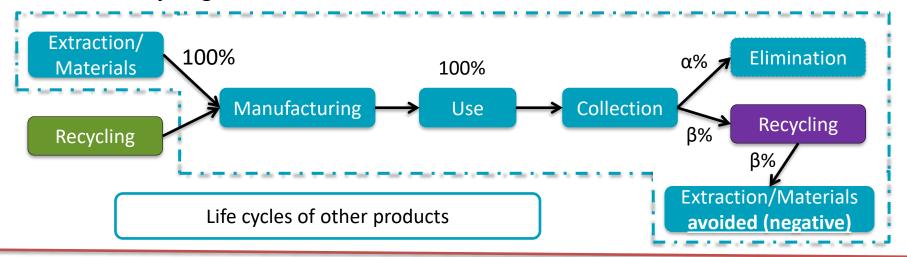
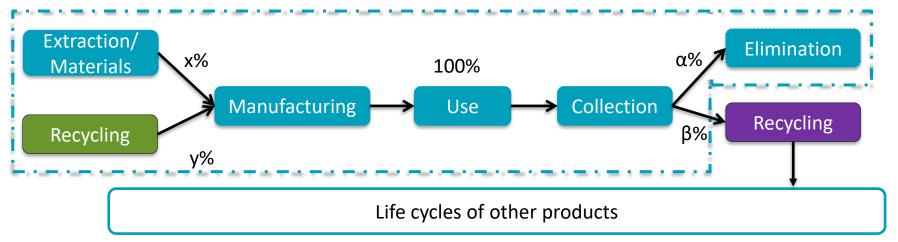


ENV510 – Lab 3 – End of life and recycling Carbon footprint of a carbonated water can

Context

- During the first lab, we have calculated and modeled on openLCA the carbon footprint af a carbonated water
- In the second lab, we have adapted the aluminium production process to a more realistic process (Quebec and China) and compared the new results to the old one
- So far, we assumed that the can was simply landfilled
- During this lab, we will calculate and model recyling of the aluminum can according different sceanrios and approaches





Reminder

End of life recycling

Recycled content approach

Hand calculation: 100% primary / 75% Recycling

QUESTION 1

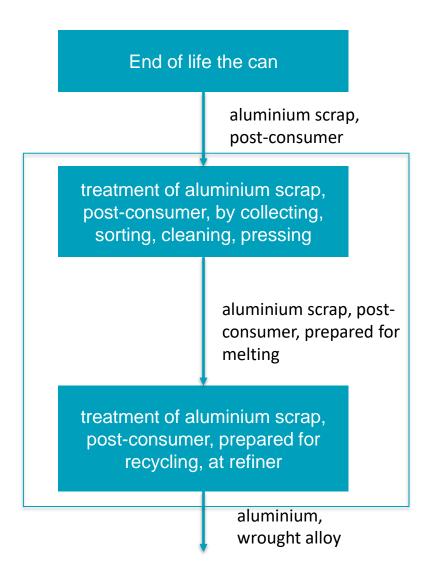
Question 1

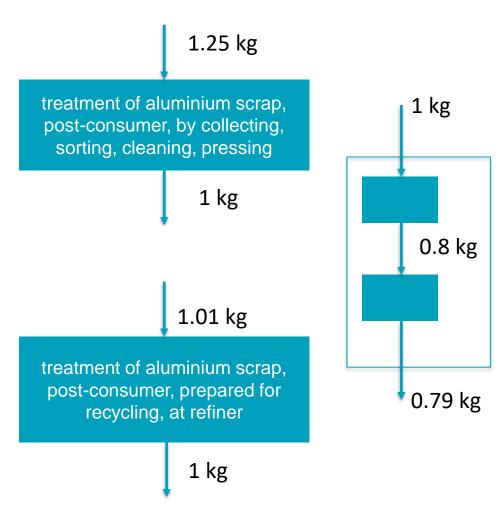
Adapt the process tree to integrate the recycling of the can (100% primary / 75% recycling) and calculate the new carbon footprint according to:

