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Global change ecology and fluvial ecosystems

Biogeochemistry

-

Photosynthesis:

6CO, + 6H,O =2
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The global carbon cycle
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Global distribution of soil organic carbon (SOC)
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Understanding the links between global change and
biogeochemistry across ecosystems

Climate change Land-use change
Warming Urbanization
Precipitation shifts Native land conversion

Global change
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Dissolved organic matter
(more than just DOC)

UNDISSOLVED
ORGANIC
MATER

Highly diverse molecular
composition (glacier-fed
streams)
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Dissolved organic matter (more than just DOC)

DOM: The major intermediary to the carbon cycle

« Chemistry (elemental composition)
« Light absorption
« Size (degree of polymerisation)
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Boreal forests and fish populations in the Atlantic Ocean®
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Terrestrial greening and aguatic browning

P

* Large amounts of soll
organic carbon mobilized
and entering streams and
rvers

* Humic and fulvic acids
(degradation product of
vascular plant material)
induce browning of
surface waters

* Increases in water DOC
concentration
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Greening of the boreal landscape
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Current Browning of Surface Waters Will Be Further Promoted by

Wetter Climate

Heleen A. de Wit,*"® Salar Valinia,” Gesa A. Weyhenmeyer,* Martyn N. Futter,® Pirkko Kortelainen,'
Kari Austnes,)r Dag O. Hessen,J' Antti R'ziike," Hjalmar Laudon,# and Jussi Vuorenmaal
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Increasing DOC concentrations in boreal freshwaters

e Interactive effects of climate , land use and acid
deposition

Increasing pool sizes (fertilization effect), mobilisation
(reduced retention) and transport (increased precipitation)

Climate/Weather Land cover/Land-use

Acid deposition

POOL SIZE TRANSPORT

Net vegetation

Runoff
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precipitation -
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Terrestrial greening and aguatic browning and light attenuation

LIMNOLOGY AND OCEANOGRAPHY

Letters
e

Tracking freshwater browning and coastal water darkening from boreal
forests to the Arctic Ocean
Anders Frugard Opdal ,"* Tom Andersen,? Dag O. Hessen,? Christian Lindemann," Dag L. Aksnes 0"

: ical Sciences, Unives

'Department of Biologic: rsity of Bergen, Bergen, Norway; “Department of Biosciences, University of Oslo,
Oslo, Norway
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Overview of drainage area, major rivers, water masses and
currents. Drainage areas to the Skagerrak, Baltic Sea and
North Sea are divided into Fennoscandia (blue), North-
eastern Europe (purple), and North-western Europe (red).
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Increasing boreal forest cover
Increasing light attenuation in the
Skagerrak Sea

Terrestrial greening and
freshwater browning around the
Baltic and North Sea has
ramifications for coastal water
clarity across thousands of
kilometers

Pointing toward an ecosystem
connectivity from the Baltic lakes
and forests to the Barents Sea.



Terrestrial greening, aguatic browning and ecosystem conseguences

A
RESEARCH ARTICLE ’ WILEY é ~ ' :
— A
Land use change and coastal water darkening drive 23 BB
synchronous dynamics in phytoplankton and fish phenology on < 1
centennial timescales 3 e

200+
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The Lofoten archipelago

Precipitation anomaly,
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Geographical overview of the Northeast Arctic cod feeding and z" ot » rvers .
spawning areas. The Northeast Arctic cod has its main feeding and 15 o ECOSyStemS are connected into
nursery areas in the Barents Sea. In late autumn, mature cod migrate z |
south to spawning grounds along the Norwegian coast. Spawning : meta_eCOSyStem through the ﬂOW Of
takes place between January and May. Eggs and later hatched larvae . e
are carried by the northbound Norwegian Coastal Current (NCC) back }—' ) 4 energy and maﬁer
to the Barents Sea. The insert shows the main spawning grounds i ) e From eCOSySJ[em Processes to
(hatched) around the Lofoten archipelago 23 . .
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Permatrost melt and river
biogeochemistry

L Check the scale in the photo —»




Permatrost melt and river
biogeochemistry

Frozen Ground

In the Northern Hemisphere, various types of permafrost cover about

9 million square miles, an area almost as large as the U.S., China and Canada
combined. Global warming thaws the frozen soil, releasing climate-heating
greenhouse gases.
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Permatrost melt and river
blogeochemistry

Sporadic Discontinuous permafrost | Continuous permafrost
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Permafrost organic caron: old but highly bioavailable

High biolability of ancient permafrost carbon upon thaw

Jorien E. Vonk,'? Paul J. Mann,* Sergey Davydov,® Anna Davydova,®
Robert G. M. Spencer,* John Schade,® William V. Sobczak,” Nikita Zimov,”
Sergei Zimov,® Ekaterina Bulygina,* Timothy 1. Eglinton,* and Robert M. Holmes®
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Figure 3. Dissolved organic carbon loss (%) after 14 days
(bars) and 28 days (points) dark incubations at 20°C for
Kolyma River (light blue), East Siberian Sea (dark blue),
Yedoma streams (red), and three dilutions of Yedoma water
with Kolyma River or East Siberian Sea water. The *C age
of DOC (years) (x-axis) represents the proportion of
Duvannyi Yar (Yedoma) stream water added to Kolyma
River or East Siberian Sea water. Standard deviations repre-
sent errors from triplicate experiments.

