions of a single group of data by producing a smaller number of
abstract variables (linear combinations of the original variables, principal
components). The method is based on maximization of the variance of linear
combinations of variables (L,). Successive components are constructed to be
uncorrelated with previous ones. Often most of the variation can be summa-
rized with only a few components, so data with many variables can be

Anthropord

brachiators Prosimian

hangers

Prosimian

Anthropoid quadrupeds
semibrachiators
&\ Anthropoid
quadrupeds

Canonical Axis I

Figure 2 Discriminant function analysis of data for the shape of the pectoral girdle (clavicle and
scapula) of primates by genera (redrawn from Figure 2 of 8).
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displayed effectively on a two- or three-dimensional graph that uses the
components as axes.

If the original variables were not measured on the same scale, the analysis
should be performed on standardized variables by the use of the correlation
matrix rather than the variance-covariance matrix. Unfortunately, with the
correlation matrix, the interpretation of “variance explained” or accounted for
by each component is changed, because all the variables have been standard-
ized to have a variance of one. With the variance-covariance matrix, the
eigenvalues and percent of eigenvalues are equal to the variances of the
components and the percent of variance explained by the components. This
interpretation does not hold for analyses using the correlation matrix. When
one is presenting the results of a principal components analysis, it is important
to give the list of objects and attributes, the eigenvalues, and any coefficients
that are interpreted and to state whether the analysis was performed on the
variance-covariance or the correlation matrix.

Principal components analysis requires no formal assumptions, but in
practice it is important to be aware of some of its limitations:

(a) Because it is based on either variances and covariances or correlations,
principal components analysis is sensitive to outliers, and the coefficients of
individual components are highly subject to sampling variability. One should
not put too much emphasis on the exact values of the coefficients.

(b) When the distribution of ratios or proportions is reasonably near to
normal, the analysis can be useful (see, e.g., 103, 125, 176), but without
transformations principal components analysis cannot capture nonlinear rela-
tionships (135). Investigators whose data consist of counts, ratios, pro-
portions, or percentages should check to see whether transformations might
make their distribution more appropriate or whether a nonlinear approach
would be preferable. Methods have been developed that incorporate the use of
ratios through log transformations (140-142; see section on morphometrics).

(c) Mathematically orthogonal (independent) factors need not represent
independent patterns in nature (14), so biological interpretations should be
made with care.

(d) Contrary to some recommendations (101, 191), principal components
analysis should not be used in a multiple-sample situation, as it then con-
founds within- and between-group sources of variation (60, 148, 194). In
studies of geographic variation, a PCA on means by locality will give the
appropriate data reduction.

A particularly interesting example of principal components analysis is its
application to data for the genetic structure of present-day human populations
in Europe on the basis of a correlation matrix of the frequencies of 39 alleles
(5, pp- 102-108). A map on which the scores by locality for principal
component 1 are contoured shows a clear gradient from the Middle East
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toward northwestern Europe, a pattern highly correlated with archeological
evidence for the pattern of the ancient transition from hunting and gathering to
agricultural societies. The analysis is compatible with the authors’ demic
diffusion hypothesis, which states that this major cultural change was associ-
ated with a population expansion. The genetic structure of living populations
may still reflect the ancient Neolithic transition. In quantitative genetics,
principal components analysis has been used to analyze genetic correlations
during development (40, 205). In morphometrics, comparisons of congeneric
songbirds in a space defined by principal components (123, 151) have led to
useful graphic comparisons of complex forms. Little progress would have
been made with any of these problems by the use of univariate statistics.

PRINCIPAL COORDINATES ANALYSIS Principal coordinates analysis begins
with a matrix of distances among objects (159) and, to the extent possible,
these distances are retained in a space with a reduced number of dimensions.
It is the same as the technique called classical scaling by psychometricians
(38, p. 190; 202). If the data are quantitative and the distances are squared
distances between units in a coordinate space (Euclidean distances), a princi-
pal coordinates analysis will produce the same result as will a principal
components analysis on the correlation matrix among the attributes (53).

In a good example in systematics, a matrix of Roger’s genetic distances
among colonizing populations of common mynahs (Acridotheres tristis) was
expressed in a two-dimensional graphic space, and the populations in the
graph were then connected with a minimum spanning tree according to their
distances in the full dimensional space (16).

Another useful analysis using principal coordinates analysis was performed
on a matrix of the number of interspecific contacts among 28 species of
mosses (53). The procedure allowed investigators to express the associations
in two dimensions, and the species were seen to occur along a shade-moisture
gradient in which six habitats were clearly separated.

