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Hydrological and hydraulic perspectives of
fluvial ecosystems

« Spatial heterogeneity
Hyporheic exchange
« Atmospheric exchange



How do various flow paths of water through the landscape
affect streamwater chemistry”

Watershed Perspective Groundwater Basin Perspective
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Hydrological flow paths and the chemical birth of water

Hysteresis loops

Storm Hydrograph

L

Concentration

Hysteresis

The steeper the slope of the hysteresis loop
(solid line), the higher the solute gradient
between terrestrial solute source areas and the
stream — that is potentially high terrestrial inputs

A clockwise direction of change over the course
of the storm event indicates that solute sources
are proximal to the stream and spatially
connected to each other

A counter-clockwise direction indicates solute
sources are spatially disconnected from each
other and distal from the stream

The greater the loop amplitude, the greater the
hydrological expansion into terrestrial solute
sources — high hydrological connectivity
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Seasonal variability of stream water quality response to storm events m
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Fig. 4. Sketch of the successive dominant flow paths and related properties regarding their chemical composition. SGW: shallow groundwater; DGW: deep groundwater.
Such a succession leads to the typical observed hysteretic patterns: Clockwise Tu-Q with accretion, Clockwise NO3-Q with dilution and Anticlockwise DOC-Q with accretion.
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Spatial heterogeneity of streams and rivers
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Spatial heterogeneity of streams and rivers
[spanning catchments and biomes — hence elevational gradients]

Mountain headwater streams
flow swiftly down steep
slopes and cut a deep

V-shaped valley. Low-elevation streams
Rapids and merge and flow down
waterfalls are gentler slopes. The
o valley broadens and
the river begins to
meander.

At an even lower
elevation a river wanders
and meanders slowly
across a broad, nearly flat
valley. At its mouth it may
divide into many separate
channels as it flows across
a delta built up of river-
borne sediments and into
the sea.

Landscape-scale spatial heterogeneity

« Gradients in terrain and geomorphology
« Gradients in contributing area (see
nydraulic geometry)

e T «  Gradients in land cover (use)
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Spatial heterogeneity of streams and rivers
From networks to microhabitats

leaf and stick
detritus in
margin

: boulder

"

e @) sandssilt
”@ @ | over cobbles

m transverse bar

overcobbles e (Cross-scale spatial heterogeneity — at
the interface beween geomorphology and

@ Dodlder hydraulics — from the reach to

A microhabitats
/ fine gravel
debris dam patch

« Critical for biodiversity and ecosystem
functioning

Stream Segment Segment System Reach System “Pool/Riffle” System Microhabitat System
www.usda.gov/stream_restoration/chap1.htm
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Small-scale hydraulic heterogeneity
Microhabitats

» Roughness structures and non-compressibility

of water induce flow structures

« Turbulence-related phenomena (e.qg.,
transport, shear forces, uplift, gas transfer)
affect life and biogeochemistry in streams and
rvers
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Reach-scale satial heterogeneity
Step-pool and riffle-pool sequences

Elevated slope: step-pool
Reduced slope: riffle-pool

» Differences in water depth, velocity,
residence time (continuity equation
Q=vhw)

« Conseqguences for microhabitat
formation and hyporheic exchange
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Larger-scale channel features: meandering and braided rivers



From braided to meandering streams and rivers

Mountain headwater streams
flow swiftly down steep
slopes and cut a deep
V-shaped valley.
Rapids and
waterfalls are
common.

Low-elevation streams
merge and flow down
gentler slopes. The
valley broadens and
the river begins to
meander.

