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4. Determine how large drops must be beyond the critical radius before solute (Raoult)

effects are negligibly small relative to the curvature (Kelvin) effect.

5. Consider a parcel of air at I = -5oC and p - 800 hPa. Assume that a slight

supersaturation exists with Îf= lcn.SVo (with respect to liquid).
a) Compute how long it would take to grow a cloud drop from an initial radius of I

pm to a drop radius of 10 pm, 100 pm, and 1000 pm.

b) Compute how long it would take to grow a spherical ice ball from an initial radius

of I pm to a radius of 10 pm, 100 pm, and 1000 pm.

6. Derive expression for G2 in the following equation:

# = u,#- G,"4"dt

7. An analytic expression of the following form has been used to describe drop size

spectra:

n(r) = Ar2 exP(-Br)

whereA andB areparameters. For adrop size spectrum represented by this relation-

ship, determine the following:
a) the total drop concentration per volume of air:

IN n(r) dr

b) the mean drop radius:

'= #f
c) the coefficients A and B for N = 200 cm-3 and F = 10 pm;

d) the liquid water mixing ratio,w;

wI I
9t
Po

r n(r) dr

Chapter 6 Thermodynamic Transformations of
Moist Air

In this chapter we consider the thermodynamic processes that result in the formation
and dissipation of clouds. Based on microphysical considerations, we found in Chap-

ter 5 that the liquid phase is nucleated at relative humidities only slightly greater than

lffiVo. For simplicity, we assume here that clouds form in the atmosphere when the

water vapor reaches its saturation value and I{= 100Vo.

In a closed system consisting of moist air, the water vapor mixing ratio remains

constant through the course of thermodynamic transformations as long as condensa-

tion does not occur. However, vapor pressure and relative humidity do not remain the

same during such transformations. For example, in an adiabatic expansion the vapor
pressure decreases, since it remains proportional to atmospheric pressure.

The relative humidity was defined in Section 4.4 as

,=#

rn(r) dr

where wu is the water vapor mixing ratio and w" is the saturation mixing ratio. For
initially unsaturated air to become saturated, the relative humidity must increase. An
increase in relative humidity can be accomplished by increasing the amount of water
vapor in the air (i.e., increasing wr), and/or by cooling the air, which decreases w.r(I).
The amount of water vapor in the air can increase by evaporation of water from a

sr4face or via evaporation of rain falling through unsaturated air. The temperature of
thd atmosphere can decrease by isobaric cooling (e.g., radiative cooling) or by adia-
batic cooling of rising air. An additional mechanism that can increase the relative
humidity is the mixing of two unsaturated parcels of air.

In this chapteç we begin by writing the combined first and second laws of thermo-
dynamics for a system that consists of moist air plus condensed water. To understand
the changes in thermodynamic state associated with the formation and dissipation of
clouds, we apply the combined first and second laws to the following idealized ther-
modynamic reference processes associated with phase changes of water:

r isobaric cooling;
c adiabatic isobaric processes;
r adiabatic expansion;
r adiabatic isobaric freezing.

t,

where p1 is the density of water and p, is the density of air.
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Although real clouds nearly always involve more than one ofthese reference processes

in their formation, consideration of the individual processes provides a convenient frame-

work for understanding mechanisms that cause clouds to form and dissipate.

6.1 Combined First and Second Laws

To understand thermodynamic processes in moist and cloudy air, consider the com-

bined first and second laws for a system that consists of two components (dry air and

water) and two phases (gas and liquid). For the present, we ignore surface and solute

effects in the condensed phase. Following Section 4.3, the combined first and second

laws are written as

dIJ =Td?'l- pdv + pddna+ pvdnv+ prdnr

dH =TdZl +V dp + pa dna + \trdn,+ 1qdn1

dG = -71 dT + V dp + pl dna + pv dnv + p1 dn1

where the subscripts d, v, and I refer to dry air, water vapor, and liquid water, respec-

tively.
The exact differential of the enthalpy, dH, where H = H(T p, m7, mw m), can be

expanded as follows:
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To evaluate àH/àT andàH/àp, consider the total enthalpy as the sum of the indi-
vidual contributions from the dry air, water vapor, and liquid water, so that H = maha

+ muh, + mlhp We can then write

Recall that in Section 2.9 we established that there is little difference between the

specific heats of liquid water at constant pressure and volume, so henceforth we do

not distinguish between them. In Section 2.3, we found that àtt/èp = 0 for an ideal
gas. For liquid water, àH/àp * 0, but the value is small and thus neglected here. We

can therefore write (6.1) as

dH = (md c,,a * nxec pv+ mt c t)dT + Lpdmu (6'2b)

In the atmosphere, the mass of water vapor is only a few percent of the mass of dry air
(Section l.l ), and the mass of condensed water is a small fraction of the mass of water

vapor. Thus nt4)) t/tr)) m1 and we can approximate (6.2b) by

dH = ma c ,a dT + Lpdm, (6.3)

The enthalpy of a system consisting of moist air and a liquid water cloud is not only
a function of temperature (as was the ideal gas), but also a function of the latent heat

associated with the phase change. In intensive form, we have

AH

n=mdCtA*rtleCpv+mtCt

dh= cNdT + Lpdwu

In a similar manner, we can write an equation for internal energyl as

(6.2a)

(6.4)

(6.s)If the system is closed, then dmt = 0 and dmu = - dm6 and therefore

* = (#) * . (#) 
" 

. (y*) ^, 
. (#) ^. 

. (#,) *,

* = (#) * . (#) 
" 

.l(#) - (#,)l*,

( )
du Co4 * \!, Co, * t9|. C1 dT + L,,dw,

Since (ft, - hù = Llu (Section 4.3), we have

(6.1a) and an approximate form as

du = cud dT + L6 dw, (6.6)

where w7 is the liquid water mixing ratio introduced in (5.28).

I Mixing ratio is used here instead of specific humidity to avoid confusion of the notation q (specific

humidity) with 4 (heat)- Note thât a liquid water specific humidity, 4 r can be defined analogously to the

liquid water mixing ratio, w1.

