
4
Applications of the Equations
of Motion

Objectives

In the previous chapter we derived expressions for the equations of motion as well as

the continuity of mass. The present chapter will concentrate on illustrating various

simple applications of these equations to observable phenomena in the mid-latitude

atmosphere. Many of the applications of the equations of motion, in particular, will

be greatly simplified by first recasting the expressions in one of three new Cartesian

coordinate systems. The first two use pressure (p) or potential temperature (θ) as the

vertical coordinate and are known as isobaric or isentropic coordinates, respectively.

Upon transforming the equations to these new coordinate systems we will illustrate

the utility of each with some examples. Next, by combining the geostrophic and

hydrostatic balances, we will find that the vertical shear of the geostrophic wind

is directly linked to the magnitude of the horizontal temperature gradient in the

thermal wind relationship.

Finally, we shall adopt a third new Cartesian coordinate system, known as natural

coordinates, in which we employ the direction of the flow at each point in the fluid

as the basis for defining the horizontal directions. We will use this natural coordinate

perspective to examine a number of additional balanced flows including inertial,

cyclostrophic, and gradient balances. Applications of each of these balances will also

be considered. We begin by transforming the equations of motion and the continuity

equation into isobaric coordinates.

4.1 Pressure as a Vertical Coordinate

Recall that in height coordinates, the vector form of the frictionless horizontal mo-

mentum equation is

d EV

dt
= −

1

ρ
∇ p − f k̂ × EV .
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In order to recast this expression in isobaric coordinates we must convert the pressure

gradient force term into an equivalent expression in isobaric coordinates. This is done

most easily by considering the differential (dp) on a constant pressure surface:

(dp)p =

(

∂p

∂x

)

y,z

dxp +

(

∂p

∂y

)

x,z

dyp +

(

∂p

∂z

)

x,y

dz p (4.1a)

where the subscripts indicate differentiation carried out holding the subscripted

variable constant. Now, since there is no change in pressure on an isobaric (i.e.

constant pressure) surface, then (dp)p = 0 so that

0 =

(

∂p

∂x

)

y,z

dxp +

(

∂p

∂y

)

x,z

dyp +

(

∂p

∂z

)

x,y

dz p. (4.1b)

Next, we expand dz p as a function of x and y to yield

0 =

(

∂p

∂x

)

y,z

dxp +

(

∂p

∂y

)

x,z

dyp +

(

∂p

∂z

)

x,y

[

(

∂z

∂x

)

y,p

dxp +

(

∂z

∂y

)

y,p

dyp

]

which can be rearranged into

0 =

[

(

∂p

∂x

)

y,z

+

(

∂p

∂z

)

x,y

(

∂z

∂x

)

y,p

]

dxp

+

[

(

∂p

∂y

)

x,z

+

(

∂p

∂z

)

x,y

(

∂z

∂y

)

y,p

]

dyp. (4.1c)

Since this statement is true for all dx and dy, the terms in square brackets in (4.1c)

must both be zero. Hence,
(

∂p

∂x

)

y,z

= −

(

∂p

∂z

)

x,y

(

∂z

∂x

)

y,p

and

(

∂p

∂y

)

x,z

= −

(

∂p

∂z

)

x,y

(

∂z

∂y

)

y,p

.

(4.1d)

With the help of the hydrostatic equation, these expressions become

−

(

∂p

∂x

)

y,z

= −ρg

(

∂z

∂x

)

y,p

and −

(

∂p

∂y

)

x,z

= −ρg

(

∂z

∂y

)

y,p

. (4.1e)

Dividing both sides of (4.1e) by ρ yields

−
1

ρ

(

∂p

∂x

)

z

= −g

(

∂z

∂x

)

p

= −

(

∂φ

∂x

)

p

−
1

ρ

(

∂p

∂y

)

z

= −g

(

∂z

∂y

)

p

= −

(

∂φ

∂x

)

p

where, for convenience, we have dropped the subscripts x and y on the LHS

derivatives. The LHS expressions represent the height coordinate versions of the
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x- and y-direction pressure gradient force terms. Thus, the RHS expressions rep-

resent the x- and y-direction pressure gradient force terms in isobaric coordinates.

Therefore, the isobaric coordinate expression for the pressure gradient force in vector

form is

P G F p = −∇pφ (4.2)

where

∇p =
∂

∂x
î +

∂

∂y
ĵ .