At an even lower
elevation a river wanders
and meanders slowly
across a broad, nearly flat
valley. At its mouth it may
divide into many separate
channels as it flows across
a delta built up of river-
borne sediments and into

the sea. I

Source: FISRWG, 1998

« Slope and energy
« (Channel and bed stability
« Sediment load and size distribution

Conseguences: connectivity, residence times,
vegetation, biodiversity and ecosystem functioning
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High gradient channels
Elevated bed load
Incised and relatively
confined channels
Sediment dynamics with
river corridor (alternating
pars)

Low-gradient channels
Reduced bed load — more
suspended load

Less incised and confined,
more dynamic channels
Reduced sediment size

Ratio of bed material load

to total sediment load

Increasing channel gradient
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Bed material supply dominated channels
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Decreasing channel stability
Decreasing sediment size ——————»
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From braided to meandering streams and rivers

-
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Meandering rivers occupy large
surface ares in the lowlands
Conflict with land use
(urbanisation, agriculture)
Channelisation
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https://www.youtube.com/watch?v=dHERpWgA84Y



Meander Tormation

Meandering Channels

A A
— Low Velocity
— Med. Velocity
[~ High Velocity
B
B B'
- Low Velocity
~ Med. Velocity
Point Bars 3 c ~ High Velocity
Line connecting '
deepest points in ¢ ¢
stream channel \@‘

* Interplay between downstream directed sequences of erosion and
deposition
« Sediment erosion of an outer bend and deposition of this material on

iINnner bends downstream
« Depending on in-channel velocity distributions and stability of parent

material
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Hyporheic exchange
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Hyporheic exchange across spatial and temporal scales

L

Residence times
Biogeochemical reaction rates

a) Watershed or Basin scale b) River Corridor scale

i ~ Evapotranspiration
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Hyporheic Dimension/Channel Width
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Figure| 2. Spatial and temporal scaling of hyporheic flow. Important regimes
of hyporheic flow are denoted in red with minor regimes in blue and typical
channel features that influence hyporheic exchange are shown in black. The
approximate spatial and temporal limits of hyporheic flow are illustrated with
dashed lines, with external biological, fluvial, and geomorphological influences
shown in grey. Hyporheic flow dimension (depth or length) is divided by

channel width to account for scaling of size of channel features with river size.
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Hydrostatic conditions in streams imply that the hydraulic
head at the streambed interface is equal to the height of

overlying surface water.

Hydrostatically influenced hyporheic flow will therefore be
affected by the variability in the height and slope of the
streamwater surface and its effect on head gradients in

the subsurface.

Hydrostatically driven hyporheic flow tends to have its
greatest influence at spatial scales governed by the

streambed’s larger topographic undulations that emerge

Hyporheic Dimension/Channel Width

above stream and guide streamflow around bars and
over steps, cascades, and riffles, and between
meandering banks.
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Figure| 2. Spatial and temporal scaling of hyporheic flow. Important regimes
of hyporheic flow are denoted in red with minor regimes in blue and typical
channel features that influence hyporheic exchange are shown in black. The
approximate spatial and temporal limits of hyporheic flow are illustrated with
dashed lines, with external biological, fluvial, and geomorphological influences
shown in grey. Hyporheic flow dimension (depth or length) is divided by

channel width to account for scaling of size of channel features with river size.
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Figure| 2. Spatial and temporal scaling of hyporheic flow. Important regimes
of hyporheic flow are denoted in red with minor regimes in blue and typical
channel features that influence hyporheic exchange are shown in black. The
approximate spatial and temporal limits of hyporheic flow are illustrated with
dashed lines, with external biological, fluvial, and geomorphological influences
shown in grey. Hyporheic flow dimension (depth or length) is divided by

channel width to account for scaling of size of channel features with river size.
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The gpatial extent of exchange and the associated time

that river water spends in storage are positively related
and scale approximately with the size of bedforms,
pbarforms, and other roughness features such as
downed wood in channels, as well as frequency, size,
and duration of spates and floods.

Hyporheic Dimension/Channel Width
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Figure| 2. Spatial and temporal scaling of hyporheic flow. Important regimes
of hyporheic flow are denoted in red with minor regimes in blue and typical
channel features that influence hyporheic exchange are shown in black The
approximate spatial and temporal limits of hyporheic flow are illustrated with
dashed lines, with external biological, fluvial, and geomorphological influences
shown in grey. Hyporheic flow dimension (depth or length) is divided by

channel width to account for scaling of size of channel features with river size.
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Figure 3. Simulated (solid lines) and observed (symbols)
chloride concentrations in Uvas Creek, California.

