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4. Determine how large drops must be beyond the critical radius before solute (Raoult)
effects are negligibly small relative to the curvature (Kelvin) effect.

5. Consider a parcel of air at T = —5°C and p = 800 hPa. Assume that a slight

supersaturation exists with #{= 100.5% (with respect to liquid).

a) Compute how long it would take to grow a cloud drop from an initial radius of 1
pm to a drop radius of 10 ym, 100 ym, and 1000 pm.

b) Compute how long it would take to grow a spherical ice ball from an initial radius
of 1 um to a radius of 10 gm, 100 ym, and 1000 um.

6. Derive expression for G; in the following equation:

ds _ dz dq,

I
7. An analytic expression of the following form has been used to describe drop size

spectra:
n(r) = Ar? exp(-Br)
where A and B are parameters. For a drop size spectrum represented by this relation-

ship, determine the following:
a) the total drop concentration per volume of air:

N=J n(r)dr

0

b) the mean drop radius:

F= #J. ra(r) dr

¢) the coefficients A and B for N =200 cm=3 and 7 = 10 um;
d) the liquid water mixing ratio, w;:

oo

P4
wi=5, 3pJ rn(rydr
0

where p, is the density of water and p, is the density of air.

Chapter 6 Thermodynamic Transformations of
Moist Air

In this chapter we consider the thermodynamic processes that result in the formation
and dissipation of clouds. Based on microphysical considerations, we found in Chap-
ter 5 that the liquid phase is nucleated at relative humidities only slightly greater than
100%. For simplicity, we assume here that clouds form in the atmosphere when the
water vapor reaches its saturation value and = 100%.

In a closed system consisting of moist air, the water vapor mixing ratio remains
constant through the course of thermodynamic transformations as long as condensa-
tion does not occur. However, vapor pressure and relative humidity do not remain the
same during such transformations. For example, in an adiabatic expansion the vapor
pressure decreases, since it remains proportional to atmospheric pressure.

The relative humidity was defined in Section 4.4 as

where w, is the water vapor mixing ratio and wy 1s the saturation mixing ratio. For
initially unsaturated air to become saturated, the relative humidity must increase. An
increase in relative humidity can be accomplished by increasing the amount of water
vapor in the air (i.e., increasing w,), and/or by cooling the air, which decreases w(T).
The amount of water vapor in the air can increase by evaporation of water from a
surface or via evaporation of rain falling through unsaturated air. The temperature of
the atmosphere can decrease by isobaric cooling (e.g., radiative cooling) or by adia-
batic cooling of rising air. An additional mechanism that can increase the relative
humidity is the mixing of two unsaturated parcels of air.

In this chapter, we begin by writing the combined first and second laws of thermo-
dynamics for a system that consists of moist air plus condensed water. To understand
the changes in thermodynamic state associated with the formation and dissipation of
clouds, we apply the combined first and second laws to the following idealized ther-
modynamic reference processes associated with phase changes of water:

e isobaric cooling;

e adiabatic isobaric processes;
e adiabatic expansion;

e adiabatic isobaric freezing.
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Although real clouds nearly always involve more than one of these reference processes
in their formation, consideration of the individual processes provides a convenient frame-
work for understanding mechanisms that cause clouds to form and dissipate.

6.1 Combined First and Second Laws

To understand thermodynamic processes in moist and cloudy air, consider the com-
bined first and second laws for a system that consists of two components (dry air and
water) and two phases (gas and liquid). For the present, we ignore surface and solute

effects in the condensed phase. Following Section 4.3, the combined first and second
laws are written as

dU=TdWN —pdV + pydny+ i, dn, + g dn,
dH=TdN+Vdp+puzdn,+up,dn,+ u,dn,
dG=-NdT +Vdp+pu dn,+u,dn, + u,dn,

where the subscripts d, v, and [ refer to dry air, water vapor, and liquid water, respec-
tively.

The exact differential of the enthalpy, dH, where H = H(T, p, my, m,, m;), can be
expanded as follows:

oH oH oH oH oH
dH = (ﬁ) dT + (E) dp + (a_’nd) dmd + (a—’nv) dmv + (a—m_[) dm,

If the system is closed, then dm, = 0 and dm, = — dm, and therefore

dH oH oH oH
an= (G ar+ (55 0+ (%‘)(%ﬂ o o

Since (h, — k) = Lj, (Section 4.3), we have

oH oH
dH = (ﬁ) dT + (5;) dp +L,,dm, (6.1b)
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To evaluate 0H/0T and dH/dp, consider the total enthalpy as the sum of the indi-
vidual contributions from the dry air, water vapor, and liquid water, so that H = m hy
+ my h, + my h;. We can then write

oH

ﬁ=mdcpd+mvcpv+mlc‘, (623)

Recall that in Section 2.9 we established that there is little difference between the
specific heats of liquid water at constant pressure and volume, so henceforth we do
not distinguish between them. In Section 2.3, we found that dH/dp = 0 for an ideal
gas. For liquid water, dH/dp # 0, but the value is small and thus neglected here. We
can therefore write (6.1) as

dH = (md Cpa+ M, Cp+ My c,) dT + L, dm, (6.2b)
In the atmosphere, the mass of water vapor is only a few percent of the mass of dry air
(Section 1.1), and the mass of condensed water is a small fraction of the mass of water
vapor. Thus m,>> m, >> m; and we can approximate (6.2b) by
demd dedT+ ledmv (63)
The enthalpy of a system consisting of moist air and a liquid water cloud is not only
a function of temperature (as was the ideal gas), but also a function of the latent heat
associated with the phase change. In intensive form, we have

dh= c,qdT+ Ly,dw, (6.4)

In a similar manner, we can write an equation for internal energy! as
du = (cvd +W, Cp+ W, c,) dT + L, dw, (6.5)
and an approximate form as

du=c,,y3dT+ L, dw, (6.6)

where wy is the liquid water mixing ratio introduced in (5.28).