*=(#)*.(#)dp+L1udm, (6.rb)
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Depending on how the thermodynamic system is defined, the term Lpdw,may be

included as part ofthe enthalpy, or it may constitute an external heat source. For a

closed system, we can write

dq= roo dr * L,rdwu-a dP (6.7a)

and for an adiabatic process,

o- cr1dT+ L6dw,-a dp (6.7b)

Now consider a system that consists of moist air, with an external heat source associ-

ated with evaporation from a water source (such as moist air over a lake). The first

law of thermodynamics can be written as

dq= dh-rt dP

where dh= cpadT and dq= L6dlati= -L1udwu. We can then write

-L,rdwr= c'pd dT -o dP

Nore rhat (6.7) and (6.8) are mathematically equivalent; however, in (6.7b) the term

L1rdw, is part of the enthalpy, while in (6.8) the term L1rdw, is a heat source. This

example illustrates the care that must be taken to intelpret correctly the thermody-

namic equation in the context in which the system is defined.

The combined first and second law for a system consisting of moist air and a liquid
water cloud can be written using (4.7) and (2.33) as

Td?l =dH -vdp-Zu1an,
J

(6.e)

Including only the liquid-vapor phase change, we can incorporate (6.2) into (6.9) and

write

Tdll = (ma c 
oa 

+ mv c pv + 
^, 

r,) dr + L b drn, - v dp - 1t, dm, - lrt dm r (6. I 0)

If the system is closed, then dm4 = O and dm, - - dmt and analogously to (6.1b) we

can write (6.10) in intensive form as

dr1 = (c od + w vc pv + r,r,) dQnT) - R 7 d(ln p ) - w,R, d(ln e) + 
t! 

or, (6. 1 I )
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In (6.1 I ) we have sepamted the expansion work term into components (neglecting

the expansion work of liquid water). T\e affinity for vaporization, Ap, is defined

(following Dutton, 1986) as A1,= ltt- LI- which can be evaluted following (5.10). If
the liquid and vapor phrres are in equilibrium (W = ttù, then A;u= 0. In subsaturated

or supersaturated conditions, the affinity term can be ofthe order of several percent of
the latent heat of vaporization. Using the first and second latent heat equations (4' 19)

and (4.29), we can write (6.11) as

dr:=(c ra+w,c,)d(nT) - Rad(tnp). t(+).,"0(+) tlz)

where w, is the total water mixin7 ratio (w1= wv * wt).

Analogous arguments can be used to incorporate the ice phase into the entropy

equation. The complete thermodynamic equation for moist air and clouds that in-

cludes all three phases of water is written as

dr1 = (c oa 
+ *,, 1) dQnT) - R7 d(tnp) + w, d(+) . t (+)

-*,0(+)-'(+)
(6. r 3)

(6.8)

where the total water mixing ratio, wr, in (6.13) includes the ice water mixing ratio,

w,.. The affinity forfreezing, Air is defined analogously to that for vaporization as

Ait= lti- 1t1, 'Ihe affinity for freezing can reach ZOVo of the latent heat of fusion.

6.2 Isobaric Cooling

A thermodynamic process can be approximated as isobaric if vertical motions are

sùrall and there is only a small departure from a reference pressure. In the absence of
condensation, the first law of thermodynamics for an isobaric process in moist air is

written (following 2.16) as

where co can be approximated as the dry air value, or alternatively the contribution

from water vapor can be incorporated following (2.65). As moist air cools, relative

humidity increases: wu remains the same, but as the temperature decreases then w'

decreases. If the cooling continues, w' will become equal to wu and Îf will equal

unity; at this point, the air has reached saturation. Further cooling beyond saturation

results in condensation.

dq=dh=cpdT
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The temperature at which saturation is reached in an isobaric cooling process is the

dew-point temperature, which is illustrated in Figure 6.1a. The dew-point tempera-

ture, denoted by Tp, can be defined by

e = e,(To) (6.r4)

or equivalently by

*,=*,(To) (6.15)

We can determine the dew-point temperature by inverting either (6. 14) or (6.15),

which can be done using (4.31) and (4.36).

Analogously to the dew-point temperature, we define the frost-point temperature
as the temperature at which ice saturation occurs. The frost-point temperature, Tp, is

thus defined as

e = "r,(rr) (6.r6)

or equivalently as

'r=trr(To)
(6.17)

In Figure 6.1b, it is seen that if the vapor pressure is initially below the triple-point
pressure ofwater (point l), isobaric cooling results in deposition once the frost point
is reached (point 2). As described in Section 5.3, saturation with respect to ice is not
sufficient to initiate the ice phase in the atmosphere. Deposition occurs at the frost
point only if ice crystals already exist in the atmosphere. Since Tp) Tp, the forma-
tion of frost on the ground must occur by deposition rather than by freezing of con-
densed water vapor; grass and other structures provide a good substrate for initiating
the ice phase by deposition.

Although the units of the dew-point temperature are kelvins, the dew-point tem-
perature is a measure not of temperature but of atmospheric humidity. By examining
Figure 6.1 and the Clausius-Clapeyron relationship (4.19), it is seen that

d(lne) L,,
(6.1 8)dT, R,r:

and that e andTpgive equivalent information about the amount of water vapor in the
atmosphere. A relationship between Tp and 7tcanbe obtained by integrating (6.18)
between T and T6:

Figure 6.1 a) Relationship between temperature and vapor pressure in an isobaric cooling
prôcess. Air initially at tèmperature T, (point l) is cooled isobarically until it reaches
Saturation (point 2). The temperature at point 2 defines the dew-point temperature, 7rr. b) Air
at Ir (point-l ) cools isobarically until it reaches saturation. If the saturation is reached with
respect to ice (point 2), the temperature is called the frost point, lr.