- i) End of life recycling approach
- ii) Recycled content approach

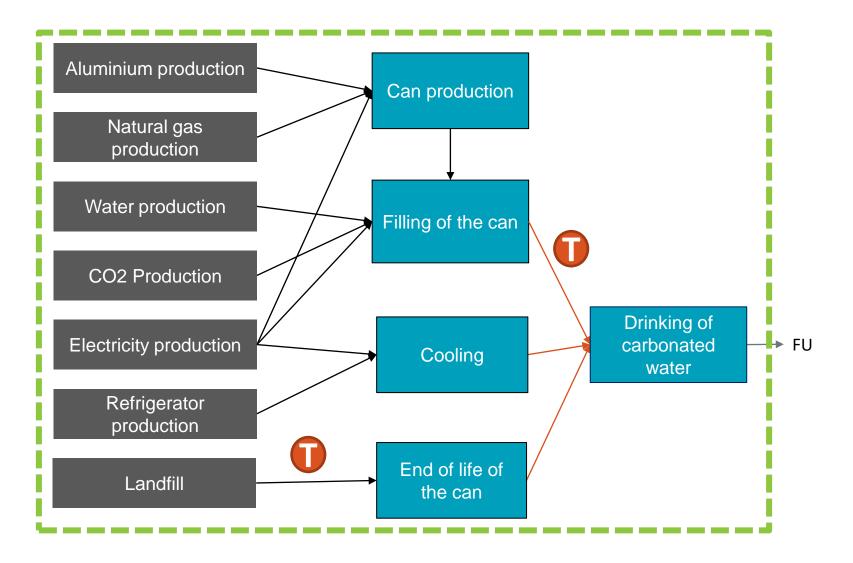
Data

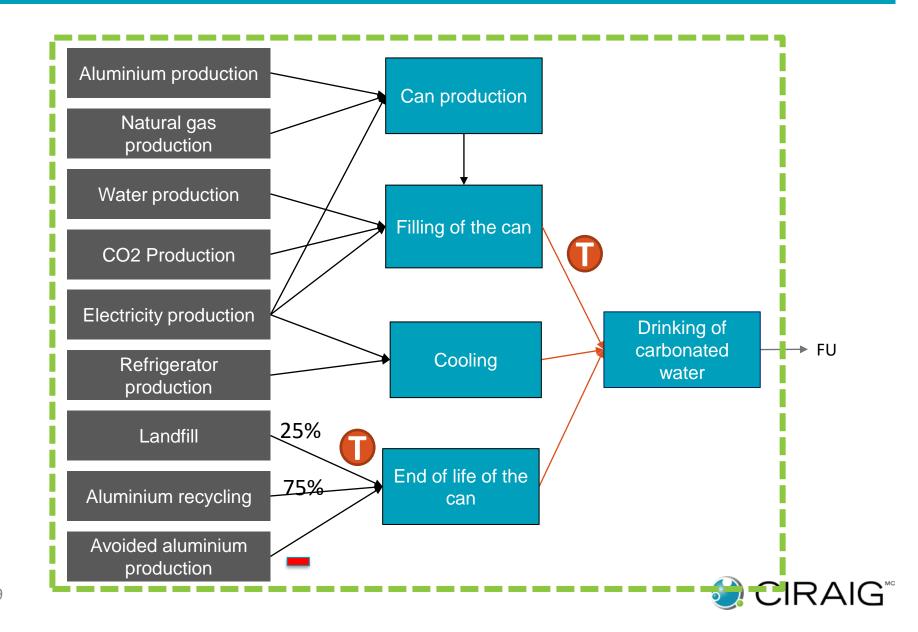
- Mass of an empty can: 13 g
- Can is made form 100% primary aluminium
- 75% of the cans are recycled
- The yield of the collecting sorting and cleaning process is 80%
- The yield of the recycling process is 99%
- The GWP of CH₄ is 29.7 kg CO₂e / kg CH4