The transient storage model simulates

* in-channel advection and longitudinal dispersion in a
stream

« hydrologic connections with groundwater and with
“transient storage zones,” (i.e., slowly moving surface
water at channel sides and hyporheic waters)

* reactive processes which may occur at different rates
within various hydrologic compartments
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Conseqguences of hyporheic flow and storage

Residence time controls the development of
biochemical gradients and available habitats

Biochemical gradients will be limited in channel
types characterized by short, rapid hyporheic flow
paths (cascade, step-pool channels), resulting in
more uniform biochemical conditions and more
uniform habitats compared to channels
characterized by a broad range of hyporheic path
lengths and travel times

Hyporheic Exchange in Mountain Rivers |l
Effects of Channel Morphology on Mechanics,
Scales, and Rates of Exchange

John M. Buffington'* and Daniele Tonina?

cross-channel exchange

Confined Unconfined

side channels paleochannels

Fig. 5. Differences in lateral complexity of head gradients and hyporheic exchange in confined
versus unconfined alluvial valleys.

Fig. 6. Photographs of (a) confined and (b) unconfined channels. Arrows indicate bedrock
projections that locally constrict alluvial area.

22



Geography Compass 3/3 (2009): 1038-1062, 10.1111/j.1749-8198.2009.00225.x

. . e _ Downstream gradient
Hyporheic Exchange in Mountain Rivers Il |
Effects of Channel Morphology on Mechanics, (Hydraulic geometry)
Scales, and Rates of Exchange

John M. Buffington'* and Daniele Tonina? High turnover length
Low mixing

Low residence time

Length scale for complete mixing between surface and

nyporheic waters, or the hydrological turnover length L
L = Qr Low turnover length
- P High mixing
q,' Elevated residence time >
. Q

O\r stream flow (dlSCh&l’g@) Fig. 8. Conceptual plot of length scales for complete mixing of river and hyporheic waters (L,,)

i i as a function of river discharge (Q,) and channel type (Co = colluvial, Ca = cascade, SP = step-
G dOWﬂVV@”Iﬂg flux (per unit streambed area) pool, PB = plane-bed, PR = pool-riffle, BR = braided, DR = dune-ripple).

P wetted channel perimeter

« Discharge (Q) changing predictably from up- to downstream (see hydraulic geometry)
« Downwelling (g,,) typically decreases downstream (slope, roughness, sediment)
« Develop a predictable framework for hyporheic importance

EPFL .
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Hyporheic Exchange in Mountain Rivers Il Total Cumulative Residence Time in HTS

Effects of Channel Morphology on Mechanics, from Source to River Mouth (days) & River
Scales, and Rates of Exchange B 0.00-0.25 |
B 0.25- 0.50
John M. Buffington'* and Daniele Tonina? B 050-0.75
0.75-1.00
B 1.00-1.25

B 125-150
B 150-1.75
5200
B :oo-225

Length scale for complete mixing between surface and
nyporheic waters, or the hydrological turnover length

Q, stream flow (discharge)

g, downwelling flux (per unit streambed area)

P wetted channel perimeter Flow direction

« Discharge (Q) changing predictably from up- to downstream
« Downwelling (g,,) typically decreases downstream (slope, roughness, sediment)
« Develop a predictable framework for hyporheic importance
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Conseqguences of hyporheic flow and storage
Reaction Significance Factor

Hydrologic and biogeochemical factors combine to determine
reach scale significance of a stream for ecosystem
Processes

On the one hand greater reaction progress in individual

nhyporheic flow paths (i.e. higher rate and/or longer
subsurface residence time) increases significance.

Alternatively, significance is increased by greater hyporheic
flux and by greater turnover rate of the stream through the
nyporheic zone. The resulting whole-stream significance Is
expressed as the dimensionless product Rs, comprised of
average hyporheic flow path-scale factors and reach-scale
nydrologic factors.