6.2 Isobaric Cooling r65
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The term T - To in (6. 19) is called the dew-point depression. Figure 6.2 illustrates
that dew-point depression is inversely proportional to relative humidity and that a
relative humidity of lNVo corresponds to a dew-point depression of zero.
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Thus, through (6.14), (6.15), and (6.19), the dew-point temperature is shown to be

a humidity variable. If temperature, dew-point temperature and pressure are given,
then the values of mixing ratio, relative humidity, and vapor pressure can be calcu-
lated. Analogously, the frost-point temperature can be related to all of the other hu-
midity variables. In an isobaric process in the absence of condensation, the dew-
point and frost-point temperatures are conservative; that is, they do not change during
the cooling process until condensation is reached.

Once the air is cooled slightly below the dew-point temperature, condensation
begins. After condensation begins, the first law of thermodynamics for an isobaric
process is written following (6.4) in the approximate form

dq=dh=codT+Lpdw, (6.20)

Assuming that condensation occurs at saturation (l{= l) and that the water vapor
mixing ratio is equal to the saturation vapor mixing ratio wu = lrs, we can write

wr=ws+wl

In a closed system,.w, remains constant, so

dw,=-4t,

(6.21)

Using the approximation w"= g e, /p from Section 4.4 and the Clausius-Clapeyron
relation (4.19), we can write

,,2 =-hff =t;,(+-+)

or equivalently

!{=exP[-?(æ)] (6.1e)

100

80

60I
E q

20

Incorporating (6.22a) into (6.20) and using Ra= R,le, we obtain

dw,=-4*,=-r!: - - eLne:ar
P pR,T'

( L,,,, \

\;ii7.',a)

(6.22a)

C'

7
9""â

\\
tJ

o

5 l0 l5 20

dw1 =- dq (6.22b)

Combination of (6.22b) with (6.20) gives a relationship between dq and dT during
isobaric condensation:

T_TD CC)

Figure6.2 Dew-pointdepression.Astherelativehumidityincreases,thedifferencebetweer
the ambient temperature and the dew-point temperature (i.e., the dew-point depression)
decreases. As the ambient temperature decreases, the dew-point depresiion becômes less
sensitiveto changes in the relative humidity. dq= -

Lbê,
co* ---------;' 

P RaT'
dT (6.22c)
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Integration of (6.22b) (which is most easily done numerically, since e" is a function of

an amount of liquid watel Lwp Analogously, integration of (6.22c) allows determi-
nation of the temperature change, Â2, in response to the isobaric cooling, A,q. Before
condensation occurs, wehave L,q=-crLT. Once condensation begins, it is seen from
(6.22c) that the temperature drops much more slowly in response to the isobaric cool-
ing, because the heat loss is partially compensated by the latent heat released during
condensation.

Once condensation begins, the dew-point temperature decreases, since the water
vapor mixing ratio is decreasing as the water is condensed. Relative humidity re-
mains constant, at t{ = l.

Isobaric cooling is a primary formation mechanism for certain types of fog and
stratus clouds (see Section 8.4). The equations derived in this section are equally
applicable to isobaric heating. In this instance, an existing cloud or fog can be dissi-
pated by evaporation that ensues from isobaric heating (e.g., solar radiation).

6.3 Cooling and Moistening by Evaporation of Water

Consider a system composed of unsaturated moist air plus rain falling through the air.
Because the air is unsaturated, the rain will evaporate. If there are no external heat
sources (Lq = O), and the evaporation occurs isobarically (dp = O), we can write an
adiabatic, isobaric (or isenthalpic) form ofthe enthalpy equation (6.20) as

O = dh = cpdT - Lpdwl = codT + Lpdw" (6.23)

where co can be approximated as the dry-air value, or alternatively the contributions
from water vapor and liquid water can be incorporated following (6.2a). Since
dh = O, (6.23) can be used to determine a relationship between temperature and hu-
midity variables for isenthalpic processes in the afinosphere that involve a phase change
of water.

If we allow just enough liquid water from the rain to evaporate so that the air
becomes saturated, we can integrate (6.23)

cpr dT=- ,rf.,dr,

where w1 represents the amount of water that must be evaporated to bring the air to
saturation. During the evaporation process, latent heat is drawn from the atmosphere,
and the final temperature, referred to as the wet-bulb temperature (7y), is cooler than

6.3 Cooling and Moistening by Evaporation of lVater

the original temperature. Integration gives

,, (T* - T) = - L,u[r, (r*) - r"]

or alternatively

T* = T-L-'tu
cp fw,(r*)-w,f

Tt=T -L4[.",(r,)-.,,1

where the temperature dependence of L1, has been neglected. Given w, and 1., this
expression is implicit for 1nry and must be solved numerically. However, if T and Ts
are given, then wris easily determined. T*can be measured using a wet-bulb ther-
mometer, whereby a wetted muslin wick is affixed to the bulb of a thermometer. con-
current measurement of the "dry-bulb" temperature by a normal thermometer can then
provide a means of determining the water vapor mixing ratio and therefore atmo-
spheric humidity. For this reason, (6.24) is often referred to as the wet-bulb equation.

The wet-bulb temperature is thus defined as the temperature to which air would
cool isobarically as the result of evaporating suffîcient liquid water into the air to
make it saturated. As such, the wet-bulb temperature in the atmosphere is conserva-
tive with respect to evaporation of falling rain. Calculations for given values of Tand
w show that Tp < Tw < 7. This can be shown graphically. since e increases while z
decreases during the approach toT*,the Clapeyron diagram looks like:

e

Tw

T

T

If ice is the evaporating phase, we can determine an analogous ice-butb temperature, T r

T

169

(6.24)

I

It is easily shown lhatTl > T,a.

(6.2s)
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6.4 Saturation byAdiabatic, Isobaric Mixing

We have seen in Sections 6.2 and 6.3 how unsaturated air can be brought to saturation

by isobaric cooling and by the adiabatic, isobaric evaporation offalling rain. There is

an additional isobaric process that can bring unsaturated air to saturation. Under

some circumstances, the isobaric mixing of two samples of unsaturated air leads to

saturation. One example of this process occurs when your breath produces a puff of
cloud on a cold day.