The isobaric coordinate form of the pressure gradient force involves no reference to

density and is therefore much more amenable to operational use. The removal of

density from the expression for the pressure gradient force is a major advantage of

isobaric coordinates and provides the motivation for their use.

With the result in (4.2), the vector form of the horizontal equation of motion can

be rewritten as

d EV

dt
= −∇pφ − f k̂ × EV (4.3)

where, importantly,

d

dt
=

∂

∂t
+ u

∂

∂x
î + v

∂

∂y
ĵ + ω

∂

∂p
k̂.

The component velocity in the last term, ω, is equal to

ω =
dp

dt
(4.4)

and is a measure of vertical velocity in units of hPa s−1 (or, more commonly in

operations, µbar s−1, where 1 µb = 10−3 hPa).

By neglecting the horizontal acceleration vector, a new expression for the

geostrophic balance arises from (4.3): namely,

f k̂ × EV = −∇pφ. (4.4a)

Taking −k̂ × (4.4a) and dividing by f on both sides yields an expression for the

geostrophic wind in isobaric coordinates,

EV g =
k̂

f
× ∇pφ. (4.4b)

Without reference to ρ, (4.4b) provides a much simpler expression for calculating

the geostrophic wind from observations. The simplicity is illustrated in Figure 4.1

which shows an example of the 500 hPa geopotential height contours and actual wind

vectors from the middle latitudes. The geostrophic wind is parallel to the geopotential

height contours with a magnitude dependent on the magnitude of ∇pφ. For the most



80 APPLICATIONS OF THE EQUATIONS OF MOTION

Figure 4.1 The 500 hPa geopotential height and winds at 0000 UTC 23 February 2004. Geopotential

height is labeled in dam (deca meters) and contoured every 6 dam. Winds are represented as flags

pointing into the direction from which the wind is coming. Speed of the winds is indicated by the barbs

on the flags as: half barb, less than 5 m s−1; full barb, 5 m s−1; pennant, 25 m s−1

part, the actual wind is close to the geostrophic wind with notable exceptions being

in regions of wind speed maxima and strong curvature.

Another consequence of the simplicity of (4.4b) is that, so long as we consider f

to be constant, then

∇ · EV g = ∇ ·

(

k̂

f
× ∇pφ

)

= ∇ ·

(

−
1

f

∂φ

∂y
î +

1

f

∂φ

∂x
ĵ

)

=
1

f

[

∂

∂x

(

−
∂φ

∂y

)

+
∂

∂y

(

∂φ

∂x

)]

=
1

f

(

−
∂2φ

∂x ∂y
+

∂2φ

∂x ∂y

)

= 0 (4.5)
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so that the geostrophic wind is non-divergent. This is an extremely important prop-

erty of the geostrophic wind and its importance for understanding mid-latitude

weather systems will be amplified when we examine the continuity equation in iso-

baric coordinates.

Rather than transform the continuity equation from height to pressure coor-

dinates, we will derive the isobaric form of the continuity equation by consider-

ing a control volume (δV = δx δy δz) as before. Using the hydrostatic equation

(δp = −ρgδz) we can rewrite δV as

δV =
−δx δy δp

ρg
.

Let us adopt the Lagrangian perspective that the mass of the control volume (given

by δM = ρδV = −δx δy δp/g ) does not change following the parcel. Then the rate

of change of mass (per unit mass) is given by

1

δM

d(δM)

dt
= 0 =

−g

δx δy δp

d

dt

(

−δx δy δp

g

)

. (4.6a)

Applying the chain rule to the RHS of (4.6a) yields

1

δx δy δp

[

d(δx)

dt
δy δp +

d(δy)

dt
δx δp +

d(δp)

dt
δx δy

]

= 0. (4.6b)

Since, as we saw before,

d(δx)

dt
= δu,

d(δy)

dt
= δv, and

d(δp)

dt
= δω,

(4.6b) can be simplified to

∂u

∂x
+

∂v

∂y
+

∂ω

∂p
= 0 (4.7)

as δx, δy, and δp approach zero. This is the isobaric form of the continuity equation.

This form of the continuity equation is much simpler than the height coordinate

version ((3.46) and (3.47)) since, similar to the isobaric expression for the pressure

gradient force, density does not appear in it.