Up to 41% of the DOC from Pleistocene Yedoma
deposits bioavailable to the microbial metabolism
High bioavailability when mixed with Kolyma River or
Fast Siberian Sea water

Permafrost organic carbon highly successible to
microbial respiration

Relevance for greenhouse gas production with
climate feedbacks



SCIENCE ADVANCES | RESEARCH ARTICLE

ENVIRONMENTAL STUDIES
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 Underscores the role of inlandwaters for metabolism of
permafrost organic matter and GHG production
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Palm oll plantations in Southeast Asia and river and coastal
biogeochemistry
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Tropical peatlands store
around one-sixth of the global
peatland carbon pool (that is
105 gigatonnes), equivalent to
830% of the carbon held in
rainforest vegetation

Tropical peat in Southeast Asia
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Use of palm

oll and plantations
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REVIEWS

M) Check for updates
.o Mt e |

Anthropogenic impacts on lowland
tropical peatland biogeochemistry

Dete rioration of tro P IC peatlands

Greta Dargie®, Stephanie Evers’#, Jyrki Jauhiainen®'°, Adi Jaya'’,
Antonio Jonay Jovani-Sancho(®'?'3, Ari Laurén'#, Sofie Sjogersten’s,
Ifo Averti Suspense'®, Lahiru S. Wijedasa®'® and Chris D. Evans'?

- Slashand

o Monoculture/cropland Secondary forest, restored, rewetted and/or agroforestry

A
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"
« Drainage system, groundwater ‘/ o
lowering and peat drying \’ R i i,
«  Prone to (wild)fires — CO,
emissions ;

i o\ i \[/
» Clear-cutting Lo, 'y ‘?u ‘u |
' ' . F % ’ ~ o sl fra \ i
« Loss of biodiversity i
* Fundamental alterations of j RS . l ’
3 Water table Water table .
' ' S
biogeochemical fluxes T
Carbon input to soil Black carbon, CO, PM, . and other harmful ieci .
from plant litter t gases, other volatile czsmpounds BEPINESINS »” RIS IS
Carbon loss from soil ' Carbon outgassed from Anaerobic peat DOC/fluvial
via peat oxidation canals (CO, and CH) H decomposition (CH,) carbon losses
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REVIEW

M) Check for updates

Anthropogenic impacts on lowland
tropical peatland biogeochemistry

Susan Page®'%, Shailendra Mishra?, Fahmuddin Agus®, Gusti Anshari®#*°,
Greta Dargie®, Stephanie Evers’®, Jyrki Jauhiainen®'°, Adi Jaya',

Antonio Jonay Jovani-Sancho(®»'?'3, Ari Laurén'4, Sofie Sjégersten’s,

Ifo Averti Suspense'®, Lahiru S. Wijedasa®'® and Chris D. Evans'?

* The conversion of native peat land
to oil palm plantations inverses the
ecosystem CO, exchange from a
GHG sink to a source to the
atmosphere

» Loss of soil organic cyrbon to
stream networks.. ..
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Deterioration of tropic peatlands
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Article https://doi.org/10.1038/541561-024-01383-8

Canal networks regulate aquatic losses of
carbonfrom degraded tropical peatlands

Received: 9 June 2023 Jennifer C. 0©'2, putriJ. yudio®, Gusti Z. Anshari®**, @ * 130
PPy o 1 B 2
ted: 25 January 2024 LihiniI. Aluwihare®' & Alison M. Hoyt® g 10 ? B 120
[ .g — c .g P
68T 8 § g 100
8 0o o 820
© U T ©
XSE of i ‘%
OED Qcd 60
QBE 4 Q3 E
o [ ~ x
3 L= it e
= w "y &
g < 20 + J&“ . .-'
R A Dissowed Fe
2 C 3 ISSolve e
RES RO e S T
O S I& &F R - +15%
faQ\ \’b\\ 6Q\ > £ ]B.
@ & & <@ & -
3 Q
& & Molecular
c L weight
+ 0,
High photon flux ~ . 25% ),
Low photon flux ﬁ"'g‘ ﬂ =\ Y
Shallow canal B s AR
& —> DOC re-supply .o‘ _28%
Deeper canal h o +25% 0, +25% Canal i
0 25 50 75 100 < T B ct
Proportion of DOC oxidation in canal (% g,;-.\‘;%"‘“ . depth | 475
roportion o oxidation in canal (%) 3 il‘ - =

« The relative importance of microbial respiration and photomineralisation of DOC to CO, depend on
solar radiation and channel depth (light attenuation)

» The concentration of dissolved iron present, the relative abundance of lower molecular-weight DOC
compounds and dissolved O, (oxygenation, gas exchange) at deeper water depths, as well as DOC
re-supply control DOC oxidation rates

L « DOC/DOM that is not oxidized may be transported to the coastal waters
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Rising dissolved organic carbon concentrations
in coastal waters of northwestern Borneo related
to tropical peatland conversion

Nivedita Sanwlani'*t, Chris D. Evans>>#, Moritz Miiller®, Nagur Cherukuru®, Patrick Martin'*

Time series of satellite ocean color data from
northwestern Borneo show that DOC
concentrations in coastal waters have increased

between 2002 and 2021 by 0.31 umol liter-1 year-1.