Consider the isobaric mixing of two moist air masses, with different temperatures

and humidities but at the same pressure. Condensation is assumed not to occur. For

adiabatic, isobaric mixing, we can write the first law of thermodynamics from (2- l 6)

AS

O=dH = m1 cr4dTr+mrco7dT2

where dT1 and dT2conespond to the temperature change of the air masses upon mix-
ing and we have ignored the heat capacity of the water vapor in accordance with
(6.4). Upon integration from an initial state where the air masses are unmixed to a

final state where the air masses both have the same final temperature, I, we have

mf e,r (T - Tt) + m2c a (r - rz) = o

Solving for 7we obtain

6)

c)

À

Ê.

6.4 Saturation by Adiabatic, Isobaric Mixing l7t

lYr

Y

The total mass m = rr\ * m2 remains constant during the mixing process, so the

specific humidity is a mass-weighted average of q,t and qu2

ml

Yt

Temperature

Figure63 Adiabaticisobaricmixingandcondensation.Twoairmasseswith(e,l)givenby
points f, and I, mix, resulting in a single air mass with (e,T) givenby point I. Since -7f > I at
this point, water will condense, and the temperature of the air mass will increase while the
vapor pressure decreases. Condensation will continue until the temperature and vapor
pressureofthe air mass coincidewith the saturationvaporpressurecurve (point I).

air masses, the image point for the mixture lies on a straight line joining Y1 and Y2. If
mt = mz, then 7 and e for the mixture will lie midpoint on this line. Because of the
exponential relationship between e" and T, the mixing process increases the relative
humidity. In the example shown in Figure 6.3, the mixing process results in the
image point )r having a relative humidity that exceeds 100%, crossing the/= I line
into the liquid phase (see also Figure 4.3). Water will condense and latent heat will be

released, with the final equilibrium image point at I/'on the/= I line.
The slope of the line between Y and Y'can be determined from the first law of

thermodynamics for an adiabatic isobaric process in which condensation occurs (6.23):

dh=O=codT+Lrdw,

Using the definition of the saturated water vapor mixing ratio, w" = eer/p, we can
write

J

m, m.T='Tr+'Tz
mr+m2 ' mr+m, "

8r= mt + fnz

fil2
1 Qu"ml+m2

Thus, both the temperature and specific humidity mix linearly if the heat capacity of
the water vapor is neglected. Since 4, = lr, we can also assume that the mixing ratios
mix linearly. If we further assume that wu = ee/p, then vapor pressure mixes linearly
as well.

Because of the nonlinearity of the Clausius-Clapeyron equation, adiabatic iso-
baric mixing results in an increase in relative humidity. This mixing process is illus-
tratedinFigure6.3using aT,ediagram. If Y1 and Y2arethe imagepointsforthetwo

o=codr*Ta"

de Pcp

- =--dT ÊLn

or

(6.26)
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r(K)+

1(K)+

Figure 6.4 The formation of contrails by adiabatic, isobaric mixing. A jet flying at 200 mb
ejects water vapor into the atmosphere at the temperature and vapor pressure represented by
point A. For atmospheric temperatures less than about -47oC (226 K), the water vapor will
condense, formingcondensation trails. (From Ludlam, I 980.)

The value of (e, D at Y' Çan be found by simultaneously solving (6.26) with the
Clausius-Clapeyron equation (4.19). The amount of liquid water condensed during
the mixing is

Lw,=êle(v) - "(v')) G.27)

A notable example of the formation of clouds by adiabatic, isobaric mixing occurs
when the exhaust gases from the combustion of fuels by an aircraft mixes with the
ambient atmosphere. The trails of clouds often formed by an aircraft in flight at high
altitude are referred to as condensation trails, or contrails. In the exhaust, the aircraft
ejects heat and water vapor; the temperature of the exhaust is typically 600 K. Figure
6.4 indicates that for an aircraft flying at 200 mb, atmospheric temperatures below
about -47oC will form contrails. Once contrails form, their persistence depends on
the atmospheric humidity and the rate at which the exhaust trail is diffused. If the
particles are ice, atmospheric humidity in excess of the ice saturation value will result
in growth of the contrails.

6.5 Saturated Adiabatic Cooling

Adiabatic cooling is the most important mechanism by which moist air is brought to
saturation. As described in Sections 2.1 and2.l0, adiabatic expansion in the atmosphere
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occurs when a dry air mass rises due to mechanical lifting (e.g., orographic, frontal),
large-scale low-level convergence, turbulent mixing, and buoyancy caused by sur-

face heating.
Recall from Section 2.4 that the first law of thermodynamics for an adiabatic pro-

cess for moist air in the absence of condensation is written as (2.l9b)

crdT-adP=Q

from which we derived an expression for the potential temperature (2.62)

*/r,

2

âg
{f

3

J

and the dry adiabatic lapse rate (2.68)

(#)

,]=T= lgoC km-l

d(tne)=ftaO"r>

0=T

Recall that the potential temperature, 0, is conserved in reversible, dry adiabatic pro-
cesses in the atmosphere.

As air expands adiabatically and cools, the relative humidity increases as the tem-
perature and saturation mixing ratio decrease. The water vapor mixing ratio remains
constant during adiabatic ascent. At some point, the relative humidity reaches 100%,
and further cooling results in condensation. To determine the temperature and pres-
sure at which saturation is reached, we logarithmically differentiate tf= e/es

d (ln r{ ) = d (ln e) - d(lne 
")

(6.28a)

Using Dalton's law of partial pressure (1.13), we have d(lnp) = d(lne), and we can
write the first law of thermodynamics for an adiabatic process in enthalpy form (2.19b)
as

Using the Clausius-Clapeyron equation (4.19), we can write

(6.28b)

d(tne") = *ft denr) (6.28c)
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Incorporating (6.28b) and (6.28c) into (6.28a), we can integrate (6.28a) from the ini-
tial condition to conditions where saturation is attained, indicated by I{= 1 and I= 7.,
where 7" is the saturation temperature
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Using Dalton's law of partial pressure (1.13), we can write the hypsometric equation
(1.46) as

