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Figure 1.2 Profiles of annual mean ocean salinity in the upper ocean. High salinities near the
surface are observed in subtropical latitudes because evaporation of fresh water from the ocean
exceeds precipitation in these regions. In latitudes where precipitation exceeds evaporation,
and hence the flux of fresh water into the ocean is positive, salinities are relatively low. In the
deep ocean, salinity varies little with latitude, since evaporation and precipitation—the pri-
mary mechanisms influencing salinity—act at the surface. (Data from Levitus, 1982.)

The average salinity of the world ocean is 34.7 psu. Salinity in the open ocean
ranges from about 33 to 38 psu. Higher values of salinity occur in regions of high
evaporation such as the Mediterranean and Red Seas, where salinity values reach as
high as 39 and 41 psu, respectively. Profiles of annual and zonal mean salinities are
given in Figure 1.2. The salinity is large in the subtropical latitudes because evépora—
tion exceeds precipitation and leaves the water enriched with salt. Salinities are low
in the tropics and the mid-latitudes, where precipitation is high. The salinity of the
North Atlantic Ocean averages 37.3 psu, compared with the North Pacific Ocean
salinity of 35.5 psu.

In addition to dissolved salts, seawater also has dissolved gases (e.g., oxygen,
carbon dioxide, and sulphur dioxide) and a variety of suspended particles (e.g., soil,
atmospheric aerosol, and biogenic particulate matter).

1.3 Pressure

Pressure is defined as force per unit area, p = %/A. The principal force contributing
to pressure in the atmosphere and ocean is the gravitational force.! The mass per unit

1 Bannon et al. (1997) estimate that the surface pressure is a factor of 0.25% less than the weight per unit
area of a resting atmosphere, because of lateral pressure forces associated with a curved surface geometry.
Vertical accelerations can also contribute to the pressure in a column.
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area of the atmosphere is approximately 104 kg m—2, and since the the acceleration
due to gravity is about 10 m s=2, the surface atmospheric pressure is about p, = 103
Pa. Since the mass of the world ocean is about 270 times the mass of the atmosphere,
pressures in the ocean are substantially greater than those in the atmosphere. The
pressure at any point in the ocean is the sum of the atmospheric pressure plus the
weight of the ocean in a column above the point per unit area.

In ST units, the pascal (Pa) is the unit of pressure, where 1 Pa=1 N m2, and N is
a newton. Alternative units of pressure include:

bar (bar): lbar = 105Pa

millibar (mb): Imb = 102Pa

torricelli (torr): ltor = 133.322 Pa

atmosphere (atm): latm = 1.01325bar
= 760 torr

= 1.01325 x 105 Pa

While Pa is the preferred unit of pressure, torr is a unit commonly used by atmo-
spheric chemists and chemical oceanographers. The unit mb is frequently used by
meteorologists, and oceanographers commonly use decibars (db). The preferred pres-
sure unit for meteorology is hPa (10° Pa), which is equivalent to mb.

The vertical variation of pressure in the atmosphere is shown in Figure 1.3 to
decrease almost exponentially with height, from a mean sea-level pressure of 1013.25
hPa. Approximately 90% of the weight of the atmosphere lies below 15 km. The
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Figure 1.3 Variation of atmospheric pressure with height (U.S. Standard Atmosphere, 1976).
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Figure 1.4 Vertical variation of pressure with depth in the ocean

vertical variation of pressure with depth in the ocean is shown in Figure 1.4 to be
approximately linear. In dealing with the pressure in the oceans, the atmospheric
pressure is subtracted and the pressure at the sea surface is entered as zero. An in-
crease of 10 m in depth in the ocean corresponds to an increase of 105 Pa, which is
approximately 1 atm. Thus the pressure at a depth of 1 km in the ocean is equivalent
to approximately 100 atm.

1.4 Density

Because of the large volumes characterizing the atmosphere and ocean, an intensive
volume is desired. Such a volume, v, referred to as the specific volume, is given by
v = V/m so that the units of v are m3 kg-1. The specific volume is the inverse of the
density, p, which has units of kg m3.

Figure 1.5 shows the vertical variation of density with height in the atmosphere.
Density decreases with height nearly exponentially, which is related to the pressure
decrease (Figure 1.3). A typical value of surface air density is 1.3 kg m=3. The mean
free path of molecules, which is determined by the frequency of intermolecular colli-
sions, is inversely proportional to density. The mean free path increases exponen-
tially from a value of about 10~7 m at the surface to the order of 1 m at 100 km.

