ENV-510 SYLLABUS - FALL 2024

TUESDAY 04:00 PM-07:00 PM ROOM: GC C3 30

<u>Title:</u> Life Cycle Assessment in energy systems

Teachers: Professor Manuele Margni,

HES-SO Valais Wallis Polytechnique Montréal

EPFL

manuele.margni@hevs.ch

Teaching
Assistants: Gabriel Magnaval

HES-SO & EPFL Valais Wallis gabriel.magnaval@hevs.ch

Jocelyn Roth

EPFL SB ISIC LFIM EPFL Valais Wallis jocelyn.roth@epfl.ch

Soline Corre

EPFL IPESE (SCI-STI-FM) EPFL Valais Wallis soline.corre@epfl.ch

Sanjay Venkatachalam EPFL IPESE (SCI-STI-FM) EPFL Valais Wallis

sanjay.venkatachalam@epfl.ch

3 credits

(presence in class/online attendance: 2 h./week) (practical work through tutorial sessions: 1 h./week)

(personal work: 3 h./week)

Professor François Maréchal, EPFL IPESE (SCI-STI-FM)

EPFL Valais Wallis

ferancois.marechal@epfl.ch

Dareen Dardor

HES-SO & EPFL Valais Wallis

dareen.dardor@hevs.ch dareen.dardor@epfl.ch

Xinyi Wei

EPFL IPESE (SCI-STI-FM)

EPFL Valais Wallis xinyi.wei@epfl.ch

Sai Ravi

EPFL IPESE (SCI-STI-FM)

EPFL Valais Wallis sai.ravi@epfl.ch

LEARNING GOALS

This course aims to enable students to use modern environmental analysis tools for the life cycle of products and processes and to understand their limits of applicability.

At the end of this course, the student should:

- Understand the principles, mathematical foundations and methodological choices of lifecycle assessment
- Perform a transparent and consistent comparative life-cycle assessment study
- Critically evaluate a life-cycle assessment to guide a decision-making process

Specific objectives

- Describe the theory and principles of Life Cycle Assessment (LCA), as defined in ISO 14040 and ISO 14044.
- Define the objectives and the scope of an LCA study from a real problem (objectives, functional unit, system boundaries, etc.);
- Distinguish key life cycle inventory databases and impact assessment methodologies;
- Collect primary data and scale inventory at the process level and at the functional unit;
- Model realistic product systems, calculate life cycle impacts, and compare the impacts of various products with equivalent functionality;
- Use the basic functionalities of an LCA software;
- Interpret the results of an LCA study and make recommendations in the context of decision-making;
- Distinguish requirements associated with different types of study (internal study, third-party report, publicly disclosed comparative statement);
- Determine the limits of the LCA as well as the contexts of appropriate applications

COURSE'S UTLITY

Bombarded for years by expressions such as "sustainable development" and "green", consumers are becoming increasingly demanding about the quality and availability of environmental information associated with the products they consume. Producers have to fulfil these new demands, but the tools they have are limited. Product design is one of the biggest levers towards a green economy. The engineer, as a designer, is at the forefront of acting to significantly reduce the environmental footprint of products and services.

Life cycle assessment (LCA) is a method of assessing the potential environmental impacts of a product, process, or service. The method covers all phases of the life cycle (extraction of natural resources to waste disposal, through the use of the product) and considers a wide spectrum of impacts affecting human health, ecosystem quality, climate change, resource depletion. The LCA method was developed to meet the specific needs of companies wishing to minimize their impact on the environment in the development and improvement of their products and services. It is above all a decision-making tool whose methodology isgoverned by the International Standards Organization (ISO) with the series of environmental standards ISO 14040 and 14044:

Syllabus Page 2/7

The LCA assesses the potential impacts generated on a product's life cycle, identifies hot spots across its value chain, and trade-offs in environmental problems.

LCA can be used to:

- Provide information on the potential environmental impacts of a product to communicate to buyers or other stakeholders (support environmental declarations);
- Find, internally, the most environmentally friendly way to manufacture and manage the product through its eco-design chain;
- compare, from an environmental perspective, different types of products that offer the same service;
- assess the environmental consequences of implementing public policy or business strategy.

The implementation of *Life Cycle Assessment* (LCA), has four major phases:

- "Goal and Scope Definition,", which defines why, for whom, and how to conduct an LCA, including defining the function of the product and identifying all interconnected processes, mobilized by its production, use, and disposal;
- "Life Cycle Inventory" (LCI), during which environmental emissions and resource extractions are accounted for each of the value chain processes in relation to the functional unit:
- "Life Cycle Impact Assessment" (LCIA) of the emissions and extractions identified and quantified in the previous phase in a few relevant impact indicators; and,
- "Interpretation of results" to identify significant points in the results of an LCA study in relation to methodological choices made in previous phases, assess their robustness and limitations to finally draw conclusions and recommendations.

Given the amount of data considered and the complexity of the processes involved, an LCA cannot be carried out without the reliance on databases and software for analysis and interpretation. An important part of the work of an engineer involved in the conduction of an LCA study will therefore be to learn how to master these computer tools and interpret the results according to the modeling choices and primary data collected in the field or via the literature.