! Mixing ratio is used here instead of specific humidity to avoid confusion of the notation ¢ (specific
humidity) with 4 (heat). Note that a liquid water specific humidity, g;, can be defined analogously to the
liquid water mixing ratio, w,.
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Depending on how the thermodynamic system is defined, the term Ly,dw, may be

included as part of the enthalpy, or it may constitute an external heat source. For a
closed system, we can write

dg=c,ydT+ L, dw,—v dp (6.7a)
and for an adiabatic process,

0=c,ydT+L,dw,~vdp (6.7b)
Now consider a system that consists of moist air, with an external heat source associ-

ated with evaporation from a water source (such as moist air over a lake). The first
law of thermodynamics can be written as

dg=dh-vdp
where dh = cpydT and dg = Ly, dwj=-Ly, dw,. We can then write
L, dw,= c;,d dT-vdp (6.8)
Note that (6.7) and (6.8) are mathematically equivalent; however, in (6.7b) the term
Ly, dw, is part of the enthalpy, while in (6.8) the term L;, dw, is a heat source. This
example illustrates the care that must be taken to interpret correctly the thermody-
namic equation in the context in which the system is defined.

The combined first and second law for a system consisting of moist air and a liquid
water cloud can be written using (4.7) and (2.33) as

TdN=dH -Vdp— D, p;dn, 6.9)
J

Including only the liquid—vapor phase change, we can incorporate (6.2) into (6.9) and
write

TdN =(myc,y+m,c,,+myc;)dT+Ly,dm,—Vdp—u,dm,—pdm, (6.10)
p P v !

If the system is closed, then dm, = 0 and dm, = — dmy, and analogously to (6.1b) we
can write (6.10) in intensive form as

le + Alv
dn= (c,,d +wW,Cp, + w,c,) d(InT) - R;d(Inp,) — w,R, d(Ine) + —F dw, (6.11)
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In (6.11) we have separated the expansion work term into components (neglecting
the expansion work of liquid water). The affinity for vaporization, Ay, is defined
(following Dutton, 1986) as Aj, = 4 — 1,, Which can be evaluted following (5.10). If
the liquid and vapor phases are in equilibrium (u, = y), then A, =0. In subsaturated
or supersaturated conditions, the affinity term can be of the order of several percent of
the latent heat of vaporization. Using the first and second latent heat equations (4.19)
and (4.29), we can write (6.11) as

L A
dn=(cpg+w,c)d(nT) - R, d(inp,) +d (’—Tw—) +w,d (Tl) (6.12)

where w, is the total water mixing ratio (w,= w, + wy).

Analogous arguments can be used to incorporate the ice phase into the entropy
equation. The complete thermodynamic equation for moist air and clouds that in-
cludes all three phases of water is written as

Ay, L,w,

dn=(cpd+w,c,) d(InT) - R, d(lnpd)+wvd(—7’, )+d(——’T )
A”) (L”W,-)
_W"d(? —d\—r

where the total water mixing ratio, w,, in (6.13) includes the ice water mixing ratio,
w;. The affinity for freezing, A, is defined analogously to that for vaporization as
Aj = p; — 1. The affinity for freezing can reach 20% of the latent heat of fusion.

(6.13)

6.2 Isobaric Cooling

A thermodynamic process can be approximated as isobaric if vertical motions are
small and there is only a small departure from a reference pressure. In the absence of
condensation, the first law of thermodynamics for an isobaric process in moist air is
written (following 2.16) as

dq:dh:c,,dT

where c,, can be approximated as the dry air value, or alternatively the contribution
from water vapor can be incorporated following (2.65). As moist air cools, relative
humidity increases: w, remains the same, but as the temperature decreases then w;
decreases. If the cooling continues, w, will become equal to w, and H will equal
unity; at this point, the air has reached saturation. Further cooling beyond saturation
results in condensation.
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The temperature at which saturation is reached in an isobaric cooling process is the
dew-point temperature, which is illustrated in Figure 6.1a. The dew-point tempera-
ture, denoted by Tp, can be defined by

e=e,(Tp) (6.14)
or equivalently by
w, =w, (Tp) (6.15)

We can determine the dew-point temperature by inverting either (6.14) or (6.15),
which can be done using (4.31) and (4.36).

Analogously to the dew-point temperature, we define the frost-point temperature
as the temperature at which ice saturation occurs. The frost-point temperature, T, is
thus defined as

e=e,(Tx) (6.16)
or equivalently as
w, = wy (T) (6.17)

In Figure 6.1b, it is seen that if the vapor pressure is initially below the triple—point
pressure of water (point 1), isobaric cooling results in deposition once the frost point
is reached (point 2). As described in Section 5.3, saturation with respect to ice is not
sufficient to initiate the ice phase in the atmosphere. Deposition occurs at the frost
point only if ice crystals already exist in the atmosphere. Since Tr > Tp, the forma-
tion of frost on the ground must occur by deposition rather than by freezing of con-
densed water vapor; grass and other structures provide a good substrate for initiating
the ice phase by deposition.

Although the units of the dew-point temperature are kelvins, the dew-point tem-
perature is a measure not of temperature but of atmospheric humidity. By examining
Figure 6.1 and the Clausius—Clapeyron relationship (4.19), it is seen that

d(ne) L,
T, R 72

veD

(6.18)

and that e and T}, give equivalent information about the amount of water vapor in the
atmosphere. A relationship between T and H can be obtained by integrating (6.18)
between T and Tp:
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Figure 6.1 a) Relationship between temperature and vapor pressure in an isobaric cooling
process. Air initially at temperature T, (point 1) is cooled isobarically until it reaches
saturation (point 2). The temperature at point 2 defines the dew-point temperature, T),. b) Air
at 7, (point 1) cools isobarically until it reaches saturation. If the saturation is reached with
respect to ice (point 2), the temperature is called the frost point, T
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or equivalently

J =exp (6.19)

Ly [T-Tp
CRA\TT,

The term T— Tp in (6.19) is called the dew-point depression. Figure 6.2 illustrates
that dew-point depression is inversely proportional to relative humidity and that a
relative humidity of 100% corresponds to a dew-point depression of zero.