FACTOR ANALYSIS Basic computational similarities lead many people to
regard factor analysis as a category of procedures that includes principal
components analysis, but historically the two methods have had different
objectives. Whereas principal components analysis is a descriptive technique
for dimension reduction and summarization, factor analysis explores the
resultant multivariate factors—the linear combinations of the original vari-
ables (89). The computational distinction is that, in factor analysis, the axes
are rotated until they maximize correlations among the variables, and the
factors need not be uncorrelated (orthogonal). The usual interpretation of the
factors is that they “explain” the correlations that have been discovered among
the original variables and that these factors are real factors in nature. Un-
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fortunately, factor analysis encourages subjective overinterpretation of the
data. A reading of the mythical tale about Tom Swift and his electric factor
analysis machine (6) or Reyment et al (164, pp. 102-106) will persuade most
people of the dangers of overinterpretation. Some newer versions of factor
analysis, such as linear structural analysis (223, 224), avoid some of the
problems of ordinary factor analysis.

Applications of factor analysis in systematics through 1975 have been
summarized (31, pp. 135-143), and several examples have appeared in the
more recent ecological literature (66a, 95, 127, 174). Q-mode factor analysis
investigates the correlations among objects rather than attributes. It has been
applied in an exploratory way in numerical taxonomy (185, p. 246) and
morphometrics (77). The distinction between Q-mode and the more con-
ventional R-mode analysis has been discussed by Pielou (159).

CANONICAL CORRELATION Canonical correlation is a generalization of
correlation and regression that is applicable when the attributes of a single
group of objects can be divided naturally into two sets (e.g. morphological
variables for populations of a species at a set of sites and environmental
variables associated with the same set of sites). Canonical correlation calcu-
lates overall correlations between the two sets. Linear combinations within
the first set of variables, L, and within the second set, L,, are considered
simultaneously, and the linear combinations that maximize the correlation
between L, and L, are selected. Further linear combinations are extracted that
are uncorrelated with earlier ones. These are uncorrelated between sets except
for paired linear combinations. Sample sizes that are small in relation to the
number of variables can lead to instability, and the linear constraints imposed
by the method can make interpretation difficult (198).

In spite of its limitations, canonical correlation has been useful in an
exploratory sense in several ecomorphological and coevolutionary studies.
One such study showed that the size of the rostrum of aphids increases and
that of the tarsus decreases in proportion to the degree of pubescence of the
host plant: these features could easily obscure underlying phylogenetic rela-
tionships (137). Another study explored the canonical correlation between bee
and flower morphology by comparing eight species of bees according to their
choice of flowers (87). Gittins (72) and Smith (183) review other examples.

MULTIPLE LOGISTIC REGRESSION Multiple logistic regression is a mod-
ification of multiple regression for the situation in which the response variable
(Y) is categorical and takes one of only two values, O or 1. Multiple logistic
regression models the log of the odds that Y = 1 (In (Pr(Y = 1)/Pr(Y = 0))) as
a linear function of the independent variables, which can be continuous or
categorical. The method can be used either to predict values of the response

This content downloaded from
128.179.152.34 on Tue, 10 Sep 2024 07:18:19 UTC
All use subject to https://about.jstor.org/terms



MULTIVARIATE ANALYSIS 145

variable or to get information about particular X variables and the response
variable. These are some of the same goals addressed by multiple regression,
and multiple logistic regression is susceptible to many of the same limitations
as multiple regression. Inference of causation (e.g. 166) is not justified, and
stepwise procedures should be avoided. Multiple logistic regression can be
used as an alternative to two-group linear discriminant function analysis when
one or more of the variables are not continuous. In this case the response
variable is group membership, and the explanatory variables are those used to
discriminate between the two groups. If the data are multivariate normal,
linear discriminant function analysis is a more efficient procedure (56).
Multiple logistic regression is used frequently in wildlife studies, but most
applications (e.g. 108, 115) use stepwise procedures. As discussed pre-
viously, this is not a reliable way to rank variables by their importance.

LOGLINEAR MODELS Loglinear analysis is an extension of the familiar
chi-square analysis of two-way contingency tables (tables of counts or re-
sponses) for which there are more than two variables. If some of the variables
are continuous, they must be categorized before loglinear analysis is used.
The objective is simply to study the relationships among the variables. When
there is a distinction between the variables, one being a response variable and
the others explanatory variables, loglinear analysis is not appropriate. Fien-
berg (64) gives a good introduction to both loglinear models and multiple
logistic regression.

