

Exercise session #9

Science of Climate Change

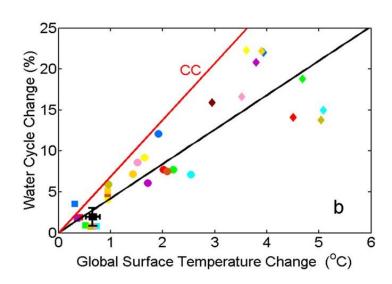
Today's plan

- Understand key concepts of climate extremes, how they are expressed and how they will evolve in a changing climate
- Understand key concepts of extreme value theory and extreme event attribution
 - 1. Multiple choice quiz: recap of lecture
 - 2. Extreme value theory
 - Methods: Block maxima vs peak over threshold
 - Distributions
 - Conversion to return periods
 - 3. Extreme event attribution
 - 4. Time to work on assignments, poster etc

Lecture recap quiz

 Go on mentimeter.com and type in the Game PIN (4502 3262) or scan the QR code with your phone

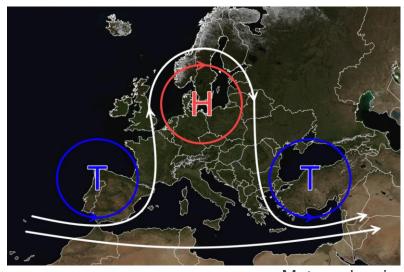
Which of the following is NOT an extreme event associated to climate change?


- Heatwaves
- Cold spells
- Heavy precipitation
- Tsunamis

Which physical process explains heavier precipitation in a warmer climate?

- The Clausius-Clapeyron relation
- A more pronounced environmental lapse rate
- Because of droughts, the water cycle is balanced by heavier precipitation
- Because the O-18 isotope is more present in clouds in a warmer climate

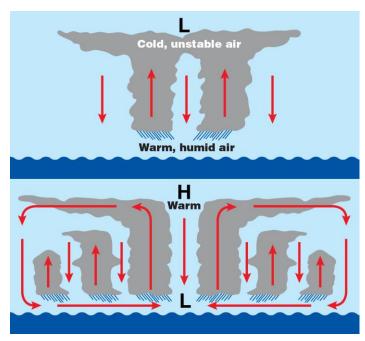
The Clausius-Clapeyron relationship predicts an increase in the water holding capacity of air (the saturation water vapor pressure) of approximately 7% per degree Celsius rise in temperature.



What could be the reason of a heat wave over Europe?

- A displacement of the Hadley cell generate more subsidence over Europe
- A positive NAO index favours hot and dry weather over Europe
- A blocking anticyclone favours subsidence and clear sky for extended periods
- Stronger greenhouse effect generates extreme surface temperatures

Blocking anticyclones can lead to persistent weather conditions in the same location, such as hot and dry weather in summer



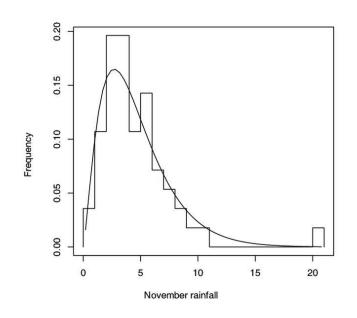
Meteoschweiz

Which proposition about tropical cyclones is true?

- More stronger (Cat. 4 or 5) cyclones per season because of warmer ocean
- The number of tropical cyclones per season is increasing
- No change in intensity and frequency
- Increased lifetime of cyclones

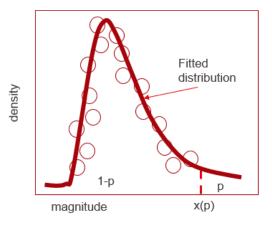
Hurricanes get their energy from warm surface water. With increased ocean temperature, they become stronger.

Increased weather extremes are due to


- more energy available in the atmosphere (thermodynamics)
- changed atmospheric circulation patterns (dynamics)
- Natural variability
- 1 & 2 are both correct

The daily precipitation probability density function follows a

- Fréchet distribution
- Weibull distribution
- Gumbel distribution
- Gamma distribution


The gamma distribution typically describes best mean precipitation. Weibull, Fréchet and Gumbel are extreme value distributions and are therefore only valid for maxima.

The probability of a 200-year event to occur on a specific year is:

- 2%
- 0.5 %
- it depends on the shape parameter of the GEV distribution
- It depends when such an event happened for the last time

Generalized extreme value distribution

event x has probability p; x(p)

p = probability of exceedance Return period **T = 1/p**

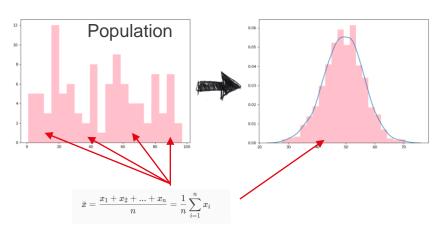
For example, if p = 0.01, then the return period is T = 100 years.


Data points from block maxima, e.g. From over 50 years.

T = 1/200 = 0.005 = 0.5 %

What parameters are taken into account to define the likelihood of severe alteration to functioning of a society?