S~
\\
5 10 15 20

T-T, (°C)

Figure6.2 Dew—pointdepression. As the relative humidity increases, the difference betweer
the ambient temperature and the dew-point temperature (i.e., the dew—point depression)
decreases. As the ambient temperature decreases, the dew—point depression becomes less
sensitiveto changesin the relative humidity.
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Thus, through (6.14), (6.15), and (6.19), the dew-point temperature is shown to be
a humidity variable. If temperature, dew-point temperature and pressure are given,
then the values of mixing ratio, relative humidity, and vapor pressure can be calcu-
lated. Analogously, the frost-point temperature can be related to all of the other hu-
midity variables. In an isobaric process in the absence of condensation, the dew-
point and frost-point temperatures are conservative; that is, they do not change during
the cooling process until condensation is reached.

Once the air is cooled slightly below the dew-point temperature, condensation
begins. After condensation begins, the first law of thermodynamics for an isobaric
process is written following (6.4) in the approximate form

dg=dh=c,dT +L,dw, (6.20)

Assuming that condensation occurs at saturation ({= 1) and that the water vapor
mixing ratio is equal to the saturation vapor mixing ratio w, = w,, we can write

w,=w, +w, (6.21)
In a closed system, w; remains constant, so
dw;=—dw,

Using the approximation w;= € e;/p from Section 4.4 and the Clausius—Clapeyron
relation (4.19), we can write

des EL!V €
dw=—dw,=-€— = — ~dT (6.22a)
P pR‘,T2
Incorporating (6.22a) into (6.20) and using R;= R, /€, we obtain
Ln‘v €y
dw; = — e dg (6.22b)
¢, PR, T  +Ly e,

Combination of (6.22b) with (6.20) gives a relationship between dg and dT during
isobaric condensation:

d Lves | gr (6.22¢)
=—|c,+ 22¢
: " pR,T?
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Integration of (6.22b) (which is most easily done numerically, since ¢, is a function of
T) allows determination of the amount of isobaric cooling, A required to condense
an amount of liquid water, Aw,. Analogously, integration of (6.22c) allows determi-
nation of the temperature change, AT, in response to the isobaric cooling, Ag. Before
condensation occurs, we have Ag=—c, AT. Once condensation begins, it is seen from
(6.22c) that the temperature drops much more slowly in response to the isobaric cool-
ing, because the heat loss is partially compensated by the latent heat released during
condensation.

Once condensation begins, the dew-point temperature decreases, since the water
vapor mixing ratio is decreasing as the water is condensed. Relative humidity re-
mains constant, at # = 1.

Isobaric cooling is a primary formation mechanism for certain types of fog and
stratus clouds (see Section 8.4). The equations derived in this section are equally
applicable to isobaric heating. In this instance, an existing cloud or fog can be dissi-
pated by evaporation that ensues from isobaric heating (e.g., solar radiation).

6.3 Cooling and Moistening by Evaporation of Water

Consider a system composed of unsaturated moist air plus rain falling through the air.
Because the air is unsaturated, the rain will evaporate. If there are no external heat
sources (Ag = 0), and the evaporation occurs isobarically (dp = 0), we can write an
adiabatic, isobaric (or isenthalpic) form of the enthalpy equation (6.20) as

0 =dh=c,dlT—Lydw, = c,dl +L,dw, (6.23)

where ¢, can be approximated as the dry—air value, or alternatively the contributions
from water vapor and liquid water can be incorporated following (6.2a). Since
dh =0, (6.23) can be used to determine a relationship between temperature and hu-
midity variables for isenthalpic processes in the atmosphere that involve a phase change
of water.

If we allow just enough liquid water from the rain to evaporate so that the air
becomes saturated, we can integrate (6.23) :

Tw 0
cpJ' dT=—L,,,J dw,

w

where w; represents the amount of water that must be evaporated to bring the air to
saturation. During the evaporation process, latent heat is drawn from the atmosphere,
and the final temperature, referred to as the wez-bulb temperature (Ty,), is cooler than
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the original temperature. Integration gives

¢y (Tw=T) ==Ly, [w, (Ty) - w,]

or alternatively

Ty = T—— |w, (T) - w)] (6.24)
P

where the temperature dependence of L;, has been neglected. Given w, and T, this
expression is implicit for Ty and must be solved numerically. However, if T and Ty
are given, then w, is easily determined. Ty can be measured using a wet-bulb ther-
mometer, whereby a wetted muslin wick is affixed to the bulb of a thermometer. Con-
current measurement of the “dry-bulb” temperature by a normal thermometer can then
provide a means of determining the water vapor mixing ratio and therefore atmo-
spheric humidity. For this reason, (6.24) is often referred to as the wet-bulb equation.

The wet-bulb temperature is thus defined as the temperature to which air would
cool isobarically as the result of evaporating sufficient liquid water into the air to
make it saturated. As such, the wet-bulb temperature in the atmosphere is conserva-
tive with respect to evaporation of falling rain. Calculations for given values of T and
w show that T < Ty, < T. This can be shown graphically. Since ¢ increases while T
decreases during the approach to Ty, the Clapeyron diagram looks like:

B
Lt

T
If ice is the evaporating phase, we can determine an analogous ice-bulb temperature, T;:

T, =T - Lo (1) - w)] (6.25)

Cp

It is easily shown that Ty > Ty,
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6.4 Saturation by Adiabatic, Isobaric Mixing

We have seen in Sections 6.2 and 6.3 how unsaturated air can be brought to saturation
by isobaric cooling and by the adiabatic, isobaric evaporation of falling rain. There is
an additional isobaric process that can bring unsaturated air to saturation. Under
some circumstances, the isobaric mixing of two samples of unsaturated air leads to
saturation. One example of this process occurs when your breath produces a puff of
cloud on a cold day.