There are more examples of loglinear analysis in behavior than there are in
ecology (63, 94). Examples of its use in ecology include a study of population
attributes in Snow Geese (Chen caerulescens), including interrelationships
among parental morphs and the sex and cohort affiliations of the goslings
(65); a study of interrelations among characteristics of fruits of the entire
angiosperm tree flora of southern Africa (114); and a defense of the existence
of a previously described (52) nonrandom pattern for the distribution of birds
on the islands of the Bismarck Archipelago in the South Pacific Ocean (71).
One excellent study combined a loglinear analysis with “causal ordering” of
the variables, thereby injecting some reasonable biological information into
the model for a competition hierarchy among boreal ants (211). This is a good
example of how a problem can be carried forward through the research
process as outlined in Figure 1. The next step would be the design of a critical
experiment.

CORRESPONDENCE ANALYSIS, RECIPROCAL AVERAGING, AND DE-
TRENDED CORRESPONDENCE ANALYSIS Correspondence analysis, which
is the same as reciprocal averaging, is an ordination procedure that de-
composes a two-way contingency table of counts of objects and their attri-
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butes (97, 98). The data might be the number of times various plant species
occur on different quadrats, the number of times particular behaviors occur
among various species, or the number of fin rays on various fish. Scores are
calculated for each of the row and column categories of the table, and row and
column eigenvectors show the ways in which the rows and columns deviate
from what would be expected with independence. These scores are used as
axes for dimension reduction, and objects and attributes are ordinated simulta-
neously. Because the analysis uses chi-square distances (81, p. 54) it should
be based on data of counts. Continuous data such as allele frequencies,
percentage of ground cover, or percentage of time spent foraging would be
more efficiently handled by another method.

An excellent example of correspondence analysis is a summary of data for
the distribution of 17 genera of antelope in 16 African wildlife areas (82).
With supplemental information about the vegetation in these areas and about
the distribution of the same species in the past, the authors were able to make
inferences about the distribution of habitats in the past. In another example,
an ordination of 37 lakes in the Adirondack Mountains of northern New York
was found to be highly correlated with surface lakewater pH (37).

The term indirect ordination in plant ecology refers to the above class of
problems, those involving a reduction of the dimensions of a table (matrix) of
data for the occurrence of a set of species at a set of sites. The data may be
counts, presence-absence data, or percentages. Because the species are likely
to be responding in a unimodal way to underlying environmental gradients
and each species is likely to have an individualistic response, their joint
distribution is likely to be one of successive replacement (13). Phytosociolo-
gists have long felt that, in such cases, neither correspondence analysis nor
any of the other traditional ordination procedures give reasonable results. In
particular, they complain that an arch or horseshoe effect is evident in the
pattern of sites in a two-dimensional ordination. Detrended correspondence
analysis is an ad hoc technique intended to remove this arch (36, 67).
However, it sometimes fails and can even introduce further distortion (112).
A recent critique by Wartenberg et al (214) argues that detrending does not
contribute to the analysis and that the arch is not an anomaly. Rather, it is an
inherent property of data that represent transitions in species abundances as
one passes through localities more favorable to some species and later more
favorable to other species. Not even nonmetric multidimensional scaling (see
below) can provide satisfactory single-dimensional ordinations in this case
(214), because the relationships among the variables (species) are both non-
linear and nonmonotonic. With the indirect ordination problem, the arch in
two-dimensional plots is to be expected. An unambiguous ordering along the
arch would be an acceptable result.
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NONMETRIC MULTIDIMENSIONAL SCALING Nonmetric multidimensional
scaling is potentially a robust ordination method for reducing the dimensions
of data without a priori transformations (see, e.g., 59, 112, 136, 154, and
especially 214). The results are often similar to those of principal components
analysis.

Like principal components analysis and principal coordinates analysis, it is
a scaling technique, but with nonmetric multidimensional scaling, only the
rank order of interobject distances is used. Thus the objective is to estimate
nonlinear monotonic relationships. A limitation of both principal coordinates
analysis and nonmetric multidimensional scaling is that interpretations must
be qualitative and subjective. Because the axes are not functions of original
variables, they are not very useful for formulating hypotheses about possible
causal relationships. In fact with principal coordinates analysis and nonmetric
multidimensional scaling, variables do not enter into the analysis; only in-
terobject distances are used.

CLUSTER ANALYSIS With cluster analysis, objects are placed in groups
according to a similarity measure and then a grouping algorithm. The reduc-
tion in the data comes from forming g groups (g less than n) out of n objects.
In ecology and systematics, the general term “cluster analysis” usually means
agglomerative hierarchical cluster analysis. This is a set of methods that starts
with a pairwise similarity matrix among objects (individuals, sites, pop-
ulations, taxa; see Section on distances and similarities). The two most similar
objects are joined into a group, and the similarities of this group to all other
units are calculated. Repeatedly the two closest groups are combined until
only a single group remains. The results are usually expressed in a dendro-
gram, a two-dimensional hierarchical tree diagram representing the complex
multivariate relationships among the objects.