I (6.33)d(lne) dz

l. r:
d(lnzt') - c p slru\

&--F,_7)
d(lnT')

RaT

rBc

Combining (6.32) and (6.33), we obtain

-)dTo I Dg

-=
dz ÊLbT

T3t, -ELJ, d (6.34a)

(6.34b)

to obtain

(6.2e)

Equaûon (6.29) can be solved numerically to obtain 7". An approximate but simpler
equation for (, given initial values of T(in kelvins) and 1{, is given by (Bolton, I 980)

+55 (6.30)
, lnl{

r-ss -2sÆ

Tlte saturation pressure, ps, càn be obtained from (2.22) tobe

or, taking antiJogs,

(6.3 r )

The coordinate (7,, p ) is known as the saturation point of the air mass.
During ascent, the water vapor mixing ratio, w, remains constant until saturation

occurs. The dew-point temperature, however, decreases slightly during the ascent as

pressure decreases. Recall from (6.18) that

For typical atmospheric values, dTp/dz is approximately one-sixth of the dry adia-
batic lapse rate. At saturation level, I becomes equal to Tp and to Ts. 'Ihe lilting
condensation level,4, corresponds to the level ofthe saturation pressure, pr.

Using (6.34a) and the definition of the dry adiabatic lapse rate, Ii6= g/c* we can

write

_tnîf =É^(+).+(â_+1

a(r -r,) _
dz

pl+ rd
€ LbT

T,

When 7 = To, the saturation level has been reached, and a value of z" can be deter-
mined by integrating (6.3ab):

"ff=f"# f_,^ 
o(, -,,) = fl(, 

. #) ..],. (6.34c)

where 211 - 7ro is the dew-point depression at the surface. For a parcel of air lifted
from the surface, the value ofz" can be estimated from (6.34c) to be

z,=0.12(rr-r^) (km) (6.3s)

This relation is an approximate expression of the height of the lifting condensation
Ievel achieved in an adiabatic ascent where Ts and Tpa represent the initial tempera-
ture and dew-point temperature of the air mass that is being lifted. Note that 2., can be
determined directly from ( L45) if p. and I- are known. Calculation of the lifting
condensation level provides a good estimate ofthe cloud base height for clouds that
form by adiabatic ascent.

Pkd
Ts

TpPs

L,
d(lne)--:,afo

R,T;
(6.32)
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Once saturation occurs, further lifting of the air mass results in condensation. Be-
cairse of the latent heat released during condensation, the decrease of temperature
with height will be smaller than that in dry adiabatic ascent. In addition, the potential
temperature, 0, which was conserved in a reversible dry adiabatic ascent, is no longer
conserved once condensation occurs.

A derivation of an approximate form of the saturated adiabatic lapse rate,l", is
given here by starting with the adiabatic entropy equation (6.12) in the following
approximate form:

6.5 Saturated Adiabatic Cooling 177

t"( Lrr', 
* rtlRT).#?:)=t(

Incorporating the Clausius-Clapeyron equation (4.19), solving for dT/dz= -f. and

noting that I-6 = - g/c, (2.68), we obtain finally

Using the hypsometric equation (1.46)

o = cpad(lnT)- R7d(tnp) *t] o*,

dpc,

-n7

p RaT 
*'

_L!,w,(* 
f,)=,,**ro,

(6.36)

(6.37)

(6.38)

fr=fa
,.'i#

1* eLznrr_

c * RoT'

(6.40)

and logarithmically differentiating the equarion for saturation mixing ratio (4.37),

dw, _de, _dpw, e. P

we can rewrite (6.36) as

The denominator of (6.40) is larger than the numerator, and thus f, < I.a. Thble 6.1

shows values of f, for selected values of T and p. It is seen that the temperature
variation of I-, exceeds the pressure variation. At low temperatures and high pres-

sures, I., approaches 16.

Values of f, determined from (6.40) are within about O.SVo of the values deter-
mined from a more exact form of the entropy equation (6.1I ). Because of the ap-
proximate nature of (6.40), I-. is sometimes called the pseudo-adiabatic lapse rate.

The amount of water condensed in saturated adiabatic ascent, called the adiabatic
liquid water mixing ratio, can be determined from the adiabatic enthalpy equation
(6.7b):

O=cpdT-L,udw,-adp

Table 6.1 f, for selected values oftemperature and pressure.

7('C) p (hPa)

lmo 700 500

Dividing by an incremental dz and solving for -dT/dz, we obtain

dT Lu rtu,__+
e, dz- or= %*'

+8
cp

I
RT

Using the chain rule, we can write the term der/dz as

de" d", dT
dz dT dz

-30

-20

-10

0

l0

20

9.2

8.6

7.7

6.5

5.3

4.3

9.0

8.2

7.1

s.8

4.6

3.7

8.7

7.8

6.4

5.t

4.0

3.3and substitute into (6.38) to obtain

(6.3e)
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Figure 6.5 Adiabatic liquid water mixing ratio as a function of height above the cloud base

and cloud base temperature. (After Goody, 1995.)

Solvirig for dwland incorporating the hydrostatic equation (1.33), we obtain

6.6 The Ice Phase t79

Integrating (6.41 ) from cloud base to height z gives the adiabatic liquid water mixing
ratio at height z. Because of the complicated form of f., this equation must be inte-
grated numerically. Integration of (6.41) shows that the adiabatic liquid water con-

tent increases with height above the cloud base and increasing cloud base tempera-

ture (Figure 6.5). Because of the variation of I.' with temperature, clouds with warmer

bases have larger values of f6 - f. and thus larger values of the adiabatic liquid water
content. The adiabatic liquid water content represents an upper bound on the liquid
water that can be produced in a cloud by rising motion. Processes such as precipita-
tion and mixing with dry air reduce the cloud liquid water content relative to the

adiabatic value.