Consider the isobaric mixing of two moist air masses, with different temperatures
and humidities but at the same pressure. Condensation is assumed not to occur. For
adiabatic, isobaric mixing, we can write the first law of thermodynamics from (2.16)
as

O=dem1 dedTl +m2dedT2

where dT, and dT; correspond to the temperature change of the air masses upon mix-
ing and we have ignored the heat capacity of the water vapor in accordance with
(6.4). Upon integration from an initial state where the air masses are unmixed to a
final state where the air masses both have the same final temperature, 7, we have

M Cpy (T— T,) +Mycpy (T— T2) =0
Solving for T we obtain

m my
T= T+ T,
m +m2 m, +m2

The total mass m = m; + m, remains constant during the mixing process, so the
specific humidity is a mass-weighted average of g,; and g,,

m m,

= +
qy m,+m2q"' m,+m2q"2

Thus, both the temperature and specific humidity mix linearly if the heat capacity of
the water vapor is neglected. Since g, = w,, we can also assume that the mixing ratios
mix linearly. If we further assume that w, = ge/p, then vapor pressure mixes linearly
as well.

Because of the nonlinearity of the Clausius—Clapeyron equation, adiabatic iso-
baric mixing results in an increase in relative humidity. This mixing process is illus-
trated in Figure 6.3 using a T, e diagram. If Y, and Y, are the image points for the two
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Figure 6.3 Adiabatic isobaric mixing and condensation. Two air masses with (¢,7) given by
points Y, and Y, mix, resulting in a single air mass with (¢, T') given by point Y. Since # > 1 at
this point, water will condense, and the temperature of the air mass will increase while the
vapor pressure decreases. Condensation will continue until the temperature and vapor
pressureof the air mass coincide with the saturation vapor pressure curve (point Y).

air masses, the image point for the mixture lies on a straight line joining ¥} and Y,. If
m, = my, then T and e for the mixture will lie midpoint on this line. Because of the
exponential relationship between ¢, and 7, the mixing process increases the relative
humidity. In the example shown in Figure 6.3, the mixing process results in the
image point Y having a relative humidity that exceeds 100%, crossing the f=1 line
into the liquid phase (see also Figure 4.3). Water will condense and latent heat will be
released, with the final equilibrium image point at Y on the f=1 line.
The slope of the line between Y and Y~ can be determined from the first law of
_ thermodynamics for an adiabatic isobaric process in which condensation occurs (6.23):

dh=0=c,dT + L, dw,

Using the definition of the saturated water vapor mixing ratio, w, = ge,/p, we can
write

Lt
0=cpdT+ [; de
or
[
de __ P (6.26)

dT =" €L,
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Figure 6.4 The formation of contrails by adiabatic, isobaric mixing. A jet flying at 200 mb
ejects water vapor into the atmosphere at the temperature and vapor pressure represented by
point A. For atmospheric temperatures less than about 47°C (226 K), the water vapor will
condense, forming condensationtrails. (From Ludlam, 1980.)

The value of (e, T) at Y can be found by simultaneously solving (6.26) with the
Clausius—Clapeyron equation (4.19). The amount of liquid water condensed during
the mixing is

Aw;=5 [e(Y) - e(Y")] (6.27)

A notable example of the formation of clouds by adiabatic, isobaric mixing occurs
when the exhaust gases from the combustion of fuels by an aircraft mixes with the
ambient atmosphere. The trails of clouds often formed by an aircraft in flight at high
altitude are referred to as condensation trails, or contrails. In the exhaust, the aircraft
ejects heat and water vapor; the temperature of the exhaust is typically 600 K. Figure
6.4 indicates that for an aircraft flying at 200 mb, atmospheric temperatures below
about —47°C will form contrails. Once contrails form, their persistence depends on
the atmospheric humidity and the rate at which the exhaust trail is diffused. If the
particles are ice, atmospheric humidity in excess of the ice saturation value will result
in growth of the contrails.

6.5 Saturated Adiabatic Cooling

Adiabatic cooling is the most important mechanism by which moist air is brought to
saturation. As described in Sections 2.1 and 2.10, adiabatic expansion in the atmosphere
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occurs when a dry air mass rises due to mechanical lifting (e.g., orographic, frontal),
large-scale low-level convergence, turbulent mixing, and buoyancy caused by sur-
face heating.

Recall from Section 2.4 that the first law of thermodynamics for an adiabatic pro-
cess for moist air in the absence of condensation is written as (2.19b)

c,dT~vdp=0

from which we derived an expression for the potential temperature (2.62)

R/,
0T L'OO) E
14

and the dry adiabatic lapse rate (2.68)

r,=£ =10°C km™!
p

Recall that the potential temperature, 6, is conserved in reversible, dry adiabatic pro-
cesses in the atmosphere.

As air expands adiabatically and cools, the relative humidity increases as the tem-
perature and saturation mixing ratio decrease. The water vapor mixing ratio remains
constant during adiabatic ascent. At some point, the relative humidity reaches 100%,
and further cooling results in condensation. To determine the temperature and pres-
sure at which saturation is reached, we logarithmically differentiate } = e/e;

d(n#) =d(Ine) — d(Ine,) (6.282)

Using Dalton’s law of partial pressure (1.13), we have d(Inp) = d(Ine), and we can

write the first law of thermodynamics for an adiabatic process in enthalpy form (2.19b)
as

d(ine) = % d(InT) (6.28b)
d

Using the Clausius—Clapeyron equation (4.19), we can write

Ly, d(InT) (6.28c)

d(lne,) = BT
14
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Incorporating (6.28b) and (6.28c) into (6.28a), we can integrate (6.28a) from the ini-
tial condition to conditions where saturation is attained, indicated by #/=1and T=T,
where T is the saturation temperature

1 T,

5

" _ &_SL,V ,
d(ng’) = (Rd R, 7| 0nT")
" T
to obtain
) (l) €Ly (1 1
Ingf = g In| 72| + (Ts T) (6.29)

Equation (6.29) can be solved numerically to obtain T;. An approximate but simpler
equation for T, given initial values of T (in kelvins) and 7, is given by (Bolton, 1980)

1
T,=—7"-———+55 6.30
= 1 InH ( )

T—55 2840

The saturation pressure, p, can be obtained from (2.22) to be

ps CP 5
In—==In—
P R,
or, taking anti-logs, ~
T\ "y
n=r(%) (631)

The coordinate (75, p;) is known as the saturation point of the air mass.