The most appropriate choice among the various algorithms for agglomerat-
ing groups depends upon the type of data and the type of representation that is
desired. It has become conventional in ecology and systematics to use the
UPGMA (unweighted pair-group method using averages). This method usual-
ly distributes the objects into a reasonable number of groups. It calculates
differences between clusters as the average of all the point-to-point distances
between a point in one cluster and a point in the other (53, 159, 185). There
are also algorithms for divisive cluster analysis, in which the whole collection
of objects is divided and then subdivided (67).

Cluster analysis is most appropriate for categorical rather than continuous
data. It is less efficient than principal components analysis or linear dis-
criminant function analysis when the data are vectors of correlated measure-
ments. It has been the primary method used in phenetic taxonomy (185), in
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which many attributes are considered simultaneously and the objects (op-
erational taxonomic units or OTU’s) are clustered according to their overall
similarity. Cluster analysis produces clusters whether or not natural groupings
exist, and the results depend on both the similarity measure chosen and the
algorithm used for clustering. Dendrograms codify relationships that may not
really be stable in the data. They are frequently overinterpreted in both
systematics and ecology. Nevertheless, as applied by Sokal et al (186) to the
hypothetical caminalcules, cluster analysis can be as robust for the reconstruc-
tion of hierarchical phylogenetic relationships as are cladistic methods. Sys-
tematics relies heavily on both cluster analysis and cladistics.

RELATED MATTERS
Jackknife and Bootstrap

Jackknifing (146, 148, pp. 31-33) and bootstrapping (57, 58) are statistical
techniques that resample the data in order to calculate nonparametric es-
timates of standard errors. They are particularly effective in two situations
that arise frequently in multivariate analysis:

(a) in estimation of standard errors for complicated statistics for which the
sampling variability is not well understood and standard formulas are not
available (e.g. coefficients of principal components) and

(b) when the distributional assumptions necessary for the use of standard
error formulas are not met (e.g. for nonnormal or skewed data).

Jackknifing and bootstrapping differ in the ways in which they resample the
data and calculate standard errors. With the typical jackknifing method, each
of the observations in a sample, which may be multivariate, is left out of the
data set in turn, and the statistic for which one wants the standard error is
recalculated. The variability in these recalculated values is used to calculate
the standard error. Examples would be applications to coefficients of principal
components in studies of morphometric variation (69).

With bootstrapping for a single sample, a random sample with replacement
is drawn from the original sample until it is the same size as the original
sample. Some of the original observations are likely to occur more than once
in the bootstrap sample. The statistic is recalculated from this sample. This
process is repeated, typically 200 or more times, and the standard deviation
of the recalculated values is used as the standard error. Often, the bootstrap
can be applied more easily to complicated situations than can the jackknife,
which is mainly a single-sample technique. Applications of the jackknife
and bootstrap for estimating population growth rates have been com-
pared (134).
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Distances and Similarities

We use the terms distance and similarity to describe various measures of the
association between pairs of objects or their attributes. Principal coordinates
analysis, nonmetric multidimensional scaling, and cluster analysis require the
input of a matrix of such measures. Cluster analysis operates most naturally
with similarities, whereas principal coordinates analysis and nonmetric multi-
dimensional scaling are traditionally described in terms of distances (53).
With some types of data, such as immunological data (42) or DNA hybridiza-
tion data (180), laboratory results are in the form of interobject distances so
they can be entered directly or transformed to similarities as needed. The
various distance and similarity measures have been compared (53; 149, Ch. 9;
159). The proper choice of a measure differs according to the form of the data
(measurements, counts, presence-absence, frequencies), the type of standard-
ization desired, and whether or not it is appropriate to use metric distances.
The special problems that pertain to genetic distances have been discussed
elsewhere (17, 61, 149, 172).

SPECIAL PROBLEMS IN ECOLOGY AND
SYSTEMATICS

We think that the present understanding of multivariate analysis among
ecologists and systematists is affecting not only how they treat data but how
research questions are formulated. To illustrate this point, we discuss in this
section some particular issues in animal community ecology, wildlife man-
agement, ordination in plant ecology, and morphometrics.

Resource Use and the Niche

Soon after it was proposed that the realized ecological niche be viewed as an
area in a multidimensional resource hyperspace (102), Green (79) used linear
discriminant function analysis to construct two-dimensional graphic ordina-
tions of the relationships of bivalve molluscs in lakes in central Canada based
on physical and chemical properties of the lakes. In many subsequent studies,
linear discriminant function analysis has proved useful as a descriptive tech-
nique for summarizing, displaying, and comparing differences in resource use
among populations (see summaries in 92 and 177).