The dashed lines are isolines with increasing values of Rs
toward the upper right denoting the fraction of the reactant
removed per characteristic (dimensionless) distance travelled
N the stream.
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Conseqguences of hyporheic flow and storage
Reaction Significance Factor

a Vertical exchange

log(z, (h))
- <10
= -10t0-0.5

VWWNN=2O
PUnoroVOnof

Median hyporheic residence time
=PFL

nature
geOSCICnce PUBLISHED ONLINE: 26 OCTOBER 2015 | DOIL'I(E(:!:S:I;GEEOBSE

Denitrification in the Mississippi River network
controlled by flow through river bedforms

Jesus D. Gomez-Velez"?*, Judson W. Harvey', M. Bayani Cardenas? and Brian Kiel®

Promoting the development of permeable bedforms
at the streambed—and thus vertical hyporheic
exchange — Is effective at enhancing river
denitrification in large river basins

Reaction Significance Factor for denitrification



Streambed topographic heterogeneity and gas exchange

Eddy

Riffle Swirling, reverse

Shallow & rocky with conen :
surface disturbance Tailout

Shallow area at
end of pool

=

Run

Deeper water with
smooth, uniform currents

Pool

Deep, calm water

« Oxygenation — biodiversity & fish population; degradation and purification
« GHG emissions

=PrL



=PrL

A universal scaling for the air-water gas
transfer velocity k as a function of the
dissipation rate of turbulent Kinetic
enerqy &

k=a(ev)V4Sc™

v is the kinematic viscosity of water,
Sc is the Schmidt number (i.e. the
ratio of kinematic viscosity and the
diffusion coefficient of the
corresponding gas in water) and a is a
scaling coefficient




Non-peer reviewed preprint submitted to EarthArXiv

Hydrodynamic control of gas-exchange velocity in small streams Gas exchange velocity (kgop) Scales with surface
Andreas Lorke!”, Pascal Bodmer!, Kaan Koca! and Christian Noss! fl oW J[ype /J[U rbu | ence structure

Figure 1: S sites at the Wellbach featuring different surface flow typefga) Smooth boundary turbulence (SBT).
b) rippled flow ). ¢) unbroken standing wave (USW) and d) broken staiif§ing wave (BSW). ¥
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Figure 2: Snapshots of instantaneous turbulent velocity fluctuations for a) smooth boundary turbulence (SBT spot 3) ’
and b) unbroken standing wave (USW spot 2). The vectors show magnitude and direction of turbulent velocity C02 CH4 C02 CH4 C02 CH4 C02 CH4
fluctuations (a reference arrow is provided in the top left corner of each panel). The white area at the bottom of b) 0
masks the stream bed. The mean current speed (Umean) that has been subtracted from the measured flow velocities is SBT RIP USW BSW
shown in the panel headings. The velocities are overlaid a color image showing the y-component of instantaneous
vorticity. The vorticity (w, Eq. 8) scales with the angular velocity of clockwise (blue color) and counterclockwise (red Sl.lrface ﬂow type

color) rotating eddies in the planar field of view.
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« Step-pool geomorphology (as frequent in
mountain catchments) increases turbulent
dissipation and air entrainment (white water)

* Increases gas exhange velocity

« Potentially increasing CO, evasion fluxes

e induced

ek Bubble-mediated

gas evasion spots

015

o e
T g This study (F..., )
)
| | co,
18§ 18 2
|'D | Horgby et al., 2019 (F, )
12 12 2
| |
| |
0.1 | |
| |
| |
2 | |
‘@ | |
5 I I
o | |
|
|
0.05 :
|
|
l
|
|
o L L
0 10 20 30 40 50 60 70
Reach-wise CO, fluxes [kg CmZ yr'']
Fig. 5| Effect of steps on CO; emissions from Swiss mountain streams. Fre- histograms), for 23,343 Swiss mountain streams. The black and orange dashed lines

quency distribution of reach-wise CO, fluxes estimated by Horgby etal.”, F o, (gray  represent the median flux values estimated by Horgby et al.” and this study,
histograms), and the corresponding frequency distribution of the fluxes estimated  respectively. Note that the tail of the frequency distribution including the steps
by taking into account the local emissions generated by steps, F, (orange reaches values up to Fgo, =500 kgCm2yr,



Wrapping up

Why do surface area and both bed and channel
heterogeneity matter?

Exchange fluxes and residence times with bed
sediments

Exchange fluxes with atmosphere (oxygen,
GHG)

Streams and rivers as bioreactors with high
transformation performance

Systems underpinning for their global relevance