During ascent, the water vapor mixing ratio, w,, remains constant until saturation
occurs. The dew-point temperature, however, decreases slightly during the ascent as
pressure decreases. Recall from (6.18) that

L,
2
v TD

d(lne) =

Ty, 6.32)
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Using Dalton’s law of partial pressure (1.13), we can write the hypsometric equation
(1.46) as

d(Ine)=— Rir dz (6.33)
d

Combining (6.32) and (6.33), we obtain

2 5
dTp Tpg Tpe,
& - TEL,T - eL,T'¢ (e

For typical atmospheric values, d7p/dz is approximately one-sixth of the dry adia-
batic lapse rate. At saturation level, T becomes equal to T and to T;. The lifting
condensation level, 7, corresponds to the level of the saturation pressure, p;.

Using (6.34a) and the definition of the dry adiabatic lapse rate, I'y = g/c,, we can
write

d(T-T T5c
(dz D)=(1+ > ”)rd (6.34b)

When T = T), the saturation level has been reached, and a value of z; can be deter-
mined by integrating (6.34b):

B & T.’f cp
j d(T-T7,) = 1+ T T,ldz (6.34c)

To-Tho 0

where T, — Tp, is the dew-point depression at the surface. For a parcel of air lifted
from the surface, the value of z, can be estimated from (6.34c) to be

2,=0.12(T, = Tj) (km) (6.35)

This relation is an approximate expression of the height of the lifting condensation
level achieved in an adiabatic ascent where T, and T}, represent the initial tempera-
ture and dew-point temperature of the air mass that is being lifted. Note that z; can be
determined directly from (1.45) if p; and 7 are known. Calculation of the lifting
condensation level provides a good estimate of the cloud base height for clouds that
form by adiabatic ascent.
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Once saturation occurs, further lifting of the air mass results in condensation. Be-
cause of the latent heat released during condensation, the decrease of temperature
with height will be smaller than that in dry adiabatic ascent. In addition, the potential
temperature, 6, which was conserved in a reversible dry adiabatic ascent, is no longer
conserved once condensation occurs.

A derivation of an approximate form of the saturated adiabatic lapse rate, T, is
given here by starting with the adiabatic entropy equation (6.12) in the following
approximate form:

L v
0 = ¢,y d(InT) — R, d(Inp) +T’dwx (6.36)

Using the hypsometric equation (1.46)

and logarithmically differentiating the equation for saturation mixing ratio (4.37),

dw, de; dp
wS - eS B ?
we can rewrite (6.36) as
de; d
~Lyw,|—-Z|=c,dT+gdz (6.37)
e p

Dividing by an incremental dz and solving for —d7/dz, we obtain

Tdr ¢ e, dz RT| ¢,
p s J4

ar L, 1 de,
Syl W_,( + g)+ £ (6.38)
Using the chain rule, we can write the term de,/dz as

de, de, 4T
dz  dT dz

(6.39)

and substitute into (6.38) to obtain
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dT des le W 8 L!v W
——|l+t—=——== + 1
dz dT c, e;] c,\ RT

Incorporating the Clausius—Clapeyron equation (4.19), solving for d7/dz = -T's and
noting that I'q = — g/c,, (2.68), we obtain finally

LIV We
R,T
eL;,w
Ry T?

1+

(6.40)
1+

The denominator of (6.40) is larger than the numerator, and thus I'y < Ty. Table 6.1
shows values of I's for selected values of T and p. It is seen that the temperature
variation of T’y exceeds the pressure variation. At low temperatures and high pres-
sures, Iy approaches T'y.

Values of Ty determined from (6.40) are within about 0.5% of the values deter-
mined from a more exact form of the entropy equation (6.11). Because of the ap-
proximate nature of (6.40), T’y is sometimes called the pseudo-adiabatic lapse rate.

The amount of water condensed in saturated adiabatic ascent, called the adiabatic
liquid water mixing ratio, can be determined from the adiabatic enthalpy equation
(6.7b):

0=c,dT-L,dw,—vdp

Table 6.1 T for selected values of temperature and pressure.

T¢C) p (hPa)
1000 700 500

-30 9.2 9.0 8.7
-20 8.6 8.2 7.8
-10 7.7 7.1 6.4
0 6.5 5.8 5.1
10 5.3 4.6 4.0
20 43 3.7 33
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Figure 6.5 Adiabatic liquid water mixing ratio as a function of keight above the cloud base
and cloud base temperature. (After Goody, 1995.)
~

Solving for dw; and incorporating the hydrostatic equation (1.33), we obtain

Substituting T'y = g/c, and 'y = —d7/dz yields

dw, =z—” (Ty—T)dz (6.41)

v
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Integrating (6.41) from cloud base to height z gives the adiabatic liquid water mixing
ratio at height z. Because of the complicated form of T, this equation must be inte-
grated numerically. Integration of (6.41) shows that the adiabatic liquid water con-
tent increases with height above the cloud base and increasing cloud base tempera-
ture (Figure 6.5). Because of the variation of I' with temperature, clouds with warmer
bases have larger values of T'g — T’y and thus larger values of the adiabatic liquid water
content. The adiabatic liquid water content represents an upper bound on the liquid
water that can be produced in a cloud by rising motion. Processes such as precipita-
tion and mixing with dry air reduce the cloud liquid water content relative to the
adiabatic value.