Green (79, 80) and others have attempted a statistical test for niche size and
overlap, but unfortunately, linear discriminant function analysis is not appro-
priate as a test of niche size. Equality of dispersion matrices is an assumption
of the statistical model, but at the same time niche size is being defined by a
characteristic of the dispersion matrix. Having been assumed, it cannot be
tested (106, pp. 42-44). No one would expect the mean resource use of
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different species to be exactly the same, so the test is only of whether sample
sizes in the study are sufficiently large to show these differences (see 169).

One can obtain data on resource use for each of a set of species and then
express an assemblage as an ordination of their variation (43, 79, 104, and
others). Or one can compare used with available resources (34). The former
approach has been used to study the regeneration niche of plants (70) and to
analyze interspecific associations in plant populations to get a “plant’s eye
view” of the biotic environment (207). In these cases the data were the species
of plants that were neighbors of the species of interest. Grubb (84) used this
general approach to show how species-specific “regeneration niches” vary.
He suggested that this variation may contribute to the maintenance of the
coexistence of both common and rare species in a plant community. This is
the kind of new hypothesis, suggested partly by multivariate work, that could
be tested with experiments.

Wildlife Management

Wildlife biologists have maintained a good dialogue with statisticians about
multivariate statistical methods (33, 213), and they are aware of the potential
problems with scale, sampling, and linear methods (21). Also, they have been
urged to become more experimental (173, 209).

We will give two examples of troublesome areas. First, in recent years the
US Fish and Wildlife Service has supported a large program to produce
predictive models of wildlife-habitat relations (212). Unfortunately, thus far,
few of these models have achieved high predictive power (18, 29, 138). There
are several reasons for these problems (130), not all statistical, but the issues
of sampling procedures, adjustment for nonlinearities, screening variables to
obtain an uncorrelated set, and the use of stepwise procedures discussed
above need more attention. Even if predictive models can eventually be
developed, there is no guarantee that they will be useful for management
(195). That would require the additional step of causal analysis (see previous
section).

An additional problem arises with studies of habitat selection, which in
wildlife biology usually means the difference between occupied and available
(unoccupied) habitat for a particular species. A common procedure is to
measure many variables pertaining to the vegetation and its structure both at
various localities where a species of interest occurs and at randomly selected
locations. Then stepwise discriminant function analysis or stepwise multiple
logistic regression is usually applied to examine differences between occupied
and unoccupied sites and to rank the habitat variables by their “importance”
(129, 165 and citations therein, 167). To see the problem with this approach,
excluding the problems with stepwise procedures, recall that the linear dis-
criminant function analysis model tests mean differences between groups. If a

This content downloaded from
128.179.152.34 on Tue, 10 Sep 2024 07:18:19 UTC
All use subject to https://about.jstor.org/terms



MULTIVARIATE ANALYSIS 151

species were highly narrow (selective) in its habitat use, but the mean were
the same as that of the average habitat, the species would be judged not to be
selective by the model (see Species B in Figure 3a and 107). Also, the
characteristics of the poorly defined “unused” group will always affect the
result (219). Some of these problems are avoided if sites are located along
principal component 1 for variation in randomly selected sites (192). An
alternative is to use the first two principal components (131) for randomly
selected sites and to depict concentration ellipses (188, pp. 594-601) for
occupied and random sites on a graph with those components serving as axes

0 c B A Available habitat
/ (sampled at random)

Canonical Axis I

B.

Available habitat
) 5 (sampled at random)
A

Principal Component 1

Figure 3a Comparisons of habitat used and habitat available for four hypothetical species (A,
B, C, D). Four separate two-group linear discriminant function analysis or multiple linear
regression tests between used and available habitat, one for each species, would test differences
in means but not variances. A and B would not be different from habitat available; C and D would
be different. However, this result is misleading because B is as selective (same variance) as D and
is more selective (lower variance) than C.

Figure 3b Distribution of randomly selected sites in a bivariate graphic space determined by
principal components I and II of their habitat characteristics. Concentration ellipses for randomly
selected sites and for sites that are occupied by the species of interest indicate both the habitat
used and its variance relative to the total variance.
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(Figure 3b). This procedure assumes sufficient covariation in the data set for
randomly selected sites that two reliable axes can be derived (152). One study
that demonstrated the instability that can result otherwise attributed it to
interobserver bias (76).