- Weather and climate events, Exposure,
 Implemented adaptation strategies
- Exposure, Economic development, Historical occurence of extremes
- Weather and climate events, Exposure,
 Potential economical loss
- Weather and climate events, Exposure,
 Vulnerability

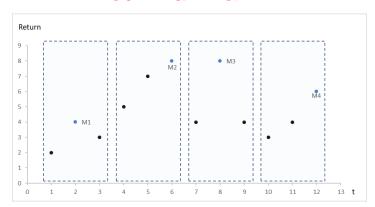


Extreme value theory recap

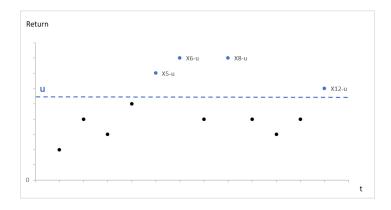
Similar to Central Limit Theorem but for maxima instead of mean

CENTRAL LIMIT THEOREM

WHAT IS IT AND WHY IS IT USEFUL?



Central limit theorem states that if you take repeated samples from a population and compute their mean, the means are normally distributed, no matter what the population distribution look like


Extreme value theory recap

- Now, instead of using sample means, we use maxima.
- But how do we define maxima?
- 2 methods:

Block maxima

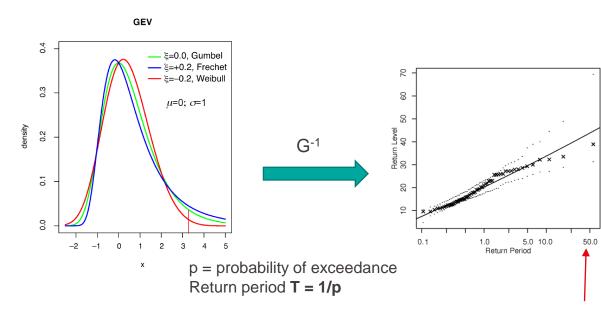
Peak over threshold

Block Maximum

$$M_n = max\{X_1, \dots, X_n\}$$
 for $n \to \infty$
$$M_n$$
 follows a Generalized Extreme Value (GEV) distribution

What are inconveniences or considerations to take into account for each method?

Peak over Threshold (POT)

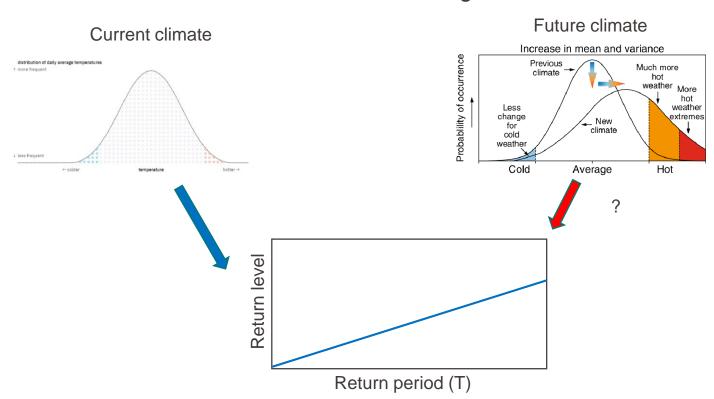

$$[X_i - u | X_i > u]$$
 very large threshold u follow a Generalized Pareto Distribution (GPD)

Extreme value theory recap

• The GEV Distribution (CDF)

$$GEV(x; \mu, \sigma, \xi) = \exp\left\{-\left[1 + \xi \left(\frac{x - \mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$
where: $1 + \xi \cdot \frac{x - \mu}{\sigma} > 0$

- A combined parametrisation of all three limit distributions
- o Three parameters: Location (μ), Scale (σ), Shape (ξ)
- o ξ = 0: Gumbel, unbounded ξ > 0: Fréchet, lower bound ξ < 0: Weibull, upper bound


-> based on the probability of exceedance of a given value, we can convert the GEV distribution into a return period graph Can be extrapolated to events with return periods larger than the data record period

Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag. ISBN 1-85233-459-2.

Extreme value theory recap

How will extremes evolve with climate hange?

Extreme event attribution

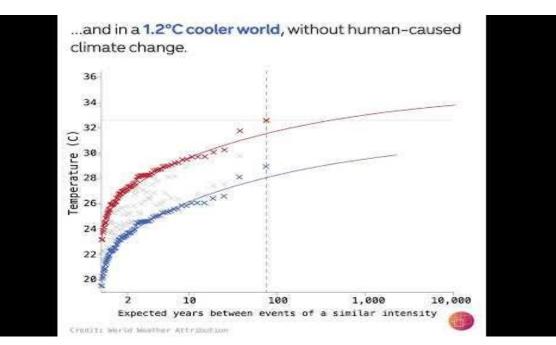
 Quantification of climate change contribution to some types of extreme events is possible

Home About - Analyses - News Peer review



Extreme downpours increasing in Southern Spain as fossil fuel emissions heat the climate

World Weather Attribution – Exploring the contribution of climate change to extreme weather events


Probability-based approach

- Many methods developed
- One method is the probability-based approach
 - p₁: probability of event in present-day climate, the "factual"
 - p₀: probability of event in past climate, the "counterfactual"
 - Probability ratio: $PR = p_1/p_0$
 - Fraction of Attributable risk: FAR=1 p₀ / p₁

8-step procedure

- Analysis trigger
- 2. Event definition
- Observational trend analysis
- 4. Climate model evaluation
- 5. Climate model analysis
- 6. Hazard synthesis
- Analysis of trends in vulnerability and exposure
- 8. Communication

https://www.worldweatherattribution.org/methods/

Philip et al. 2020, Oldenborgh et al. 2021

Take home message

- With climate change, extremes will be more frequent, more intense and of longer duration
- Extreme events have impact in all regions of the planet
- Implications are: Economical losses, population migration, social impacts, casualties...
- Extreme value theory can be applied to data records to predict the probability of an event of a certain magnitude
- Extreme event attribution is used to estimate how climate change influenced the likelihood and intensity of the weather event