6.6 The Ice Phase

As isobaric or adiabatic cooling proceeds, the cloud may eventually cool to the point
where ice crystals form. Assuming that a water cloud is present initially, then the
formation of ice crystals releases latent heat during fusion. Once the cloud glaciates,
it is supersaturated with respect to ice, and deposition occurs on the ice crystals, re-
leasing the latent heat of sublimation, until the ambient relative humidity is at ice
saturation. Further cooling will result in the increase of ice water content in the cloud
and the release of the latent heat of sublimation into the atmosphere.

Assuming that the thermodynamic system consists of moist air plus the conden-
sate, and that the freezing and subsequent deposition occur isobarically and adiabati-
cally, then the enthalpy of the system will not change during this transformation.
Since enthalpy is an exact differential, the enthalpy change depends only on the ini-
tial and final states (but not on the path). Consider the following path for the warming
of the system associated with the phase change:

Step 1. Water freezes at constant 7:
Ah 1= —L,-lw, (6.42)

Step 2. Vapor deposits on the ice at constant 7}, until the water vapor pressure
reaches the saturation value over ice at T5:

My ==L [, (1) = wa(T2)| = =Ly § [ex(T3) ~ e(T5)]

Assuming that (7, — T)) is small enough to treat as a differential, we can approximate
e5i (T2) as

esi(TZ) = esi(Tl) + EL;';(.TTI) (T2 - T')
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and Ah, becomes

eq(7)) (Tl
Ahy=—-wL; o M -T 6.43
2 v v es(Tl ] R T_ ]) ( )
where w, has been adopted in favor of e, using w; = ge; /p.
Step 3. The system is heated from 7 to T:
Ahy=c,(T,-T)) (6.44)

Since Ahy + Ahy + Ah; =0, we can incorporate (6.42), (6.43), and (6.44) and solve for
AT=T,-T;:

€y
LilWl+lew\ ™
e

5

AT =

(6.45)

2
ew; L

R,T?

Equation (6.45) gives the increase in temperature due to the freezing of cloud water
and the subsequent deposition of water vapor onto the ice crystals. In clouds that cool
by adiabatic ascent, the freezing does not occur isobarically, but gradually over a
temperature interval.

Once the cloud has glaciated, further adiabatic astent results in deposition of water
vapor onto the ice crystals. Analogously to (6.40), the ice-saturation adiabatic lapse
rate is determined to be
1+ Lh' Wi

R,T
Fsi = Fd —2 (646)
SLI.‘_ Wi

1+72
deRdT

The melting process is distinctly different from the freezing process. Melting may
occur as ice particles fall to temperatures that are above the melting point. In contrast
to freezing, which may be distributed through a considerable vertical depth, melting
of ice particles can be quite localized, occurring in a very narrow layer around the
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freezing point. Cooling of the atmosphere from the melting can result in an isother-
mal layer near 0°C. Because of their large size and density, hailstones do not melt at
the freezing level in the same manner as a small ice crystal or a snowflake with a low
density, but melt over a deeper layer. If atmospheric relative humidities are low in the
atmosphere below the melting level, then the melting water will evaporate, cooling
the hailstone and retarding the melting.

6.7 Conserved Moist Thermodynamic Variables

As shown in Section 3.1, conserved variables are commonly used in time-dependent
equations. The concept of potential temperature becomes less useful when applied to
a cloud, since potential temperature is not conserved during phase changes of water.
Derivation of a potential temperature that is conserved in moist adiabatic ascent elimi-
nates the need to include latent heat source terms in the time-dependent thermody-
namic equation. Additionally, a potential temperature that is conserved in moist adia-
batic ascent can be used to interpret graphically numerous cloud processes and char-
acteristics (see Sections 6.8, 7.3, and 8.5).

Recall that for a reversible, adiabatic process in dry air, the entropy equation is
written as (2.26b)

0=c,yd(InT)-R,d(Inp)

It was shown in Section 2.4 that integration of the above equation gives the potential
temperature (2.62)

R
o= T(Po) 4/ch
P

which is conserved for dry adiabatic motions.

We seek an analogous variable that is conserved for a cloud so that the variation of
temperature with pressure can be determined in a saturated adiabatic process. We
begin with the adiabatic form of the complete equation for the combined first and
second laws for a moist air with cloud that includes both the liquid and ice phases
(6.13):

) L.w.
0= (cpy+wic,)danT) =R d(Inpy) - w, d(A—T’") + d( L ’”TWV) +w, d(%) - d(%w’)

A conserved potential temperature for clouds will obviously be far more complex than
the potential temperature derived for a dry adiabatic process, since (6.13) is considerably
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more complex than (2.26b). A number of different conserved potential temperatures
have been derived for clouds that employ various approximate forms of (6.13).

The simplest possible case is that in which saturation conditions are maintained,
ice is not present, and heat capacity of the water vapor and condensed water are ne-
glected relative to that of dry air. Using these approximations, the entropy equation
(6.13) becomes:

lewx
0=c,, d(InT)~ R, d(Inp) +d |~ (6.47)

Recall that we have for a dry adiabatic process from (2.63)
e d(In@) =c,, d(InT)— R, d(Inp)

Equating (2.63) with (6.47) yields

lew.w
~d| = | = cpd(InB)

This expression is integrated to a height in the atmosphere where all of the water
vapor has been condensed out by adiabatic cooling. The corresponding temperature
is called the equivalent potential temperature, 6,. Integration of

A7)
-L,| dl=)=c,| d(In6)
L))

5

yields
Lh,w, G
T = de In —9'
or
9 7] [le W.T) (6 48)
=gexp 5
¢ cpaT

It is easily determined that 8, > 6, which arises from the latent heat released from the
condensation of water vapor. Because of the approximations made in (6.47), the
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equivalent potential temperature is only approximately conserved in a saturated adia-
batic process. Although approximate, (6.48) retains the essential physics of the pro-
cess, whereby the condensation of water va’bor provides energy to the moist air and
increases its temperature relative to what the temperature would have been in dry
adiabatic ascent.