6.6 The Ice Phase

As isobaric or adiabatic cooling proceeds, the cloud may eventually cool to the point
where ice crystals form. Assuming that a water cloud is present initially, then the

formation of ice crystals releases latent heat during fusion. Once the cloud glaciates,

it is supersaturated with respect to ice, and deposition occurs on the ice crystals, re-

leasing the latent heat of sublimation, until the ambient relative humidity is at ice

saturation. Further cooling will result in the increase of ice water content in the cloud
and the release of the latent heat of sublimation into the atmosphere.

Assuming that the thermodynamic system consists of moist air plus the conden-

sate, and that the freezing and subsequent deposition occur isobarically and adiabati-
cally, then the enthalpy of the system will not change during this transformation.
Since enthalpy is an exact differential, the enthalpy change depends only on the ini-
tial and final states (but not on the path). Consider the following path for the warming
of the system associated with the phase change:

Step l. Water freezes at constant 7l:

Lh1--Lsw1 (6.42)

Step 2. Vapor deposits on the ice at constant fl, until the water vapor pressure

reaches the saturation value over ice atT2:.
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o''=1.(#.i) dz

^h 
z = - 41,,(r,)-',, ( rr)] - - r * i[+ (r, ) - ",,(r,)f

Substituting I6= g/c, and f. - -dT/dz yields
Assuming that(72- T1) is small enough to treat as a differential, we can approximate
e"i(72) as

o*,=1,(ro-r,)dz (6.41)

",,(rz) = e,i(r t) - 
t# 

F, - r,)
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and A,h2 becomes

(6.43)

where w., has been adopted in favor of e., using w, = eer/p.

Step 3. The system is heated from T1 to T2:

Lh (6.44)

Since Ââ1 + À,h2+ Lh1=Q, we can incorporate (6.42),(6.43),and(6.44) and solve for
LT=Tz-Ti

Lh 2 = -,,y, 7," 
[, 

- ##].'+P v, - r,)

6.7 Conserved Moist Thermodynamic Variables r8r

freezing point. Cooling of the atmosphere from the melting can result in an isother-

mal layer near 0"C. Because of their large size and density, hailstones do not melt at

the freezing level in the same manner as a small ice crystal or a snowflake with a low

density, but melt over a deeper layer. If atmospheric relative humidities are low in the

atmosphere below the melting level, then the melting water will evaporate, cooling

the hailstone and retarding the melting.

6.7 Conserved Moist Thermodynamic Variables

As shown in Section 3.1, conserved variables are commonly used in time-dependent

equations. The concept of potential temperature becomes less useful when applied to

a cloud, since potential temperature is not conserved during phase changes ofwater.
Derivation of a potential temperature that is conserved in moist adiabatic ascent elimi-
nates the need to include latent heat source terms in the time-dependent thermody-

namic equation. Additionally, a potential temperature that is conserved in moist adia-

batic ascent can be used to interpret graphically numerous cloud processes and char-

acteristics (see Sections 6.8, 7.3, and 8.5).

Recall that for a reversible, adiabatic process in dry air, the entropy equation is

written as (2-26b)

o = c pa a(tnr) - n, d(tn p)

It was shown in Section 2.4 that integration of the above equation gives the potential

temperature (2.62)

,=,(l)-u"

which is conserved for dry adiabatic motions.
Vy'e seek an analogous variable that is conserved for a cloud so that the variation of

temperature with pressure can be determined in a saturated adiabatic process. We

begin with the adiabatic form of the complete equation for the combined first and

second laws for a moist air with cloud that includes both the liquid and ice phases

(6. r 3):

o = (c,a + w,c1) denr) - Ra d(tnp) - *, o(+). r(+). *,0(+) - 4+)
A conserved potential temperature for clouds will obviously be far more complex than

the potential temperature derived for a dry adiabatic process, since (6. I 3) is considerably

't=ro(rr-rr)

Lrw,+ L,rw"

LT=
-2EW,L..ttv

c, * ---- ^' RaT'

(6.4s)

Equation (6.45) gives the increase in temperature due to the freezing of cloud water
and the subsequent deposition of water vapor onto the ice crystals. In clouds that cool
by adiabatic ascent, the freezing does not oêcur isobarically, but gradually over a
temperature interval.

Once the cloud has glaciated, further adiabatic Àent results in deposition of water
vapor onto the ice crystals. Analogously to (6.40), the ice-saturation adiabatic lapse
rate is determined to be

| -"t'
e"

I.i F

- L,,*,,
t+-

RaT

-2EL. w-,
' ll' rrl+_

c ra 
RaTz

(6.46)d

The melting process is distinctly different from the freezingprocess. Melting may
occur as ice particles fall to temperatures that are above the melting point. In contrast
to freezing, which may be distributed through a considerable vertical depth, melting
of ice particles can be quite localized, occurring in a very narrow layer around the
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more complex than (2.26b). A number of different conserved potential temperatures
have been derived for clouds that employ various approximate forms of (6.l3).

The simplest possible case is that in which saturation conditions are maintained,
ice is not present, and heat capacity ofthe water vapor and condensed water are ne-
glected relative to that of dry air. Using these approximations, the entropy equation
(6.13) becomes:

6.7 Conserved Moist Thermodynamic Variables r83

equivalent potential temperature is only approximately conserved in a saturated adia-

batic process. Although approximate, (6.48) retains the essential physics of the pro-
cess, whereby the condensation of water vdpor provides energy to the moist air and

increases its temperature relative to what the temperature would have been in dry
adiabatic ascent.

An alternative but analogous potential temperature, the liquidwater potential tem-
perature, is derived as follows. Writing (6.47) as

Recall that we have for a dry adiabatic process from (2.63)

c16 d(ln9) = cpa d(lnT) - Ro d(lnp)

Equating (2.63) with (6.47) yields

o= ca d(tnD- R7d(tnp) - r(+)

-r(+)=cpad(tno)

-u"[,(î)=,,f; d0n0)

+=rrr^(+)

o"=oexp(#)

o = cpt!d(tnr)- Rjd(tnp)-r(+)

I 
""*)

o = cp,t d(tnr) - R7 d(tnp) t(+) t(+)

(6.47)

(6.48)

we can follow a procedure analogous to the derivation of Q and show that (Betts,

1973)

This expression is integrated to a height in the atmosphere where all of the water
vapor has been condensed out by adiabatic cooling. The corresponding temperature
is called the equivalent potential temperature, Q. Integration of

0t= 0exp (6.4e)

One advantage of 0/ over Q is that Q reverts to 0, the dry potential temperature, in the
absence of liquid water.