Liquid water is almost.three orders of magnitude more dense than air. Hence, the
interface between the atmosphere and ocean is very stable. Since liquid water is nearly
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Figure 1.5 Vertical variation of density with height in the atmosphere. Density, like pressure,
decreases nearly exponentially with height (U.S. Standard Atmosphere, 1976).
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Figure 1.6 Density profiles in the ocean. Near the equator and throughout the tropics, the
density increases rapidly with depth below a shallow surface layer of nearly constant density.
This is due to the rapid cooling with depth in the ocean in these regions (see Figure 1.8). At
very high latitudes, salinity is more important than temperature in regulating the density, and
thus the o, profile near the surface is very different from the low-latitude profiles (see Figure
1.2). (Data from Levitus, 1982.)
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1.10 Hydrostatic Equilibrium

Thus far we have examined the thermodynamic state of individual masses of air and
seawater. Here we consider the state of the atmosphere and ocean in the presence of
a gravitational field, particularly the height dependence of pressure, temperature, and
density. The strength of the gravitational field, which depends primarily on the mass
of the planet, is a central determinant of the mass of the atmosphere and ocean. Al-
though both the atmosphere and ocean are bound to the earth by gravity, the ocean has
a finite depth, while the atmosphere does not have a top and blends slowly into inter-
planetary space. The reason for this difference is that the atmosphere is compressible
while the ocean is nearly incompressible, since the density of the atmosphere varies
with pressure whereas the density of the ocean hardly varies at all.

The vertical variations of pressure in the atmosphere and ocean are observed to be
much larger than either the horizontal or temporal variations. The decrease in pres-
sure with height in the atmosphere, and the increase of pressure with depth in the
ocean gives rise to a vertical pressure gradient force, ¥,

19p
%'—'—ﬁ'& (1.32)

where z is depth/height from the surface and p is the density.

The vertical pressure gradient force results in a vertical acceleration in the direc-
tion of decreasing pressure (upwards). The vertical pressure gradient force is gener-
ally in very close balance with the downward force due to gravitational attraction.
This is called hydrostatic balance, and is written as

d
g=—%£ (1.33)

where g is the acceleration due to the Earth’s gravity. The hydrostatic balance is
applicable to most situations in the atmosphere and ocean, exceptions arising in the
presence of large vertical accelerations such as are associated with thunderstorms.

Equation (1.33) can be integrated to determine a relationship between pressure
and depth or height:

—Jdp:Jpgdz (1.34)

To integrate (1.34), it is commonly assumed that g is constant; however, g varies with
distance from the Earth’s center and also with latitude because of the nonsphericity of
the Earth.
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To account for these variations in g, the geopotential ¢ is often introduced

o(z) =ngdz (1.35)

0

where the geopotential at sea level ¢ (0) is taken to be zero by convention. ¢ is the
gravitational potential energy per unit mass, with units J kg-L. Using the geopotential,
we may write an alternative and equivalent statement of the hydrostatic balance:

dp=-pdp

The geopotential height, Z, can be defined for application to the atmosphere as

Z
z -2 lj gdz (1.36a)
8o 8o 0

where g, =9.8 m s~2 is the globally averaged acceleration due to gravity at the Earth’s
surface. The force of gravity is thus perpendicular to surfaces of constant ¢, while not
exactly perpendicular to surfaces of constant z. Geopotential height is used as a ver-
tical coordinate in many atmospheric applications. In the lower atmosphere, Zis very
nearly equal to z; at a distance of z = 10 km above the Earth’s surface at 40°N,
g=9771ms?andZ= 9.986 km. In oceanographic applications, the dynamic depth,
D, is used analogously to the geopotential height in the atmosphere

D= o) _ Lrvdp (1.36b)
&o 8o Jp,

where D(p,) = 0 is assumed by convention and the dynamic meter, dm, is the com-
mon unit of dynamic depth. The pressure change is usually expressed in decibars (db,
where 1 db = 100 mb), since a pressure of 1 db is equivalent to a change of dynamic
depth of about 1 dm.

Since the focus of this text is on the ocean and lower atmosphere, we will assume
that g = g, is a constant, which simplifies the integration and evaluation of (1.34).
However, integration of (1.34) also requires some assumption about the vertical varia-
tion of the density, p.

Because seawater is nearly incompressible, density is nearly constant within the
ocean, and thus there is a nearly linear relationship of pressure with depth (Figure
1.4). In the ocean, the following integrated form of the hydrostatic equation is used:
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p(-z)=p,+pgz (1.37a)

where pj, is the atmospheric pressure. If we assume that p= 1036 kgm=3 and g = 9.8
m s—2, we may then write

p(-z)=p,+10153 ¢ (1.37b)

where z is in meters and p is in Pa. Because 10° Pa =1 bar, it is easily seen that the
oceanic,j pressure increases at approximately 1 db per meter of depth. Ocean pres-
sures given in db are numerically equivalent to the depth in meters to within 1-2%.
However, if seawater were actually incompressible, the sea level would rise by more
than 30 m, because the hydrostatic pressure in the deep ocean is so great.