An alternative but analogous potential temperature, the liguid water potential tem-
perature, is derived as follows. Writing (6.47) as

lewl
0= cpyd(InT) ~ Ry d(Inp) —d|{

we can follow a procedure analogous to the derivation of 8, and show that (Betts,
1973)

L, w
= —— 6.49
o, eexp( %T] (6.49)

One advantage of 6, over 8, is that ;reverts to 8, the dry potential temperature, in the
absence of liquid water.

In the presence of ice, an ice—liquid water potential temperature can be derived
from the following approximate form of (6.13):

' Lyw L;w;
0= ded(lnT)—Rdd(lnp)—d T —-d

to be (Tripoli and Cotton, 1981)

Lyw, Liw;
v |'_ v ) (6.50)

0, = 0exp( BT Gl
The derivation of the ice-liquid water potential temperature implies that it is appli-
cable only under conditions of equilibrium, since the affinity terms were not included.
Since ice and liquid are both at equilibrium only at the triple point, use of the ice—
liquid water potential temperature is inconsistent physically at temperatures away
from the triple point. Nevertheless, the ice—liquid water potential temperature is an
economical and not too inaccurate way to treat ice processes in a numerical cloud
model.

The entropy potential temperature, ,, includes ice processes and is derived from the
complete form of the adiabatic entropy equation (6.13) to be (Hauf and Holler, 1987):
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(6.51)

. 2 )Rd/(CpJ+ wyc) ex (L,'v +A iv) wy (L‘-[ + A,-,)w,-

0 = T(_" [(de+WrCI)T] ) [(cpd+w,6‘1)T]

The entropy potential temperature is thus the most general potential temperature con-
sidered here. Unlike 6, and 6;, 6y, is applicable to nonequilibrium conditions such as
subsaturated or supersaturated environments.

-A major application of the conserved potential temperatures is their use as prog-
nostic variables in cloud models (Section 8.6). Use of the more complex potential
temperatures such as 8; and Oy, is desirable in terms of their accuracy; however, a
nontrivial calculation is required to invert (6.50) and (6.51) to obtain the physical
temperature, T. When various other uncertainties are introduced into a calculation or
model, the more approximate forms of the potential temperature can be justified.

Another moist thermodynamic variable that is often used is the moist static energy,
A. It is conserved in hydrostatic saturated adiabatic processes. We start from the
following adiabatic form of the first law of thermodynamics:

0= (cp,, + w,c,)‘a'T+ d(L,-VwV) —vdp

Using the hydrostatic equation (1.33), we may write

0= (de + w,c,) dT + d(L,-vwv) +gdz=dh

where the term (1 + w;) accounts for the contribution of the condensed water to the
atmospheric density. Upon integration, the moist static energy is shown to be

A= (cpd + w,c,) T+L,w,+ (1 + w,) gz (6.52)

The moist static energy is conserved for adiabatic, saturated or unsaturated transfor-
mations for a closed system in which the pressure change is hydrostatic.

It is important to note the conditions under which 8, and the other conserved ther-
modynamic variables are not conserved. Examples include cases where external radia-
tive heating or conduction takes place, since these alter the entropy. Other examples
include atmospheric conditions in which latent heating occurs externally, such as the
evaporation of water into air from the ocean or when precipitation falls out.

In this chapter, we have considered numerous temperatures and potential tempera-
tures, which are defined in the context of their conservative properties regarding
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Table 6.2 Conservative properties of several parameters (C=conservative; N=nonconservative).

Parameter Isobaric cooling Isobaric cooling Adiabatic expansion Adiabatic expansion
no condensation with condensation  no condensation with condensation
w, C N C N
H N C N C
Tp C N N N
(4 N N C N
6. N N C C
n N N C C

certain moist atmospheric processes. Table 6.2 summarizes how various tempera-
ture, humidity, and other thermodynamic parameters vary in response to certain types
of moist processes.

6.8 Aerological Diagrams

The principal function of a thermodynamic diagram is to provide a graphical display
of a thermodynamic process. The following examples of thermodynamic diagrams
have been used thus far in the text: (7, s) diagram (Section 1.9); (p, V) diagram
(Sections 2.4 and 4.2); and (e, T) diagram (Sections 4.2 and 6.4). Here we consider a
special class of thermodynamic diagrams called aerological diagrams. An aerologi-
cal diagram is used to represent the vertical structure of the atmosphere and major
types of processes to which moist air may be subjected, including isobaric cooling,
dry adiabatic processes, and saturated adiabatic processes.

The simplest and most common form of the aerological diagram has pressure as the
ordinate and temperature as the abscissa. While the temperature scale is linear, it is
usually desirable to have the ordinate approximately representative of height above
thg surface. Thus the ordinate may be proportional to —In p (the Emagram) or to
D /) (the Stuve diagram). The Emagram has the advantage over the Stuve diagram
in that area on the diagram is proportional to energy. Before the advent of computers,
aerological diagrams were used widely in weather forecasting applications and the
energy—area equivalence of the diagram was an important consideration. For the present
purposes, we use the aerological diagram to illustrate certain moist atmospheric pro-
cesses, and the energy—area equivalence is not an important consideration. Because
of the simplicity of its construction, we use the Stuve diagram (sometimes referred to
as a pseudo-adiabatic chart) to illustrate the utility of aerological diagrams in under-
standing moist thermodynamic processes.
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The construction of the pseudo-adiabatic chart is illustrated in Figure 6.6 (see also
Appendix E). The temperature scale is linear, while the pressure scale is proportional
to p %, From (2.62), it is easily seen that the dry adiabats or lines of constant
potential temperature are straight lines. Pseudo-adiabats (6, = constant), are shown
by the curved dashed lines. Lines of constant saturated water vapor mixing ratio (w;
= constant) are given by the thin solid lines in Figure 6.6. The ordinate p""“» can be
interpreted in terms of altitude, z, using (1.45). The use of the pseudo-adiabatic chart
is illustrated with the following examples.