KEYWORDS

Detailed study of life cycle assessment (LCA). ISO 14040 and 14044. Defining the goal and scope of the study. Inventory analysis: mathematical aspects, bottom-up and top-down approaches, attributional and consequential approaches, multi-functionality. Life cycle impact assessment: cause-and-effect chains, models and characterization factors, life cycle impact assessment methodologies. Environmental impacts and indicators. Classification, characterization, standardization, and weighting. Interpretation of results: analysis of contribution, sensitivity, uncertainty, scenario. Use of LCA databases and software. Critical analysis of a public LCA study. Conduction of a LCA project in the student's area of expertise. Types of LCA studies: internal, third-party report, comparative assertion disclosed to the public.

Syllabus Page 3/7

TEACHING AND LEARNING METHODS

The methodology for conducting a life-cycle assessment will be presented through a mix of traditional lectures, of "flippedclassrooms", and supervised active learning activities. The analysis of a few real cases will allow students to realize the breadth and complexity of these studies.

In addition, a project-based approach ensures that the students get a hands-on experience. The student teams will progressively conduct a complete comparative LCA for a selected product system. Each team will be mentored by an experienced LCA analyst or teaching assistant. A preliminary report and oral presentation will allow for early feedback on their LCA project, which should be taken into consideration in the process leading to the final report and oral presentation.

LEARNING ASSESSMENT

LCA PROJECT = 50% PRELIMINARY DELIVRABLE, ORAL & REPORT (10%); FINAL DELIVRABLE, ORAL & REPORT (40%)

FINAL EXAM = 50%

Exam

The final exam aims to evaluate the student's understanding of the methodological foundations and practical aspects of life-cycle assessment. A handwritten, recto-verso sheet of personal notes on A4 paper is permitted.

A minimum grade of 3.5 over 6 is required in the final exam, otherwise, the grades for the project will not be considered and a failing grade is assigned.

LCA-PROJECT AND TEAMWORK

An important part of this course is devoted to the conduction, as a team, of an analysis of the life cycle of a product or service. The completion of this project allows students to apply the concepts and methods seen in class. More generally, through this project, students will demonstrate that they are capable of:

- Defining the goal and scope of the LCA study in a coherent way, i.e. defining the function, functional unit, product system, and its boundaries, etc.;
- Collecting the necessary primary data, scaling it up and using the available databases to model the entire lifecycle inventory;
- Using LCA software;
- Assessing the life cycle impacts and understanding the differences between outcomes generated by different impact assessment methods;
- Conducting contribution analysis and sensitivity analyses;
- Interpreting results in relation to modeling choices and inventory data and identify study limitations.
- Provide recommendations in respect of the goal of the study

Syllabus Page 4/7

The working groups will be made up of five to six students (depending on the number of registrations). While task-sharing can be done within each group, all students must ensure that they understand and assimilate all elements of the LCA.

Teamwork will be evaluated through two reports and two oral presentations. The preliminary report (max 10 pages) includes the goal and scope of the comparative LCA. The final report (max 25 pages) builds on the preliminary one and present the overall results of the comparative LCA study. Specific requirements for reports and presentations will be communicated to students during the session. Note that each student's participation in at least one of the two presentations is required.

Please note that all team members are equally responsible for the project deliverables which will be evaluated by the teaching team at several progress stages. Feedback will be provided to students at each step allowing them to continuously improve the LCA project across the whole process. The overall evaluation of the LCA project will be subsequently tailored to each team member based on a peer evaluation from team members.

It is allowed to use generative artificial intelligence systems (GAIS) as a writing aid and for inspiration, provided that (1) you cite the tools used and (2) the ideas and opinions expressed reflect your own thinking. In addition, any factual assertion must be supported by a credible reference (scientific article, report, etc.) available during the evaluation by the teaching team.

REFERENCE BOOKS

Highly advised (and subject to review):

• Jolliet, O., M. Saade-Sbeih, S. Shaked, A. Jolliet. Environmental Life Cycle Assessment. CRC Press. Boca Raton, Florida. 302 pp. ISBN 978-1-4398-8766-0 Freely available ebook version: https://doi.org/10.1201/b19138

Or its alternative the French version:

• Jolliet, Saadé, Crettaz, Jolliet-Gavin, Shaked (2017). Analyse du cycle de vie : Comprendre et réaliser un écobilan. 3^e Edition. Presses polytechniques et universitaires romandes.

Or

- MOOC Introduction à l'Analyse du Cycle de Vie
- ISO 14040: 2006 and ISO 14044: 2006 (A copy of these standards is available at the library)

Other key support works:

- Heijungs and Suh 2002. The Computational Structure of Life Cycle Assessment. Kluwer Academic Publishers 241p.
- JRC (2009a) General guide for Life Cycle Assessment (LCA). ILCD Handbook. European Commission, Joint Research Center, Ispra. http://lct.jrc.ec.europa.eu/publications
- Hauschild, M.Z., Rosenbaum, R.K., Irving Olsen S. 2018. Life Cycle Assessment: Theory and Practice. Springer. https://link.springer.com/book/10.1007/978-3-319-56475-3

Other references/readings will be recommended during the lectures and posted on Moodle. (If necessary, specify the required and optional documentation for the course.).