Durana	Elementery flow			
Process	CO2	CH4	Unit	
Primary aluminium	1.06E+01	1.72E-02	kg/kg aluminium	
Collecting, sorting and cleaning of aluminium scrap	2.96E-01	9.24E-03	kg/kg aluminium	
Aluminium recycling	9.58E-01	2.21E-02	kg/kg aluminium	
Landfill	2.32E-02	9.8E-04	kg/kg waste	


Lab 1 results

Stage	Flow	kg COeq	Total
	aluminium, primary, ingot	1.45E-01	
Can production	natural gas, high pressure	1.34E-03	
Can production	electricity, high voltage	7.31E-03	
	Carbon dioxide, fossil	5.70E-03	1.59E-01
	Tap water	3.72E-04	
Filling of the can	electricity, high voltage	2.19E-03	
Filling of the can	carbon dioxide, liquid	1.72E-02	
	transport, freight, lorry, unspecified	7.43E-03	2.72E-02
Cooling of the con	Refrigerator	3.45E-04	
Cooling of the can	electricity, low voltage	1.60E-03	1.94E-03
End of life	transport, freight, lorry, unspecified	2.64E-03	
End of file	municipal solid waste	1.24E-02	1.51E-02
		Total	0.203453


Question 1 – Yield calculations



Question 1 – Process tree from previous lab

Question 1 – Process tree - End of life recycling approach

Question 1 - Calculation - End of life recycling approach

Firstly, we need to calculate the amount of landfilled aluminium

Landfill

landfilled aluminium =
$$13g * (1 - 0.75) * \frac{1 kg}{1000 g} = 0.00325 kg$$
 waste

Recycling of aluminium

$$recycled\ aluminium = 13g*0.75*\frac{1\ kg}{1000\ g} = 0.00975\ kg\ recycled\ aluminium$$

Secondly, we need to calculate the amount of aluminium output from the recycling process because of the yield and efficiency of the collect and the reycling process

Avoided primary aluminium

aluminium output from recycling = 0.00975 * 0.79 = 0.007722 kg of recycled Al

Question 1 - Calculation - End of life recycling approach

Finaly we calculate the carbon footprint of all processes:

Landfill:

$$\frac{3.25}{1000}$$
 kg landfilled aluminium × $((0.0232) + (0.00098) \times 29.7) = 3.11E-03$ kg CO2e

Collect and sorting:

$$\frac{9.75}{1000}$$
 kg al sorted and collected × $((0.29623) + (0.00924) \times 29.7) = 5.56E - 03$ kg CO2e

Recycling:

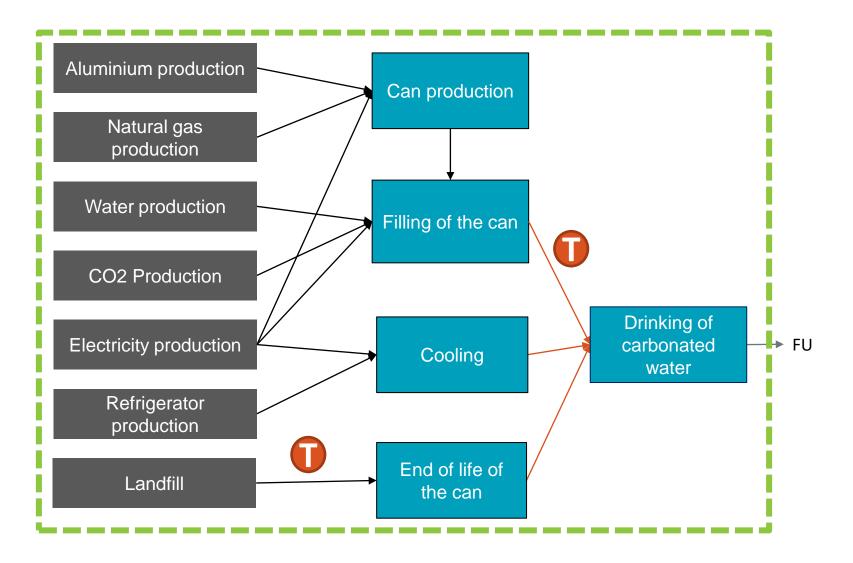
$$\frac{7.8}{1000} kg recycled al \times ((0.958) + (0.0221) \times 29.7) = 6.11E - 03 kg CO2e$$