Figure 6.7 illustrates vertical profiles of temperature and dew-point temperature
plotted on an aerological diagram. Such observations are obtained using balloons,
aircraft or remote sensing. From the definition of dew-point temperature (6.15), it is
casily seen that by reading off the saturation mixing ratio at the dew-point tempera-
ture at a given level on the diagram, one obtains the actual water vapor mixing ratio.
Conversely, if the mixing ratio is given, the dew-point temperature may be read off
the diagram.

The adiabatic ascent of a parcel from the surface is represented schematically in
Figure 6.8. Consider a parcel with p = p,, T =T, and w, = w,,. The potential tempera-
ture of this parcel corresponds to the value of the dry adiabat that passes through T;,

p (mb)
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Figure 6.6 Construction of the pseudo-adiabatic chart.
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Figure6.7 Determinationof w, w,,and T}, given the vertical profiles of temperatureand dew-
pointtemperature.

po- In adiabatic ascent, the parcel will be lifted dry adiabatically along an isopleth of
constant , that passes through p,, T,. In this ascent, the temperature and saturation
mixing ratio decrease while the actual mixing ratio remains the same. The level
where the saturation mixing ratio equals the actual mixing ratio (the intersection of
the constant @ line with the constant w, line) corresponds to Ty, p;, z,; the saturation
temperature and pressure and the lifting condensation level. The thermodynamic
properties of air that continues to ascend above the saturation point is found by fol-
lowing the pseudo-adiabat (line of constant 8,) that passes through Ty, p,. The mixing
ratio of the parcel in pseudo-adiabatic ascent corresponds to the saturation mixing
ratio at that level (the intersection of the pseudo-adiabat that passes through 7y, p;
with the constant mixing ratio line). The adiabatic liquid water content at a given
level above the saturation point is approximated by subtracting the saturation mixing
ratio from the original mixing ratio, w,,.

The equivalent potential temperature, 8,, corresponding to T, p,, is determined by
following the pseudo-adiabat through Ty, p; to very low pressure, until the pseudo-adiabat
is essentially parallel to the dry adiabat. By following the dry adiabat down to a
pressure of p, and reading off the corresponding temperature, the equivalent tempera-
ture, T,, is obtained; by continuing to follow this dry adiabat down to p = 1000 mb, the
equivalent potential temperature, 8,, is obtained. The equivalent temperature is re-
lated to the equivalent potential temperature analogously to (2.62) as
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Figure 6.8 Adiabatic ascent of a parcel from p,,. The parcel initially ascends dry adiabatically
along the constant potential temperature line that passes through (7. 1000 hPa). As the
parcel ascends, the saturation mixing ratio decreases while the actual mixing ratio remains the
same. At the point at which the actual mixing ratio of the parcel is equal to the saturation
mixing ratio, the parcel becomes saturated. Further lifting of the parcel occurs along the
saturated adiabat that passes through the point, (T, p,).

Ry
6, = T, (%) .

The wet-bulb temperature, Ty, can be approximated by following the pseudo-adiabat
that passes through py, 7, down to the level of p, and reading the corresponding tem-
perature. By continuing to follow this pseudo-adiabat down to p = 1000 mb, the wet-
bulb potential temperature, 8y, is determined. Note that while the pseudo-adiabatic
wet-bulb temperature is almost numerically equivalent to the adiabatic isobaric wet-
bulb temperature defined in Section 6.3, they are slightly different. In the case of the
pseudo-adiabatic wet-bulb temperature, water is evaporated into the air through pseudo-
adiabatic descent, while water is evaporated isobarically in the atmosphere in the
determination of the adiabatic isobaric wet-bulb temperature.

While aerological diagrams are useful for illustrating schematically the results of
thermodynamic transformations of moist air, their use as a computational tool has
been superseded by computers.
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Notes

General reference sources for this chapter include Atmospheric Thermodynamics (1981,
Chapters IV and VII) by Iribarne and Godson, Atmospheric Convection (1994, Chap-
ter 4) by Emanuel, Clouds and Storms (1980, Chapter 3) by Ludlam, and The Cease-
less Wind (1986, Chapter 4) by Dutton.

A more detailed discussion of aerological diagrams is given in Atmospheric Thermo-
dynamics (1981, Chapter VI) by Iribarne and Godson.

Problems

1. For a pressure of 1000 mb, determine the following. You may use the e, table in
Appendix D. Given:

a) w,=5gkg, findT

b) T=25°C, find w,

¢) T=30°Candw=15gkg, find .

d) T=20°Cand Tp=15, find H.

e) T=15°C and H=0.8, find Tp.

H w=20gkg!, find Tp.

g) Tp=-10°C, find Tp.

2. Consider a 1 kg parcel of moist air at p = 1000 mb, T = 30°C and #/= 0.95. The
parcel passes over a cold ocean so that the parcel cools to 25°C. Assume that only
heat (no moisture) is transferred between the ocean and the parcel.

a) What is the initial vapor pressure and mixing ratio of the parcel?

b) What is the dew-point temperature?

c¢) How much water condenses?

3. During the formation of a radiation fog, 4600 J kg! is lost after saturation started,
at 10°C. The pressure is 1000 mb. Estimate the following:

a) final temperature;

b) vapor pressure;

c) liquid mixing ratio.

4. Home humidifiers, or “swamp coolers,” operate by evaporating water into the air
in the house, and thereby raise its relative humidity. Consider a house having a vol-
ume of 200 m? in which the air temperature is initially 21°C and the relative humidity
is 10%. Compute the amount of water that must be evaporated to raise the relative
humidity to 60%. Assume a constant pressure process at 1010 hPa in which the heat
required for evaporation is supplied by the air itself.