A simple rearrangement of (4.7) produces

∇ · EV h =
∂u

∂x
+

∂v

∂y
= −

∂ω

∂p
(4.8a)

which relates the fact that the horizontal divergence on an isobaric surface is directly

related to the vertical motion (ω), a variable of exceptional importance in creating

the sensible weather. If we know the vertical ( p-direction) distribution of horizontal

divergence in an atmospheric column, then we can determine the vertical motion

distribution in that column as well. Consider the hypothetical situation depicted in

Figure 4.2 in which horizontal convergence of air occurs near the surface (∇ · EV h < 0)
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Figure 4.2 Illustration of the vertical distribution of divergence associated with upward vertical motion.

The divergence values are measured on isobaric surfaces and ω < 0 corresponds to ascent

and horizontal divergence of air occurs at the top of the column (∇ · EV h > 0). In

accord with the continuity of mass, such a circumstance must be accompanied by

upward vertical motion in the intervening column of air. Integrating (4.8a) with

respect to pressure yields

pt
∫

ps

(

∂u

∂x
+

∂v

∂y

)

∂p = −

pt
∫

ps

∂ω (4.8b)

or

(∇ · EV h)pt
− (∇ · EV h)ps

= −[ωpt
− ωps

]. (4.8c)

There can be no vertical motion precisely at ground level, so ωps
= 0. Since (∇ ·

EV h)pt
− (∇ · EV h)ps

> 0, we find that ωpt
< 0 (i.e. there is upward vertical motion at

the top of the hypothetical column) as we suspected.

Another useful physical insight arises from (4.8a) by considering the horizontal

wind as the sum of its geostrophic and ageostrophic components. By substituting
EV h = EV g + EV ag into (4.8a) we get

∇ · EV h = ∇ · (EV g + EV ag ) = ∇ · EV g + ∇ · EV ag = −
∂ω

∂p
. (4.9a)

Recall from (4.5) that so long as f is constant, the geostrophic wind is non-divergent

so that (4.9a) becomes

∇ · EV ag = −
∂ω

∂p
(4.9b)

which states that the divergence of the ageostrophic wind determines the distribution

of vertical motion in the atmosphere. Thus, it is the ageostrophic wind that is entirely

responsible for the distribution of cyclones, anticyclones, clouds, and precipitation
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in the atmosphere. The ramifications of this statement are profound. Despite the fact

that the mid-latitude atmosphere is predominantly in geostrophic balance, all of the

important weather with which we are confronted develops as a direct result of the

often relatively small ageostrophic portion of the wind.

Finally, we can quite easily express the thermodynamic energy equation in isobaric

coordinates by writing the first law of thermodynamics in pressure coordinates as

c p

(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ ω

∂T

∂p

)

− αω = Q̇. (4.10a)

Rearranging the LHS and dividing by c p yields
(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)

−

(

α

c p

−
∂T

∂p

)

ω =
Q̇

C p

(4.10b)

which can be rewritten as
(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)

− σpω =
Q̇

C p

(4.10c)

where

σp =

(

α

c p

−
∂T

∂p

)

is a measure of the static stability in isobaric coordinates. If an atmospheric flow is

assumed to be (1) adiabatic (Q̇ = 0), (2) steady state (∂T/∂t = 0), and (3) stably

stratified (σp > 0), then (4.10c) can be written in a physically illuminating manner

as

(−EV h · ∇T)

−σp

= ω. (4.11)

This expression states that the horizontal temperature advection is related to the ver-

tical motion such that warm (cold) air advection is associated with upward (down-

ward) vertical motions. The cyclone depicted in Figure 4.3 illustrates that these

relationships, though based upon some troubling assumptions (most notably the

steady-state assumption), do tend to be observed in the real mid-latitude atmo-

sphere. For this reason meteorologists are often very interested in the sign of the

horizontal temperature advection.

4.2 Potential Temperature as a Vertical Coordinate

Though adopting pressure as a vertical coordinate simplifies a number of the basic

equations by removing reference to density, air parcels are no more constrained

to remain on an isobaric surface than they are to remain on a geometric height

surface. In many applications it is desirable to choose potential temperature (θ) as

the vertical coordinate since (1) for statically stable stratifications, θ is a monotonic