In the presence of ice, an ice-liquid water potential temperature can be derived
from the following approximate form of (6.13):

yields

or

to be (Tripoli and Cotton, l98l )

0it= 0exp
I L,,*, Lr.,\
I 

-___ 
I

\ ,*, codr 
J

It is easily determined that 0"> 0, which arises from the latent heat released from the
condensation of water vapor. Because of the approximations made in (6.47), the

(6.s0)

The derivation of the ice-liquid water potential temperature implies that it is appli-
cable only under conditions of equilibrium, since the affinity terms were not included.
Since ice and liquid are both at equilibrium only at the triple point, use of the ice-
liquid water potential temperature is inconsistent physically at temperatures away
from the triple point. Nevertheless, the ice-liquid water potential temperature is an
economical and not too inaccurate way to treat ice processes in a numerical cloud
model.

Ttrc, entropy potential temperature,9n, includes ice processes and is derived from the
complete form of the adiabatic entropy equation (6.13) to be (Hauf and Holler, 1987):
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t, = r(#)- d / {' na 
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6.E Aerological Diagrams r85

Thble 6.2 Conservative properties ofseveral parameters (C=conservative; N=nonconservative).

(6.s1)
Parameter Isobaric cooling

no condensation
Isobaric cooling

with condensation
Adiabatic expansion
no condensation

Adiabatic expansion
with condensation

The entropy potential temperature is thus the most general potential temperature con-

sidered here. Unlike 01and 0n,0n is applicable to nonequilibrium conditions such as

subsaturated or supersaturated environments.
.A major application of the conserved potential temperatures is their use as prog-

nostic variables in cloud models (Section 8.6). Use of the more complex potential

temperatures such as 0;1 and 0n is desirable in terms of their accuracy; however, a

nontrivial calculation is required to invert (6.50) and (6.51) to obtain the physical

temperature, T. When various other uncertainties are introduced into a calculation or
model, the more approximate forms of the potential temperature can be justified.

Another moist thermodynamic variable that is often used is the lrto ist static energy,

fr. lt is conserved in hydrostatic saturated adiabatic processes. lVe start from the

following adiabatic form of the first law of thermodynamics:

o = (, oo 
* *,t,) ar* a (t,"r,) - a an

Using the hydrostatic equation (l.33), we may write

o = (crd+r,r,)dr + d(Li,w,) + gdz= dfr

where the term (l + wr) accounts for the contribution of the condensed water to the
atmospheric density. Upon integration, the moist static energy is shown to be

n= (rro + *,r,)T+ L,,w,+ (t + *,) gz 6.52)

The moist static energy is cGserved for adiabatic, saturated or unsaturated transfor-
mations fàr a closed system in which the pressure change is hydrostatic.

It is important to note the conditions under which Q and the other conserved ther-
modynamic variables are not conserved. Examples include cases where extemal radia-
tive heating or conduction takes place, since these alter the entropy. Other examples
include atmospheric conditions in which latent heating occurs externally, such as the

evaporation of water into air from the ocean or when precipitation falls out.
In this chapter, we have considered numerous temperatures and potential tempera-

tures, which are defined in the context of their conservative properties regarding

certain moist atmospheric processes. Table 6.2 summarizes how various tempera-

ture, humidity, and other thermodynamic parameters vary in response to certain types

of moist processes.

6.8 Aerological Diagrams

The principal function of a thermodynamic diagram is to provide a graphical display
of a thermodynamic process. The following examples of thermodynamic diagrams
have been used thus far in the text: (T, s) diagram (Section 1.9): (p, l/) diagram
(Sections2.4and4.2);and(e,T)diagram(Sections4.2and6.4). Hereweconsidera
special class of thermodynamic diagrams called aerological diagram.s. An aerologi-
cal diagram is used to represent the vertical structure of the atmosphere and major
types of processes to which moist air may be subjected, including isobaric cooling,
dry adiabatic processes, and saturated adiabatic processes.

The simplest and most common form of the aerological diagram has pressure as the

ordinate and temperature as the abscissa. While the temperature scale is linear, it is
usually desirable to have the ordinate approximately representative of height above

the surface. Thus the ordinate may be proportional to -ln p (the Emagram) or to
p*/'n çth" Stuve diagram). The Emagram has the advantage over the Stuve diagram
in that area on the diagram is proportional to energy. Before the advènt of computers,
aerological diagrams were used widely in weather forecasting applications and the
energy-area equivalence of the diagram was an important consideration. For the present
purposes, we use the aerological diagram to illustrate certain moist atmospheric pro-
cesses, and the energy-area equivalence is not an important consideration. Because

of the simplicity of its construction, we use the Stuve diagram (sometimes referred to
as a pseudo-adiabatic chart) to illustrate the utility of aerological diagrams in under-
standing moist thermodynamic processes.

wv

r{
TD

0
e"

n

c
N
C
N

N
N

C
N
N
c
c
C

N
c
N
N

N
N

N
c
N
N

c
c



t86 6 Thermodynamic Tbansformations of MoistAir

The construction ofthe pseudo-adiabatic chart is illustrated in Figure 6.6 (see also
Appeondix E). The temperature scale is linear, while the pressure scale is proportional
to p"rcr. From (2.62), it is easily seen that the dry adiabats or lines of constant
potential temperature are straight lines. Pseudo-adiabats (4 = constant), are shown
by the curved dashed lines. Lines of constant saturated water vapor mixi4g ratio (w"

= constant) are given by the thin solid lines in Figure 6.6. The ordinate po/'n canbe
interpreted in terms of altitude, z, using (1.45). Tlle use of the pseudo-adiabatic chart
is illustrated with the following examples.