Primary aluminium:

$$\frac{7.72}{1000}$$
 kg primary al × $\left(-\left((10.6) + (0.0172) \times 29.7\right)\right) = -8.61E - 02$ kg CO2e

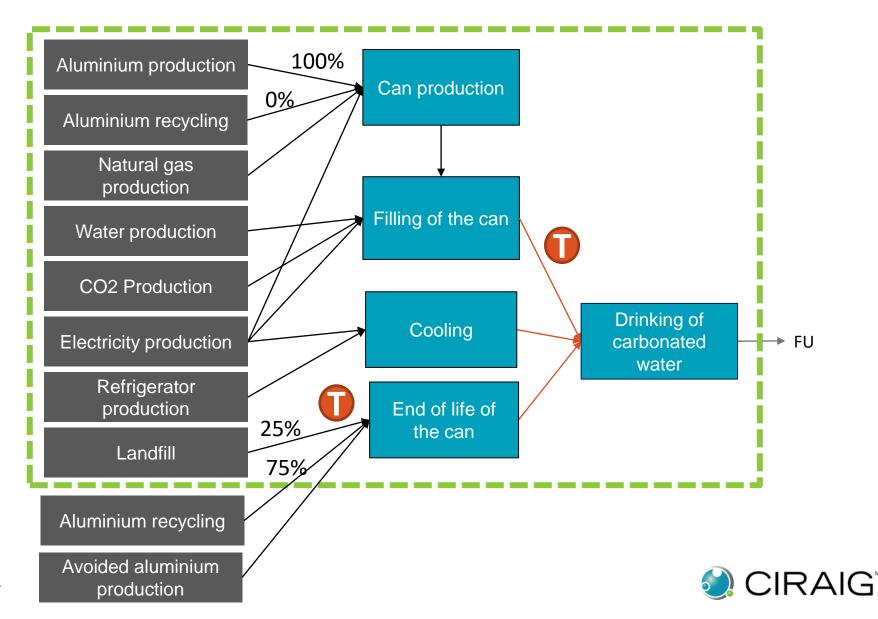
And recalculate the overall carbon footprint with the changes

Total: **0.11709 kg CO2e**


Question 1 – Calculation - End of life recycling approach

Stage	Flow	kg C0	D2 eq
Can anadustian	aluminium, primary, ingot	1.45E-01	
	natural gas, high pressure	1.34E-03	
Can production	electricity, high voltage	7.31E-03	
	Carbon dioxide, fossil	5.70E-03	1.59E-01
	Tap water	3.72E-04	
Filling of the can	electricity, high voltage	2.19E-03	
rilling of the can	carbon dioxide, liquid	1.72E-02	
	transport, freight, lorry, unspecified	7.43E-03	2.72E-02
Cooling of the can	Refrigerator	3.45E-04	
Cooling of the can	electricity, low voltage	1.60E-03	1.94E-03
	transport, freight, lorry, unspecified	2.64E-06	
	municipal solid waste	3.11E-03	
End of life	aluminium scrap, post-consumer, prepared for melting	5.56E-03	
	aluminium recycling	6.11E-03	
	aluminium, primary, ingot	-8.61E-02	-7.13E-02
	Total	0.1	L 17

Carbon footprint form lab 1: 0.203 kg CO2 / kg



Question 1 – Process tree from previous lab

Question 1 – Process tree – Recycled content approach

Question 1 – Calculation – Recycled content

For this approach, only the landfill process is inside the boundaries of the system. The carbon footprint is simply:

$$\frac{3.25}{1000}$$
 kg landfilled al × ((0.09365) + (0.02907) × 29.7) = 3.11E-03 kg CO2e

