Applications of the Equations
of Motion

Objectives

In the previous chapter we derived expressions for the equations of motion as well as
the continuity of mass. The present chapter will concentrate on illustrating various
simple applications of these equations to observable phenomena in the mid-latitude
atmosphere. Many of the applications of the equations of motion, in particular, will
be greatly simplified by first recasting the expressions in one of three new Cartesian
coordinate systems. The first two use pressure ( p) or potential temperature (6) as the
vertical coordinate and are known as isobaric or isentropic coordinates, respectively.
Upon transforming the equations to these new coordinate systems we will illustrate
the utility of each with some examples. Next, by combining the geostrophic and
hydrostatic balances, we will find that the vertical shear of the geostrophic wind
is directly linked to the magnitude of the horizontal temperature gradient in the
thermal wind relationship.

Finally, we shall adopt a third new Cartesian coordinate system, known as natural
coordinates, in which we employ the direction of the flow at each point in the fluid
as the basis for defining the horizontal directions. We will use this natural coordinate
perspective to examine a number of additional balanced flows including inertial,
cyclostrophic, and gradient balances. Applications of each of these balances will also
be considered. We begin by transforming the equations of motion and the continuity
equation into isobaric coordinates.

4.1 Pressure as a Vertical Coordinate

Recall that in height coordinates, the vector form of the frictionless horizontal mo-
mentum equation is
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78 APPLICATIONS OF THE EQUATIONS OF MOTION

In order to recast this expression in isobaric coordinates we must convert the pressure
gradient force term into an equivalent expression in isobaric coordinates. This is done
most easily by considering the differential (dp) on a constant pressure surface:
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(dp)p = (5) dx, + (a_ly)) dy, + (a_I;) dz, (4.1a)
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where the subscripts indicate differentiation carried out holding the subscripted
variable constant. Now, since there is no change in pressure on an isobaric (i.e.
constant pressure) surface, then (dp), = 0 so that
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Next, we expand dz,, as a function of x and y to yield
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which can be rearranged into
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Since this statement is true for all dx and dy, the terms in square brackets in (4.1c)
must both be zero. Hence,
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With the help of the hydrostatic equation, these expressions become
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Dividing both sides of (4.1e) by p yields
1 (dp 9z 1)
H2) () --(2),
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where, for convenience, we have dropped the subscripts x and y on the LHS
derivatives. The LHS expressions represent the height coordinate versions of the
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x- and y-direction pressure gradient force terms. Thus, the RHS expressions rep-
resent the x- and y-direction pressure gradient force terms in isobaric coordinates.
Therefore, the isobaric coordinate expression for the pressure gradient force in vector
form is

PGF,=—V,¢ (4.2)
where
v — 0 Pl 9 .
P 9x 8)/]'

The isobaric coordinate form of the pressure gradient force involves no reference to
density and is therefore much more amenable to operational use. The removal of
density from the expression for the pressure gradient force is a major advantage of
isobaric coordinates and provides the motivation for their use.

With the result in (4.2), the vector form of the horizontal equation of motion can
be rewritten as

dv s o
s =—-Vyp— fkxV (4.3)
where, importantly,
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The component velocity in the last term, w, is equal to

_dp
C= s

and is a measure of vertical velocity in units of hPas™
operations, pubars™!, where 1 ub = 107> hPa).

By neglecting the horizontal acceleration vector, a new expression for the
geostrophic balance arises from (4.3): namely,

(4.4)

! (or, more commonly in

fhkx V==V, (4.4a)

Taking —k x (4.4a) and dividing by f on both sides yields an expression for the
geostrophic wind in isobaric coordinates,

Ve = ; X V. (4.4b)

Without reference to p, (4.4b) provides a much simpler expression for calculating
the geostrophic wind from observations. The simplicity is illustrated in Figure 4.1
which shows an example of the 500 hPa geopotential height contours and actual wind
vectors from the middle latitudes. The geostrophic wind is parallel to the geopotential
height contours with a magnitude dependent on the magnitude of V ,¢b. For the most
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Figure 4.1 The 500 hPa geopotential height and winds at 0000 UTC 23 February 2004. Geopotential
height is labeled in dam (deca meters) and contoured every 6 dam. Winds are represented as flags
pointing into the direction from which the wind is coming. Speed of the winds is indicated by the barbs
on the flags as: half barb, less than 5m s~; full barb, 5ms~!; pennant, 25ms™!

part, the actual wind is close to the geostrophic wind with notable exceptions being
in regions of wind speed maxima and strong curvature.

Another consequence of the simplicity of (4.4b) is that, so long as we consider f
to be constant, then
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so that the geostrophic wind is non-divergent. This is an extremely important prop-
erty of the geostrophic wind and its importance for understanding mid-latitude
weather systems will be amplified when we examine the continuity equation in iso-
baric coordinates.