Ordination in Plant Ecology

The most general definition of ordination is the reduction of a multivariate
data set for a set of objects and their attributes so that their pattern can be seen
on a continuous scale (159). Thus linear discriminant function analysis,
principal components analysis, principal coordinates analysis, and nonmetric
multidimensional scaling all qualify as ordination procedures (Table 2).
Ordination procedures are useful for descriptions of the results of environ-
mental perturbations and experiments (53), but they are used most often in
purely observational studies. Several particularly useful reviews of the ordina-
tion literature are available (53, 112, 159).

In plant ecology, the term ordination usually refers to analyses in which the
objects are stands of vegetation at study sites. When the attributes are sets of
environmental variables, such as soil nutrients or quantitative measures of the
structure of the vegetation, the objective is usually to find a combination of
attributes that may suggest an underlying cause for a systematic pattern of the
distribution of the stands, one not obvious from the geographic distribution of
the stands. Austin et al (15) present some new extensions of this approach,
which is called direct ordination or gradient analysis. The more common
approach in plant ecology is to analyze a matrix of data for the presences and
absences of species in each stand, or their actual or relative density, biomass,
or cover (83), as the attributes. This is called indirect ordination. The objec-
tive is to find a systematic pattern of relationships among the stands based on
the cooccurrences of their component species. The resultant ordination may
subsequently be related to environmental factors (14).

If sites are being ordinated (the usual R-mode analysis), and they have been
selected at random, inferences about patterns in a larger area are possible. If
the objects and attributes are exchanged (Q-mode analysis), species are
ordinated. The biplot (66, 196), a graphical version of principal components
analysis and correspondence analysis, can provide a simultaneous view of
ordinations of species and stands. The special problems that arise with
indirect ordinations when the attributes do not increase or decrease regularly
through the data are discussed in the section on correspondence analysis.
Previous criticisms of principal components analysis as an indirect ordination
technique (e.g. 67) should be reconsidered in the light of these arguments.

In recent years, principal coordinates analysis and nonmetric multi-
dimensional scaling have been popular indirect ordination methods. Phytoso-
ciological studies that use indirect ordinations of stands by their species
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composition have provided succinct descriptions of stands by their species
composition. We agree with Harper (88) that if the objective is to determine
causes, the approach of focusing a study on the population biology of species
independently and including all interspecific interactions, rather than on
studying relationships among communities or among stands, should also be
tried. Experiments and quasiexperiments will be required, and multivariate
descriptive work at the population level, now a poorly developed field, should
be important.

Morphometrics

Morphometrics is the mathematical description of the form of organisms.
There are many different kinds of problems in morphometric work, and even
for a given problem researchers do not always agree about the best methods of
analysis (46). The literature on multivariate morphometrics includes applica-
tions in growth (203) and quantitative genetics (118, 208).

For a long time the appealing graphic technique of the transformation of a
grid to show its deformation when drawings of two organisms were compared
(197) did not seem to be amenable to quantification. However, the study of
geometric transformations of forms has been extended, and several techniques
have been developed to describe geometric shape change between forms when
the data are for x,y coordinates for homologous landmarks (23-26, 39, 101,
158, 184). Size and shape are considered to be latent unmeasured variables,
defined only after the demonstration of a global transformation between
forms. Sometimes principal components analysis is used to reduce the di-
mensions of the result.

Mapping techniques are another set of methods designed to detect shape
change among two-dimensional forms (19, 20, 181, 184). In this case the data
are interpoint distances between two superimposed forms. Fourier analysis,
another alternative for the description of forms that have fixed outlines, can
capture shape information without using sets of homologous landmarks (161,
170). Ferson et al (62) applied linear discriminant function analysis to such
shape data for two electromorph groups of the mussel Mytilus edulis.

A more general problem in morphometrics than the quantification of shape
change among two-dimensional objects is the study of allometry, how shape
changes with size during growth, or among members of a population, or
among populations or taxa. Many systematists prefer conventional linear
methods of multivariate analysis for this problem (148, 164). The data are
standardized measurements taken on each organism. Atchley et al (12) de-
scribe the geometric and probabilistic aspects of distances among individuals
(objects) in multivariate morphometric space.

If the variation in the original data is predominantly in size, the coefficients
of the first principal component based on a variance-covariance matrix will be
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of the same sign, and that component will be highly correlated with the
original variables. Size can be defined variously as this first component, as
any one of the original variables, or as any combination of the original
variables that is biologically reasonable (168). Principal component 1 of the
correlation matrix has also been used as a size statistic (132). It is often
correlated with other reasonable size measures, but we do not recommend it
as a size statistic because differences in scale (size) among the variables have
been removed by the construction of the correlation matrix. Similarly, a
proposed method to constrain the first principal component of the correlation
matrix of the logs of the measurements to be a measure of shape-free size
(189) does not fully achieve its objective, because the residual variation is not
interpretable as shape. A complex method proposed for the removal of
within-group size in a multiple-group principal components analysis (101)
removes size-related shape as well as size, and the residual variation is not
necessarily uncorrelated with size (171).