Landfill

For an overall carbon footprint of: 0.19412 kg CO2

Question 1 – Calculation – Recycled content

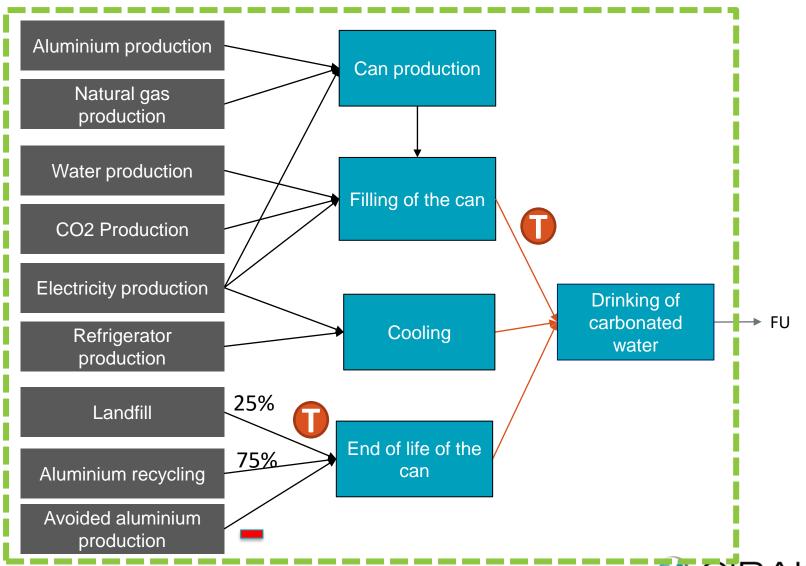
Stage	Flow	kg CC)2 eq
	aluminium, primary, ingot	1.45E-01	
Can production	natural gas, high pressure	1.34E-03	
Can production	electricity, high voltage	7.31E-03	
	Carbon dioxide, fossil	5.70E-03	1.59E-01
	Tap water	3.72E-04	
Filling of the can	electricity, high voltage	2.19E-03	
Filling of the can	carbon dioxide, liquid	1.72E-02	
	transport, freight, lorry, unspecified	7.43E-03	2.72E-02
Cooling of the con	Refrigerator	3.45E-04	
Cooling of the can	electricity, low voltage	1.60E-03	1.94E-03
End of life	transport, freight, lorry, unspecified	2.64E-03	
End of file	municipal solid waste	3.11E-03	5.75E-03
	Total	0.19	412

Calculation by hand: 60% primary / 75% recycling

QUESTION 2

Question 2

Adapt the process tree to integrate the recycling of the can (60% primary / 75% recycling and calculate the new carbon footprint according to:


- i) End of life recycling approach
- ii) Recycled content approach

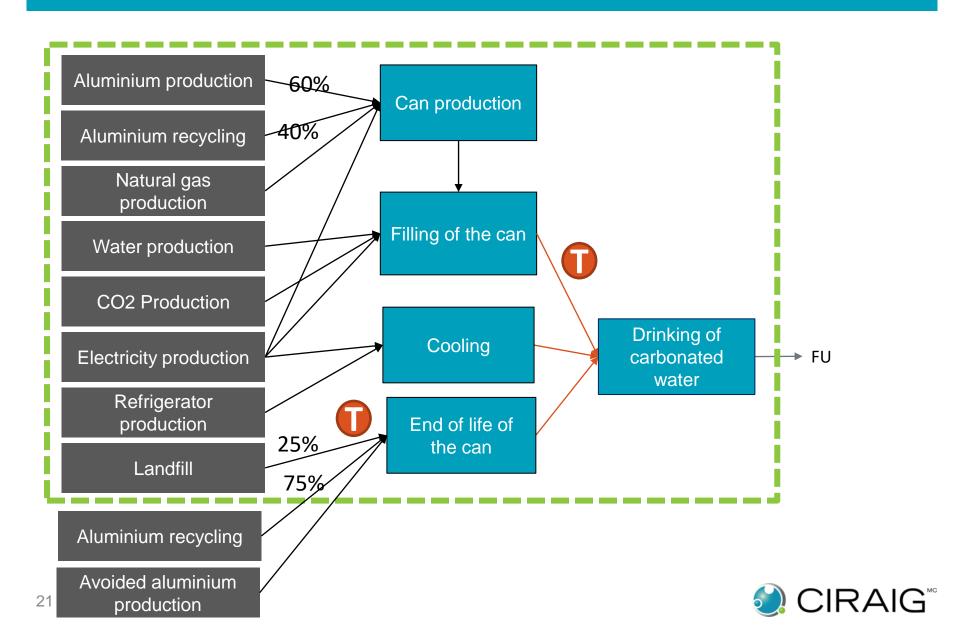
Data:

- Mass of an empty can: 13 g
- Can is made form 60% primary aluminium
- 75% of the cans are recycled
- The yield of the collecting sorting and cleaning process is 80%
- The yield of the recycling process is 99%
- PRG of CH₄ is 29.7 kg CO₂e / kg

Dynama	Elementery flow		l loit	
Process	CO2	CH4	Unit	
Primary aluminium	1.37E+01	1.58E-02	kg/kg aluminium	
Collecting, sorting and cleaning of aluminium scrap	0.29623	0.00924	kg/kg aluminium	
Aluminium recycling	9.58 E-01	2.21 E-02	kg/kg aluminium	
Landfill	2.32 E-02	9.8 E-04	kg/kg waste	

Question 2 - Process tree - End of life recycling approach

Question 2 - Process tree - End of life recycling approach


The end of life recycling approach assumes a 100% of primary content.

There is no change for this situation

Total: **0.11709 kg CO2e**

Question 2 – Process tree – Recycled content approach

Question 2 – Process tree – Recycled content approach

The calculation of the end of life is the same as Question 1

1.487
$$E - 4 kg CO2e$$

But we do need to change the impact from the can production

Production of primary aluminium

$$0.013 \ kg \ primary \ al \times 0.6 \times ((10.64) + (0.0172) \times 29.7) = 8.69E - 02 \ kg \ CO2e$$

Production recycled aluminium:

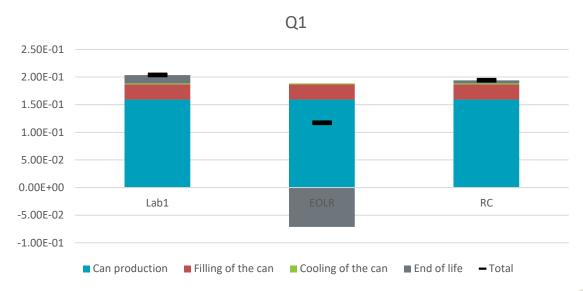
$$0.013 \ kg \ recycled \ al \times 0.4 \times ((0.74134) + (0.00143) \times 29.7) = 2.55E - 03kg \ CO2e$$

The total carbon footprint of the can production according the recycled content approach is: $0.13746\ kg\ CO_{2e}$

Question 2 – Calculation – Recycled content

Stage	Flow	kg CO	2 eq
	aluminium, primary, ingot	8.69E-02	
	aluminium, wrought alloy (from recycling)	4.08E-03	1.04E-01
Can production	natural gas, high pressure	1.34E-03	
	electricity, high voltage	7.31E-03	
	Carbon dioxide, fossil	5.70E-03	
	Tap water	3.72E-04	2.72E-02
Filling of the can	electricity, high voltage	2.19E-03	
Filling of the can	carbon dioxide, liquid		2.72E-U2
	transport, freight, lorry, unspecified	7.43E-03	
Cooling of the can	Refrigerator	3.45E-04	1.94E-03
Cooling of the can	electricity, low voltage	1.60E-03	1.946-03
End of life	transport, freight, lorry, unspecified	2.64E-03	4.50E-03
Ella of file	municipal solid waste	3.11E-03	4.3UE-U3
	Total	0.14	024