Rather than transform the continuity equation from height to pressure coor-
dinates, we will derive the isobaric form of the continuity equation by consider-
ing a control volume (8V = x5y dz) as before. Using the hydrostatic equation
(6p = —pgdz) we can rewrite § V as

_ —6x48ydp
pg

Let us adopt the Lagrangian perspective that the mass of the control volume (given
bydM = psV = —5x 6y ép/g) does not change following the parcel. Then the rate
of change of mass (per unit mass) is given by

sV
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Applying the chain rule to the RHS of (4.6a) yields
1 d(8x) d(3y) d(3p)
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axaysp[ dt yor+ dt xop+ ar (4.60)
Since, as we saw before,
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(4.6b) can be simplified to
8u+8v+8w_0 (4.7)
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asdx, 8y, and & p approach zero. This is the isobaric form of the continuity equation.
This form of the continuity equation is much simpler than the height coordinate
version ((3.46) and (3.47)) since, similar to the isobaric expression for the pressure
gradient force, density does not appear in it.

A simple rearrangement of (4.7) produces
ou  JIv dw

L 48
ox T3y op (4.82)

V.V,
which relates the fact that the horizontal divergence on an isobaric surface is directly
related to the vertical motion (w), a variable of exceptional importance in creating
the sensible weather. If we know the vertical ( p-direction) distribution of horizontal
divergence in an atmospheric column, then we can determine the vertical motion
distribution in that column as well. Consider the hypothetical situation depicted in
Figure 4.2 in which horizontal convergence of air occurs near the surface (V - \7;, < 0)
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Figure 4.2 lllustration of the vertical distribution of divergence associated with upward vertical motion.
The divergence values are measured on isobaric surfaces and w < 0 corresponds to ascent

and horizontal divergence of air occurs at the top of the column (V - \711 > 0). In
accord with the continuity of mass, such a circumstance must be accompanied by
upward vertical motion in the intervening column of air. Integrating (4.8a) with
respect to pressure yields

pr 9 9 pe
/(—”Jr—v) 8p=—/8w (4.8b)
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(V Vi) = (V-Vi)p = —[wp, — wp,]. (4.8¢)

There can be no vertical motion precisely at ground level, so w,, = 0. Since (V -
Vi) p — (V- Vi), > 0, we find that wp, < 0 (i.e. there is upward vertical motion at
the top of the hypothetical column) as we suspected.

Another useful physical insight arises from (4.8a) by considering the horizontal
wind as the sum of its geostrophic and ageostrophic components. By substituting
\7h = \7g + \7ag into (4.8a) we get

> - - - - Jw
V'Vh:V'(Vg+Vug):v'Vg+V'Vag:——. (493.)

Recall from (4.5) that so longas f is constant, the geostrophic wind is non-divergent
so that (4.9a) becomes

- ow
V.V,, =—— 4.9b
ag o (4.9b)
which states that the divergence of the ageostrophic wind determines the distribution
of vertical motion in the atmosphere. Thus, it is the ageostrophic wind that is entirely

responsible for the distribution of cyclones, anticyclones, clouds, and precipitation
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in the atmosphere. The ramifications of this statement are profound. Despite the fact
that the mid-latitude atmosphere is predominantly in geostrophic balance, all of the
important weather with which we are confronted develops as a direct result of the
often relatively small ageostrophic portion of the wind.

Finally, we can quite easily express the thermodynamic energy equation in isobaric
coordinates by writing the first law of thermodynamics in pressure coordinates as

(BT oT oT
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Rearranging the LHS and dividing by ¢, yields
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which can be rewritten as
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is a measure of the static stability in isobaric coordinates. If an atmospheric flow is
assumed to be (1) adiabatic (Q = 0), (2) steady state (3 T/dt = 0), and (3) stably
stratified (o, > 0), then (4.10c) can be written in a physically illuminating manner

as

where

(=Vy-VT)

— . (4.11)

This expression states that the horizontal temperature advection is related to the ver-
tical motion such that warm (cold) air advection is associated with upward (down-
ward) vertical motions. The cyclone depicted in Figure 4.3 illustrates that these
relationships, though based upon some troubling assumptions (most notably the
steady-state assumption), do tend to be observed in the real mid-latitude atmo-
sphere. For this reason meteorologists are often very interested in the sign of the
horizontal temperature advection.

4.2 Potential Temperature as a Vertical Coordinate

Though adopting pressure as a vertical coordinate simplifies a number of the basic
equations by removing reference to density, air parcels are no more constrained
to remain on an isobaric surface than they are to remain on a geometric height
surface. In many applications it is desirable to choose potential temperature (0) as
the vertical coordinate since (1) for statically stable stratifications, 6 is a monotonic