. Because air is compressible and density decreases with height in the atmosphere
(Figure 1.5), integration of (1.34) for the atmosphere is more complicated than for the
ocean. However, useful insights can be derived from examining an idealized homo-
geneous atmosphere, where density is assumed constant. Consideration of a homo-
geneous atmosphere with finite surface pressure implies a finite total height for the
atmosphere, which is called the scale height H. Assuming that density is constant, we
can inleg.rate (1.34) from sea level, where the pressure is Dy to a height H, where the
pressure is zero, to obtain :

po=pgH (1.38)

The height of the homogeneous atmosphere (often referred to as the scale height) is
therefore

Poe  R,T,
H=20 =420 (1.39)
Pg g

where Ty is the surface temperature and H can be evaluated from the surface tempera-
ture and known constants to be approximately 8 km. From the ideal gas law, it is
easily inferred that temperature must decrease with height in the homogeneous atmo-
sphere. The lapse rate of the homogeneous atmosphere is obtained by differentiating
the ideal gas law with respect to z, holding density constant

ap
97 = PRa %% (1.40)

Combining (1.40) with the hydrostatic equation (1.33) leads to the result

__E_ 8 — o, -1
[=-5, =g =341Ckn (1.41)
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Thus the lapse rate of a homogeneous atmosphere is constant and about six times larger
than the lapse rate normally observed in the atmosphere (which is T = 6.5°C km™1).
The lapse rate for the homogeneous atmosphere is referred to as the autoconvective
lapse rate for the following reason: if the lapse rate exceeds the autpconvective value,
it is implied that the lower air is less dense than the air above, causing the atmosphere
to overturn and the spontaneous initiation of convection. Values of the atmospheric
lapse rate as large as the autoconvective value are observed over desert surfaces in
summer when the solar heating is high; however, lapse rates in the atmosphere typi-
cally do not exceed I' = 10°C km-1.

Further insight is gained by examining the characteristics of yet another idealized
atmosphere, called the isothermal atmosphere. After substitution of the ideal gas law
for density, we can write the hydrostatic equation in the following form:

__ P8
Op =~ 02 (1.42)

This equation is easily integrated for a constant temperature from sea level (z =0,
p = po) to some arbitrary height z

P z
J ap _ __g_J dz (1.43)

p R, T
Po 0
or
P __ 82
1n% =-RT (1.44a)

Taking antilogs and using H = RT/g, we have
P=p, exp(— Z/H) (1.44b)

Thus pressure decreases exponentially with height in an isothermal atmosphere, and
there is no definite upper boundary to this atmosphere. Note that when z = H, the
pressure is 1/e of its surface value. The isothermal atmosphere resembles the real
atmosphere more closely than does the homogeneous atmosphere; however, (1.44b)
is not applicable to the real atmosphere except when applied over a shallow layer
above the ground.

Many meteorological applications require an accurate relationship between atmo-
spheric pressure and height, which necessitates considering the variation of tempera-
ture with height. These applications include: determination of the elevation. at which
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the observations of pressure, temperature, and humidity are obtained from balloons
carrying radiosondes; conversion between pressure and height as a vertical coordi-
nate in numerical models of the atmosphere; reduction of surface pressure to sea—
level pressure over land; and determination of the thickness between pressure levels.
The vertical variations of the temperature profile can be accounted for by integrating
(1.42) in a piecewise manner, between height levéls that are close enough so that a
mean atmospheric temperature in the layer can be defined. Thus we have

22 P2
R,T,
gdz=- 2

dp

%) Py

Assuming that T, is constant within the layer, we can integrate to obtain

R,T,
L=z =— ) lnl-DE (1.45)
8 P
or
P2 =P €Xp L (z1-2,) (1.46)
RdTv

Equation (1.45) is referred to as the hypsometric equation. From (1.45), it is seen that
the thickness A z = zo—z; of a layer bounded by two isobaric surfaces is proportional
to the average virtual temperature of the layer (7, ). Figure 1.12 shows the variation
with latitude of the relative thickness of isothermal atmospheric layers. Since tem-
perature decreases with latitude away from the equator, the distance between two
isobaric surfaces decreases from equator to pole.

An additional application of the hydrostatic equation to the atn.losphere is integra-

tion under the assumption of a constant lapse rate. Assuming that temperature varies
linearly with height with a lapse rate T", we have

T=T,-Tz (1.47)

Substituting (1.47) into (1.42) yields

dp g dz

I3 R, T,-Tz
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Figure 1.12 Representation of the thicknesses of the 1000-500 hPa and 500-100 hPa layefs
and their variation with latitude. The thickness of the layer between two isobaric surfaces is
determined by the mean virtual temperature in the layer, according to (1.45), resulting in layers
of decreasing thickness from equator to pole.

This equation is easily integrated between the limits (z =0, p = po) and (z, p) to obtain

T,-T
m2 =5 1n(L——Z)

Do R,T T,
or
7
T\R,T
P=D (F) (1.48)
0

Note that the exponent in (1.48) is equal to the ratio of the autoconvective lapse rate
(1.41) to the actual lapse rate.