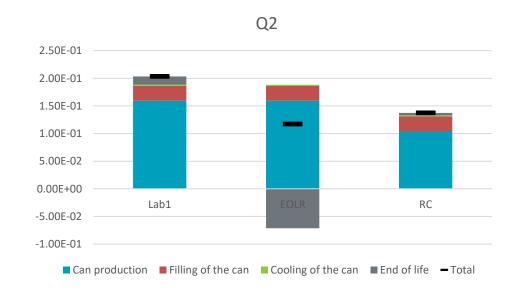
Results comparison


QUESTION 3

Question 3

Compare calculated results of Q1 to carbon footprint from lab1

	Q1			
	Lab1	EOLR	RC	
Can production	1.59E-01	1.59E-01	1.59E-01	
Filling of the can	2.72E-02	2.72E-02	2.72E-02	
Cooling of the can	1.94E-03	1.94E-03	1.94E-03	
End of life	1.51E-02	-7.13E-02	5.75E-03	
Total	2.03E-01	1.17E-01	1.94E-01	



Question 3

Compare calculated results of Q2 to carbon footprint from lab1

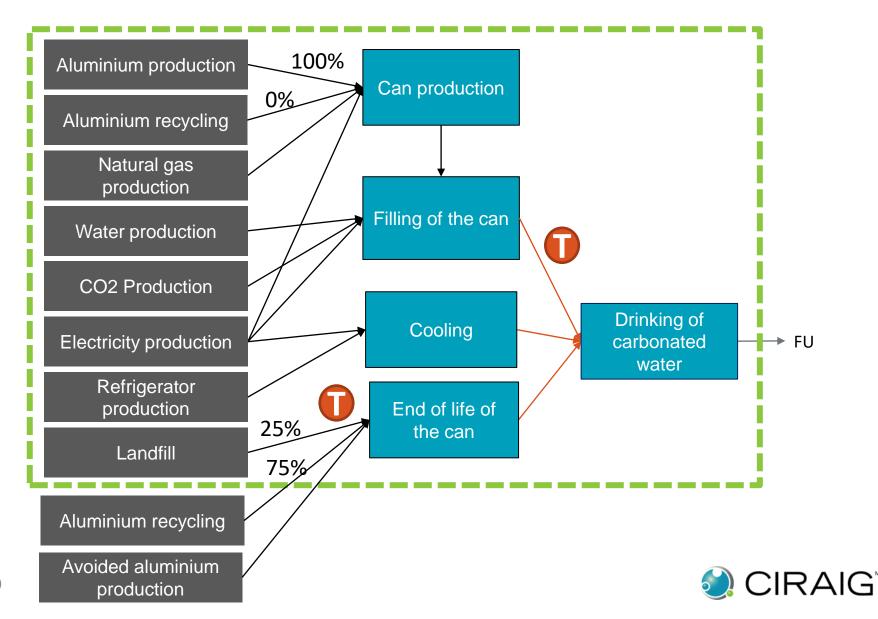
	Q2			
	Lab1	EOLR	RC	
Can production	1.59E-01	1.59E-01	1.04E-01	
Filling of the can	2.72E-02	2.72E-02	2.72E-02	
Cooling of the can	1.94E-03	1.94E-03	1.94E-03	
End of life	1.51E-02	-7.13E-02	4.50E-03	
Total	2.03E-01	1.17E-01	1.40E-01	