Figure 6.7 illustrates vertical profiles of temperature and dew-point temperature
plotted on an aerological diagram. Such observations are obtained using balloons,
aiicraft or remote sensing. From the definition of dew-point temperature (6.15), it is
easily seen that by reading off the saturation mixing ratio at the dew-point tempera-
ture at a given level on the diagram, one obtains the actual water vapor mixing ratio.
Conversely, if the mixing ratio is given, the dew-point temperature may be read off
the diagram.

The adiabatic ascent of a parcel from the surface is represented schematically in
Figure 6.8. Consider a parcel with p - pn , T = Tn, and wu = w,,. The potential tempera-
ture ofthis parcel corresponds to the value of the dry adiabat that passes through 7!,,

100

200

400

0 r00 200 300

r (K)

Figure 6.6 Construction of the pseudo-adiabatic chart.
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TD

r000

r050
280 290 300

Temperature (K)

Figure6.7 Determinationofw,w",andT,rgiventheverticalprofilesoftemperatureanddew-
point temperature.

p,,. In adiabatic ascent, the parcel will be lifted dry adiabatically along an isopleth of
constant g, that passes through pu,Tr. In this ascent, the temperature and saturation

mixing ratio decrease while the actual mixing ratio remains the same. The level

where the saturation mixing ratio equals the actual mixing ratio (the intersection of
the constant 0line with the constant w. line) corresponds to L, P.t, z"; the saturation

temperature and pressure and the lifting condensation level. The thermodynamic
properties of air that continues to ascend above the saturation point is found by fol-
lowing the pseudo-adiabat (line of constant Q) that passes through L, p". The mixing
ratio of the parcel in pseudo-adiabatic ascent corresponds to the saturation mixing
ratio at that level (the intersection of the pseudo-adiabat that passes through 7", p'
with the constant mixing ratio line). The adiabatic liquid water content at a given

level above the saturation point is approximated by subtracting the saturation mixing
ratio from the original mixing ratio, lto.

The equivalent potential temperature, Q, corresponding to 7n, p,,, is determined by

following the pseudo-adiabat through I", p, to very low pressure, until the pseudo-adiabat

is essentially parallel to the dry adiabat. By following the dry adiabat down to a

pressure of p,, and reading off the corresponding temperature, the equivalent tempera-

ture, I", is obtained; by continuing to follow this dry adiabat down to p = I 669 mb, the

equivalent potential temperature, Q, is obtained. The equivalent temperature is re-
lated to the equivalent potential temperature analogously to (2.62) as
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Notes

General reference sources forthis chapter includeA tmosphericThermodynamics (1981,

Chapters IV and VII) by Iribarne and Godson, A tmospheric Convection ( 1994, Chap-

ter 4) by Emanuel, Ctouds and Storms (1980, Chapter 3) by Ludlam, andThe Cease-

less Wind (1986, Chapter 4) by Dutton.

A more detailed discussion of aerological diagrams is given in Atmospheric Thermo-

dynamics ( I 98 I , Chapter VI) by Iribarne and Godson.

Problems

1. For a pressure of 1000 mb, determine the following. You may use the e., table in

Appendix D. Given:
a) Ivs = 5 g kg-I, find Z
b) T=25"C, find w.,.

c) T= 30"C and w = 15 g kg-I, find 1{.

d) T = 2OoC and Tp= 15, find t{.
e) T = l5"C and t{-- 0.8, find 12'

0 w =20 g kg-l, find 76r.

g) Ir = -l0oC, find 72,

2. Considera I kgparcel of moist air atp = 1000mb,I= 30'Cand 11'=0.95. The

parcel passes over a cold ocean so that the parcel cools to 25"C. Assume that only

heat (no moisture) is transferred between the ocean and the parcel.

a) What is the initial vapor pressure and mixing ratio of the parcel?

b) What is the dew-point temperature?
c) How much water condenses?

3. During the formation of a radiation fog, 4000 J kg l is lost after saturation started,

at lOoC. The pressure is 1000 mb. Estimate the following:
a) final temperature;

b) vapor pressure;

c) liquid mixing ratio.

4. Home humidifiers, or "swamp coolers," operate by evaporating water into the air
in the house, and thereby raise its relative humidity. Consider a house having a vol-
ume of 200 m3 in which the air temperature is initially 2l oC and the relative humidity
is lÙVo. Compute the amount of water that must be evaporated to raise the relative
humidity to 6OVo. Assume a constant pressure process at l0l0 hPa in which the heat

required for evaporation is supplied by the air itself.
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Figure6.8 Adiabaticascentofaparcel frqpzn._Theparcel initiallyascendsdryadiabaticaily
along. the consrant potential temperature linè'that pàsses througli (rn , 1000îÈa). As thé
parcel ascends. the saturation mixing ratio decreases while the aciual'niixing ratio remains the
same. At the point at which the actual mixing ratio of the parcel is equai to the saturation
mixing ratio,the parcel becomes saturated. Further lifting of the parbel o."u.r rtong tÀ"
saturated adiabat that passes through the poin t,(7,, p,).

0" = r"(?)-"'

The wet-bulb temperature, Tyy, can be approximated by following the pseudo-adiabat
that passes through p", ?'- down to the level of pn and reading the corresponding tem-
perature. By continuing to follow this pseudo-adiabat down to p = 16ç9 *b, the wet_
bulb potential temperature, 01y, is determined. Note that while the pseudo-adiabatic
werbulb temperature-is almost numerically equivalent to the adiabatic isobaric wet-
bulb temperature defined in section 6.3, they are slightly different. In the case of the
pseudo-adiabatic wet-bulb temperature, water is evaporated into the air through pseudo-
adiabatic descent, while water is evaporated isobarically in the atmosphere in the
determination of the adiabatic isobaric wet-bulb temperature.

While aerological diagrams are useful for illustrating schematically the results of
thermodynamic transformations of moist air, their use as a computational tool has
been superseded by computers.