This was caused by a =30% increase in the
concentration of terrigenous DOC and coincided
with the conversion of 69% of regional peatland
area to non-forest land cover, suggesting that
peatland conversion has substantially increased
DOC fluxes to the sea.
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Fig. 3. Time series showing increased dissolved organic matter concentrations
in coastal waters and land conversion of peatlands. Mean monthly (gray circles)
and annual (blue dots) values of (A) CDOM absorption, (B) DOC concentration,
(C) TSM concentration across the coastal waters, and (D) monthly precipitation on
land. Solid red lines in (A) and (B) show statistically significant Theil-Sen trends
(P <0.05). The time series of TSM and rainfall showed no statistically significant
trend. Gray error bars show 1 SD across the coastal water region (A to C) or across
the land area (D). Land cover changes over time are shown for (E) peatlands,
(F) mineral soil forest, and (G) mangrove forest.
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Rising dissolved organic carbon concentrations
in coastal waters of northwestern Borneo related
to tropical peatland conversion

Nivedita Sanwlani'*t, Chris D. Evans>>#, Moritz Miiller®, Nagur Cherukuru®, Patrick Martin'*

Time series of satellite ocean color data from
northwestern Borneo show that DOC
concentrations in coastal waters have increased
between 2002 and 2021 by 0.31 umol liter-
year-1,

This was caused by a =30% increase in the
concentration of terrigenous DOC and coincided
with the conversion of 69% of regional peatland
area to non-forest land cover, suggesting that
peatland conversion has substantially increased
DOC fluxes to the sea.

This rise in DOC concentration has also increased
the underwater light absorption by dissolved
organic matter, which may affect marine
productivity by altering underwater light availability.
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Fig. 4. Spatial distribution of trends in dissolved organic matter and TSM over the period 2002-2021. Theil-Sen trends were calculated for each 1-km? pixel across
the time series for (A) CDOM, (B) DOC, (C) the CDOM source index yo, and (D) TSM. The largest increasing trends in CDOM and DOC occurred in coastal waters adjacent to
the main peatland areas (A and B), while for TSM, only small and inconsistent (positive and negative) trends were seen across the region (D). Trends in yq are greater
somewhat further from shore, reflecting the fact that yo close to shore is already high due to the dominance of terrigenous DOC in these waters throughout the time series
(cf. Fig. 1) and the fact that spectral slopes show nonlinear concentration-dependent changes (see Methods).



Deforestation in Africa
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Mobilization of aged and biolabile soil carbon by
tropical deforestation

Travis W. Drake ®'2™, Kristof Van Oost3, Matti Barthel4, Marijn Bauters®5¢, Alison M. Hoyt®78,
David C. Podgorski'22, Johan Six4, Pascal Boeckx®5, Susan E. Trumbore”®, Landry Cizungu Ntaboba™
and Robert G. M. Spencer"?
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Mobilization of aged and biolabile soil carbon by
tropical deforestation
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Forest - S0 .. Land-use Agricultural land
Fristine forests protect desper and old SOM e L | | -
from erosion. OM from young primary
oroduction is metabolised on land or
transported via surface and shallow runoff to
streams. In streams, this OM is slowly

decomposed with the production of young COs.

Removal of trees exposes solls to heavy rain

(tropics!), which increases the rate of surface So,
run-off and soil erosion. SOM from those soils 4
increasingly flows into rivers where it is rapidly -
degraded with the production of old CO». e
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Global change

Drivers

River ecosystem

Climate change Land-use change
Warming Urbanization
Precipitation shifts Native land conversion

Terrestrial NPP
and phenology

Terrestrial subsidies
OC and nutrients

Land use change

» Climate change (temperature, CO, fertilization,
precipitation)

« Native land conversion

Changes in flow regimes
* Increased hydrological connectivity (land-
river-coastal waters)

Terrestrial primary production
« Terrestrial subsidies of organic matter (and
nutrients. ..)

« Stores of old organic matter become mobilized

» Fuel contemporary aguatic metabolism

« Contribution to GHG emissions with potential
climate feedbacks



A better appreciation of biogeochemistry
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Atmosphere

What is biogeochemistry?

Biogeochemistry is the scientific discipline that explores the
interactions between living organisms and the physical and
chemical components of the environment.

It combines principles from biology, geology, chemistry, and
environmental science to study the processes that govern
the cycling of elements in ecosystems.

In biogeochemical cycles, elements and compounds move
through the atmosphere, hydrosphere, lithosphere, and
biosphere in a series of complex processes.

These ecosystem processes include primary production,
respiration, decomposition, weathering, erosion, and

sedimentation.

Human activities deeply impact biogeochemical cycles —
with feedbacks to the climate.