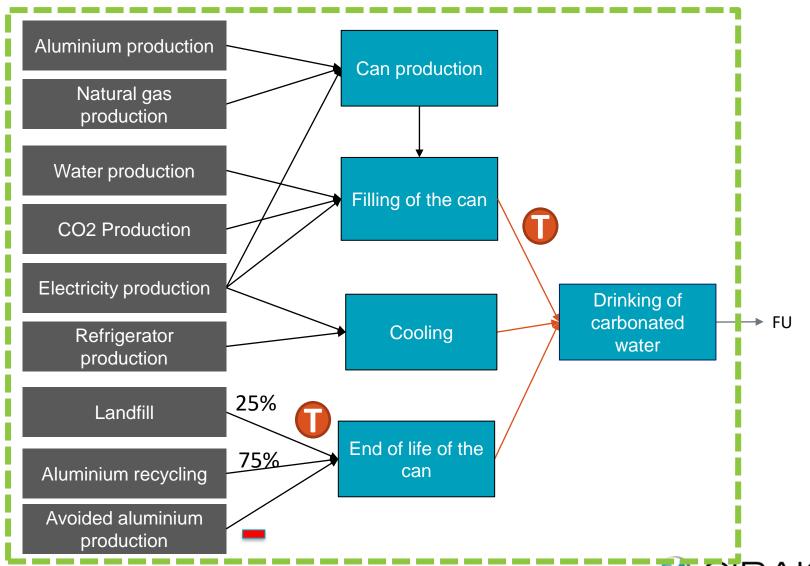
openLCA modelling

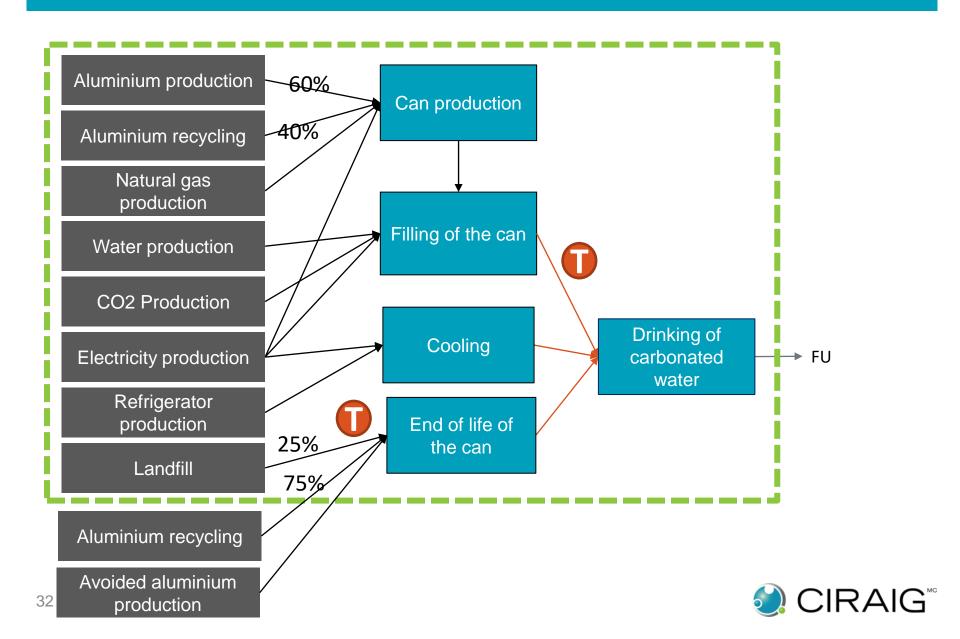
QUESTION 4


Modeling steps

- Create new folders in processes folder
 - Q1-EOLR
 - Q1-RC
 - Q2-EOLR
 - Q2-RC
- Create parameters
 - Q1_recycling_rate (75%)
 - Q2_recycled_content (60%)
- Copy appropriate processes
- Adapt quantities and input
- Creat new product systems
- Calcualte results


Flow	Process
aluminium scrap, post-consumer, prepared for melting	aluminium scrap, post-consumer, prepared for melting, Recycled Content cut-off aluminium scrap, post-consumer, prepared for melting Cutoff, S - GLO
aluminium, wrought alloy	treatment of aluminium scrap, post-consumer, prepared for recycling, at remelter aluminium, wrought alloy Cutoff, S - RoW


Question 1 – Process tree - End of life recycling approach


Question 1 – Process tree – Recycled content approach

Question 2 - Process tree - End of life recycling approach

Question 2 – Process tree – Recycled content approach

Results comparison

	Q1-EOLR	Q1-RC	Q2-EOLR	Q2-RC
By hand	0.117	0.194	0.117	0.1402
openLCA	0.1153	0.1989	0.1153	0.1404