With a principal components analysis on the variance-covariance matrix of
log measurements, the relative magnitudes of the coefficients can often
indicate whether the component contains shape information as well as size
information (145). Although the first principal component often has been
designated as a general size factor, it usually contains an unknown amount of
allometrically related shape variation (68, 93, 140) and interpretation of the
second component as shape alone is unwise (110, 190). A solution to the
problem of the study of shape independently of size is to study shape directly,
as either ratios or proportions, expressed as the differences between the
logarithms of distances. Of course the proper mathematical treatment of shape
variables requires great care, but the direct study of shape variables should
play a central role in morphometric analyses.

The study of allometry, the covariation of size and shape rather than of size
and size-free shape or shape orthogonal to size, has been emphasized by
Mosimann (140). He shows that, if biologically reasonable size and shape
variables can be defined a priori, and if the data can be assumed to be
lognormally distributed, substantial mathematical theory is available for
morphometric studies. The lognormal assumption can be tested (110). Log
transformations do not always equalize variances (30), but equal variances
among measurements are by no means required for morphometric analysis
(143). Thus shape variables, which are dimensionless ratios or proportions
expressed as differences between logarithms, can be analyzed directly with
either univariate or multivariate methods (144, 145). In a particularly interest-
ing example, Darroch & Mosimann (49) study shape directly in a reanalysis
of Anderson’s classic data set for measurements of the flowers of three
species of iris, originally analyzed by R. A. Fisher. The species are well
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Table 3 Objectives and limitations of the 12 multivariate procedures used most commonly in ecology and

systematics, with references.

Procedure

Objectives and Limitations

1. Multiple Regression
(MR)

2. Multivariate Analysis of
Variance
(MANOVA)

3. Linear Discriminant Function
Analysis
(LDFA)

Objectives:

1. To predict one variable (Y, response variable) from others (X’s,
explanatory variables)

2. To investigate the association of an X variable with the Y
variable in the presence of other variables

3. If causal models are appropriate (usually with experiments), to
investigate cause and effect

Limitations:

1. Good predictability alone does not allow inference of causation.

2. Prediction should be carried out only in situations similar to
those in which the model was derived.

3. Stepwise regression is usually inappropriate.

4. The procedure considers only linear functions of those X vari-
ables analyzed.

5. The procedure is intended for continuous Y variables whose
values are independent; errors should be normal and sampling
random for statistical inference.

References: 4, 139, 150, 215

Objective:

1. To test for differences among two or more groups of objects
according to the means of all the variables (attributes); mainly
an inferential method

Limitation:

1. The procedure is intended for continuous, multivariate normal
data; each vector of observations must be independent.

References: 85, 89, 109, 128, 148

Objectives:

1. To describe multigroup situations; finds linear combinations of
variables (attributes) with maximal ability to discriminate
groups of objects; when used to reduce the dimensions of data,
called canonical variates analysis

2. A linear discriminant function (equation) can be used to classify
current observations or to allocate new observations to the
groups

1. The procedure is intended mainly for continuous data; it is
inefficient for data not well summarized by variances and
covariances.

2. With linear discriminant functions, the researcher assumes
equal variance-covariance matrices (identical orientation and
size of concentration ellipses).
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Table 3 (Continued)

Procedure

Objectives and Limitations

4. Principal Components Analysis
(PCA)

5. Principal Coordinates Analysis
(PCO)

6. Factor Analysis
(FA)

3. Only linear combinations of the variables are considered, so the
analysis will not discover nonlinear combinations.

4. Groups must be defined a priori.

References: 89, 109, 148, 220

Objectives:

1. To describe a matrix of data consisting of objects and attributes
by reducing its dimensions, usually for graphical display; to find
uncorrelated linear combinations of the original variables (attri-
butes) with maximal variance

2. To suggest new combined variables for further study

Limitations (see text):

1. The procedure is intended mainly for continuous data; it is
inefficient for data not well summarized by variances and
covariances.

2. The procedure considers only linear combinations of the vari-
ables, so it will not discover nonlinear combinations.

References: 53, 89, 109, 148, 159

Objective:

1. To describe the data by reducing the dimensions of a distance
matrix among objects, usually for graphical display; a
generalization of PCA in which non-Euclidean distances may be
used

Limitations:

1. Results depend on the distance measure chosen.

2. The procedure produces a new coordinate system but cannot
indicate combinations of variables (attributes), because only the
distance matrix among objects is used.