Syllabus Page 5/7

COURSE PLAN

Week	Date	Activity	Tasks before each course
1	10 Sept	Introduction to Life Cycle Assessment (LCA) (F.Maréchal)	
		- Overview of LCA and getting familiar with the life cycle	
		concept	
		- Examples of LCA applications	
		- Presentation of professor and students	
		- Presentation of the course syllabus	
		- Introduction to LCA group project	
2	17 Sept	Methodological LCA framework, goal & scope, functional unit,	
		product system (M. Margni)	
		- The conceptual model of LCA	
		 Methodological LCA framework according to ISO 14040 	
		- Defining the goals and scope of an LCA	
		o Function, functional unit, reference flows	
		 Product system, process flow diagram, and system 	
		boundaries	
3	24 Sept	The systemic view of an integrated energy system through the	
		life cycle approach (F .Maréchal)	
4	1 Oct	Life cycle inventory (M. Margni)	LCA teams need to be
		- Computation of the life cycle inventory (LCI)	built with a defined LCA
		 Sequential vs. Matrix approaches 	project approved by the
		- Introduction to life cycle inventory databases	teachers
		- Attributional vs. consequential life cycle assessment	
5	8 Oct	LAB1: Define the scope and model the carbon footprint of	openLCA needs to be
		Aluminum cans of carbonated water (TAs)	installed on your own
		- Modeling on paper: Scope definition, calculate the life	laptop/PC
		cycle inventory and the carbon footprint, preliminary	
		interpretation	
		- A quick overview of the openLCA software	
		- Modeling the case study with the openLCA software	
6	15 Oct	LAB2: Define the goal & scope (G&S) and modeling with	
		openLCA (TAs)	
		- Define the G&S of a comparative LCA between three	
		different hand dry systems	
		- Aluminum can case study: Adaptation of unit processes and	
		product systems in openLCA	
	22 Oct	Interruption des enseignements	
7	29 Oct	Modeling multifunctional processes & the end-of-life, exploring	
		of ecoinvent database (M. Margni)	
		- Introduction to the issue of multifunctionality in LCA	
		- Dealing with multifunctional processes	
		- The case of recycling	
		- The life cycle inventory database ecoinvent v3	
		LAB3: Multifonctionality and endo-of-life in openLCA (TAs)	
		- Allocation and recycling in openLCA	
		- Modeling the End-of-Life of Aluminum can	
		- Exploration of ecoinventv3.6 in openLCA	
8	05 Nov	Oral presentations of LCA group projects: G&S	Presentations uploaded on
•	05 1101	- preliminary delivrable on the G&S	Moodle at noon at latest
		promining definitions on the Good	Reports upload on
			Sunday 23h59 at latest
			Sanday 25115) at latest

Syllabus Page 6/7

Week	Date	Activity	Tasks before each course
9	12 Nov	Life Cycle Impact Assessment (LCIA) (M.Margni)	
		- Midpoint-Damage LCIA framework	
		- Mandatory and optional elements of LCIA	
10	19 Nov	LCA Interpretation fundamentals (M.Margni)	
		- Overview of the interpretation phase	
		- Contribution analysis	
		- Sensitivity/scenario analysis	
		LAB4: Impact assessment and basic interpretation in OpenLCA	
		(TAs)	
		- Import of impact assessment methodologies	
		 Calculating impact scores and environmental profiles 	
		- Contribution analysis	
11	26 Nov	Advanced LCIA considerations (LCIA) (M. Margni)	Describe the causality
		- Good practices and state-of-the-art LCIA	chain and indicators of a
		- Key points and limitations	specific impact category
		 Main impact categories and characterization methods 	(short presentation: 5 min)
		- Calculating a carbon footprint (Accounting for biogenic	The modeling of the
		carbon)	different options of
		LAB5: Interpretation in openLCA	sparkling water needs to
		- Sensitivity/scenario analysis	be finalized
12	03 Dec	LCA Interpretation fundamentals (M.Margni)	
		- Overview of the type of analysis in the interpretation phase	
		- Sensitivity/scenario analysis	
		- Uncertainty analysis	
		- Assessment of data quality	
13	10 Dec	Revision of the course (M. Margni)	
		- Case study on waste to energy valorization	
		- Critical analysis of environmental declarations	
		- How to account for biogenic carbon?	
		- Q&A Quiz	
14	17 Dec	Oral presentations of LCA group projects: LCA results and	Presentations uploaded on
		interpretation	Moodle at not at latest
		- final delivrable	hours
			Reports uploaded on
			Moodle on Sunday at
			23h59 at latest
	Jan 2025	Exam	
		Exact date set by the administration	

Syllabus Page 7/7