References: 53, 148, 159

Objectives:

1. To reproduce a correlation matrix among original variables by
hypothesizing the existence of one or more underlying factors

2. To discover underlying structure in a data set by interpreting the
factors

Limitations:

1. Exploratory factor analysis methods are so unstructured that
interpretations are subjective.

2. The procedure is inefficient for data not well summarized by
correlations, so it is not ideal for nonlinear relationships or
categorical data.

References: 54, 89, 109, 148
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Procedure

Objectives and Limitations

7. Canonical Correlation
(CANCOR)

8. Multiple Logistic Regression
(MLR)

9. Loglinear Models
(LOGL)

10. Correspondence Analysis
(COA)

Objective:

1. To analyze the correlation between two groups of variables
(attributes) about the same set of objects simultaneously, rather
than calculating pairwise correlations

Limitation:

1. The procedure is inefficient for data not well summarized by
correlations or linear combinations, so not ideal for nonlinear
relationships or categorical data.

References: 54, 89, 109, 148

Objectives:

1. To model a dichotomous (0,1) variable (Y, response variable)
as a function of other categorical or continuous variables (X’s,
explanatory variables), which may be categorical or continuous

2. To investigate the association of an X variable with the Y
variable in the presence of other X variables

3. If causal models are appropriate (usually with experiments), to
investigate cause and effect

4. To serve as an alternative to two group linear discriminant
function analysis when the variables are categorical or otherwise
not appropriate for DFA

Limitations:

1. Good predictability alone does not allow inference of causation.

2. Stepwise logistic regression is usually inappropriate.

3. The procedure considers only linear functions of those X vari-
ables analyzed.

4. Prediction should be carried out only in situations similar to
those in which the model was estimated.

References: 64, 148

Objective:

1. To investigate the joint relationships among categorical vari-
ables

Limitations:

1. Variables must be categorical or made to be categorical.

2. When there are response and explanatory variables, techniques

like logistic regression may be more appropriate.
References: 64, 148

Objectives:

1. To describe data consisting of counts by reducing the number of
dimensions, usually for graphical display
2. To suggest new combined variables for further study
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Table 3 (Continued)

Procedure

Objectives and Limitations

Limitations:

1. The procedure is inefficient for data that are not counts because
they will not be well described by chi square distances.
2. The procedure is not suitable for nonlinear data; it will not

discover nonlinear relationships.
References: 81, 120, 159

11. Nonmetric Multidimensional Objective:
Scaling
(NMDS)

Limitation:
1. The procedure uses rank order information only.
References: 53, 54, 116, 148

12. Cluster Analysis Objectives:
(CLUS)

distance or similarity measure

1. To describe data by reducing the number of dimensions, usually
for graphical display; to discover nonlinear relationships

1. To classify groups of objects judged to be similar accordingtoa

2. To reduce consideration of n objects to g (g less than n) groups

of objects
Limitations:

1. Results depend on the distance measure chosen.

2. Results depend on the algorithm chosen for forming clusters.

References: 53, 54, 75, 148, 159

discriminated by shape alone. Although these methods were developed for
morphometric studies, they are applicable in other situations (e.g. 22). We
think that authors who have objected to the direct use of ratios in morphomet-
ric studies (3, 9-11, 101, 160, 164, 199) have been overlooking some
powerful techniques for the direct study of shape and its covariation with size.

CONCLUSIONS

Ecologists and systematists need multivariate analysis to study the joint
relationships of variables. That the methods are primarily descriptive in nature
is not necessarily a disadvantage. Statistical inference may be possible, but,
as with univariate analysis, without experiments even the most insightful
applications can only hint at roles, processes, causes, influences, and strat-
egies. When experiments are not feasible, quasiexperimental designs, which
involve paired comparisons or time-series analysis, may be able to provide
weak inferences about causes. As with univariate work, statistical inference
(tests and p-values) should be reported only if a probability sample is taken
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from a well-defined larger population and if assumptions of the methods are
met. Interpretations of multivariate analyses should be restricted to the joint
relationships of variables, and stepwise procedures should be avoided.

We did not expect our review to have such a negative flavor, but we are
forced to agree in part with the criticism that multivariate methods have
opened a Pandora’s box. The problem is at least partly attributable to a history
of cavalier applications and interpretations. We do not think that the methods
are a panacea for data analysts, but we believe that sensitive applications
combined with focus on natural biological units, modelling, and an ex-
perimental approach to the analysis of causes would be a step forward. In
morphometrics, few workers are taking advantage of some precise mathema-
tical methods for the definition of size and shape and their covariation.
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